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2 Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007
Barcelona, Spain

Received 17 October 2001
Published 5 June 2002
Online at stacks.iop.org/Non/15/1205

Recommended by M Viana

Abstract
A low-dimensional model of general circulation of the atmosphere is
investigated. The differential equations are subject to periodic forcing, where
the period is one year. A three-dimensional Poincaré mapping P depends on
three control parameters F, G, and ε, the latter being the relative amplitude
of the oscillating part of the forcing. This paper provides a coherent inventory
of the phenomenology of PF,G,ε . For ε small, a Hopf-saddle-node bifurcation
HSN of fixed points and quasi-periodic Hopf bifurcations of invariant circles
occur, persisting from the autonomous case ε = 0. For ε = 0.5, the above
bifurcations have disappeared. Different types of strange attractors are found
in four regions (chaotic ranges) in {F, G} and the related routes to chaos are
discussed.

Mathematics Subject Classification: 37D45, 37G35

1. Introduction

1.1. The driven Lorenz-84 system

Weather and climate prediction are difficult tasks, because of the complexity of the atmospheric
evolution. Nowadays computer models used for these predictions usually contain a high
number of variables and parameters. Therefore, it is practically impossible to perform detailed
studies of their dynamical properties. On the other hand, there is experimental evidence [61]
that low-dimensional attractors appear in some hydrodynamical flows just after the onset
of turbulence. As a consequence, low-dimensional models have attracted the attention of
meteorologists, mathematicians and physicists over the last decades. These models are easier
to study than the infinite-dimensional Navier–Stokes equations, or than large computer models.
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In particular, geometrical, and qualitative methods from bifurcation theory [5, 34, 40] can be
applied to clarify the transitions from regular to complicated dynamical behaviour.

In this paper, we examine a model for the long-term atmospheric circulation, proposed
by Lorenz [41] in 1984, obtained by a Galerkin projection of an infinite-dimensional model.
This is a three-dimensional system given by

ẋ = −ax − y2 − z2 + aF,

ẏ = −y + xy − bxz + G,

ż = −z + bxy + xz,

(1)

where the dot represents differentiation with respect to the time t. System (1) has been used
in climatological studies, for example by coupling it with a low-dimensional model for ocean
dynamics. For related work, see [63] and references therein. On the other hand, the bifurcation
diagram of (1) has been analysed in [55]. For other dynamical studies of this system, that we
shall refer to as (autonomous) Lorenz-84, see [36, 43].

We briefly summarize the meaning of variables, parameters and constants in Lorenz-84.
The time unit of t is estimated to be five days. The variable x stands for the strength of the
symmetric, globally averaged westerly wind current. The variables y and z are the strength
of cosine and sine phases of a chain of superposed waves transporting heat poleward. The
terms in b represent displacement of the waves due to interaction with the westerly wind. The
coefficient a, if less than 1, allows the westerly wind current to damp less rapidly than the waves.
The terms in F and G are thermal forcings: F represents the symmetric cross-latitude heating
contrast and G accounts for the asymmetric heating contrast between oceans and continents.
In a later paper [42], Lorenz pointed out that F and G should be allowed to vary periodically
during a year. In particular, F should be larger in winter than in summer. However, in his
numerical study he kept G fixed, identifying (F, G) = (6, 1), and (F, G) = (8, 1), with
summer, respectively winter, conditions. He introduced a periodical variation of the parameter
F between summer and winter conditions, by putting F = 7 + 2 cos(2πt/T ) with T of the
order of magnitude of 1 yr, i.e. T = 73.

We use a slightly different approach, in order to study seasonal effects. Here F and G are
both taken T periodic in time, by using

F(1 + ε cos ωt) and G(1 + ε cos ωt), ω = 2π

T
.

Lorenz-84 thereby turns into a parametrically forced system:

ẋ = −ax − y2 − z2 + aF(1 + ε cos(ωt)),

ẏ = −y + xy − bxz + G(1 + ε cos(ωt)),

ż = −z + bxy + xz.

(2)

We refer to this three-dimensional T -periodic model as the driven Lorenz-84. As in
[36, 41–43, 55], the parameters a and b from now on are set to a = 1/4 and b = 4, while
T is fixed at 73. The value of ε used in most of the numerical simulations is 0.5. However,
smaller values will be used when investigating the relation between the dynamics of systems (2)
and (1). For this reason ε is used as a control parameter together with F and G. We indicate the
three-dimensional parameter space by M = {F, G, ε}. Fixing a value ε = ε∗ means selecting
a plane Mε∗ = {F, G} inside M. Only positive values of G have to be considered, since
solutions of (2) for G = −G0 correspond to solutions for G = G0 by changing the sign of y

and z. For numerical experiments, we mainly focus on the parameter window

(F, G, ε) ∈ [0, 12] × [0, 9] × [0, 0.5],

for which (F, G) are centred around summer and winter conditions. However, we will also
be concerned with asymptotical properties of (2) for G → 0 and G → ∞. The driven system
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will be studied in terms of its Poincaré map3

PF,G,ε : R3 → R3

which is a diffeomorphism depending on the parameters4 (F, G, ε).

Remark 1.1. By ‘periodic point’ we mean a point q ∈ R3 such that Pm(q) = q for some
integer m �= 0. A period m point and an invariant circle of P correspond to a period |m|T limit
cycle, respectively an invariant two-torus, of the flow of (2), see table 2 in section 3.

The dynamics of the family PF,G,ε is first explored by iteration to an attractor for several
values of (F, G), for ε = 0.5 fixed. In fact, P has an attracting bounded subset of R3 for all
values of F, G, and ε (see section 2.1). The map P is computed by numerical integration of
equation (2) along a period T . The unusual length of the period causes P to be quite sensitive
to initial conditions. To achieve enough numerical precision we chose a method of integration
based on the Taylor expansion of the solution (see appendix A.1). Some preliminary results
are examined in the next section.

1.2. Overview of the attractors of PF,G,ε for ε = 0.5

In figure 1 we plotted one-dimensional projections of sequences of attractors of P. In each
bifurcation diagram, G varies in a grid with spacing 0.01 on the line F = F0, where F0 is
kept fixed. For each G on the grid, the y-projection of one attractor is plotted. We achieved a
sort of continuity in the evolution of the attractors by using the following algorithm. Values
F = F0 and G = 0 are fixed initially. Starting from the point q = (x, y, z) = (1, 2, 3), a
loop of 2000 iterations of PF0,0 is carried out, of which the last 100 points are plotted. Then
the parameter G is increased by 0.01 and the last point is used to start a new loop. Note that
no coexistence of attractors (multistability) can be detected in this way.

The attractors plotted in figure 1 belong to three classes: fixed (or periodic) points, invariant
circles and strange attractors (SA) [46, 48, 52, 53]. A fixed point A is the unique attractor
occurring for small F , compare figures 1(a) and (b). As G increases, its y-coordinate evolves
continuously in the first case and has a jump at G � 0.5 in the second. The fixed point A is
also detected for all G larger than a value GA depending on F . In figures 1(c)–( f ) one has
respectively5 GA � 0.84, 1.48, 3.9, 7.54.

At F = 1.2 (figure 1(c)) an invariant circle C1 occurs for G small, instead of A. In the
G-interval (0.34, 0.37), pointed by a solid arrow, C1 is phase-locked to a fixed point attractor6.
The circle shrinks down as G increases and at G � 0.78 (marked by a dashed arrow) the fixed
point A reappears. For G larger, the evolution of A is similar to figure 1(b): a discontinuity
occurs at G � 0.84, but A persists for all larger G.

The circle attractor C1 also exists for F = 5, 7, and 11, for G smaller than a threshold
GC depending on F . One has respectively GC � 0.64, 0.33, and 0.48, marked by arrows
in figures 1(d)–( f ). A ‘doubled’ circle 2C1 occurs for F = 7 and 0.34 � G � 0.5 (see
section 4.9.1). A strange attractor is found for most G values in the intervals 0.65 �G� 1.29,
0.59�G�1.7 and 0.5�G�2.04 respectively, but for G larger the fixed point A reappears. For
F = 7 and F = 11, A is again replaced by a circle attractor C2 in the intervals 2.15�G�3.89
and 2.36 � G � 7.53, respectively. This corresponds to the ‘cigar’-like sequences C2(7, G)

in figure 1(e) and C2(11, G) in ( f ).

3 Also called stroboscopic, first return or period mapping.
4 We often suppress some or all parameters in the notation, writing PF,G or P
5 When giving approximate numerical values we shall use the symbols �, �, and � instead of <, >, and =.
6 This corresponds to an Arnol’d tongue A1 of rotation number zero [3, 25, 52].
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Figure 1. Projections on y of sequences of P-attractors as a function of G, for ε = 0.5. In each
picture F is fixed: (a) F = 0.2, (b) F = 0.7, (c) F = 1.2, (d) F = 5, (e) F = 7, ( f ) F = 11.
Only the last 100 points of each iteration loop are plotted (see text for explanation).

Several transitions of the attractors are detected by this procedure. Then the following
questions arise: what is the exact subdivision of the parameter plane M0.5? Can we characterize
the transitions in terms of bifurcations? Which bifurcations lead to strange attractors? What
are the dynamical properties of these SAs and the implications for the (un)predictability of the
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Figure 2. (a) Points in the parameter plane M0.5 with a fixed or periodic point attractor are indicated
by a black dot. (b) Magnification of part of figure 2(a). The dashed line G = 0.28 bounds strip
Q1. Two chaotic ranges L2 and U are labelled at the margin of figure 2(b), see text for explanation.

driven model? This paper is intended to provide a coherent inventory of the phenomenology
and to give an answer, whenever possible, to the above questions.

1.3. Setting of the problem and sketch of results

A first sketch of the organization of M0.5 again is obtained by brute force iteration. In figure 2
we plotted a black dot for all (F, G)-values such that a fixed or periodic point attractor occurs7.
Therefore, white spots correspond either to a quasi-periodic invariant circle or to a SA. A grid
with spacing 1/200 is fixed inside M0.5. For all (F, G) on the grid, N iterations of the map

7 To simplify the picture, no dots are plotted above the straight line G = 3/4 F .



1210 H Broer et al

P are computed, starting each time from the point q = (x, y, z) = (1, 2, 3). The condition
checked in the algorithm for a period k point is that the maximum of

dist(Pn(q), Pn−k(q)), dist(Pn(q), Pn−2k(q)), dist(Pn(q), Pn−3k(q))

be less than 10−12. Usually, N is set to 200, but for a few parameter values it was necessary
to take up to N = 105 iterates to get convergence.

It turns out that a fixed point A is the unique attractor for G large (see section 2.2 for
a proof). A circle attractor C2 exists in region Q2. The cigar-like sequences of attractors
C2(7, G) and C2(11, G) in figures 1(e) and ( f ) correspond to sections of Q2 by a vertical line
F = 7 and F = 11, respectively. The dashed lines in figure 2 are Arnol’d tongues with zero
rotation number. These tongues are rather narrow and open up only at the lower boundary
of Q2, at some small black spikes visible in figure 2(b) (see section 4.1). Quasi-periodicity
appears thus to be prevalent in Q2, in the sense that it occurs with large relative measure in
the parameter space (see, e.g. [48]). A circle attractor C1 occurs for F > 1 and G smaller
than a certain value GC(F ), compare again figures 1(c)–( f ). We guess that C1 persists for all
parameter values inside the strip Q1 in figure 2(b), bounded above by the line G = 0.28. As G

increases, C1 may undergo different fates, depending on the value of F . For 1.25�F �1.7, C1

crosses a period-one Arnol’d tongue A1 (cf figure 2(b)) and then breaks (section 4.8). Indeed,
a chaotic range L1 occurs just above A1 (figure 5). Several windows of periodicity occur and
outside them, SA’s occur like in figure 6(B).

For F �5, there is a different, wide region inside M0.5 where SAs are found. In figure 2(b)
one can see that this chaotic range becomes wider as F increases and is roughly divided into
two parts, labelled by U and L2. In the latter, SAs are prevalent: periodic points occur only in
small windows. Inside U, fixed point attractors seem to be prevalent, (cf the large wave-like
black regions in figure 2(b)) and SAs now and then appear (also see figure 12). Region Q2 is
separated from U by a thin solid black strip where a unique fixed point attractor is detected.

Most of the above transitions of the attractors are explained by bifurcation theory
(see [23,34,40,52] for a general presentation). The simplest bifurcation of PF,G is the loss of
stability of a fixed point when one of the eigenvalues of DPF,G crosses the unit circle. To this
group belong the saddle-node, period doubling and the Hopf bifurcation [25,46], all of which
are found in the family PF,G. A framework of bifurcation curves of fixed points is shown
in figure 3 and figure 5 (left). Saddle-node bifurcations occur on the curves SN 0, SN sub

0 ,
and SN 1. The two branches SN 0 and SN 1 of supercritical saddle-node bifurcations meet
tangentially at a cusp C. The Arnol’d tongue A1 is bounded by two curves of supercritical
saddle-node bifurcations.

Supercritical Hopf bifurcations of fixed points8 occur on curves H1, Hsub
1 , and H2. The

attracting invariant circle C1 is born from the attracting fixed point A as (F, G) cross H1 from
left to right. This explains the change from the fixed point A in figure 1(b) to the circle C1 in
figure 1(c). So the curve H1 is the boundary at the left of strip Q1 in figure 2(b). Similarly, the
circle attractor C2 is born from the attracting fixed point A for (F, G) crossing H2 and entering
region Q2. A good part of the phenomena in figures 1 and 2 can be explained by the previous
results. This yields a subdivision of the parameter plane in regions with the same dynamics,
figure 4. There we also sketch the four chaotic ranges L1, L2, U, U′ (see below). The dashed
curves B and SH, as well as the boundary of L1, are not bifurcation curves of PF,G. B roughly
indicates the breakdown of the circle C1 and SH denotes the boundary between L2 and U. For
details, see sections 4 and 5.

8 We recall that a Hopf bifurcation [25] of a fixed point of P corresponds to a Naimark–Sacker [34, 40] bifurcation
of a limit cycle of the flow of system (2).
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Figure 3. Bifurcation diagram of fixed points of the map PF,G for ε = 0.5. Boxes labelled by A,
B, C, D are enlarged, respectively in figure 5 (left), figure 18, figures 22(a) and (b).

Figure 4. Sketch of the regions with same kind of dynamics in the window [0, 12] × [0, 3] in
the parameter plane M0.5. Thick dots indicate the occurrence of a quasi-periodic period doubling,
where a doubled circle attractor 2C1 appears (see section 4.9.1).

One of the main points of interest is the relation between the dynamics of systems (1)
and (2). This is at first analysed as a perturbation problem from ε = 0 (see section 3).
Assuming that both the perturbative ansatz [4, 34] and genericity [52] hold, bifurcations of
the autonomous system persist inside Mε , at least for ε small enough. It turns out that the
bifurcations sketched in figure 3 for ε = 0.5 are indeed ‘inherited’ from the autonomous
system ε = 0. Moreover, other bifurcations are found to persist for ε = 0.01 (sections 3.2.1
and 3.2.2). An important case is a codimension two Hopf-saddle-node bifurcation of fixed
point, which is an organizing centre of the bifurcation diagram of the autonomous case [55].

However, in spite of all similarities, even for ε positive and small the planes Mε and M0

present a number of differences. Arnol’d resonance tongues [3, 5, 16], attached to curves of
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Figure 5. Left: magnification of box A in figure 3. The cusp C terminates two curves of saddle-node
bifurcations. Right: magnification of a part of figure 2. The grid on the right figure is 10−3 in both
F and G.

