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Active Control of Sound based on Diagonal Recurrent Neural

Network

Bayu Jayawardhana', Lihua Xie, Shuging Yuan
School of EEE, Nanyang Technological University, Singapore 629798
1 PK6355853@ntu.edu.sg

Abstract: Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical system.
Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure
to be controtled exhibits nonlinear behavior. The feedforward network with static characteristic usually uses a tapped delay mnput to
control a nonlinear dynamic system. In the recurrent network, on the other hand, the dynamic behavior of the nonlinear system can
be captured by the internal loop in its neurons and thus, a better system estimation and control can be expected using this control
structure, Tn this paper, a multilayer perceptron diagonal recurrent neural network (DRNN) based control structure is employed to
improve the performance of feedforward structure foc Active Noise Control (ANC) systems where the nonlinearity occurs in the
actuators. A comparison of DRNN with feedforward network is presented to highlight the improvement made by the recurrent

structure.

Keywords: Active control of seund and vibration, recurrent neural network, nonlinear control

I. Introduction

Active control of sound involves the introduction of
a number of controlled “secondary” sources driven so that
the field generated by these sources interferes destructively,
180° out of phase, with the noise field caused by the original
“primary” source. Nurnerous werks have been carried out for
the ANC implementation under various environments:
airplanes, auto vehicles, room acoustics, etc, see >** and the
references therein. Many adaptive linear filtering algorithms
have been derived and proposed for the active sound control
application in recent years ***'., One commonly used
approach is the Normalized Filtered-x Least-Mean-Square
(Normalized Fx-LMS) utilizing FIR filter. We will use the
normalized Fx-LMS as a benchmark for the linear filter
performance under non-linearity condition. Interest readers
can refer to **\.

In the cases where nonlinear characteristics are
induced in the system, this linear controller may not perform
well. The actuators, which consist of loudspeakers generated
by amplifier, have a nominal value within which the system
will remain in the linear region. It will develop into
nonlinear characteristic when the input signal excezds this
nominal value, or when it operates below the minimum
operating frequency of the actuator. Other possibility of

nonlinear source is from the structure that inherits a -

nonlinear behavior. The performance of the linear filter as
controller under these nonlinear circumstances may be
degraded. Therefore, a nonlinear controller is preferred in
this case. For the active control of sound and vibration, the
use of neural networks as nonlinear control structures has
been studied in "%,

Bouchard er. al ." explored the multilayer
perceptron neural networks using backpropagation scheme
to control nonlinear plants, for the active control of sound. It
uses the feedforward structure, combined with tapped delays,

SICE 2002 Aug. 5-7, 2002, Osaka

and the backpropagation training algorithm ” to solve the
dynamical problems. However, the feedforward network can
be considered as a static mapping network (if the tapped
delay lines are omitted). On the other hand, recurrent ncural
networks have the ability to deal with time-varying systems
through their own natural temporal operation **”. Using the
dynamic characteristic of recurrent neural network, the
number of neurons required for controller or plant mode! can
be reduced, and it is better suited for dynamical systems than
the feedforward network ®”. This paper extends the DRNN
algorithm for ANC and introduces new heuristic algorithms
for DRNN, which have already been proposed for the
feedforward network ¥, using Extended Kalman Filter
{EKF) in improving the convergence rate.

With the same technique as the feedforward
structure, we use two multilayer perceptrens for recurrent
neural networks control-based structure, consisting of
controller network and plant model network. Fig. 1 depicts
the block diagram of recurrent neural network based control
system.
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Fig. 1. Block diagram of recurrent neural network control
based system
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Bouchard and Snyder ' gave a detailed description

of feedforward neural network control structure. They use an
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algorithm named Fx-BP that is a generalization from the
filtered-x LMS algorithm, and is extended by Bouchard "
which introduced several improved training algorithms such
as the so-called adjoint-BP, adjoint-EBP, adjoint-MEKA,
adjoint-NEKA and adjoint-EKF (these methods emgloy the

optimal filtering algerithms proposed by Shah ™). The
adjoint approach can be formulated as follows:
Adjoint approach:
L 2 .
. . -L
instantancous gradient = z Geln=L+i) (1)

=~ owi(n-L)

It uses the paradigm that the controller weights at a
time instant affect the present and the next L samples of the
cost function (quadratic error) or can be reformulated in
causal way: that the weights of the control network at time
instant r-L are determined by the cost function of the present
and the last L samples, (el(n-L}, é’(n-L+1), .., &nh.
However, the responsiveness of the adjoint algorithm has a
tradeoff with the tapped delay length, since the present error
gradient updates the weights in the past L weights. The
longer the tapped delay L, the less responsive the adjoint
algorithm becomes.

