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Abstract: Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical sys1:em. 
Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure 
to be controlled exhibits nonlinear behavior. The feedlbnvard network with static characteristic usually uses a tapped delay input to 
control a nonlinear dynamic system. In the recurrent network, on the other hand, the dynamic behavior of the nonlinear system can 
he captured by the internal loop in its neurons and thus, a better system estimation and control can be expected using this control 
structure. In this paper, a multilayer perceptron diagoaal recurrent neural network (DR”)  based control structure is employr:d to 
improve the performance of feedfonvard struchue for Active Noise Control (ANC) systems where the nonlinearity OCCUIS in the 
actuators. A comparison of D R ”  with feedfonvard network is presented to highlight the improvement made by the recurrent 
structure. 

Keywords: Active control of sound and vibration, recurrent neural network, nonlinear control 

I. Introduction 
Active control of sound involves the introduction of 

a number of controlled ‘‘secondary” sources driven so that 
the field generated by these sources interferes destructively, 
180” out of phase, with the noise field caused by the original 
“primary” source. Numerous works have been carried out for 
the ANC implementation under various environments: 
airplanes, auto vehicles, room acoustics, etc, see 2.455) and the 
references therein. Many adaptive linear filtering algorithms 
have been derived and proposed for the active sound control 
application in recent years 2.4s.131. One commonly used 
approach is the Normalized Filtered-x Least-Mean-Square 
(Normalized Fx-LMS) utilizing FIR filter. We will use the 
normalized Fx-LMS as a benchmark for the linea filter 
performance under non-linearity condition. Interest readers 
can refer to ‘5’. 

In the cases where nonlinear characteristics are 
induced in the system, this linear controller may not perform 
well. The actuators, which consist of loudspeakers generated 
by amplifier, have a nominal value within which the system 
will remain in the linear region. It will develop into 
nonlinear characteristic when the input signal exceeds this 
nominal value, or when it operates below the minimum 
operating frequency of the actuator. Other possibility of 
nonlinear source is from the structure that inherits a 
nonlinear behavior. The performance of the linear filter as 
controller under these nonlinear circumstances may be 
degraded. Therefore, a nonlinear controller is preferred in 
this case. For the active control of sound and vibration, the 
use of neural networks as nonlinear control structures has 
been studied in 

Bonchard ef. 01 ,‘I explored the multilayer 
perceptron neural networks using backpropagation scheme 
to control nonlinear plants, for the active control of sound. It 
uses the feedfonvard structure, combined with tapped delays, 

and the hackpropagation training algorithm ‘ to solva the 
dynamical problems. However, the feedfonvard network: can 
he considered as a static mapping network (if the tcpped 
delay lines are omitted). On the other hand, recurrent neural 
networks have the ability to deal with time-varying systems 
through their own natural temporal operation IL.”. Us$: the 
dynamic characteristic of recurrent neural network, the 
number of neurons required for controller or plant model can 
be reduced, and it is bener suited for dynamical systems than 
the feedforward network 6,7). This paper extends the DRNN 
algorithm for ANC and introduces new heuristic algorithms 
for D R ” ,  which have already been proposed for the 
feedfonvard network using Extended Kalman Filter 
(EKF) in improving the convergence rate. 

With the same technique as  the feedforward 
structure, we use two multilayer perceptrons for recurrent 
neural networks control-based structure, consisting of 
controller network and plant model network. Fig. 1 depicts 
the block diagram of recnrrent neural network based control 
system. 

I 
l l  

Fig. 1. Block diagram of recurrent neural network control 
based system 

Bouchard and Snyder gave a detailed description 
of feedfonvard neural network control structure. They use an 
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algorithm named Fx-BP that is a generalization from the 
filtered-x LMS algorithm, and is extended by Bouchard I )  

which introduced several improved training algorithms such 
as the so-called adjoint-BP, adjoint-EBP, adjoint-MEKA, 
adjoint-NEKA and adjoint-EKF (these methods em loy the 
optimal filtering algorithms proposed by Shah {). The 
adjoint approach can he formulated as follows: 

A4oini approach: 

It uses the paradigm that the controller weights at a 
time instant affect the present and the next L samples of the 
cost function (quadratic error) or can be reformulated in 
causal way: that the weights of the control network at time 
instant n-L are determined by the cost function of the present 
and the last L samples, (e’@-L), e’(n-L+I). ..., e’@)). 
However, the responsiveness of the adjoint algorithm has a 
tradeoff with the tapped delay length, since the present error 
gradient updates the weights in the past L weights. The 
longer the tapped delay L, the less responsive the adjoint 
algorithm becomes. 

