University of Groningen

Crystallographic Analysis of Orientational Variants in PbZr0.52Ti0.48O3 Ferroelectric Perovskite

Wu, Lijun; Zhu, Yimei; Li, Jianqi; Noheda, B.

Published in:
Microscopy and Microanalysis

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Wu, L., Zhu, Y., Li, J., \& Noheda, B. (2002). Crystallographic Analysis of Orientational Variants in PbZr0.52Ti0.48O3 Ferroelectric Perovskite. In R. L. Price (Ed.), Microscopy and Microanalysis (Vol. 8, pp. 664CD-665CD). University of Groningen, The Zernike Institute for Advanced Materials.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Crystallographic Analysis of Orientational Variants in $\mathrm{PbZr}_{0.52} \mathrm{Ti}_{0.48} \mathbf{O}_{3}$ Ferroelectric Perovskite

Lijun Wu", Yimei Zhu*, Jianqi Li ${ }^{*}$ and B. Noheda ${ }^{* *}$
** Department of Materials Science, Brookhaven National Laboratory, Upton, NY 11973
** Department of Physics, Brookhaven National Laboratory, Upton, NY 11973

The ferroelectric perovskite $\mathrm{PbZr}_{1-\mathrm{x}} \mathrm{Ti}_{\mathrm{x}} \mathrm{O}_{3}$ has been extensively studied due to its unique physical properties. It exhibits an unusual morphotropic phase boundary (MPB) which divides the regions with rhombohedral and tetragonal symmetry in its phase diagram. Upon cooling, $\mathrm{PbZr}_{0.52} \mathrm{Ti}_{0.48} \mathrm{O}_{3}$ (PZT) undergoes a ferroelectric transition from cubic (C) to tetragonal (T) at about 600 K . Recently, a tetragonal to monoclinic (M) phase transition was discovered at about 300 K , revealing new characteristics of the MPB [1]. The relationship between T and M follows: $a_{m} \sim a_{T}+b_{T}, b_{m} \sim-a_{T}+b_{T}$, $\mathrm{c}_{\mathrm{m}} \sim \mathrm{c}_{\mathrm{T}}$. In this short presentation, we report twin structures formed during the transition of C to T and T to M in PZT at room temperature using transmission electron microscopy (TEM).

The transition from C to T in PZT results in the crystal symmetric change from $\mathrm{Pm} \overline{3} \mathrm{~m}$ to P 4 mm with the loss of point symmetry elements. The point group of the C phase is $G=m \overline{3} m$, while that of the T phase is $\mathrm{H}=4 \mathrm{~mm}$, where H of order $\mathrm{q}(\mathrm{q}=8)$ is a subgroup of G , of order $\mathrm{p}(\mathrm{p}=48)$. So six orientation variants are expected in the T phase. Table 1 lists all variants with their corresponding symmetry operations. The M phase has 4 orientation variants with respect to the T phase since its point group is $\mathrm{H}=\mathrm{Cm}$ of order $\mathrm{r}=2$. Because the M phase will inherit the variants from the T phase, it has totally 24 variants with respect to the C phase.

Fig.1(a) shows a typical morphology of the T phase. Three variants $\mathrm{TV}_{1}, \mathrm{TV}_{2}$ and TV_{6} are present. Considering TV_{1} as the matrix, the TV_{2} is the $(\overline{1} 01)$ reflection twin, while the TV_{6} is the $(\overline{1} 01)(101)$ secondary twin. Fig.1(b) and (c) are, respectively, the high resolution image (HREM) and its corresponding electron diffraction pattern (EDP) viewed along $[010]_{\mathrm{TV} 1} /[001]_{\mathrm{TV} 3}$ direction of the TV_{1} and TV_{3} variants. The boundary ($0 \overline{1} 1$) plane is inclined $\sim 46^{\circ}$. The displacement of $\mathrm{Zr} / \mathrm{Ti}$ along c-axis can be seen in the insert I1. The simulation by multislice method in insert I1' shows that the displacement of $\mathrm{Zr} / \mathrm{Ti}$ along c -axis is bigger than that measured by x-ray diffraction [1]. Furthermore, TEM experiments showed that the displacement of $\mathrm{Zr} / \mathrm{Ti}$ varies from grain to grain. Thus the smaller displacement value measured by x-ray diffraction is likely due to the nature of the volume averaged x-ray probe.