Hopf bifurcations, appear in Mε (this is the case of A1, figure 5). Homoclinic connections9

of the flow of system (1) generically are broken and replaced by homoclinic intersections and
bifurcations for the map P (see section 3.2.1). In this sense, ε = 0 already is a bifurcation
value10. Apart from this, codimension three bifurcations may occur in the parameter space M,
changing the global organization of Mε . Indeed, a codimension three bifurcation causes the
disappearance of the Hopf-saddle-node point at ε smaller than 0.5. These differences between
M0.5 and M0 are further discussed in sections 4 and 5.1.3.

It is of special interest to determine which routes lead from simple to complicated
dynamical behaviour, both for ε fixed or not. Two scenarios for the birth of SAs are theoretically
understood: cascades of period doubling bifurcations [16,25,28,52] and homoclinic tangency
bifurcations [16, 48, 52]. The former is a gradual process where the complexity of the
attractor increases stepwise as the parameter varies. Well-known model maps displaying SAs
originating from cascades of period doubling are the logistic [25,28] and the Hénon map [6,56].
On the other hand, homoclinic bifurcations may lead to a SA at once. Unfoldings of homoclinic
tangencies for one-parameter families of diffeomorphisms generically yield a large variety of
dynamical phenomena. Hénon-like SAs or repellors occur with positive Lebesgue measure
in the parameter space [26, 44, 64] (we recall that Hénon-like SAs coincide with the closure
of the unstable manifold of some hyperbolic saddle point and their dimension is usually not
much larger than one). Close to a homoclinic tangency, cascades of homoclinic tangencies
accumulate, as well as cascades of period doubling bifurcations of periodic attractors [68].
Infinitely many periodic attractors can coexist close to a diffeomorphism with a homoclinic
tangency, this is the Newhouse phenomenon [45, 49].

Several other phenomena are found close to homoclinic tangencies in concrete models.
Cascades of cusps and accumulation of Arnol’d tongues on curves of homoclinic bifurcations
have been reported in [16]. There it was conjectured that accumulation of Arnol’d tongues
might be a mechanism for the creation of infinitely many sinks in the Newhouse phenomenon.

The basic dynamical property of a SA is the sensitive dependence with respect to initial
conditions. Computation of the spectrum of the Lyapunov exponents [7] is one of the standard
ways to detect chaotic behaviour, since a positive Lyapunov exponent implies sensitivity with
respect to initial conditions [27,52,56,61]. Moreover, knowledge of the Lyapunov spectrum of

9 Also called saddle connections [34, 52].
10 Of infinite codimension, in the sense that adding time dependence can require infinitely many parameters for the
unfolding.



The Lorenz-84 climate model 1213

Figure 6. (A) Projection on the (x, z) plane of a period-five attractor of P, for G = 0.4107 and
F = 1.25. (B) Same as (A) for the SA L1, with G = 0.4106 (box M is magnified in figure 8 left).
(a), (b) Power spectra for (A), resp. (B).

an attractor allows to compute its Lyapunov dimension [32,38], considered an upper bound of
the Hausdorff dimension under general assumptions. In what follows, the Lyapunov exponents
will be denoted by λ1, λ2, and λ3, with λ1 � λ2 � λ3. The Lyapunov dimension is defined by

DL = k +

∑k
j=1 λj

|λk+1| ,

where k is the unique index such that
∑k

j=1 λj � 0 and
∑k+1

j=1 λj < 0. Another indicator
of the dynamics is the power spectrum [17, 51]. In all power spectra we plot the square of
the moduli of the Fourier coefficients against the frequency, where the latter is limited to the
interval [0, 1/2] (see appendix A.3 for details).

The numerical results in section 4 suggest that the SAs in the family PF,G,ε usually appear
due to homoclinic tangencies. Period doubling cascades are sometimes observed and, in fact,
the two scenario’s are not independent, see, e.g. [48, 56]. SAs were found in the four regions
L1, L2, U, and U′ in figure 4. The birth of SA in Lk is caused by different phenomena than in
U and U′.

The SA L1 in figure 6(B) occurs in L1, right after the breakdown of an invariant circle11. For
nearby parameter values, a period-five attractor is found (figure 7(A)), inside an Arnol’d tongue
A1/5. The highest peak in its power spectrum (figure 7(a)) occurs—as it should—at frequency
f1 = 0.2, with one harmonic at f2 = 2f1. Note that the power spectrum of L1 (figure 7(b))
still has dominant frequency components at f̃1 = 0.1939 and f̃2 = 0.3878 � 2f̃1, respectively
close to f1 and f2. This persistence of the peaks is due to intermittency of type I [50]. Indeed,

11 The notation L stands for large, see section 4.11.
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a large number of iterates tends to stay close to the five regions inside L1 where the periodic
attractor has just disappeared through a saddle-node bifurcation. The attractor L1 appears as a
consequence of the destruction of the circle C1, caused by a homoclinic tangency inside A1/5

(for more details on this route, see section 4.7). As a result, L1 has the properties of a folded
circle: its dimension is close to one (DL(L1) � 1.056), its folded geometric structure is
illustrated in figure 8(a).

Figure 7. (A) Projection on (x, z) of the P-attractor 4C1, occurring at (F, G) = (11, 0.4969).
(B) Same as (A) for the SA Q1, with G = 0.4972. The section S is enlarged in figure 8 right.
(a), (b) Power spectra for (A), resp. (B).

Figure 8. Left: magnification of box M in figure 6(B), projection on (x, y). A further magnification
shows that the vertical line x = 1.7678 crosses the attractor in at least five layers. A new
magnification (not displayed) reveals at least nine layers. To go beyond that value requires higher
accuracy in the integration. Right: a section of Q1 contained in a layer of thickness 2×10−3 around
the plane z = 0, projected on (x, ỹ), where ỹ = y − 0.135 × z.
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Table 1. Lyapunov dimension and exponents of 4C1 (A) and of the SA Q1 (B) in figure 7. The ei

are estimates for the error in λi (see appendix A.2).

DL λ1 λ2 λ3 e1 e2 e3

A 1 1.1 · e−5 −0.18 −14.5 1 · e−6 1 · e−4 1 · e−4
B 2.016 0.24 2.6 · e−4 −14.9 1 · e−4 1 · e−4 2 · e−4

Quasi-periodic bifurcations (section 3.2.2) play an important role in the birth of SAs
and repellors of dimension higher than two (sections 4.9.3 and 5.1.3). Attractors such as
4C1 in figure 7(A) are created by two consecutive quasi-periodic period doublings, compare
section 4.9.1. The attractor 4C1 is the union of two curves, each invariant under P2. We call
this type of invariant set a period-two invariant curve, also see sections 4.9.1 and 5.1.3. For
close parameter values, the SA Q1 in figure 7(B) is found12.

However, a whole quasi-periodic period doubling cascade does not occur, since 4C1 is
destroyed by a homoclinic tangency inside an Arnol’d tongue (see section 4.9.3). The fact that
λ2 � 0 (table 1) suggests that the dynamics on Q1 still preserves a quasi-periodic component,
inherited from 4C1. The power spectra of the two attractors, displayed in figures 7(a) and (b),
confirm this idea. The period-two curve 4C1 has two fundamental frequencies, one of which is
of course 0.5. The other frequency g1 = 0.32839 (labelled by 1 in figure 7(a)) is given by j/2,
where j is the frequency of P2 on any of the two invariant curves. All harmonics gk = kg1 up
to order 35 are identified by crosses on the corresponding peak in figure 7(a). The remaining
peaks occur on frequencies hk = 0.5 − gk , which are integer combinations of 0.5 and gk (the
unique such combinations in the interval [0, 0.5]). For reference, h1, h2, and h3 are labelled
in figure 7(a).

The first four and the sixth harmonic of g1 (labelled in figure 7(b)) persist in the spectrum
of Q1, but all other harmonics have turned into broad band. This persistence of the harmonics
can be again explained in terms of intermittency. Power spectra like in figure 6(b) or figure 7(b)
are of mixed type [17]: they contain marked peaks (atoms of the spectral density) but also have
a broad band component (locally continuous density).

The attractor Q1 is essentially three-dimensional, contained inside a ‘fattened’ Möbius
strip. In reality, the fattening is rather thin, due to the size of the negative Lyapunov exponent
λ3 (table 1). Indeed, this causes strong contraction in the normal direction and therefore the
Lyapunov dimension is too close to 2. This is illustrated in figure 8 right, where we plotted a
section S of Q1 obtained by cutting it with a layer of thickness 2 × 10−3, centred around the
plane z = 0. For a better visualization of the thinness in the normal direction, S is ‘rotated’
by using transformed coordinates. This projection is less than 2.5 × 10−6 wide in ỹ, so that a
Hénon-like structure in the normal direction cannot be distinguished. Values of x are limited
in (1.1, 1.5), corresponding to segment S in figure 7(B). We had to compute 108 iterates to
achieve the 13 005 points inside S plotted in the picture.

The above scenarios are quite common for the family PF,G,0.5, close to the breakdown of
an invariant circle in L1 or L2. However, intermittency disappears as the parameters are shifted
deeper inside Lk . The Lyapunov dimension increases, as well as the total power contained in
the broad band component of the power spectra (sections 4.8 and 4.9).

SAs of a different type occur in U (figures 9(A) and 10(A)). The geometrical and dynamical
structure of broken invariant circles is no longer present: the power spectra look like white noise,
indicating that the iterates of P are uncorrelated (see remark A.1 in appendix A.3). We call
these attractors ‘Shil’nikov-like’ because their shape is similar to that of Shil’nikov repellors

12 The notation Q stands for quasi-periodic Hénon-like, see section 4.9.3
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found in the autonomous Lorenz-84 system ε = 0. In [55], the presence of such repellors
was put in relationship with the occurrence of two curves of Shil’nikov bifurcations [34, 40],
corresponding to homoclinic loops of a saddle-focus equilibrium. For nearby parameter values,
limit cycles like in figure 11 were detected. Because of oscillations followed by long excursions,

Figure 9. (A) Projection on (y, z) of the Shil’nikov-like strange P-attractor S1, occurring at
(F, G) = (7, 1.7545). (B) Power spectrum of S1.

Figure 10. (A) Projection on (y, z) of the Shil’nikov-like strange P-attractor S2, occurring at
(F, G) = (7, 1.7). (B) Power spectrum of S2.

Figure 11. (A) Projection on (y, z) of ‘spiral’ limit cycle of (2), occurring at (F, G) = (7, 1.754 66).
(B) Same as (A) for G = 1.7015.
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Figure 12. (a) Projection on the y-axis of sequences of P-attractors as a function of G for F = 7
fixed. The step in G is 0.01. An Arnol’d tongue A0 of rotation number 0 is pointed by an arrow. The
attractor pointed by an arrow is plotted in figure 10(A). (b) Lyapunov dimension of the attractors
in (a).

such limit cycles are called spiral attractors [55]. In the driven Lorenz-84, spiral limit cycles
occur for most parameter values in U and U′. Only narrow Hénon-like attractors seem to occur
in U′ (see figures 38(a) and 51(a)). Similar attractors are found also in U.

The differences between U and L2 are illustrated by means of the Lyapunov dimension. In
figure 12(a) we plotted a magnification of figure 1(e). On the left of the picture, the circle C1

occurs: the Lyapunov dimension (figure 12(b)) is one, since the maximal Lyapunov exponent
is zero. After crossing an Arnol’d tongue A0 of rotation number zero, C1 locks again to
a periodic point on a small interval and then breaks down. The Lyapunov dimension grows
almost immediately up to ∼2.1. Except for a few narrow Arnol’d tongues (where the dimension
drops to zero), SAs are prevalent in the chaotic range L2. Then, at G � 1.08, some bifurcation
occurs13, after which the evolution of the attractors changes significantly. For most parameter
values in U an attracting fixed point is found (in the intervals of zero Lyapunov dimension
in figure 12(d)). The corresponding T -periodic limit cycles of system (2) are of spiral type.
Shil’nikov–like SAs as in figure 10(A) occur for a few parameter values, individuated by
the peaks in the Lyapunov dimension (figure 12(d)) and by some fuzzy vertical lines in
figure 12(a). Further discussion on the classification of the SAs of P for ε = 0.5 is to be found in
section 4.11.

We now list some more points of interest of the family PF,G,ε . Since the autonomous
system (for ε = 0) exhibits Shil’nikov bifurcations, we may well expect three-dimensional
homoclinic tangencies of a saddle focus fixed point of a diffeomorphism. For analogy with
the autonomous case, we shall call this multidimensional homoclinic bifurcation ‘Shil’nikov
tangency bifurcation’ (section 3.2.1).

A large variety of SAs can be found for PF,G,ε Some of these are essentially three-
dimensional14 and have dimension d with 2 < d � 3. The theory for this class of attractors
has not yet completely been developed: only partial results have been proven so far (see,
e.g. [62,65]). Also the Newhouse–Ruelle–Takens scenario [46,53] may occur, since for small
ε the map PF,G,ε has a repelling invariant two-torus T inherited from the autonomous system
(section 3.2.2).

As we have seen, the driven Lorenz-84 model displays a rich dynamics, with various
bifurcations of the attractors. The chaotic ranges in the parameter plane are wide. It is a
challenge to understand the corresponding bifurcation patterns of this model. The present paper

13 This happens on the ‘curve’ labelled by SH in figure 4.
14 By this we mean that they are no suspension of a two-dimensional attractor.



1218 H Broer et al

aims at giving a rough inventory of the dynamics and an analysis of some of the bifurcations
at hand.

2. Analytical results on P

In this section, we prove the following properties of the family PF,G,ε :

1. For all F, G, ε the map PF,G,ε has an attractor (section 2.1).
2. For G large, PF,G,ε has a unique attracting fixed point A (section 2.2).
3. For G = 0 PF,G,ε has a unique fixed point, which is attracting for F � 1 and undergoes

a supercritical Hopf bifurcation at F = 1.

The results are formulated in terms of the following system:

ẋ = −ax − y2 − z2 + aFf (t),

ẏ = −y + xy − bxz + Gg(t),

ż = −z + bxy + xz,

(3)

with T -periodic continuous functions f, g : R → R. System (2) is a particular case of (3),
where f (t) = g(t) = 1 + ε cos(ωt). At the end of each section, we describe the implications
for the map PF,G,ε .

2.1. Existence of attractors

For the autonomous Lorenz-84, there exists a bounded set in the phase space R3 = {x, y, z},
depending on the parameters F, G, which attracts all trajectories [42]. A similar property
holds for system (3). Let ‖f ‖∞

def= supt∈R |f (t)|.
Proposition 2.1. For a > 0 and every b, F, G, there exists a sphere S ⊂ R3 centred at
(x, y, z) = (0, 0, 0) with radius R0 depending on a, F, G, ‖f ‖∞, ‖g‖∞, such that all integral
curves of (3) ultimately penetrate S and then remain inside.

Proof. We denote the Euclidean norm on R2 or R3 by ‖ ‖. Consider a solution (x, y, z)(t) of
equation (3) and define R(t) = ‖(x, y, z)‖. Using (3), we have

1

2

d

dt
(R2) = −ax2 − y2 − z2 + xaFf (t) + yGg(t) � −ãR2 + R

√
a2F 2‖f ‖2∞ + G2‖g‖2∞,

where ã
def= min{a, 1}. We have used the Schwartz inequality: xaFf (t) + yGg(t) =

(aFf (t), Gg(t)) · (x, y) � ‖(aFf (t), Gg(t))‖‖(x, y)‖. For R large enough, namely,

R > ã−1
√

a2F 2‖f ‖2∞ + G2‖g‖2∞
def= R0,

the function R(t) is decreasing. Notice that it is sufficient to require that f (t) and g(t) be
bounded on R. �

Since f (t) = g(t) = 1 + ε cos(ωt) and a < 1 in system (2), the radius of the attracting
sphere S for the map PF,G,ε is R0 = (1 + ε)

√
F 2 + G2/a2.