11. Diagonal Recurrent Network 
Control Based 

The diagonal configuration proposed by Ku et. al. ” 
for recurrent network provides a simple learning method, 
compared with the fully-connected recurrent structure, while 
preserving the dynamic capabilities of recurrent network. In 
diagonal recurrent network, each state output is fed hack into 
its o w  state. The D R ”  gradient-based learning method 
can be found in 3), and we will employ this configuration in 
the ANC application. Diagonal shucNe of recurrent 
network is illustrated in Fig. 2. 
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Fig. 2. Diagonal recurrent network layer 
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Fig. 2. Diagonal recurrent network layer 

The’ D R “  control-based smcture in ” does not 
employ tapped-delay structure in the input layer of plant 
model network, and it assumes that the system dynamic can 
be satisfied by the existence of the diagonal synapses. lo OUT 
application, we still use the tapped delay in the controller 
and plant model structure for representing the unidentified 
zeros of the system hy the diagonal synapses. Thus, the 
adjoint approach is utiliied for control network learning 

algorithm. For convenience and simplicity, we employ single 
channel ANC where the output layer of control network 
consists of one neuron, which corresponds to only one 
actuator. The extension to the multichannel algorithm is 
quite straightforward, and interested readers should refer to 
’I. The equations for the forward propagation in the 
multilayer perceptron D R ”  are given below: 

For the input layer of the control network 
y ; ( n ) = x ( n - j )  

For the other layers of the control network 

Y,” ( n )  = f@,” (n ) )  
For the input layer of the plant model network 
zf(n) = y N  ( n - j )  

For the other layers of the plant model network 

2,” ( n )  = f0,” ( n ) )  (2) 

e ( n ) = d ( n ) + z M ( n )  (3) 
For the output layer of the plant model 

where 
x(n-j) 
y r ( n )  

s,” (n) 

wrj(n)  

signal from the reference sensor at time n-j; 
output of neuron j in layer m of the control 

network at time n (m>O); 
weighted sum of inputs for neuron j of layer m of 

the control network at time n; 
value at time n of the weight linking neuron i of 
layer m-I to neuron j of layer m of the control 
network; 

w ; . ~  (n) value at time n of the self-loop weight (diagonal 
weighi) in the neuron j of layer m of the control 
network; 
output of neuron j in layer m of the plant model 
network at time n; 
weighted sum of inputs for neuron j of layer m of 
the plant model network at time n; 
value of the weight linking neumn i of layer m-I 
to neuron j of layer m of the plant model network; 
value at time n of the self-loop weight (diagonal 
weight) in the neuron j of layer m of the control 
network; 
error signal at time n; 
disturbance signal at time n; 

z y ( n )  

i ,”(n) 

hrj  

h t  

e(n) 
d(n) 
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M index of an output layer; number of layers in 
either control network or plant model network 

From equation (Z), there is additional term, 
compared with the feedforward networks ", that contains 
feedback from the output neuron hack into its own input 
junction, in the hidden layer. This is the term that offers 
dynamical modeling or better control of non-linear dynamic 
system than the feedforward networks. The activation 
function /(.) is usually a nonlinear function for all neurons 
except those in the output layer. The activation hrnctions are 
formulated as follows: 

I [x(n)]  = x(n)  for neurons in the output layer of control 
network and plant model network 

/ [ x ( n ) ] = t a n h ( a * x ( n ) )  for all other neurons (with a = 

arbitrary value) 

The identification stage for the plant model network 
using diagonal recurrent sttucture can be referred to ". We 
use the adjoint approach, as described in equation (I) ,  in 
developing the leaming algorithm of D R "  for ANC. The 
algorithm for the controller network using adjoint D R "  is 
summarized as follows: 

For the last layer of the plant model network 
su ( n )  = f'(P (n)).e(n) = e(n) 
For the other layers of the plant model network (except 
the input layer) 
s ; ( n ) = / l ( t , " ( n ) ) . C 6 ~ ' ( n ) h ~ ; '  

For the last layer of the control network 
k 

L 
A M (n  - L )  = /'(sM (n -L ) ) .~CS:  (n-L+/)h,', 

k l=O 

k I 4  

For the other layers of the control network (except the 
input layer) 
AY (n -  L) = / l ( s ; (n  - L ) ) . ~ A T '  (n  -~)wz;' (n -L) 

k 

(n -L)  = R:,j (n - L ) . x  A;" (n - L)wT'' (n - L )  
k 

where 

= f'(s7 (n- L))(y,T (n - L-I)+ W ; I , ~  (n - L).Rg,j ( n  - L- . l ) )  
For all the weights for the control network in hidden 
layer 
w r j ( n  +I)  = w y j ( n ) - p y  (n - L).Yyj (n- L )  

and w ; , ~  (n + I) = IV,",~ (n) - p; (n - L).'D;,j (n - L )  