I1. Diagonal Recurrent Network
Control Based

The diagonal configuration proposed by Ku et. al. *)
for recurrent network provides a simple learning method,
compared with the fully-connected recurrent structure, while
preserving the dynamic capabilities of recurrent network. In
diagonal recurrent network, each state output is fed back into
its own state. The DRNN gradient-based leaming method
can be found in ¥, and we will employ this configuration in
the ANC application. Diagonal structure of recurrent
network is illustrated in Fig. 2.

_ @ Summation
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A Non-Linsar Function

Fig. 2. Diagonal recurrent network layer

The DRNN control-based structure in ¥ does not
employ tapped-delay structure in the input layer of plant
model network, and it assumes that the system dynamic can
be satisfied by the existence of the diagonal synapses. In our
application, we still use the tapped delay in the controller
and plant model structure for representing the unidentified
zeros of the system by the diagonal synapses. Thus, the
adjoint approach is utilized for control network leaming
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algorithm. For convenience and simplicity, we employ single
channel ANC where the output layer of control network
consists of one neuron, which corresponds to only one
actuator. The extension to the multichannel algorithm is
quite straightforward, and interested readers should refer to
) The equations for the forward propagation in the
multilayer perceptron DRINN are given below:

o  For the input layer of the control network

yjny=x(n-j)
e  For the other layers of the control network

s (n){}: W (n)* (n)J+ wa ; (n)*sT (n—1)

yi(my= f(s7(n)

e  For the input layer of the plant model network
zj(ny=y" (n- )

e For the other layers of the plant model network

£ (n) =(Zh:{; xznt (n)]ar B, * R (n=Y)

z7(n)= f(t7 (n) v
e  For the output layer of the plant model
e(n) = d(n)+ 2" (n) 3)
where

x{n-j) signal from the reference sensor at time n-j;

¥;(n) output of neuron j in layer m of the control
network at time n (m>0);

s7(n)  weighted sum of inputs for neuron j of layer m of
the control network at time n;

w;;(n) value at time » of the weight linking neuron i of
layer m-I to neuron j of layer m of the control
network;

wp,;(n) value at time n of the self-loop weight (diagonal
weight) in the neuron j of layer m of the control
network;

z7(n)  output of neuron j in layer m of the plant model
network at time »n;

t7{(n)  weighted sum of inputs for neuron j of layer m of
the plant model network at time n;

by value of the weight linking neuron i of layer m-/
to neuron J of layer m of the plant model network;

hp ; value at time n of the self-loop weight (diagonal
weighr) in the neuron j of layer m of the control
network;

e(n) error signal at time #;

dfn) disturbance signal at time n;



M index of an output layer; number of lavers in

either control network or plant model netwaork

From equation (2), there is additional term,
compared with the feedforward networks Y that contains
feedback from the output neuron back into its own input
junction, in the hidden layer. This is the term that offers
dynamical modeling or better control of non-linear dynamic
system than the feedforward networks. The activation
function f{,) is usually a nonlinear function for all neurons
except those in the output layer. The activation functions are
formulated as follows:

fTx(n)]=x(r) for neurons in the output layer of control
network and plant model network
fix(m)}=tanh{a* x(n)) for all other neurons (with a =

arbitrary value)

The identification stage for the plant model network
using diagonal recurrent structure can be referred ta ¥. We
use the adjoint approach, as described in equation (1), in
developing the leaming algorithm of DRNN for ANC, The
algorithm for the controller network using adjoint DRNN is
summarized as follows:

e For the fast layer of the plant model network
&M (my= [ (™ (m)).e(n) = e(n)

o  For the other layers of the plant model network (except
the input layer)

87 ()= £ (DY 57 (AT
%
o  For the last layer of the control network

L
M (n-L)= £ (n-1).Y Y SHn-L+Dhl,
k

=0
L
= > Sitn—L+ihy
k i=0

s  For the other layers of the control network (except the
input layer)

AT (n=L)= f'(sT(n—L). Y A7 (n—Lyw];' (n—-L)
i
W (n-L)= R (n— L)) A7 (n-L)wis (n-L)
k

O, n=L)= RE, ;(n=L1). 3 &7 (= Lyw] ! (n~ L)
£
where
dyy (n—L)
dw;;(n—1)

= fYsT (n—L)y[ n~ L)+ w] ;(n-L).R; (n— L~1))
and

Ri(n-L}=
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7 (n~1)
6w5_j(n—L)
= £1s] (e )] (3= L=D)+ W] ; (r— DR, (n=L~1)

s For all the weights for the control network in hidden
layer

wi(n 1) = w; (ny—pf (= L)¥ (n~ L)

Rg_j(n—L)E

and wp ;(n+Y)=wp ;(n)—up(n— L)®H ;(n-L)

m=12 ., MI @)
For all the weights for the centrol network in output
layer

whn+y=wHm-p -y} (n-1)AY (n-1)
where
6}" (n) gradient of the instantaneous quadratic error relative
o 17(nm);
A%(n-L) sum of the gradients of the L+ past