2.2. Occurrence of a unique fixed point attractor of PF,G,ε for G large

Proposition 2.2. For all a > 0 and every b, F there exists a G0 such that for all G > G0,
system (3) has a unique attracting periodic solution pG.
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Proof. We scale the variables x, y, z of (3) as follows:

u = δ2x, v = δy, w = δz, with δ = G−1/3,

so obtaining

u̇ = −au − v2 − w2 + aFδ2f (t),

δ2v̇ = −δ2v + uv − buw + g(t),

δ2ẇ = −δ2w + buv + uw.

(4)

As G tends to infinity, δ approaches zero and (4) becomes a singularly perturbed system. For
δ = 0 we obtain the degenerate system

u̇ = −au − v2 − w2, u(v − bw) + g(t) = 0, u(bv + w) = 0.

The latter two equations yield

w = −bv, v = − g(t)

(1 + b2)u
. (5)

Substituting (5) in (4), we get the one-dimensional equation

u̇ = −au − g2(t)

(1 + b2)u2
. (6)

With the change of variables p = u3, we obtain the linear differential equation

1

3
ṗ = −ap − g2(t)

1 + b2
. (7)

The solution of the Cauchy problem given by (7) with initial condition p0 is

p(t) = e−3at

(
p0 − 3

1 + b2

∫ t

0
e3asg2(s) ds

)
.

The initial condition p0 = 3(1 + b2)−1(1 − e3aT )−1
∫ T

0 e3asg2(s) ds belongs to a T -periodic
solution pT (t), asymptotically stable and negative for all t . Given a solution p(t) with initial
condition p1 ∈ R, we have indeed p(t) − pT (t) = e−3at (p1 − p0) which tends to zero as
t → +∞, since a > 0.

Thus for δ = 0, system (4) has a globally attracting periodic solution s0(t) = (uT , vT , wT ),
where uT = (pT )1/3 and vT , wT are obtained from uT according to (5). We now prove that
for δ small, that is, for G large, system (4) has a period T solution sδ(t) = (u(t), v(t), w(t))

such that sδ(t) → s0(t) uniformly in t ∈ [0, T ] as δ → 0. The variational equation associated
to (6) and to uT is

V̇ =
(

−a + 2
g2(t)

(1 + b2)u3
T

)
V, V (0) = 1, V = ∂uT

∂u0
. (8)

According to [29], it is sufficient to show that the unique T -periodic solution of (8) is identically
zero. Since pT = u3

T is solution of (7), we have

g2(t)

(1 + b2)u3
T (t)

= g2(t)

(1 + b2)pT (t)
= −a − 1

3

d

dt
log(pT (t)).

Hence (8) becomes
d

dt
log(V (t)) = −3a − 2

3

d

dt
log(pT (t)).

Therefore, the solution of (8) is

V (t) = e−3at

(
pT (t)

p0

)−2/3

,
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which tends to zero as t → +∞. In the original coordinates (x, y, z), sδ corresponds to a
unique attracting T -periodic solution pG of (3), existing for G large. �

The occurrence of a unique attracting periodic orbit pG was suggested by numerical
experiments with system (2). In that case, pG corresponds to the P-fixed point A occurring
for G large (region F in figure 4).

2.3. Invariant circles for G = 0

Numerical experiments with the map PF,G,ε suggest that for G = 0, F > 1, and 0 � ε < 1
(and possibly for a small range beyond ε = 1), the map has an invariant circle C1, born at
F = 1 at a Hopf bifurcation of a fixed point. We here prove that for G = 0 and all F , the
map PF,ε = PF,0,ε has a fixed point undergoing a Hopf bifurcation at F = 1. Existence of the
invariant circle for all F > 1 will be proved for ε small.

We now consider the periodic orbits of system (3). Given a function h : R → R,
denote by h̄ the average of h over the interval [0, T ], i.e. h̄

def= (1/T )
∫ T

0 h(s) ds.

Proposition 2.3. Suppose f̄ �= 0. For all F system (3) has a unique T -periodic orbit pF (t),
which is stable for F � f̄ −1 and undergoes a Hopf bifurcation at F = f̄ −1.

Proof. For G = 0 system (3) has a symmetry and its dimension can be reduced. Indeed, the
Cauchy problem given by (3) with initial condition (x0, y0, z0) is equivalent to the reduced
system

u̇ = −au − r − a + aFf (t), u(0) = u0,

ṙ = 2ur, r(0) = r0,
(9)

where r = y2 + z2 and u = x − 1. The u-axis is invariant under the flow of (9). Putting r = 0,
the first equation of (9) can be solved, giving

u(t) = e−at

(
u0 + 1 − eat + aF

∫ t

0
easf (s) ds

)
.

A unique periodic solution uT (t) exists, with initial condition

u0 = 1

eaT − 1

(
1 − eaT + aF

∫ T

0
easf (s) ds

)
.

This implies that system (3) has a unique periodic solution pF (t) = (uT (t)+1, 0, 0) for r0 = 0.
We now prove that system (9) has no periodic solutions other than pF (t). Since we shall use
the following fact again, we state it in a remark. �

Remark 2.1. Consider a T -periodic solution (u, r)(t) of (9). Then, either r(t) = 0 or ū = 0.
Indeed, from the second equation in (9), one has

r(t) = r0 exp

(
2

∫ t

0
u(s) ds

)
.

From r(T ) = r(0) = r0, it follows that either r0 = 0, or
∫ T

0 u(s) ds = 0.

Continuing the proof, suppose that (x, y, z)(t) is a T -periodic solution of (3) and take the
corresponding solution (u, r)(t) of (9). Averaging the first of the equations (9) over [0, T ]
yields

ū = F f̄ − 1 − r̄/a.
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If F f̄ − 1 � 0, remark 2.1 implies that r = y2 + z2 must be zero. Therefore, (x, y, z)(t)

coincides with pF (t) (up to a time shift). If F f̄ − 1 > 0, then the functions y and z have
the form

y(t) = r(t) cos(−bt + θ0), z(t) = r(t) sin(−bt + θ0), (10)

and they are not periodic15 unless r = 0.
To determine stability, we integrate the variational equation associated to (9) and pF (t) =

(uT (t) + 1, 0, 0):

V̇ =

−a 0 0

0 uT (t) −b(uT (t) + 1)

0 b(uT (t) + 1) uT (t)


 V, V (0) =


1 0 0

0 1 0
0 0 1

,


 (11)

where V is the derivative of the flow of (9) with respect to initial conditions (x0, y0, z0). Since
V̇1k = −aV1k , k = 1, 2, 3, the first row of the monodromy matrix V (T ) is (V11, V12, V13)(T ) =
(e−at , 0, 0). Therefore, one eigenvalue of V (T ) is e−aT and the other two do not depend on
V21 and V31. On the other hand, it is easy to see that

V32 = −V23 and V22 = V33. (12)

Indeed, define W1 = V22 − V33 and W2 = V23 + V32. Using (11), one gets a linear
homogeneous Cauchy problem for W1 and W2, with initial conditions W

(0)
1 = W

(0)
2 = 0,

which implies that W1(t) = W2(t) = 0. So it is sufficient to solve the problem

V̇22 = uT V22 + b(uT + 1)V23, V
(0)

22 = 1,

V̇23 = −b(uT + 1)V22 + uT V23, V
(0)

23 = 0.
(13)

We put (13) in complex form:

Ż = A(t)Z, where Z = V22 + iV23, A = uT − ib(uT + 1).

Integration of the previous equation yields

(V22 + iV23)(T ) = exp

(∫ T

0
uT (s) ds

)
exp

(
−ib

∫ T

0
(uT (s) + 1)) ds

)
.

Using (12), one gets that the other two eigenvalues µ2 and µ3 of V (T ) are complex conjugated.
Since their modulus is

exp

(∫ T

0
uT (s) ds

)
= exp(T (F f̄ − 1)),

then pF (t) is stable for F f̄ − 1 < 0 and it loses stability as F increases through 1/f̄ , because
µ2 and µ3 cross the unit circle. Furthermore, we have

arg(µ2) = −b

∫ T

0
(uT (s) + 1)) ds = −bT F f̄ ,

which is equal to −bT at the moment of the bifurcation. Since −bT /2π is irrational15, a Hopf
bifurcation takes place. �

We now show that in the autonomous case equation (9) has a unique global attractor
for F > 1.

15 This holds with the choice b = 4 and T = 73, for which bT /2π = 146/π is irrational.
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Proposition 2.4. Consider system (9), with F > 1 and f (t) = 1 for all t . The equilibrium
B = (0, a(F − 1)) is the unique global attractor of (9).

Proof. For F > 1, the vector field V in (9) has two equilibria, B, which is stable, and the
saddle A = (F − 1, 0). By the Poincaré–Bendixson theorem, an attractor of the flow of (9)
can be an equilibrium or a periodic orbit. We now show that the flow of (9) has no periodic
orbits. The divergence divV = −a + 2u of V is negative for all (u, r) at the left of the line Z
of zero divergence (figure13). We distinguish two cases. Suppose first that the saddle A lies
at the left of line Z, that is, 1 < F < 1 + a/2. Since the vector field V points leftward on all
points of the vertical line K given by (u = F − 1), any periodic orbit must lie at the left of K.
But no periodic orbit can exist there, because the divergence is negative at the left of Z.

Take now an arbitrary F . If V has a periodic orbit, the former must be born at a saddle-node
bifurcation of periodic orbits. Indeed, no Hopf bifurcation of equilibria occurs for V, since
the two equilibria never change stability type. Consider thus a saddle-node periodic orbit O

of period M , parametrized by (u(s), r(s)) for s ∈ [0, M]. Take a Poincaré map S, defined in
a suitable local section of O. The eigenvalue µ of the derivative DS at the fixed point of S

corresponding to O is one. On the other hand, remark 2.1 yields that ū = 0 and therefore

log(µ) =
∫ M

0
divV(u(s), r(s)) ds =

∫ M

0
(−a + 2u(s)) ds = −aM < 0,

which gives a contradiction. �
We now discuss the consequences of the above propositions for the family PF,G,ε . Here

we have f (t) = 1 + ε cos(ωt), therefore f̄ = 1. The map PF,G,ε has a unique fixed point
for G = 0 and all F , ε, which is stable for F < 1 and undergoes a Hopf bifurcation at
F = 1. A circle attractor C1 is created there, but its persistence in F is guaranteed only for
F ≈ 1, by the theory of the Hopf bifurcation. On the other hand, hyperbolicity of the stable
equilibrium B in proposition 2.4 implies that system (9) has an attracting T -periodic orbit when
applying a small T -periodic perturbation f (t) (small in the sense that ‖f − 1‖∞ is small).
For the map PF,G,ε , this implies the existence of the circle attractor C1 for all F and for small
G and ε.

A remarkable consequence of (10) is that for all F > 1 the rotation number � is the
constant on C1, namely −bT /2π . This situation is not generic in a family of circle mappings.
Indeed, given the physical meaning of G (section 1.1), the system for G = 0 seems to have
too much symmetry and to be degenerate.

Figure 13. Phase portrait of the vector field V. The dashed half circle represents the attracting
sphere S obtained in section 2.1. The case 1 < F < 1 + a/2 is sketched, for which the line Z
(u = a/2) of zero divergence lies at the right of the saddle A.
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Table 2. Equivalences for ε = 0 between invariant dynamical objects of the flow 	F,G of system (1)
(left), of the flow 
F,G,ε of system (2) (centre), and of the Poincaré map PF,G,ε . Centre and right
column items are equivalent also for ε > 0.

	F,G 
F,G,ε PF,G,ε

equilibrium ↔ period-T limit cycle ↔ fixed point
limit cycle ↔ two-torus ↔ invariant circle
two-torus ↔ three-torus ↔ two-torus

3. The driven system as a perturbation from ε = 0

We now investigate the relations between the dynamics of the driven and the autonomous
Lorenz-84, first introducing some notation. The flows of system (1) and (2) will be denoted
by 	F,G and 
F,G,ε respectively, where

	F,G : R3 × R → R3, (x, y, z; s) 
→ 	s
F,G(x, y, z),


F,G,ε : R4 × R → R4, (x, y, z, t; s) 
→ (
s
F,G,ε(x, y, z, t), t + s).

The two flows are equivalent when ε = 0. More precisely, one has


s
F,G,0(x, y, z, 0) = 	s

F,G(x, y, z) for every (x, y, z, s) ∈ R4.

Therefore, 	F,G-invariant dynamical objects are also 
F,G,0-invariant. On the other hand, any
dynamical property of 
F,G,ε can be expressed in terms of the Poincaré map PF,G,ε , see table 2.
Notice that the flow 
F,G,0 does not have equilibria, since ṫ = 1 in system (2). A hyperbolic
equilibrium q = (x, y, z) of 	 is said to be of type (m, n), with m + n = 3, if m eigenvalues
of the linear part of the vector field (1) at q have negative real part, while n have positive real
part. Similarly, a hyperbolic fixed point q of the map P is of type (m, n) if m eigenvalues of
the derivative DP have modulus less than one and the remaining n lie outside the unit circle
in the complex plane. At least one of the eigenvalues of DPF,G,ε at a fixed point is real.

We use the term Hopf bifurcation in each of the following cases.

1. Two complex conjugate eigenvalues of the linear part of the vector field (1) at an
equilibrium cross the imaginary axis and a limit cycle of the three-dimensional flow 	

is born.
2. Two complex conjugate Floquet multipliers γ exp(±2π i�) of a limit cycle of 	F,G or


F,G,ε cross the unit circle16 and an invariant two-torus is born.
3. Two complex conjugate eigenvalues γ exp(±2π i�) of a fixed point of the map P cross

the unit circle16 and an invariant circle is born.

Notice that no limit cycle of the four-dimensional flow 
 can be born in a standard Hopf
bifurcation, since 
 has no equilibria. Case 2 is often called Naimark–Sacker or torus
bifurcation, also see footnote 8.

3.1. The autonomous system

We present some results on the autonomous Lorenz-84 system, mainly due to Shil’nikov
et al [55]. The discussion begins by the bifurcation diagram of the flow 	F,G (figure 14). For
background on bifurcation theory and the relevant terminology see [16,34,40]. The organizing
centres are the following codimension two bifurcation points: a cusp C, a Hopf-saddle-node

16 With � �= ±1/k, for k = 1, . . . , 4. These are codimension two bifurcations, called strong resonances [34, 40].
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Figure 14. Bifurcation diagram of the autonomous system (1), from [36].

point HSN , both bifurcations of equilibria; a 1 : 2 resonance point, a Bogdanov–Takens point17

BT and a cusp CL, all bifurcations of limit cycles. Two branches of saddle-node curves of
equilibria SN 0 and SN 1 meet tangentially at C, forming a tongue-shaped region. In the
neighbourhood of C, three equilibria (two sinks and one saddle) coexist inside this tongue and
only one sink A occurs outside.

A curve H1 of Hopf bifurcations of equilibria emanates from (F, G) = (1, 0). The curves
SN 0 and H1 are tangent at the point HSN . Above HSN , both curves become subcritical
and are denoted by SN sub

0 and Hsub
1 . A second curve H2 of supercritical Hopf bifurcations of

equilibria (not reported in figure 14) has been numerically computed in [55].
A curve of period doubling of limit cycles is marked by PD. It is split by a 1 : 2 resonance

point into a subcritical and a supercritical part, where the former lies above the 1 : 2 point. This
point is connected to HSN by a curve QHsub of subcritical Hopf bifurcations of limit cycles.
The Bogdanov–Takens point BT is connected to 1 : 2 by a curve QHsuper of supercritical Hopf
bifurcations of limit cycles. The two curves indicated by SL (meeting at a cusp CL) are
saddle-node bifurcations of limit cycles.