The room temperature monoclinic phase is shown in fig.2. The HREM (fig.2a) is rotated 45° with respect to its EDP (fig. 2 b). Two variants MV_{1} and MV_{3} are present in fig. 2 with ($\overline{11} 1$) reflection twin relationship. The EDP of the M phase is similar to that of the T phase but the spots of the h h 0 row in the former split while those of the corresponding row in the latter do not. Similar to that of the T phase, the displacement of the $\mathrm{Zr} / \mathrm{Ti}$ along the a and c axes can also be observed (fig.2a). The displacement of $\mathrm{Zr} / \mathrm{Ti}$ along the a and c axes were determined by comparison with the image simulation. They were found to be 0.029 and 0.037 nm , respectively, which are slightly larger than those measured by x-ray diffraction.

References:
[1] B. Noheda et al, Phys. Rev. B, 61 (2001) 8687.
[2] Work supported by US DOE under contract No. DE-AC02-98CH10886.

TABLE 1 Orientation variants and the essential operations in cosets of the T phase.

Variant	Coset	Essential operations in coset
$\mathrm{TV}_{1}[001]$	$\mathrm{H}=\mathrm{P} 4 \mathrm{~mm}$	$1,2[001], 4^{+}[001], 4^{-}[001], \mathrm{m}[010], \mathrm{m}[110], \mathrm{m}[\overline{1} 0], \mathrm{m}[100]$
$\mathrm{TV}_{2}[100]$	$\mathrm{m}[\overline{1} 01]$	$\mathrm{m}[\overline{1} 01], \overline{4}^{-}[010], \overline{3}^{+}[1 \overline{11}], \overline{3}^{+}[\overline{1} 11], 2[101], 3^{+}[\overline{1} 1 \overline{1}], 3^{+}[111], 4^{+}[010]$
$\mathrm{TV}_{3}[010]$	$\mathrm{m}[0 \overline{1} 1]$	$\mathrm{m}[0 \overline{1} 1], \overline{4}^{+}[100], \overline{3}^{-}[\overline{1} 1], \overline{3}^{-}[\overline{1} 1 \overline{1}], 4^{-}[100], 3^{-}[1 \overline{1} 1], 3^{-}[111], 2[011]$
$\mathrm{TV}_{4}[\overline{\mathrm{~T}} 00]$	$\mathrm{m}[101]$	$\mathrm{m}[101], \overline{4}^{+}[010], \overline{3}^{+}[\overline{1} 1 \overline{1}], \overline{3}^{+}[111], 2[\overline{1} 01], 3^{+}[1 \overline{1} \overline{1}], 3^{+}[\overline{1} 11], 4^{-}[010]$
$\mathrm{TV}_{5}[0 \overline{1} 0]$	$\mathrm{m}[011]$	$\mathrm{m}[011], \overline{4}^{-}[100], \overline{3}^{-}[111], \overline{3}^{-}[1 \overline{11}], 4^{+}[100], 3^{-}[\overline{1} 1 \overline{1}], 3^{-}[\overline{11} 1], 2[0 \overline{1} 1]$
$\mathrm{TV}_{6}[00 \overline{1}]$	$\mathrm{m}[001]$	$\mathrm{m}[001], \overline{1}, \overline{4}^{-}[001], \overline{4}^{+}[001], 2[100], 2[\overline{1} 10], 2[110], 2[010]$

FIG.1. (a) A typical morphology of the tetragonal phase, the twins are clearly seen. The $(\overline{1} 01)_{\mathrm{TV} 1}$ boundary between TV_{1} and TV_{2}, and the $(101)_{\mathrm{TV} 2}$ boundary between TV_{2} and TV_{6} are both viewed edge on. (b,c) High resolution image (b) and its corresponding electron diffraction pattern (c) viewed along [010] $]_{\mathrm{Tv} 1} /$ $[001]_{\mathrm{TV} 3}$ direction. The twin is the $(0 \overline{1} 1)$ reflection twin. The twin plane $(0 \overline{1} 1)$ is inclined $\sim 46^{\circ}$. The inserts are magnified images of the boxed areas I1 and I2, while I1' and I2' are the simulation.

FIG.2. A high resolution image (a) and its corresponding diffraction pattern (b) of the monoclinic phase viewed along $[110]_{\mathrm{MV1}} /[001]_{\mathrm{MV} 3}$ direction. Note, the high resolution image rotates 45° with respect to the diffraction pattern. The MV_{3} is the ($\overline{11} 1$) reflection twin. The twin plane ($\overline{11} 1$) is inclined $\sim 46^{\circ}$. The inserts are magnified pictures from the boxed areas, while I1' and I2' are the simulation. The diffraction pattern in fig. 2 b is similar to that in fig. 1 c except splitting of the spots in $\mathrm{h} \mathrm{\bar{h}} 0$ row.