Imstantaneous
m .
s;i(n—L);

quadratic  errors  relative to

‘i‘,-,"'j(n—l.) the gradient of instantaneous quadratic error

relative to w}f'j

©7% ;(n—L} the gradient of instantaneous quadratic error
relative to wi, ;

w;;{n) value at time n of the weight linking neuron i of

layer m-1 to neuron j of layer m of the controi
network;

wh, ;(n) value at time n of the self-loop weight (diagonal
weight) in the neuron j of layer m of the control
network;

adaptive learning rate;

number of delays in the tapped delay line between
the contro! network and the plant model network

Hn)
L

Different from equation of adjoint BP ", in the
adjoint DRNN, the effect from the past output information in
each neurons has to be accounted via the diagonal recurrent

weight wp, ;(n) (controller network) and Ap ; (plant model

network). This increases the computational requirement of
the adjoint DRNN about 3(Af+1)N multiplications from that
of the adjoint BP, using the same neurons configuration,
where M is the number of weights connected to the hidden
neurons and N is the number of hidden neurons.

Lemma 1. For the DRNN learning algorithm, described in

equation (4), the convergence is gnaranteed if 4(n) is chosen
such that

2
O<uln)<
2 e B 2orm (M)

®)



M (n) .

dw(n)

Spax = max,,|S(n)|; || . ”=is the euclidian norm;
Proof: See ¥

where g, = le(m)|; &)=

Lemma 2. For the multilayer perceptron DRNN structure,
used in equation (2), the sensitivity of the plant model S¢n),
defined as:

S(n)_ 6z (n) _ZZ;,U ](n+1 L);
P

with &7 {n) is the instantaneous gradient in the layer m of

(6)

plant model network and ;' is the number of neurons in
layer m of plant model network, can be upper-bounded by:

LM "
|S(n) < -;."I}l N7.ah] oy = Siax (7

where  Afgay =maxlh,-"'j|; a is the scaling factor in the
L

nonlinear function f{ . } and L is the tapped-delay length of
the input layer in plant model.

Proof: It is straightforward by backpropagating the
sensitivity from the outer layer of plant model network to the
input layer.

Remark 1. Let pY (m),u] (n),u3(n) be the adaptive

learning rate for the controller weights Wﬂ (), w,(n) and

wp, ;(n}, respectively. Then the Adjoint DRNN leamning

algorithm convergence of (4) is guaranteed if the adaptive
leaning rates are bounded by the following criteria. It is
based on the Lemma 1, where the sensitivity S, is obtained
from Lemma 2.

For the controller weights connected to the output fayer:

2ol o

g ()= o

where | . [|=istheeuclidiannomn and  y*"'(n)
described in (4). The adaptive learning rate is bounded by

as

2
0<uf < ———= (®)
CE L)
For the controller weights connected to the hidden layer:
Grorm (M) = 2" () ; where || . | =is the euclidian norm
ow"™ (n)
&Y ) [ m m m
———=g1 (1) Z7{n) (n)
) [1() ] g ];r

melerm gmoy - erm el mf

2669

M) w M(m)
aym( ) ; gp.,(n)=—6y-m—;
ow] () fwp ; {n)
Then, the adaptive learning rate is bounded by

and g (n)=

O<pl(M)<— 2 )
§2, (g )
and 0<p3(n)<—2—._;— (19
Slf’]a}( (g:lnorm (ﬂ))

where g,ff'j(n) and gp ;{n) are the sensitivity of control

network, from the output layer of control network to the
weight in the hidden layer of control network, and are
calculated in a similar fashion of (4) using backpropagation
technique.

Remark 3. The o?tlmal convergence rate, as the controller
case described in *, for the leaming algorithm above is:

ut' (n)= ay
(g,,,,.,, i

1 P S— (12)
S?nax (g:nom (n))z

and up(n)= (13)

1
52 (g m )

which is the half of the upper limit in (8), (9) and (10).

The gradient descent method above offers a simple
training method and low storage requirement, but inherits
slow convergence rate and is a non-optimal solution. The
introduction of non-linear recursive-least-square for neural
network ®, fosters the development of an improved
algorithm, with better quadratic error performance and faster
convergence rate, but in the cost of higher computational
complexity. We extend the adjoint algorithm above using
EKF for improving the convergence rate, and also applying
the NEKA (Neuron-level Extended Kalrman Algorithm) and
MEKA (Multiple Extended Kalman Algerithm) of ¥ into
DRNN in reducing the high computational requirement of
EKF. In the simulation result, we also present the result of
the DRNN based on this nonlinear recursive-least-square
algorithm, though the complete algorithm is not described in
this paper.