For all the weights for the control network in output 
layer 

m = I ,  2, _.., M-1 (4) 

w z . ( n + ~ ) =  w i , j ( n ) - ~ , M ( n - L ) . y M - ' ( n - L ) . ~ ~ ( n - L )  M 

where 
8; (n) gradient of the instantaneous quadratic error relative 

to 1," ( n )  ; 

A Y ( n - L )  sum of the gradients of the L+1 past 
instantaneous quadratic errors relative to 
s; (n- L )  ; 

Y;(n-L) the gradient of instantaneous quadratic error 

relative to wr j  

U I ~ . ~ ( ~ - L )  the gradient of instantaneous quadratic error 

relative to w : , ~  

wyj(n)  value at time n of the weight linking neuron i of 
layer m-1 to neuron j of layer m of the control 
network; 

w ; . ~  ( n )  value at time n of the self-loop weight (diagonal 

weight) in the neuron j of layer m of the control 
network; 

number of delays in the tapped delay line between 
the control network and the plant model network 

Different from equation of adjoint BP I ) ,  in the 
adjoint D R " ,  the effect from the past output information in 
each neurons has to he accounted via the diagonal reciment 
weight ~ : , ~ ( n )  (controller network) and hESj (plant model 

network). This increases the computational require" of 
the adjoint D R "  ahout 3(M+l)N multiplications from that 
of the adjoint BP, using the same neurons confipation, 
where M is the number of weights connected to the hidden 
neurons and N is the number of hidden neurons. 

Lemma 1. For the D R "  learning algorithm, described in 
equation (4), the convergence is guaranteed if p(n) is chosen 
such that 

p(n) adaptive learning rate; 
L 

(!5) 
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S,, = max, IS(n)l; 11 . 1) =is the euclidian norm ; 
proof See 'I 

Lemma 2. For the multilayer perceptron D R "  smcture, 
used in equation (2) ,  the sensitivity of the plant model S(n), 
defined as: 

L N: 
S ( n )  = ( n )  = h$J(n + i - L )  ; (6) 

W ' ( n - L )  

with 6y(n)is the instantaneous gradient in the layer m of 

plant model network and Nf is the number of neurons in 
layer m of plant model network, can be upper-bounded by: 

IS(n)l5 -. n N;.a.h;,- 3 S,, 

where hy- =mv)h; I ;  a is the scaling factor in the 

nonlinear functionf( . ) and L is the tapped-delay length of 
the input layer in plant model. 
Proox It is straightfoward by backpropagating the 
sensitivity from the outer layer of plant model network to the 
input layer. 

Remark I .  Let p ; ( n ) , p f ( n ) , p E ( n )  be the adaptive 
learning rate for the controller weights wE.(n) , wrj(n)  and 

~ $ . ~ ( n ) ,  respectively. Then the Adjoint D R "  leaming 
algorithm convergence of (4) is guaranteed if the adaptive 
leaming rates are bounded by the following criteria. It is 
based on the Lemma 1, where the sensitivity S,, is obtained 
from Lemma 2. 
For the controller weights connected to the output layer: 

(7) 
L M  
a n=l 

' . I  

where 11 . 11 =is the euclidian norm and yM.' (n) as 
described in (4). The adaptive learning rate is bounded by 

(8) 
2 

O<p,M(n)< 
S L  (g:"" ( 4 Y  

For the controller weishts connected to the hidden laver: 

g."., ( n )  = where 11 . 11 =is the euclidian ioim 
F" (4 

Then, the adaptive leaming rate is hounded by 

where gr'(n) and g ; , j ( n )  are the sensitivity of control 
network, from the output layer of control network to the 
weight in the hidden layer of control network, and are 
calculated in a similar fashion of (4) using backpropagation 
technique. 

Remark 3. The o timal convergence rate, as the controller 
case described in for the learning algorithm above is: 

(13) 
I 

and p;(n)= 

which is the half of the upper limit in (S), (9) and (IO). 
sLk~omc.$ 

The gradient descent method above offers a simple 
training method and low storage requirement, but inherits 
slow convergence rate and is a non-optimal solution. The 
introduction of non-linear recursive-least-square for neural 
network 'I, fosters the development of an improved 
algorithm, with better quadratic error performance and faster 
convergence rate, but in the cost of higher computational 
complexity. We extend the adjoint algorithm above using 
EKF for improving the convergence rate, and also applying 
the NEKA (Neuron-level Extended Kalman Algorithm) and 
MEKA (Multiple Extended Kalman Algorithm) of into 
D R "  in reducing the high computational requirement of 
EKF. In the simulation result, we also present the result of 
the D R "  based on this nonlinear recursive-least-square 
algorithm, though the complete algorithm is not described in 
this paper. 