We now explain how the dynamics varies with the parameters. A unique stable focus A

exists for small F , to the left of curve H1 and outside the tongue with tip at C. Following
dashed segment A1 in figure 14, from left to right: at the Hopf curve H1, below HSN , A splits
into an attracting limit cycle M and a saddle B1 of type (1, 2). At PD, below the 1 : 2 point,
M loses stability and an attracting limit cycle 2M is created. Crossing the curve QHsuper,
2M loses stability and an attracting two-torus is created. Following segment A2 from left to
right: the saddle focus B1 and a repelling equilibrium are generated in a subcritical saddle-
node bifurcation at the curve SN 0. Crossing H, the repellor turns into a saddle focus B2 of
type (2, 1) and a repelling limit cycle M is created. Then M undergoes a subcritical period
doubling at the curve PD. Following segment A3 from top to bottom: crossing the curve
QHsub downwards, M becomes attracting and a two-torus repellor is created. At SN 1 the
saddle B2 collides with the attractor A.

It is known [19,34,40] that the bifurcation diagram near a Hopf-saddle-node point of three-
dimensional vector field generically shows subordinate Shil’nikov bifurcations of equilibria.

17 Synonymous for the 1 : 1 generic strong resonance.
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The latter is a complicated homoclinic phenomenon which may cause the birth of Shil’nikov
SAs. Two curves of Shil’nikov homoclinic bifurcations (not reported in figure 14) were
computed numerically in [55]. Some other routes to chaos in Lorenz-84, such as cascades of
period doublings, have been described in [43, 55].

Remark 3.1. It seems that some features of the above bifurcation diagram are rather common
among low-dimensional systems with two parameters (cf [67]). Main ingredients are one
Hopf-saddle-node point, a 1 : 2 strong resonance and a Bogdanov–Takens point, connected by
bifurcation curves of limit cycles. These global configurations are likely to be caused by a
higher codimension bifurcation, ‘hidden in the background’ because of the lack of a sufficient
number of active control parameters. A similar idea is expressed in the work of Carcassès
et al [21] (see also [16] and references therein), who show that semi-global patterns formed
by curves of period doubling and saddle-node bifurcation are confined to a certain number of
configurations due to geometrical reasons.

One of the goals of the present work is to investigate which parts of the diagram in figure 14
persist for the map PF,G,ε with ε > 0 and to find out which bifurcations play a role in the
changes.

3.2. Persistent dynamical properties

We here summarize which dynamical properties of the autonomous Lorenz-84 system persist
in the driven system for ε small.

Starting point is the bifurcation diagram in figure 14. Assuming the correspondences in
table 2, all bifurcations of equilibria for 
F,G turn into bifurcations of fixed points for PF,G,0.
Similarly, bifurcations of limit cycles of 
F,G turn into bifurcations of invariant circles PF,G,0.
According to classical perturbation theory [4, 23, 34], hyperbolic [35, 52] fixed or periodic
points, normally hyperbolic invariant circles and quasi-periodic tori of PF,G,0 persist for PF,G,ε ,
if the size ε of the perturbation is small. In the next section, we make a stronger statement,
namely that for small ε the local bifurcation diagram of fixed points of PF,G,ε is a continuous
deformation of that for ε = 0. The situation is more complicated for global (homoclinic)
bifurcations, or for bifurcation of invariant circles (see section 3.2.2 for the latter).

3.2.1. Bifurcations of fixed points. Consider a local bifurcation B ∈ Rm of fixed points of
a C∞ map P : Rm → Rm, where B has finite codimension. B is generic [34, 52] when the
linear part and some higher-order jet of P at the point B satisfy appropriate transversality
conditions. If genericity holds, the implicit function theorem implies that B persists under
small perturbations of the map P .

Remark 3.2. Often, it is possible to formulate the above transversality conditions in terms of
a normal form of P . One usually requires that a suitable combination N of the normal form
coefficients of P be non-vanishing at B. In this case, a small perturbation will not change
the sign of N , nor the local bifurcation diagram around B. Non-vanishing of N is usually
checked by symbolic manipulation of the Taylor series, possibly in combination with numerical
methods such as integration of differential equations.

The above conclusion can be applied to the family PF,G,ε , assuming genericity of the
bifurcations at ε = 0. In fact, genericity holds with the exceptions mentioned in remark 3.3.
All saddle-node curves are persistent in ε without changes and so is the cusp C. As for the
Hopf curves, an important modification introduced by the forcing is the creation of Arnol’d
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tongues and strong resonance points. Generic circle dynamics [3, 52] may be either quasi-
periodic or phase locked, depending on the rotation number �. In particular, the dynamics
is quasi-periodic if and only if � is irrational [25, 34]. Circle dynamics is degenerate for the
map PF,G,ε , at ε = 0, in the sense that it is a rigid rotation. We recall that a PF,G,0-invariant
circle C1 corresponds to the limit cycle M of the flow 	F,G (see table 2). The rotation number
on C1 is � = T/TL, where TL is the period of the limit cycle M. Regions inside M0 where
an invariant circle occurs are foliated by lines (hairs) upon which the rotation number � is
constant. Each hair A� is attached to a point belonging to the Hopf bifurcation curve where
the circle has been created. At such a point, the two complex eigenvalues of the derivative
DPF,G,0 are equal to exp(±2π i�). Points where � = p/q with q = 1, 2, 3, 4 are called
strong resonances. As ε increases from zero, hairs on which � = p/q is rational split into
resonance tongues Ap/q . The edges of the tongues have infinite order of contact as ε goes to
zero [14, 18]. If q �= 1, . . . , 4, the two edges of Ap/q meet at a tip attached to a Hopf point
with rotation number p/q (also see figure 40). In the case of a strong resonance, the local
bifurcation diagram is richer, including also homoclinic bifurcations and chaos. Furthermore,
a Hopf curve is interrupted by a generic strong resonance. Examples of some gaps produced
on the Hopf curves for ε = 0.5 are presented in sections 4.2 and 4.1.

Remark 3.3. At ε = 0, all strong resonances introduced on the Hopf curves by the forcing
are degenerate (non-generic). Consider a generic point B ∈ H1 at ε = 0. Two eigenvalues of
the linear part of the vector field (1) are purely imaginary, say, µ± = ±iα. Therefore, at ε = 0
two eigenvalues of DP at B are exp(±iT α). If T α = p/q with q = 1, . . . , 4, then B turns
into a strong resonance for the map P. Since B is a generic Hopf bifurcation for the flow of the
autonomous system, it does not interrupt the Hopf curve. Furthermore, a unique hair emanates
from B and we conclude that B, considered as a strong resonance of P, is degenerate.

Part of the bifurcation diagram of fixed points of PF,G,ε for ε = 0.01 is shown in
figure 15. The saddle-node curve, the Hopf curve, the cusp and the point HSN are all
persistent for this value of ε. For concreteness the (F, G, x, y, z) values of this point
are, approximately, (1.683 903 22, 1.682 439 88, 1.124 744 27, −0.010 573 55, 0.377 429 16).
This can be compared with the corresponding values for ε = 0: (1.684 051 72, 1.682 968 55,

1.125, −0.010 380 68, 0.373 704 66) to see that the differences are quite small. However, for
ε = 0.5 the point HSN does not persist, and the local bifurcation diagram is quite different
(see section 4.3).

Figure 15. (a) Part of the bifurcation diagram of fixed points of PF,G,0, for ε = 0.01.
(b) Magnification of (a) of box M around the point HSN . The latter graph has been deformed by
an affinity, plotting couples (F, G̃), where G̃ = G − 1.5 × (F − 1.5)).
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Figure 16. Left: two disks D+ and D− are tangent to the curve QHsub at the point D. Right: a
Cantor subset of the curve QHsub persists for ε > 0. In the complement of the disks, bubbles (or
resonance holes) B1, B2, and B3 appear.

We now turn to homoclinic bifurcations of fixed points. Homoclinic connections of the
flow 	F,G of system (1) correspond to degenerate homoclinic tangencies for the map PF,G,0.
For ε > 0, the connections generically break, being replaced by transversal homoclinic
intersections and non-degenerate homoclinic tangencies18. Special attention must also be
payed to the accumulation of transversal homoclinic intersections. Depending on the geometry
(e.g. homoclinic orbits in a Shil’nikov-like case) it can be difficult to detect when the first
homoclinic tangency is produced.

3.2.2. Bifurcations of invariant circles. We discuss the influence of the forcing on the curves
PD, QHsub and QHsuper in figure 14. Recall that the first is a curve of period doubling of the
limit cycle M, while the second and third are curves of respectively sub- and super-critical Hopf
bifurcations of M. For a general presentation of all theory used in this section; see [10, 11]
and references therein.

Limit cycles of the flow 	F,G of the system (1) turn into PF,G,0-invariant circles, compare
table 2 and the previous section. For ε > 0, the circles have different bifurcation behaviour,
depending on the rotation number �. In brief, the bifurcation diagram is locally persistent in
ε only when restricting to Diophantine tori. For ε = 0 the sets in Mε where Diophantine
circles occur locally have the product structure of a curve (of constant rotation number) times
a Cantor set (of frequencies). Such local Cantor foliations of the parameter plane intersect the
bifurcation curves at Cantor subsets, where the Diophantine circles are normally elliptic. To fix
ideas, we briefly describe how the parameter plane Mε looks like for ε > 0 close to the curve
QHsub. The circle C1 is Diophantine on all vertical lines labelled by Lk in figure 16 (right).
Except at the intersections with QHsub, the circle C1 is normally hyperbolic. Then the theory
implies that C1 persists also in two open regions on each side of line Lk . Two of these regions
D+ and D−, called flat conic discs, are sketched in figure 16 (left). They have an infinite order
of tangency with QHsub. Inside the conic discs C1 may be resonant and is repelling in D+ and
attracting in D−. The torus repellor T occurs only in D−. Note that the value of ε until which
a given circle persists, depends strongly on the value of the Diophantine rotation number.

In this way, for ε > 0 each of the above curves turns into a frayed boundary as in
figure 16 (right). Outside all discs, small resonance regions remain in the parameter plane—
the Chenciner ‘bubbles’, or resonance holes—where the behaviour of C1 under the perturbation
is not predicted by the general theory. On the other hand, the resonance holes might as well

18 Also called (homoclinic) tangency bifurcations [34, 48].
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Table 3. Lyapunov exponents of the repellors in figure 17, see footnote 19.

λ1 λ2 λ3 e1 e2 e3

A −2 · e−6 −0.01867 −0.0187 1 · e−7 2 · e−6 1 · e−6
B −2 · e−6 −0.00269 −0.002 71 3 · e−7 2 · e−6 1 · e−6
C 5 · e−5 4.5 · e−7 −0.01 6 · e−6 1 · e−8 4 · e−6

Figure 17. (A)–(C) Projections on (x, z) of repellors of P1.8,G,0.01, for G = 1.683, respectively
G = 1.681 and G = 1.68. The initial point (x, y, z) = (1.12, −0.17, 0.41) has been used in all
cases. (a)–(c) Power spectra of the repellors.

be extremely small in size and, therefore, numerically hard to detect. Apart from these holes,
strong resonances locally may destroy the curves.

Persistence of quasi-periodic Hopf bifurcations will be now illustrated by a numerical
example. A similar picture for quasi-periodic period doubling is presented in section 4.9.1.
For (F, ε) = (1.8, 0.01) fixed, at G = 1.683 the circle repellor C1 occurs (figure 17(A)). The
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maximal Lyapunov exponent λ1 (displayed in table 3) is approximately zero, while λ2 and λ3

are negative19, indicating that C1 is both quasi-periodic and normally hyperbolic. Referring
to figure 16 (left), parameter values belong to L1 ∩ D+.

At G = 1.681 (figure 17(B)), λ2 and λ3 are almost zero and C1 is normally elliptic.
Parameter values are close to L1 ∩ QHsub in figure 16. The power spectrum contains six
peaks labelled by k, corresponding to harmonics fk = kf1 of the fundamental frequency
f1 = 0.4165. At G = 1.68 the circle has become attracting and coexists with the torus
repellor T (figure 17(C)). Parameters belong now to L1 ∩ D−. Two Lyapunov exponents
are zero on T and the power spectrum confirms the presence of two fundamental frequencies
f1 = 0.4142 and g1 = 0.191 95. Peaks occur at integer combinations of f1 and g1. In
figure 17(c), we labelled peaks on frequencies f1, f2 = 2f1, f1 − g1, f1 + g1, and f3 − g1 by
1, 2, h, j , and l, respectively. Notice that very small peaks occur on g1 and g1 in figure 17(b),
before the bifurcation. This is due to intermittency of type II (see [50]).

Similar experiments for other values of F suggest that a large part of QHsub survives for
ε small. However, for ε = 0.5, no repelling torus is found and therefore the curve QHsub does
not seem to persist. See sections 4.5 and 5.1.3.

4. Dynamical inventory of the map PF,G for ε = 0.5

The structure of the parameter plane M0.5, sketched in figure 4, is described in the next sections.
The bifurcation diagram of fixed points (figure 3) and the scanning for fixed points in figure 2(b)
will be repeatedly used in mapping out M0.5. The reader is referred to all the above pictures
for the labelling.

The dynamics of the autonomous case ε = 0 is preserved in a large part of M0.5. In region
F, that is either for G large or F small, a fixed point attractor A exists. Circle dynamics occurs
in the two regions Q1 and Q2. So far, the only changes from the autonomous case are due to
resonance phenomena in Q1 and Q2 and on the boundaries H1 and Hsub

1 (see section 3.2.1). The
bifurcation diagram is unchanged also close to curves SN sub

0 and SN 0 for F outside interval
I = {F | 1.2 � F � 3} (figure 18). However, important modifications occur at ε = 0.5:

1. the disappearance of the Hopf-saddle-node point HSN and the destruction of the Hopf
curves inside interval I (section 4.3).

2. The disappearance of the frayed curve of quasi-periodic Hopf bifurcations QHsub

(section 4.5).
3. The creation of new families of fixed points close to SN 1, away from the cusp C

(section 4.4). Part of this curve is the boundary between regions F and U, U′.
4. The growth in size of the chaotic regions L2 and U.
5. The creation of the chaotic ranges L1 and U′.

See section 5.1.3 for comparisons with other values of ε. We proceed in order of increasing
complexity of the phenomena, starting with region Q2, where the situation is fairly well
understood.

4.1. Circle dynamics inside region Q2

A first indication of circle dynamics is given by the cigar-shaped sequences of attractors in
figures 1(e) and ( f ). The cigars are projections on the plane (G, y) of one parameter families
C2(F0, G) of circles, where F0 is fixed to 7 and 11, respectively.

19 Lyapunov exponents of repellors are computed using P−1. All reported values hold for the inverted time.
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Figure 18. Bifurcation diagram of fixed points of PF,G for ε = 0.5, enlargement of box labelled
by A in figure 3. The graph has been affinely deformed, by plotting couples (F, G̃), where
G̃ = (G − 1.3 × (F − 1)).

Figure 19. (a) Hyperbolic arcsine of the modulus (——) and real part (- - - -) of the eigenvalues
of DP along a curve of continuation of fixed points, for F = 7. The two Hopf bifurcations P1 and
P2 are marked by small boxes, see text for explanation. (b) Same as (a), for F = 11.