Among the learning algorithms that have been
discussed in this paper, the adjoint EKF algorithm for
DRNN is the most demanding algorithm in computation as
can be observed from Table 1 below. However, since EKF
accounted the global model of the network, the resulting
EKF DRNN is expected to achieve the best performance
from the other two algorithms.



Table 1. Computational Complexity of Adjoint-DRNN
algorithms, with M is the number of weights per kidden
neuron and & is the number of hidden neurons

Algorithms Order of multiplication
Adjoint DRNN O(MN)
Adjoint EKF DRNN C((MN)")
Adjoint NEKA DRNN O(M'N)
Adjoint MEKA DRNN O(M'N)

II1. Simulation and Experiment
Result

In examining the performance of noalinear
controller for active noise cancellation, a simulation based
on the experimental narrow duct was carried out, where a
hard excitation signal of 86.4Hz was introduced, then an
experimental result was conducted using the paiameter
obtained from the simulation. The experimental duct
configuration is illustrated in Fig. 3. The primary disturbance
is generated from the speaker placed in the end of the duct,
and the canceling loudspeaker is positioned at the side of the
duct near the outlet. The sampling frequency used is 2kHz
and it is ensured that no aliasing occurred in the system
caused by the digital equipment.

8.5*

——
a5 O
L »l
m !
Pard]
55"

Fig. 3. Experimental narrow duct geometry

The first five calculated duct modes, using the wave
equation for the corresponding duct, are 86.4, 259.13,
431.87, 604.6 and 7774 Hz. If we consider non-linear
saturation behavior exists in the actuator, then theoretically,
if we excite the first mode, 86.4Hz, the non-linear behavior
of the actuator saturation will excite the harmonic series,
inchuding 259.12, 431.87, 604.6 and 777.4 Hz modes.
Therefore, using the primary disturbance of 86.4Hz, the non-
linear ANC aims to attenuate this 1* mode frequency while
minimizing the effect of the non-linear behavior of actuator,
especially those related to the duct modes.

The DRNN neuron configuration for the plant
model network uses 40-40-1, corresponding to 40 tapped-
delay neurons in the input layer, 40 diagonal neurons in the
hidden layer and 1 neuron in the output layer. And for later
uses in the comparison, the feedforward network plant model
also uses 40-40-1 neuron configuration. The identification
gives a good result, especially those pertaining to the
frequency of interests. The control network mneurcn
configuration uses multilayer perceptrons of 20-20-5-1, for
both DRNN or the feedforward network. The simulation
result is presented in Fig. 4.
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Fig. 4. Simulation result of non-linear ANC using DRNN,
Feedforward Network and Linear Filter
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From several simulations and different weight
initialization, the DRNN algorithm performed better than the
feedforward network, though we do not compare with the
nonlinear recursive-least-square version of the feedforward
network. And as expected, the non-linear neural network
was superior 10 the linear filtering, where the linear filtering
only reduced the primary frequency without concemning with
the harmonics senies, 19dB was achieved by the linear filter
and more than 26dB was obtained by the neural network
(Table 2). In overall, the DRNN structure yields better
performance than the feedforward network for ANC problem
for the simulation result.

Table 2. Error performance and computational
requirement (based on Matlab® flops computation) of
non-linear ANC using DRNN

Algorithm Total Noise | Flops
Reduction {(dB) | Requirernent

Normalized Fx-LMS 19.7346 1,927
Adjoint-BP 26.2102 10,794
Adjoint-DRNN 27.7685 14,050
Adjoint-MEKA DRNN | 29.7746 70,152
Adjoint-NEKA DRNN | 30.0938 70,676
Adjoint-EKF DRNN 29.8077 1,982,182

Fig. 5 below shows the experimentation result,
where we can see that the nonlinear controller based on
neural networks worked better than the linear adaptive
filtering, in dealing with non-linearity. About 7.5dB
improvement can be achieved using the neural network from
the adaptive linear filter. As a comparison, Fig. 5(b) shows
the simulation result from which a close observation
indicates that NEKA DRNN attenuates the primary
disturbance and the harmonics better than the other
algorithm (Table 2). During the experiments, this superiority
of NEKA with the feedforward network is not so obvious as
the one shown from simulation result.



Table 3. ANC experimental result using static controller

Algorithm Total Energy Reduction (dB)
Normmalized Fx-LMS 9.9755

Adjoint BP 17.4335

Adjoint NEKA DRNN | 17.6610
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Fig. 5. (a) non-linear ANC experimental result using static
neural network controller, and adaptive linear controller; (b)
non-licear ANC simulation result using neural network and
linear filtering

Conclusions

New improved heuristic adaptive training algorithms for
DRNN control-based structure are introduced with its
applicatien to the ANC problem. The recurrent structure of
DRNN has better ability in dealing with non-linear dynamic
system than the feedforward structure. Simulation and
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experimental results verified that the overall performance of
DRNN is better than that of the feedforward network.
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