Among the learning algorithms that have been 
discussed in this paper, the adjoint EKF algorithm for 
D R "  is the most demanding algorithm in computation as 
can be observed from Table 1 below. However, since EKF 
accounted the global model of the network, the resulting 
EKF D R "  is expected to achieve the best performance 
from the other two algorithms. 
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Table 1. Computational Complexity of Adjoint-DR" 
slmrithms. with M is the number of weights Der hidden I .  ----- 
neuron and N is the number of hidden neurons 

111. Simulation and Experiment 
Result 

In examining the Performance of nonlinear 
controller for active noise cancellation, a simulation based 
on the experimental narrow duct was carried out, nhere a 
hard excitation signal of 86.4Hz was introduced, then an 
experimental result was conducted using the parameter 
obtained from the simulation. The experimental duct 
configuration is illustrated in Fig. 3. The primary disturbance 
is generated from the speaker placed in the end of the duct, 
and the canceling loudspeaker is positioned at the side of the 
duct near the outlet. The sampling frequency used is 2kHz 
and it is ensured that no aliasing occurred in the system 
caused by the digital equipment. 

45 

W 
H 

5.5' 

Fig. 3. Experimental MITOW duct geometly 

The first five calculated duct modes, using the wave 
equation for the corresponding duct, are 86.4, 259.13, 
431.87, 604.6 and 777.4 Hz. If we consider non-linear 
saturation behavior exists in the actuator, then theoretically, 
if we excite the first mode, 86.4%. the non-linear behavior 
of the actuator saturation will excite the harmonic series, 
including 259.12, 431.87, 604.6 and 777.4 Hz modes. 
Therefore, using the primary disnubance of 86.4Hz, the non- 
linear ANC aims to attenuate this I" mode frequency while 
minimizing the effect of the non-linear behavior of actuator, 
especially those related to the duct modes. 

The DRNN neuron configuration for the plant 
model network uses 4040-1, corresponding to 40 tapped- 
delay neurons in the input layer, 40 diagonal neurons in the 
hidden layer and 1 neuron in the output layer. And for later 
uses in the comparison, the feedforward network plant model 
also uses 40-40-1 neuron configuration. The identification 
gives a good result, especially those pertaining to the 
frequency of interests. The control network neuron 
configuration uses multilayer perceptrons of 20-20-5-1, for 
both DRNN or the feedforward network. The simulation 
result is presented in Fig. 4. 

0 ,000 2om moo .om " w o o  
il."YD. 

Fig. 4. Simulation result of non-linear ANC using DRNN, 
Feedforward Network and Linear Filter 

From several simulations and different weight 
initialization, the D R "  algorithm performed better than the 
feedfonvard network, though we do not compare with the 
nonlinear recursive-least-square version of the feedforNard 
network. And as expected, the non-linear neural network 
was superior to the linear filtering, where the linear filtering 
only reduced the primary frequency without conceming with 
the harmonics series, 19dB was achieved by the linear filter 
and more than 2668 was obtained by the neural network 
(Table 2). In overall, the DRNN structure yields better 
performance than the feedforward network for ANC problem 
for the simulation result. 

Table 2. Error performance and computational 
requirement (based on Matlab@ flops computation) of 
non-linear ANC using DRNN 
I Algorithm 1 Total Noise 1 Flops 1 

27.7685 

70,676 

Fig. 5 below shows the experimentation result, 
where we can see that the nonlinear controller based on 
neural networks worked better than the linear adaptive 
filtering, in dealing with non-linearity. Ahout ,7533 
improvement can be achieved using the neural network from 
the adaptive linear filter. As a comparison, Fig. 5@) :;bows 
the simulation result from which a close observation 
indicates that NEKA DRNN attenuates the primary 
disturbance and the harmonics better than the other 
algorithm (Table 2). During the experiments, this superiority 
of NEKA with the feedfoward network is not so obvious as 
the one shown from simulation result. 
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Table 3. AKC experimental result usin2 static controller 
I Algorithm 1 Total Encrgy Reduction (dB) I 

~~ 

Normalized Fx-LMS I 9.9755 
Adjoint BP I 17.4335 
Adjoint NEKA D R ”  1 17.6610 

~ 

(b) 
Fig. 5. (a) non-linear ANC experimental result using static 
neural network controller, and adaptive linear controller, Q) 
non-linear ANC simulation result using neural network and 
h e a r  filtering 

Conclusions 
New improved heuristic adaptive training algorithms for 
D R ”  control-based structure are introduced with its 
application to the ANC problem. ’The recurrent structure of 
D R ”  has better ability in dealing with non-linear dynamic 
system than the feedforward structure. Simulation and 

experimental results verified that the overall performance of 
D R ”  is better than that of the feedfonvard network. 
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