The circle C2 is born at supercritical Hopf bifurcations belonging to curve H2. To fix
ideas, consider figure 1(e). The fixed point on the right (G large) is the attractor A. As G

decreases, A loses stability through a supercritical Hopf bifurcation, at a point P1 ∈ H2. This
is illustrated in figure 19(a), where we plotted modulus and real part of the complex conjugate
eigenvalues µ1 and µ2 of DP along a curve of fixed points. The curve is obtained by numerical
continuation, starting from the attractor A and letting G decrease. The Hopf bifurcation P1

occurs at G � 3.89, where A turns into a saddle focus D of type (1, 2). At that moment, C2

is created and starts expanding off20. Then, at G � 2.14 the circle A and the saddle D collide
again, through a Hopf bifurcation P2, belonging to the inferior branch of H2. Between P1

and P2 the real part of µ1 on D changes sign several times, implying that µ1 and µ2 rotate
around the origin inside the complex plane. The saddle D does not undergo other bifurcations
between P1 and P2. For F = 11, the G-interval of existence of C2 and D is wider, since the

20 A small scale on the parameter G can be needed to properly visualize this, see remark 4.3.
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two Hopf bifurcations occur at G � 7.53 and G � 2.36. Also notice that D becomes much
more unstable than for F = 7, given the larger values of the modulus of the eigenvalues.

We investigated the dynamics on C2 by computing the Lyapunov exponents. The results
for F = 7 and F = 11 are plotted in figure 20. For all scanned G values between P1 and
P2, the maximal Lyapunov exponent seems to be zero. Therefore, the dynamics on C2 is
quasi-periodic for most parameter values in the cigars. This is also confirmed by the evolution
rotation number of C2 on the above cigars (figure 21).

For definiteness, consider figure 21(a). Since F = 7 is fixed, parameter values belong to a
vertical line V in the plane M0.5, intersecting many Arnol’d tongues in Q2. The intersections
are intervals on V where the rotation number � of C2 is constant. Therefore, each segment
of the broken line in figure 21(a) is a devil’s staircase [25]. However, all horizontal plateaus,
corresponding to intervals of constant rational rotation number, are extremely narrow. For
example, intervals where � = 0 are intersections of V with Arnol’d tongues where C2 is
locked to a fixed point. The first such interval (pointed by an arrow in figure 21(a)) is less
than 6 × 10−6 wide. For concreteness, the values of G at the end points of the interval are
2.203 403 047 5 and 2.203 408 996 9, approximately. Similarly, all other Arnol’d tongues are
very thin in Q2, see below.

We now describe the global organization of the Arnol’d tongues Ak with zero rotation num-
ber inside Q2. The first two tongues, A30 and A31, are shown in figure 22(a), together with H2.

Figure 20. (a) Lyapunov exponents λ1 and λ2 in the G interval [2, 4], with F0 = 7. The step in G

is 0.01. (b) Same for G ∈ [2, 8], with F0 = 11.

Figure 21. (a), (b) Rotation number � of C2 on the same G intervals as figure 20(a) and (b),
respectively. When the fixed point attractor A occurs (outside the cigars, thus), we set � = 0. The
step in G is 0.01.
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Figure 22. (a) Magnification of box C in figure 3. The Hopf curve H2 is plotted with the first two
Arnold tongues of zero rotation number. Magnifications of the boxes around the Bogdanov–Takens
gaps ḡ31 and g31 are given in figure 24(a) respectively (b). (b) Portion of H2 contained inside box D
in figure 3, together with Arnol’d tongues with zero rotation number.

Figure 23. (a) Projection on the (y, z) plane of a limit cycle corresponding to a period-one phase-
locked circle for parameter values (F, G) = (9.3, 3.047 216 982 2) inside A35. (b) Same as (a),
projection on the (t, z) plane.

Remark 4.1. The index k in Ak is the winding number of the T -periodic limit cycle of 	F,G

corresponding to the fixed point on the circle inside Ak . This is illustrated in figure 23(a), where
a limit cycle with initial condition inside A35 is shown. An ‘inner’ and an ‘outer’ winding can
be observed. The time evolution of the z-coordinate is plotted in figure 23(b) and the number
of maxima in the interval [0, T ] gives the winding number 35. The winding number increases
by one unit from tongue Ak to tongue Ak+1. Furthermore, the size of the inner windings inside
tongue Ak increases with k: in A30 it is much smaller than in figure 23(a).

Each tongue Ak intersects H2 two times, once at the lower and once at the upper branch.
There, the Hopf curve H2 is interrupted by Bogdanov–Takens gaps, respectively gk and ḡk .
To fix ideas, we consider the two gaps g31 and ḡ31 (figures 24(b) and (a), respectively). The
gap g31 is bounded by two Bogdanov–Takens points BT 31,a and BT 31,b (see figures 24(c)
and (d)). Two saddle-node lines SN 31,a and SN 31,b are tangent to H2 at respectively BT 31,a

and BT 31,b. Furthermore, SN 31,a meets SN 31 at a cusp C31,a and SN 31,b meets SN 31 at a
cusp C31,b. The cusps C31,a and C31,b are connected by the saddle-node curve SN 31,ab.

This structure is repeated at ḡ31, at the other side of A31, but the scale is much smaller
(figure 24(a)). Two Bogdanov–Takens points and two cusps are connected by a fourth branch
of saddle-node bifurcations, denoted by SN 31,ba . The four saddle-node lines thus bound the
tongue A31.
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Figure 24. (a) Resonance gap ḡ31 in the Hopf line H2. The dashed lines lines are saddle-node
bifurcation curves. (b) Resonance gap g31. (c), (d) Magnification of boxes L and M in (b), at the
tangencies between H2 and the saddle-node curves.

The same global structure seems to exist close to all other Bogdanov–Takens gaps in H2.
Each gap gk on the lower branch of H2 is connected to a gap ḡk on the upper branch by an
Arnol’d tongue Ak of rotation number zero. These tongues are plotted in figure 2(a), where
they appear as lines crossing Q2. Indeed, they are extremely narrow for most parameter values
in Q2. Arnol’d tongues of higher period are even narrower, so that the circle C2 is found
quasi-periodic for most values inside Q2. However, the tongues become wider close to the
gaps g31, at the lower branch of H2. Indeed, A32 and A33 form two small black spikes in
figure 2(b), near the lower boundary of region Q2. These spikes become even wider for larger
ε, so that H2 is destroyed by strong resonance gaps, see section 5.1.3.

More resonance gaps interrupting the continuity of H2 are shown in figure 22(b). The
first three from the left and that at the right are Bogdanov–Takens gaps, while the second from
right, labelled h33, is due to a 1 : 2 resonance. The size of the gaps increases with F and on the
lower branch of H2 it is much larger than on the upper one.

Remark 4.2. In the parameter space M two curves of Bogdanov–Takens bifurcations pass
through the two extremes of each gap. Both curves emanate from the same degenerate
Bogdanov–Takens point on the curve H at ε = 0, compare remark 3.3.

As we have shown, plenty of resonance gaps occur on H2 (the same holds for H1,
see section 4.3). It is known from the theory [34, 40] that the bifurcation diagram in
the neighbourhood of such codimension two points is rich, involving global homoclinic
bifurcations, regions of chaoticity and homoclinic intersections. Such phenomena have been
detected in [39], although using a smaller forcing period T . It is likely that they occur also in
the family PF,G, see section 5.2.
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4.2. Circle dynamics in Q1

The circle C1 is born at Hopf points on the curve H1. This is illustrated in figures 25 and 26,
produced by a similar algorithm as figure 1, with G fixed. The fixed point attractor A occurs
for small F (left part of the figures). Crossing H1 from left to right, A undergoes a supercritical
Hopf bifurcation at F = 1.013, where C1 appears.

Remark 4.3. If a Hopf bifurcation occurs at F0 and the invariant circle exists for F > F0, then
the radius of the circle is O(

√
F − F0) as F tends to F0 [34,40]. In the family PF,G, the interval

of F usually has to be taken rather small to see this asymptotics, still visible in figure 26(b).
On larger intervals, the expansion of the circle may look quite ‘explosive’ (cf figures 25 (left),
26(a), and 43 later on). The same holds for Hopf bifurcations at the border of Q2, compare
the extremes of the ‘cigars’ C2(7, G) and C2(11, G) in figures 1(e) and ( f ).

In figures 25 and 26, all attractors occurring for F > 1.1 are projections of C1(F, G0),
with G0 = 0.2. Also compare figures 1(c)–( f ) for G small. Right after the Hopf bifurcation,
for 1 � F � 2, the size and form of C1 are quite sensitive to variations of G, also see figure 26.

Figure 25. Left: projections on the y-axis of P-attractors as a function of F for G = 0.2 fixed. F

is increased with a step of 0.02. The last 100 points of each loop are plotted. Interval M is enlarged
in figure 26. Right: rotation number (modulo 1/2, see appendix A.3) as a function of F . Each
curve corresponds to a fixed value of G: G = 0.36 for the lowest and G = 0.08 for the upmost.
Between two curves, G differs of 0.02.

Figure 26. (a) Magnification of interval M in figure 25. Between consecutive loops of iterates,
F is increased with a step of 0.004. (b) Magnification of a small interval pointed by an arrow in (a),
where F is increased with a step of 3.5 × 10−5. The last 100 points of each loop are plotted.
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For larger G, this phenomenon becomes more evident and, ultimately, inside region L1 the
circle C1 breaks (see figure 43).

All Arnol’d tongues emanating from H1 are very thin and lie more or less parallel to the
G = 0 axis. This is illustrated by a plot of the rotation number � as a function of F (figure 25,
right), computed on sequences of circles such as in figure 25 (left) for a few fixed values
of G. The lowest lines G = 0.36, 0.34, and 0.32 intersect the large period-one tongue A1

in figure 2(b). There � is zero and this also influences the other curves in figure 25 (right).
The small peak in � for G = 0.36 and F close to 6 is due to a quasi-periodic doubling of
C2, followed by an undoubling. However, far from this peak and away from A1 the rotation
number changes quite slowly with F .

4.3. Disappearance of the Hopf-saddle-node point HSN

For ε = 0.01, the curves SN 0 and SN sub
0 in fact form one curve, split by the point HSN

(figure 15). On SN sub
0 a fixed point repellor R and a saddle B1 of type (1, 2) are generated.

Crossing Hsub
1 from left to right, the fixed point repellor R turns into a saddle B2 of type (2, 1),

while a circle repellor C1 is born (also see figures 36 and 35 later on).
For ε = 0.5, SN sub

0 and SN 0 do not meet and the point HSN has disappeared (figure 18).
Most of the changes occur inside interval I (this is where HSN occurs at ε = 0.01). The
Hopf curves H1 and Hsub

1 are broken to small fragments by many strong resonance points.
Three 1 : 2 resonance points and one Bogdanov–Takens on H1 are plotted in figure 27(a).

Another Bogdanov–Takens point can be seen in figure 27(b). At these Bogdanov–Takens
points, SN sub

0 is tangent to H1. For larger F , the resonance gaps increase even more in size
and only minuscule segments of H1 survive inside I.

Remark 4.4. A Hopf curve in general can be continued across strong resonance gaps. Indeed,
curves of fixed points emanate from such points, on which two eigenvalues µ1 and µ2 of DP

are real, with µ1µ2 = 1. This is not a bifurcation condition, see [40]. For reference, such
curves are plotted by dots in figures 27 and 28.

We also want to stress that the curve Hsub
1 is completely broken by strong resonances

inside interval I. In figure 28, Hsub
1 is interrupted by two 1 : 2 resonance points and three

Bogdanov–Takens points, two of which are shown in figure 28(b), the other is not marked.
The curve SN 0 meets five cusps (two are shown in figure 28(b), one is not marked) and is
tangent to Hsub

1 at the Bogdanov–Takens points.

Figure 27. (a) Projection on (F, z) of portions of H1 (——) and SN sub
0 (- - - -), enlargement of

box A in figure 18. (b) Magnification of box M in (a). Bogdanov–Takens points are marked by
small boxes, 1 : 2 resonance points by triangles and cusps by circles.
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Figure 28. (a) Projection on (F, z̃) of portions of Hsub
1 (——) and SN 0 (- - - -), enlargement of

box B in figure 18. The graph has been affinely deformed by plotting z̃(F, z) = (z−1.46×(F−2.7))

on the vertical axis. (b) Magnification of box M in (a). Symbols mean the same as in
figure 27.

Since HSN persists at ε = 0.01 (section 3.2.1), it must have disappeared through a higher-
codimension bifurcation at some intermediate ε before reaching ε = 0.5, see section 5.1.3.

4.4. New families of fixed points in the chaotic range U′

It can be guessed from figures 2(b) and 5 (right) that new families of fixed point attractors are
created below curve SN 1 in region U′. In this section we provide an explanation of how these
families are connected to the fixed point attractor occurring in region F.

The curves SN 0 and SN 1 of saddle-node bifurcations meet tangentially at C, forming a
tongue-shaped region (see figure 5 (left)). Close to C, the dynamics of P for ε = 0.5 is quite
similar to that of the autonomous case ε = 0. A fixed point attractor and a saddle are generated
on both curves when (F, G) enter the tongue. This is illustrated in figure 29, where a curve K

of fixed points is plotted. For G large, the fixed point attractor A1 is detected by iteration and
continued for G decreasing. Arrows indicate the sense in which the curve is described. As
G decreases, K becomes almost vertical (see figure 29(a), above box M). A magnification of
box M (see figure 29(b)) shows that K meets a saddle-node point T1, belonging to SN 1, where
A1 turns into a saddle B1 of type (2, 1). The branch of saddles makes an excursion at the right
and meets a saddle-node point T0, belonging to SN 0. Here, B1 collides with the attractor A2

and the branch of A2 extends down to G = 0. Notice that the latter saddle-node bifurcation
clarifies the transition from figure 1(a) to figure 1(b). To visualize this, the points found in
figure 1(b) are plotted together with the continuation curve in figure 29(a). In figure 1(b), G is
increased by 0.01 at each step. When G is increased across T0, the attractor A2 disappears at
T0, and the P-iterates are attracted to A1. So A1 and A2 coexist in the G-interval between T0

and T1. Consequently, a part of the tongue with tip at C is a region of bistability. For (F, G)

at the left of curve H1, two fixed point attractors A1 and A2 coexist with the saddle B2. In
fact, all of them belong to a unique surface of fixed points, partitioned by the saddle-node
curves SN 0 and SN 1. Outside the tongue or at the right of H1, only one fixed point attractor
possibly occurs and will be denoted by A. For example, A is detected for low values of F , see
figure 1(a). At the right of H1, the fixed point A may coexist with the circle attractor C1, but
also with a SA; see section 4.6.

For larger values of F the bifurcation diagram close to SN 1 is more complicated than in
the autonomous case. Many more fixed points appear here as F is increased. This is illustrated
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Figure 29. (a) Projection on (G, y) of curve of P-fixed points, joining the attractors A1 and A2,
for F = 0.7. The curve is computed by numerical continuation. Crosses mark the fixed points
found in figure 1(b). (b) Magnification of box marked by M in (a).

Figure 30. (a) Projection on (G, y) of a curve of fixed points of P obtained by continuation with
respect to G, for F = 0.8. (b) Same as (a) for F = 0.9.

in figure 30, similar to figure 29(b), but with F = 0.8. The point T1 again belongs to SN 1.
Two ‘new’ saddle-node bifurcation points T a

2 and T b
2 are detected close to T1. Denoting by

Ga and Gb the values of G at which these two points occur, four fixed points coexist21 in the
interval (Ga, Gb). For F = 0.9, four new saddle-node bifurcations occur, denoted by T a

2 , T b
2 ,

T a
3 , and T b

3 (figure 30(b)). For G in a suitably small interval, P has up to six coexisting fixed
points. The new bifurcations belong to curves emanating from a sequence of cusps, which
possibly form a cascade, compare [16]. In figure 31, we plotted the cusp C and the curves SN 0

and SN 1, together with eight curves SN a
k and SN b

k , k = 2, . . . , 5, of saddle-node bifurcations
of fixed points. The points T a

k and T b
k belong to SN a

k and SN b
k , which in turn emanate from

a cusp Ck . The projection on the (F, y) plane has been chosen to better distinguish the curves
SN k . Indeed, in the (F, G) plane they all lie in a very narrow strip above the curve SN 1.

We observe that a Shil’nikov tangency bifurcation might be related to the occurrence of
the cusps and the coexistence of the several SN lines. A trace of this can be seen in the spiral-
like form of the limit cycles of 
F,G,0.5 (corresponding to periodic points of P). For the limit
cycle in figure 32(a), the winding number (see section 4.1) is four (the fourth winding is quite
narrow), while it is zero for the limit cycle in figure 32(b). At each curve SN k+1,a or SN k+1,b,

21 In fact, the vertical line G = 0.469 685 intersects the curve in figure 30(a) at four points.
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Figure 31. (a) Projection on (F, y) of curves of saddle-node bifurcation points. Four cusps are
marked by Ck , k = 2, . . . , 5, while C is the same as in figure 3. (b) Enlargement of the previous
picture around the first three cusps Ck .

Figure 32. (a) Projection on (y, z) of a limit cycle of the flow 
F,G,0.5 of system (2), for
(F, G) � (1.2, 0.64). The corresponding fixed point belongs to curve SN 5. (b) Same as (a),
but the fixed point belongs to SN 1.

a spiral limit cycle is created possessing one more revolution than on SN k,a or SN k,b, thus
with winding number increased by one.

ForF larger, inside regionsU′ andUone finds orbits with an ‘inner’ and an ‘outer’ spiralling
(figure 11(a) in section 1.3), or displaying even more complicated patterns (figure 11(b)).
Furthermore, new families of fixed point attractors appear in U′ and U. We illustrate this in
figure 33(a), with a plot of a curve K of fixed points in U′. For better visualization, two parts
of K are plotted with different linestyles. A magnification of a horizontal layer marked by L
is given in figure 33(c). The arrows indicate the direction we are following in the description.
The curve K is obtained as figure 29, by taking A1 and doing continuation for G decreasing
(arrow 1 in figures 33(a) and (c)). The curve begins to oscillate inside a small G-interval M1,
magnified in figure 33(b). Each turning point is a saddle-node bifurcation (this holds for all
pictures). At first the oscillations occur in a very narrow G-interval and can be seen only with
a further magnification (box B in figures 33(b), where six SN bifurcations occur). Then, as
y decreases (arrow 2 in figures 33(a)–(c)), the oscillations tend to become wider in G and
flatter in y, accumulating at the lowest branch of K . After 15 SN bifurcations, K makes a long
excursion towards a saddle-node point22 occurring for larger G, and then turns back (arrow 3
in figures 33(b) and (c)).

22 For a clear visualization we exclude the latter point from figures 33(a)–(d), just focusing on a small interval in G.
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Figure 33. (a) A curve K of fixed points, obtained by continuation (see text). (c) Magnification
of a horizontal layer L of (a). (b), (d) Magnifications of portions of K for G in the intervals M1
and M2, respectively. For better visualization, only one part of K is plotted in each. A nonlinear
transformation has been applied to distinguish the oscillations of K , which are not visible in (a)
nor in (c).

On the branch which is coming back (dashed curve under arrow 4 in figures 33(c) and (d))
the fixed points are saddles. Furthermore, this branch does not reach G = 0, but meets another
turning point (in box M2 magnified in figure 33(d)) and begins to oscillate again. This time,
after the first turning point, K goes upwards (arrow 5 in figures 33(a), (c), and (d)). After
eleven SN bifurcations (the last is marked by a dashed arrow in box D, figure 33(d)), the fixed
points on K become attracting. These attractors occur in a small G interval, labelled by N1

in figure 33(a). This interval is roughly bounded by the two ‘vertical barriers’ close to arrows
5 and 6. As G decreases (arrows 6), the curve K again meets several SN bifurcations. After
that, a branch of saddles again makes an excursion to a saddle-node point occurring for larger
G (arrow 7 in figure 33(c)).

The whole process repeats itself for G smaller. By further continuation of K , we have
found eight new branches Nk of attracting fixed points (figure 34(a)). Each of the new branches
is bounded by two ‘vertical barriers’, where several saddle-node bifurcations occur. On each
‘vertical barrier’ the continuation curve oscillates as in figures 33(b) or (d). Therefore, for
each G value in figure 34(b), many fixed points coexist, most of them being saddles. The
corresponding T -periodic limit cycles of 
F,G,0.5 are of spiral type.

It is natural to suspect that Shil’nikov tangency bifurcations may take place here. In fact,
narrow Hénon-like SA are found nearby in U′, see section 4.6. In the autonomous system
ε = 0 one curve of Shil’nikov bifurcations is tangent to the curve SN 1 at several codimension
two points. The organizing centre for the phenomena described in this section could be one of
such codimension two bifurcations of fixed points of PF,G.
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Figure 34. (a) A larger portion K (see text). (b) Magnification of a thin horizontal layer labelled
by L in (a), showing coexistence of a lot of different branches of saddle fixed points.

4.5. Disappearance of quasi-periodic Hopf bifurcations

For ε = 0 (figure 3), the repelling circle C1 loses stability at quasi-periodic Hopf bifurcations
belonging to the curve QHsub (section 3.2.2).

For ε = 0.5, numerical experiments reveal that C1 persists both for G small and for G

large and is attracting in the former and repelling in the latter case. We recall that the attractor
C1 is born at the Hopf curve H1, while the repellor C1 at the subcritical Hopf curve Hsub

1
(sections 4.2 and 4.3). Thus at ε = 0.5 there appear gaps in the parameter plane where C1

does not persist, being replaced by strange attractors or repellors, or by nothing at all (in the
latter case, by iteration only the fixed point A is detected). These gaps are roughly located
around the position where the frayed curve QHsub (section 3.2.2) is expected to intersect the
current line F = const inside Mε . We illustrate this by means of iteration to an attractor or
repellor for F = 5 fixed, in figure 35. The left part G < 1.5 is just a different projection of
figure 1(d). The attracting fixed point A, however, is represented also for larger G. In the right
upper part (G > 2 and z > −1), P-repellors are plotted. The algorithm is the same as usual,
but this time G is decreased and P−1 is iterated, to detect repellors. This way we perform a
rough continuation scheme, for more accurate methods see appendix A.1.

To begin, the fixed point repellor R is found at G = 6. As G decreases, R undergoes a
Hopf bifurcation at G � 5.71, at a point belonging to curve Hsub

1 in figure 3. The circle repellor
C1 persists down to G � 2.13 (marked by an arrow in figure 35), where it undergoes one quasi-
periodic period doubling. A circle repellor 2C1 is created, persisting down to G � 2.01. At
G = 2 one finds a strange repellor, but no repelling invariant set is found for smaller G.

At the other side of figure 35, the circle attractor C1 is found at G = 0. Increasing G, the
circle persists up to G � 0.65 (marked by an arrow). SAs are detected for 0.66 � G � 1.3,
now and then replaced by windows of periodicity. For G� 1.3, the fixed point A is the unique
attractor. No invariant circle (either attracting or repelling) is detected for G ∈ (0.66, 2).
However, an invariant circle of saddle type might persist in this gap (at least for most of the G

values), thereby providing the ‘link’ between circle attractor and repellor.
The size of these gaps is not as large for other values of F . For F = 4, the circle C1 seems

to exist for all values of G between 0 and 4.51, thus forming a one parameter family C1(F0, G)

with F0 = 4. This is illustrated in figure 36 left, where we plotted attractors and repellors
of P. The invariant set projected in the cigar-shaped region is the circle C1. For G < 1.615
(marked by an arrow), C1 is attracting and has been detected as for figure 1. For G > 1.615,
C1 is repelling and has been obtained as for figure 35, using the inverse of P and letting G
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Figure 35. Projection on (G, z) of sequences of repellors and attractors of P for F = 5 and
ε = 0.5. See text for explanation. The attractor H2 is plotted in figure 51.

Figure 36. Left: projection on (G, x) of sequences of repellors and attractors for F = 4 and
ε = 0.5. The picture has been obtained as figure 35. Right: rotation number modulo 1/2 on C1,
along the family plotted in the left picture.

decrease. Although a quasi-periodic Hopf bifurcation might occur at G > 1.615 (where C1

changes stability), no invariant repelling torus could be detected. For all F -values in figure 36
(left), the rotation number (modulo 1/2) of C1 is plotted on the right. It repeatedly takes on
all values between zero and one, the number of complete oscillations tells how many times.
This means that the Arnol’d tongues are crossed transversally, agreeing with the orientation as
deduced from figure 25 (right).

4.6. Coexistence of attractors and saddles in U′

The projection in figure 36 (left) has been chosen to illustrate coexistence of the attractors C1

and A in the G-interval (1.17, 1.615). Close to G = 1.17 (box indicated by O), the coordinates
of A are sensitive to changes in G. This is illustrated by a magnification of box O (figure 37(a))
obtained as follows. Parameter values are chosen on a short line vertically intersecting region
U′. In particular, F is fixed at 4 and G varies on a grid with spacing 2×10−5. The map PF,G is
iterated starting from the point (x, y, z) = (−0.24 661 261 2, 1.006 751 225, −0.762 249 262).
If there is convergence to a periodic point within 100 iterations, the (G, y) coordinates of the
final point are plotted. We see relatively large G-intervals with an attracting fixed point, where
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Figure 37. (a) Periodic points of P for F = 4 and G on a grid with spacing 2.e−5. For a few,
sparse G-values, no periodic point is detected (see text). (b) Projection on (x, y) of a period T

saddle limit cycle of 
F,G,ε , corresponding to a saddle fixed point of P coexisting with the SA in
figure 38(a) at G = 1.274 585.

Figure 38. (a) Projection on (y, z) of the circle attractor C1 and of a Hénon-like attractor
H3, coexisting at (F, G) = (4, 1.274 585). Initial conditions for C1 are (x, y, z) =
(1.14, −0.28, 1.4). (b) Projection on (x, z) of a chaotic transient of 69 000 P-iterates at
(F, G) = (4, 1.302 38), followed by convergence to the circle attractor C1. Initial point
(x, y, z) = (−0.367 134 395 447 287, 0.569 918 317 744 214, −0.883 182 668 387 643).

the evolution of its y-coordinate is rather regular. At the extremes of such intervals, regions
occur where the y-coordinate evolves wildly. The limit cycles of 
F,G,ε corresponding to
these periodic points are of spiral type (section 4.4).

In fact, the distribution of the fixed point attractors figure 37(a) is similar to figure 34(a).
All branches of attracting fixed points are connected by branches of saddle fixed points. The
limit cycles of 
F,G,ε corresponding to these saddles are also of spiral type (figure 37(b)).
Several branches of saddle fixed points coexist in a G-interval, compare figure 34(b). For
some parameter values, no periodic attractor occurs. In this case, the P iterates converge
either to the circle C1, or to some narrow Hénon-like attractor coexisting with C1, like H3

in figure 38(a). This explains the sparse white spots in U′, compare figure 2(b) and figure 5
(right). Notice that the same type of Hénon-like attractor and the same structures of fixed
point attractors/saddles occur in region U (section 4.10). In fact, the only difference is that
no Shil’nikov-like attractors seem to occur in U′. Sometimes, long chaotic transients are
often observed (figure 38(b)), having the shape of Shil’nikov-like attractors. However they
usually converge to the circle C1 or to a periodic or to a narrow Hénon-like attractor. So, the
disappearance of the invariant circle C1 seems to be a necessary condition for the occurrence
of Shil’nikov-like attractors.
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Figure 39. (a) Projection on (y, z) of the circle attractor C1, coexisting with the fixed point A at
(F, G) = (3, 1.4905). Initial conditions are (x, y, z) = (1.3, 0.35, 1) for C1 and (1, 2, 3) for A.
(b) Same as (a), with the SA L2 at G = 1.494.

Above region U′, the fixed point A may coexist with C1 or with a SA originating from
the breakdown of C1. In both the above regions, the fixed point A may coexist with a SA
as well. This is the case for the attractor L2 in figure 39(b), which is a folded circle (see
section 4.8), created in the following way. The circle C1 is locked to a fixed point in the
G-interval 1.462 � G � 1.508. The fixed point undergoes a Hopf bifurcation as G decreases
through G � 1.4975. At this point, C1 is broken and a new attracting circle C̃ appears. The
latter circle enters an Arnol’d tongue of high period and breaks down inside it because of a
homoclinic tangency and L2 is born.

This and other scenarios for the breakdown of a circle are described in the next section.

4.7. Mathematical intermezzo: breakdown of invariant circles and the creation of strange
attractors

A large fraction of the strange attractors of PF,G at ε = 0.5 in regions L2 and L1 originates
from the breakdown of an attracting invariant circle (see figures 6, 7, and 39(b)). We devote this
section to a summary of the known phenomenology for the destruction of a circle. A detailed
description can be found in, for example, [2, 16, 47].

Consider a two-parameter family of diffeomorphisms DF,G of Rn, having a curve H of
Hopf bifurcations of fixed points. In figure 40 we sketch the ‘generic’ semi-global structure of
the parameter space close to an Arnol’d tongue. Two curves SN of saddle-node bifurcations
emerge from a resonant point R on H and form the boundary of an Arnol’d tongue Aq of
period q. Outside Aq , and for (F, G) close to H, the map DF,G has a quasi-periodic attracting
circle. We will describe the routes occurring along the dashed paths starting at point P, inside
Aq . There, the circle C is locked to the periodic attractor P. This means that C is formed by
the union of the unstable manifolds of the saddle periodic point S born with P at the curve
SN (for regularity properties of such resonant circle (see, e.g. [16]). Moving along path A, at
curve D the attractor P loses stability through a codimension one bifurcation. This might be
a period doubling, but also a Hopf bifurcation (cf figure 39). No strange attractors are created
at this moment. This only occurs when crossing the critical curve CR1, which, for example,
might be the last of a cascade of period doublings of P.

Along path B, at the curve T a tangency of the stable and unstable manifold of S occurs.
The circle is destroyed, but no SA appears, since the point P is always stable between curves
SN and D. SAs appear on path B1, when coming out of the tongue. Here, intermittency
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of type I is usually observed close to SN (this is what happens in figure 6). The ‘curve’
CR2 corresponds to the creation of a non-smooth circle from C and has a complicated fractal
structure [1,16]. Along path C1, there is a sudden transition between a periodic attractor and a
non-smooth circle SA. Path C corresponds to the bifurcation from a locked to a quasi-periodic
circle. Notice that all kinds of ‘composite’ routes can be observed. For example, there can
be a finite number of period doublings, followed by a homoclinic tangency (path A1; see,
e.g. [16, 67]).

Remark 4.5. Our description only covers the main details in the most simple case. For
example, along path B, the circle is usually destroyed before the homoclinic tangency on curve
T . Indeed, the latter may occur after a cubic and a quadratic tangency of the unstable manifold
of the saddle periodic point with the strong stable foliation. For more details, see [16, 47].

We now list some other routes to chaos. In the Dı́az–Rocha–Viana scenario [26], the
unstable manifold of a saddle-node periodic point has a quadratic tangency with the strong
stable foliation. Here, parameter values lie at the border of an Arnol’d tongue. Just outside
the tongue, Hénon-like SAs occur, winding around the whole annulus containing the unstable
manifold of the saddle-node. Such attractors are called ‘large’. Large attractors were also
studied in [8], in connection with a Shil’nikov–Hopf bifurcation.

Finally, other dynamical objects could interact with the circle C, for example through
heteroclinic tangencies. This is the typical way in which the size of a strange attractor suddenly
grows [56].

We have mainly distinguished four regions inside M0.5 where SAs occur. In L1 and
L2, the appearance of SA is typically due to homoclinic tangencies inside an Arnol’d tongue
(routes A1 and B1 in figure 40) or period doubling (route A). Loss of smoothness (route
C1) is more difficult to observe, given the ubiquitous occurrence of resonances of high order.
In L2, interaction with a quasi-periodic period doubling bifurcations leads to attractors of
dimension higher than two. A different scenario leads to birth of SA in U and U′, probably
due to a Shil’nikov tangency bifurcation. For a classification of the SAs of PF,G, see
section 4.11.

Figure 40. Dashed paths labelled by A, A1, B, B1, C1 indicate several routes to the breakdown of
an invariant circle of DF,G, born from a fixed point at a curve H of Hopf bifurcations (see text for
the notation). Figure taken from [1].
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Figure 41. (a) Projection on the y-axis of sequences of P-attractors as a function of G, for F = 1.25
fixed. The last 100 points of each iteration loop are plotted, the step in G is 10−4. See text for
explanation. (b) Maximal Lyapunov exponent on the attractors in (a).

4.8. The chaotic range L1

We consider the region above the tongue A1 of period one in figure 5. There the parameter
plane is crossed by several, relatively large Arnol’d tongues of higher periods. The circle C1

often breaks and SAs appear similar to L1 (figure 6(B)), with Lyapunov dimension slightly
larger than one. Two views of this chaotic range are given in figures 41 and 43. The intervals
where the maximal Lyapunov exponent λ1 drops to negative values are Arnol’d tongues. In
figure 41(b), a period k attractor occurs on intervals pointed by an arrow with label k. For
small G (left of the picture), C1 appears to persist, since λ1 is approximately zero outside
the tongues. A large Hénon-like attractor occurs at G = 0.408 (label L in figure 41(b)), a
folded circle like L1 (figure 6(B)). Periodic points are detected for most parameter values near
G = 0.408, with period ranging from 28 up to a few hundreds. For G larger, λ1 increases and
SAs are found more frequently. An arrow in figure 41(b) indicates the G-value at which L1

occurs, just outside an Arnol’d tongue A5 of period five. A saddle-node bifurcation at the edge
of A5 destroys L1, locking it to a period-five attractor. Notice that a period doubling occurs
at G = 0.4116, followed by a period halving at G = 0.4128. The two bifurcations, where
λ1 = 0, bound a period 10 tongue A10 inside A5 (figure 41(a)).

Inside the Arnol’d tongues, period doublings also may occur in entire cascades. The four-
piece strange attractor H1 in figure 42(a) is created by this mechanism, which corresponds to
route A in figure 40. At G = 0.4175 the map P has a period-four attractor inside the tongue
A4 (figures 41(a) and (b)). Then, at G = 0.4177 and G = 0.4179 period 8 respectively 16
points occur, followed by a whole period-doubling cascade, and H1 appears. Notice that each
of its four components is obviously Hénon-like (component 1 is magnified in figure 42(b)).
Component k is mapped by P to k + 1 for k = 1, 2, 3 and 4 is mapped to 1.

Another four-piece Hénon-like attractor occurs at G = 0.4182, but folded circles like
L1 reappear for larger G, from the fusion of the various pieces. The fusion of the parts of a
multi-piece attractor is usually due to heteroclinic tangencies, see [56].

So far, the Lyapunov dimension DL of the attractors is still close to one. However, DL can
grow above two for parameter values further inside L1. In figure 43(a) sequences of attractors
are plotted for G = 0.5 fixed and F increasing from 1, where the fixed point A is detected.
Notice that the maximal Lyapunov exponent λ1 (figure 43(b)) increases linearly, until a Hopf
bifurcation23 H occurs at F � 1.08 and the circle attractor C1 is created. Although C1 is not

23 Belonging to the curve H1 in figure 5 (left), section 1.3.
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Figure 42. (A) Projection on (x, z) of Hénon-like SA H1 of P for (F, G) = (1.25, 0.4181).
(B) Magnification of one component.

Figure 43. (a) Projection on the y-axis of sequences of P-attractors as a function of F for G = 0.5
fixed. The step in F is 0.004 and 2 × 105 iterates of DP were computed for each F . Two Arnol’d
tongues A1/2 and B1/2 of rotation number 1/2 are pointed by an arrow. (b) Maximal Lyapunov
exponent on the attractors in (a). (c) Lyapunov dimension of the attractors in (a). (d) The three
Lyapunov exponents on the attractors in (a).

visible in figure 43(a) (because of its small size, compare remark 4.3), its presence is revealed
by the Lyapunov dimension (figure 43(c)), which jumps to one at H. An Arnol’d tongue
of rotation number 1/2 is labelled by A1/2. Then C1 breaks and SAs occur in the interval
1.2 � F � 1.7. Close to the extremes of the interval, the Lyapunov dimension is not much
larger than one and the corresponding SAs are folded circles. In the central part, the structure
of the attractors is more complicated, displaying interaction with other dynamical objects.
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Figure 44. (a) Projection on (x, z) of a P-attractor, which we name X1, occurring in L1 at
(F, G) = (1.5, 0.5). (b) Power spectrum of X1.

Intermittency phenomena disappear from the power spectra and the Lyapunov dimension is
larger. An attractor (X1) occurring in this parameter range is plotted in figure 44. Some
one-dimensional structure is still preserved, in the form of several invariant folded curves
crossing X1. However, the power spectrum indicates uncorrelation of the iterates (remark A.1)
and the Lyapunov dimension is ∼1.6. At the other extreme of the chaotic interval, a tongue
B1/2 with rotation number 1/2 occurs, and the circle C1 reappears for F � 1.7.

It is well known [56] that the evolution of SAs is a process of birth and death (sometimes
called ‘crisis’ [33]). This is clearly seen in figures 41 and 43. SAs are first created by
homoclinic tangencies, then disappear because of the birth of a hyperbolic periodic attractor
through a saddle-node bifurcation. They may reappear in multi-piece form due to doubling
cascades, then the various pieces melt by heteroclinic tangencies and, eventually, the SA might
grow in size due to further heteroclinic tangencies. A perhaps less known scenario is described
in the next section.

4.9. The chaotic range L2

This chaotic region lies in the half-plane F � 5 inside M0.5. Most strange attractors in L2

originate at the breakdown of a doubled circle 2C1, the latter created through one quasi-periodic
period doubling of C1. For this reason, we begin by describing this bifurcation.

4.9.1. Quasi-periodic period doubling. The quasi-periodic period doubling of an invariant
curve can occur in two different ways [20] and both have been found in the family PF,G. The
first is illustrated in figure 45, for F = 11 fixed. At G = 0.4972 the circle attractor C1 is
detected. Here C1 is still normally hyperbolic, with quasi-periodic dynamics, but it is close
to loss of normal hyperbolicity. Indeed, the maximal Lyapunov exponent λ1 is zero, while λ2

is negative and close to zero (table 4). The peak at the fundamental frequency f1 = 0.377 of
C1 is labelled by 2 in figure 45(a). Peaks marked by 2k occur at harmonics fk = kf1 of the
fundamental frequency24. When λ2 goes through zero, C1 undergoes a quasi-periodic period-
doubling. A circle attractor 2C1 is created, of roughly double length and half the rotation
number of C1 (figure 45(B)). In this bifurcation, only λ2 crosses zero: the lowest Lyapunov
exponent λ3 of both C1 and 2C1 is less than −14 (table 4). After the doubling, C1 still coexists
with 2C1, but it is unstable. The power spectrum of 2C1 inherits all harmonics of a frequency

24 In particular, fk is obtained modulo 1 for k = 6, 10, 12, 16, 18, 20, 22, whereas for the remaining harmonics one
gets fkmir 1

2 .
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Figure 45. (A), (B) Projections on (x, z) of circle attractors of P11,G,0.5 for G = 0.4872 and
G = 0.4874, respectively. (a), (b) Power spectra of the attractors.

Table 4. Lyapunov exponents of the circle attractors in figures 45(A) and (B).

DL λ1 λ2 λ3 e1 e2 e3

A 1 −5 · e−6 −0.0066 −14.8 6 · e−7 2 · e−6 1 · e−6
B 1 4 · e−5 −0.08 −14.7 5 · e−6 5 · e−6 1 · e−6

close to f1. Furthermore, new peaks appear at uneven multiples gk = kg1 of the fundamental
frequency g1 ≈ f1/2 of 2C1 (each harmonic gk is labelled by k in figure 45(b)). Again,
because of the mirroring one has g1 = 1/2(f1mir 1

2 ) = 0.3115. It is also possible to identify
small peaks corresponding to g1, g2 and g3 in figure 45(a). This is due to intermittency of
type III.

For the family PF,G,0.5, the circle C1 often undergoes similar doublings in the interval
5 � F < 12. Each of these bifurcation points belongs to a frayed curve as described in
section 3.2.2. For some F values, 2C1 may undergo a doubling as well, but a different type of
bifurcation occurs. This is illustrated in figure 46, again for F = 11 fixed. At G = 0.4958 the
circle 2C1 is detected (figure 46(A)). All peaks in the power spectrum occur on harmonics of
the fundamental frequency g1 = 0.325 79. The first five harmonics gk = kg1 are labelled by
k in figure 46(a). Between G = 0.4958 and 0.4959, 2C1 turns into a saddle invariant curve
and two curves are created, each of them attracting and invariant under P2. The union of these
two curves is the P-attractor 4C1, plotted in figure 46(B) (also see figure 7 in section 1.3).
The dynamics of P on 4C1 is the skew product of an invariant curve and a period-two point.
In other words, the P-iterates jump from one curve to the other and back, so we call 4C1 a
period-two curve. Therefore, the dynamics has two fundamental frequencies, one of which is
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Figure 46. (A), (B) Projections on (x, z) of attractors of P11,G,0.5 for G = 0.4958 and G = 0.4959,
respectively. (a), (b) Power spectra of the attractors.

0.5, the other is close to the frequency of 2C1 and is again called g1. In fact, all harmonics
of g1 are found in the power spectrum of 4C1, while the ‘new’ harmonics hk correspond to
0.5 − gk (figure 46(b)).

For other values of F < 12, at most two consecutive doublings were observed, just as
above, so no entire cascade (see next section).

We note that the centre manifold of the period doubling is a two-dimensional Möbius
strip [19, 52]. As a result, the breakdown of a doubled circle is almost invariably followed
by the creation of a SA with a two-dimensional Möbius-like structure. Examples of this are
presented in section 4.9.3.

4.9.2. Arnol’d tongues and breakdown of circles in L2. The structure of region L2 is in fact
rather similar to that of L1. In both regions, fixed and periodic points are organized in intricate
structures of Arnol’d tongues. This is illustrated in figure 47 (left) (compare with figure 5
(right)), where we plot a magnification of figure 2(b), obtained by taking a smaller window
and a finer spacing of the grid. A few edges of tongues (saddle-node bifurcation curves) of low
period are plotted in figure 47 (right). Several cusps are found on most saddle-node curves.
A Hopf bifurcation curve H was detected, interrupted by three Bogdanov–Takens and three
1 : 2 strong resonance points. At the Bogdanov–Takens points, a saddle-node curve S is tangent
to H, whereas a period doubling curve D is tangent to H at the 1 : 2 points. Furthermore, D and
S are tangent to each other at the codimension-two saddle-node-period-doubling point SPD.
The occurrence of the Arnol’d tongues is quite similar to that found in the fattened Arnol’d
family [16]. One sees that the edges of the bifurcation curves accumulate on each other as G

increases. This is probably due to the same mechanism as described in [16], which may possibly
be a route for the creation of infinitely many sinks (the Newhouse phenomenon [45, 49]).
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Figure 47. Left: Magnification of figure 2(b), obtained with a grid of spacing 2 × 10−3 in F and
5 × 10−4 in G. A maximum of 150 iterates of P were executed, starting from (x, y, z) = (1, 2, 3).
Right: Arnol’d tongues of period k are labelled by Ak for k = 1, 2, 3, 5. The other solid curves
are saddle-node bifurcations of fixed points. Dashed curves are period doublings of a fixed point.
A Hopf curve H is plotted with a thick solid line. On H, Bogdanov–Takens and 1 : 2 strong
resonance points are marked by small boxes respectively triangles.

Figure 48. (a) Lyapunov dimension of the P attractors for parameter values on the vertical line
F = 7 in figure 47 (right). (b) Same as (a), for the horizontal line G = 0.35. The step is 0.01 in
both plots.

The resonant circle inside the tongues in figure 47 is 2C1. In fact C1 has undergone a
doubling at lower values of G and possibly persists as saddle circle. The breakdown of 2C1

happens according to what discussed in section 4.7. Therefore, the ‘curve’ of breakdown of
2C1 (which we sketched by curve B in figure 4) has a complicated fine structure (compare [16]).
This is illustrated by a plot of the Lyapunov exponents λ1 and λ2 (figure 48) along the two
dashed lines in figure 47 (right).

For F = 7 (figure 48(a)), the circle 2C1 persists beyond the tongue A1 in figure 47 (right).
The first SA found increasing G is labelled by L and is a folded circle. However, for G = 0.35
(figure 48(b)) three intervals appear where the Lyapunov dimension is larger than one, while
2C1 still exists outside them. This implies that curve B is in reality much more complicated
than what is sketched in figure 4.

4.9.3. Quasi-periodic Hénon-like strange attractors. In region L2, at most two consecutive
quasi-periodic period doublings occur as G increases, depending on the value of F . A whole
cascade has not been observed, because the attractors 2C1 or 4C1 are eventually destroyed by
a homoclinic tangency inside an Arnol’d tongue (as in section 4.7 ).
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Figure 49. (a) Lyapunov dimension of P-attractors as a function of G for F = 11 fixed. The step
in G is 3 × 10−6. For these estimates 2 × 105 iterates of DP were computed. An arrow points at
the G value where the attractor X2 occurs (figure 50(d)). (b) Lyapunov exponents λ1 and λ2 on the
attractors in (a).

Figure 50. (a) Projection on (x, z) of the SA L3 of P at (F, G) = (11, 0.496 953 2).
(b) Magnification of box M in (a). (c) Same as (a) for the period 1098 point of P at G = 0.496951.
(d) Same as (a) for the strange P-attractor X2 at G = 0.497011.

We illustrate this route for the period-two circle attractor 4C1 (figure 7(A)) by means of a
plot of the Lyapunov dimension figure 49(a). For G close to 0.4969, the period-two circle 4C1

persists and it is quasi-periodic since DL � 1. At this moment, the saddle invariant circle 2C1

still coexists with 4C1. Moreover, 2C1 has a two-dimensional Möbius strip unstable manifold,
whose edge is 4C1. Then 4C1 enters some Arnol’d tongue, where λ1 becomes negative. In the
G-interval J = {G | 0.496 948 < G < 0.496 963} only periodic points are detected (DL = 0
in figure 49(b)). In reality, SA occur in J as well25. One of these is the ‘large’ SA L3 occurring
at G = 0.496 953 2, figure 50(a). In figure 50(b) a small piece of L3 is enlarged, illustrating

25 They are not revealed in figure 49 because of the step size in G.
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the folded circle structure. The maximal Lyapunov exponent on L3 is λ1 � 0.0025. However,
attracting periodic points of high period are prevalent in the neighbourhood, like the period
1098 point in figure 50(c).

For G larger the P-iterates begin to wander in the transversal unstable manifold of the
saddle circle 2C1. This is reflected in the Lyapunov dimension, which grows up to two. For
the attractor X2 in figure 50(d) the Lyapunov dimension is almost two, but λ2 is still negative.
This identifies it as an intermediate stage between a broken-circle and a quasi-periodic Hénon-
like attractor. For G larger λ2 approaches zero and the P-iterates spread even more in the
transversal manifold. Notice that λ2 � 0 near G = 0.4972, where the attractor Q1 occurs
(figure 7(B)). This means that quasi-periodic Hénon-like attractors seem to have a certain
degree of persistence under perturbations.

However, for (F, G) farther inside L2 more complicated types of attractors are found,
with no intermittency in the power spectra. An example is the attractor in figure 53(a).

4.10. The chaotic range U

We now turn to the attractors in the chaotic region U. No invariant circles occur here, and
periodic point attractors are prevalent. SAs appear suddenly where the periodic points lose
stability. To describe this, consider figure 12. At G = 2, the fixed point A is detected.
Parameter values lie inside the narrow black strip below region Q2 (figure 2(b)) where A is
the unique attractor. As G is decreased, A is suddenly replaced by the Shil’nikov-like SA
S1 (figure 9, left). The dynamics on S1 is quite sensitive with respect to initial conditions,
due to the size of the maximal Lyapunov exponent (table 5). Indeed, the fact that the power
spectrum of S1 (figure 9(b)) looks like white noise confirms that the iterates of P are almost
uncorrelated. However, S1 has a rather one-dimensional character, since DL(S1) � 1.05. Most
Shil’nikov-like SAs inside U have richer structure than S1 (cf figure 10(a)). This corresponds
to a larger maximal Lyapunov exponent and larger Lyapunov dimension.

Among Shil’nikov-like, also Hénon-like attractors may occur, of course. The SA H2

in figure 51(A) is found at (F, G) = (5, 1.29). A projection of H2 also can be seen as a
small segment in figure 35. A magnification of a portion of H2 suggests that H2 is a quite
narrow Hénon-like attractor. Similar attractors also exist in U′ (figure 38(a)). Shil’nikov-like
attractors like S3 (figure 51(B)) occur for nearby parameter values. The transition from H2

to S3 corresponds to a jump in the largest Lyapunov exponent, although both attractors have
dimension just slightly larger than one (see table 6). Notice that a portion of S3 (singled out by
box N) approximately agrees with H2, while the small spiral part (magnified in figure 51(B1))
looks like the Shil’nikov attractors found in [8]. A magnification of a tiny piece of the spiral
is plotted in figure 51(B2). Some parts of S3 are visited by a small fraction of the total number
of iterates. This is not a transient effect: S3 has low density at such parts. For instance, the
domain (y, z) ∈ [0.69, 1.48]× [−0.91, 1.39] contains 97.9% of the points in S3. Among them
99.8% are on x ∈ [−0.35, 0.61].

The ranges of existence of Shil’nikov–like SAs are interspersed by relatively large
windows of fixed points, where the corresponding T -periodic limit cycles of system (2) are of
spiral type (compare figure 12). However, SAs become prevalent close to the value (F0, G0)

Table 5. Lyapunov exponents of the SAs S1 (a) and S2 (b) in figures 9 and 10.

DL λ1 λ2 λ3 e1 e2 e3

a 1.05 1.72 −33.6 −128.4 4 · e−4 6 · e−4 7 · e−4
b 1.27 4.8 −18.1 −100.5 1 · e−3 6 · e−4 2 · e−3
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Figure 51. (A) Projection on (y, z) of the Hénon-like attractor H2 for (F, G) = (5, 1.29). A small
piece of H2 is magnified in the box. There, the graph has been affinely deformed by plotting (y, z̃),
with z̃ = z+3.81×(y−1.49). (B) Same as (A) for the Shil’nikov-like attractor S3 at G = 1.290 05.
The portion of S3 inside box N approximately coincides with H2. (B1) Magnification of the spiral
part of S3. (B2) Magnification of box M around the tip of the spiral part in (B1). The graph has
been affinely deformed by plotting (y, z̃), with z̃ = z − 0.965 × (y − 0.975). The width of the
vertical window in (B2) is 1.4 × 10−4.

Table 6. Lyapunov exponents of the SAs H2 (A) and S3 (B) in figure 51.

DL λ1 λ2 λ3 e1 e2 e3

A 1.046 0.58 −12.6 −77.9 1 · e−5 4 · e−4 4 · e−4
B 1.097 1.13 −11.7 −87.1 1 · e−3 2 · e−4 1 · e−3

where a Shil’nikov-like attractor occurs. To be more precise, given an open ball Bδ ∈ M0.5

of radius δ, centred at (F0, G0), denote by Sδ the set of parameter values in ∈ Bδ for which a
SA occurs. Some numerical results seem to suggest that

meas Sδ

meas Bδ

→ C as δ → 0, with C > 0, (14)

where meas denotes the Lebesgue measure in M0.5. This is illustrated in figure 52, where we
plotted the Lyapunov dimension of P-attractors against parameter values. On a larger scale
(figure 52, left), periodic points are prevalent, since they occur in open parameter sets of large
relative measure. On the other hand, in a small neighbourhood of G = 1.211 24 (where a SA
occurs), SAs are prevalent (figure 52, right).

Abundance of SAs, expressed by (14), is typical for parameters near a homoclinic tangency
(see [26, 44, 48]). The results in figure 52 (right) give further evidence that Shil’nikov-like
attractors are created by Shil’nikov tangency bifurcations of a saddle-focus fixed point, see
section 5.
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Figure 52. Left: Lyapunov dimension of P-attractors as a function of G for F = 8 fixed. The step
in G is 0.01. Right: same as left part with G-step 2 ×10−9, displaying the magnification of a small
interval around G = 1.21124.

4.11. Summary on the strange attractors of P

We now sketch a classification of the SAs found in the family PF,G,ε .
Hénon-like attractors of two types are found in both L1 and L2: folded circles and ‘small’

attractors. Both types of attractors have a local Hénon-like structure and occur close (in the
parameter space) to an invariant circle, at the boundary of L1 and L2. Folded circles, like L1

(figure 6), L2 (figure 38(b)) and L3 in figure 50(a), are also called ‘large’ [8, 16], since they
wind inside a whole annulus containing the unstable manifold of some saddle periodic point
(see section 4.7). This does not hold for ‘small’ Hénon-like attractors, like H1 in figure 42.
Deeper inside L1 and L2, strange attractors of other types are detected, like X1 (figure 44), X2

(figure 50(d)) or figure 53(a).
Some narrow Hénon-like attractors occur in both U′ (figure 38(a)) and U (figure 51(A)).

Furthermore, in U also Shil’nikov-like attractors exist, like in figures 9, 10, and 51(B).

5. Discussion and outlook

In this paper, we present an inventory of the dynamics in the driven Lorenz-84 system, giving,
whenever possible, an explanation of the changes occurring as the (F, G) vary in the plane
Mε , for ε = 0.5, and as ε is increased from zero. Several phenomena are discussed at the
level of guesses or possibilities. It was not possible, indeed, to focus on all open problems in
the course of this large-scale investigation.

In the next section we first summarize our findings for ε = 0.5 with a rough subdivision
of M0.5, sketched in figure 4(b). Our exploration of the parameter raises several questions of
both theoretical and applied nature. These are discussed in section 5.2.

5.1. Summary of achievements

The parameter plane Mε at ε = 0.5 can be divided into several regions, each with different
dynamical phenomena. Three regions inside M0.5, denoted by Q1, Q2, and F, have a rather
simple dynamics (see next section). Four regions are characterized by occurrence of strange
attractors (section 5.1.2). Then we describe results obtained for other values of ε.

5.1.1. Regular dynamics. A fixed point attractor A exists in the connected component F of
figure 4(b) containing the upper left corner. This corresponds to small F (see figures 1(a)
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Figure 53. (a)–(c): Projection on (y, z) of SAs of P for ε = 0.5 and F = 7. (d) Same projection
of an attracting period 5T limit cycle of system (2). G is fixed at: (a) 1, (b) 1.08, (c) 1.4,
(d) 1.400 000 037. The (y, z) window is [−4, 4] × [−3, 4] for all pictures. A spiral structure
is pointed to by an arrow in (c) and (d).

and (b)), large G (compare the fixed points at the right of all pictures in figure 1) and to a thin
strip between region Q2 and U, U′.

A circle attractor C2 occurs in region Q2. Sections of Q2 by a vertical line F = F0 give
one-parameter families C2 = C2(F0, G) of circles. The cigar-shaped sequences of attractors
in figures 1(e) and ( f ) are projections of such families. Region Q2 is bounded by the Hopf
curve H2; see section 4.1. Arnol’d tongues inside Q2 are very thin and the prevalent behaviour
seems to be quasi-periodicity. Although the dynamics in Q2 is rather simple, the role played
by the several strong resonance points on H2 should be studied in more detail.

Circle dynamics characterizes region Q1 as well. The circle attractor C1 occurs at G = 0
for F > 1 and persists at least up to G = 0.28 (dotted horizontal line in figure 4 (left)). In fact,
for some values of F this circle persists up to a larger value of G (see sections 4.5 and 4.9.2).
Curve B in figure 4(b) roughly indicates the G-value up to which C1 seems to persist. Some
thick dots indicate the occurrence of a quasi-periodic period doubling, where C1 loses stability
and a doubled circle attractor 2C1 appears (see section 4.9.1). It would be interesting to study
this bifurcation, to detect the role played by strong resonances and ‘bubbles’ (cf section 3.2.2).

5.1.2. Chaotic dynamics. We turn to the description of the domains in M0.5 where strange
attractors occur. We have distinguished four regions L1, L2, U′ and U (figure 4(b)). In all of
them, SAs occur in regions of seemingly positive measure, interrupted by open windows of
periodicity (Arnol’d tongues). In L2 there is prevalence of SAs, while the typical behaviour in
U is periodicity (compare figure 12).

The creation of SAs in L2 and L1 is mostly due to homoclinic tangencies of a saddle
periodic point inside an Arnol’d tongue (compare figure 50). Cascades of period doublings of
periodic attractors are also observed (see figure 41). At the border of L2 or L1, the dynamics on
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the attractors tends to follow the unstable manifold of a saddle periodic point, which for close
parameter values still forms an invariant circle (figures 6 and 50). Therefore, most attractors
have dimension close to one (figure 41). Intermittency is often observed in the power spectra.
Marked peaks persist, close to the corresponding harmonics before the breakdown of the
circle, and broad band has low power. As the parameters are shifted further inside L2 or L1,
the dimension of the SAs grows above two (figures 43 and 49) and broad band arises in the
power spectra (figure 44). In L2, quasi-periodic Hénon-like SAs may appear (section 4.9.3).
The mechanism for the birth of SA could not be so well clarified for region U. Most strange
attractors have dimension between 1.1 and 1.4, the first case usually corresponding to narrow
Hénon-like attractors. Shil’nikov like attractors (figures 9 and 10) of different type are found
(see section 4.10). The transition between L2 and U is quite sudden (figure 12). It seems
reasonable that this transition (on ‘curve’ SH, figure 4(b)) and the birth of Shil’nikov–like SAs
are due to three-dimensional homoclinic tangencies of a saddle-focus fixed point (Shil’nikov
tangency bifurcation). Indeed, a spiral structure like in figure 51(B1) appears in the SAs when
passing from L2 to U, across ‘curve’ SH. In particular, an increasing fraction of the points is
contained in the spiral part (figure 53). Furthermore, the Lyapunov dimension and the maximal
Lyapunov exponents decrease.

A high number of saddle spiral limit cycles coexists with the Shil’nikov SAs, and attracting
spiral limit cycles occur for nearby parameter values. The spiral portion of the SAs roughly
corresponds to that of the above limit cycles; see figures 53(c) and (d). Compare also
figures 9(A) and 10(A) to figures 11(A) and (B), respectively. Attractors similar to the spiral
portion were found in [8] (see figure 9), their occurrence being caused by a Shil’nikov tangency.

It is known that close (in the C1 topology) to a three-dimensional diffeomorphism having
a Shil’nikov homoclinic tangency, diffeomorphisms with strange attractors [64] or displaying
the Newhouse phenomenon occur [31, 49]. However, more detailed numerical and analytical
studies are needed both to establish a relation with the occurrence of attractors like in figures 9
and 10(A), to determine the effect on the bifurcation set of a map and to establish the relative
abundance of such attractors.

5.1.3. Overview of the plane Mε for other values of ε. To quickly get information on the
changes occurring for different values of ε, we performed other large-scale explorations of
Mε like in figure 2. The results, displayed in figure 54, suggest the following remarks. As ε

increases:
1. Arnol’d tongues inside region Q2 become wider, especially close to the strong resonance

gaps on the lower branch of H2. As ε grows these gaps become larger as well and,
eventually, ‘eat up’ the whole lower branch of H2 (compare also section 4.1). At ε = 0.9,
Q2 is also shifted to larger F , which suggests that it may completely disappear for ε � 1.
This is supported by the following data: up to ε = 0.7 the Q2 region can be seen to appear
around F = 6. For ε = 0.9, 0.93, 0.95, 0.97, 0.98, and 0.99 the first invariant curves have
been detected around F = 14, 20, 30, 58, 95, and 250, respectively.

2. Region Q1 shrinks. As ε grows, the circle C1(F0, G) is destroyed at smaller values of G.
Consequently, the chaotic range L2 increases in size.

3. The fraction of periodicity increases inside L2. In particular, the structures of Arnol’d
tongues, which occupy a minor fraction of L2 for small ε (figure 54(a)), invade most of
L2 at ε = 0.9.

4. The chaotic range U, almost invisible for ε = 0.1 grows in size.

Several dynamical phenomena of the autonomous system persist only for ε small enough.
For example, the repelling invariant torus T occurring at ε = 0.01 (section 3.2.2) seems
to have completely disappeared for ε = 0.5 (see section 4.5). One of the various ways in
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Figure 54. Same as figure 2(b). Parameter planes Mε were scanned looking for periodic points,
for the following values of ε: (a) 0.1, (b) 0.3, (c) 0.7, (d) 0.9.

which T is destroyed is illustrated in figure 55. The torus repellor T at ε = 0.01 is plotted
in figure 55(A). Since the two largest Lyapunov exponents λ1 and λ2 are approximately zero
(table 7), it seems reasonable that the two fundamental frequencies f1 and g1 of T satisfy a
Diophantine condition26. At ε = 0.066, T is locked to a period 16 invariant curve. One of the
frequencies of T is of course f1 = 16−1, since each of the 16 circles in figure 55(B) is invariant
under P16, quasi-periodic and normally hyperbolic. This is confirmed by the fact that λ1 is
zero and λ2 slightly negative. The other fundamental frequency g1 = 0.0116 is equal to j/16,
where j is the frequency under P16 of any of the 16. In figure 55(b) we indicated f1 and g1,
together with their combinations hk = g1 + kf1 with k = 1, 2, 3.

The same situation seems to persist for an interval of values of ε, but beyond ε = 0.0665
the exponent λ1 becomes slightly positive. In this case, the circles in figure 55(B) have lost
smoothness. A strange repellor U is created, see figure 55(C), with DL(U) � 2.083. Several
properties of U and of the SA Q1 (figure 7) are analogous. The fact that λ2 � 0 indicates that a
quasi-periodic component persists in the dynamics on U. The power spectrum of U has some
broad band, but several harmonics of the resonant torus still persist. In figure 55(c), f2 = 0.25,
f3 = 0.5 and g1 are identified, but the hk’s persist as well. This is also due to intermittency,
although of an unconventional type. It seems here that the dynamics is still driven by the
ghost of the quasi-periodic circles in figure 55(B). Notice that U is made up of eight strips,
each invariant under P8. The destruction of the 16 circles corresponds to the degeneration of
frequency f1 into broad band.

For ε even larger (figure 55(D)), the strips of figure 55(D) have melted into a global one-
piece repellor. Although the Lyapunov dimension and λ1 have increased further, the second
Lyapunov exponent is still zero, and a peak around h3 can still be distinguished. However, all
harmonics of f1 have merged into broad band in the power spectrum. A similar merging occurs

26 This could be numerically checked up to some order of resonance by using refined Fourier analysis, see [30].
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Figure 55. (A)–(D) Projections on the plane (x, z) of repellors of PF,G,ε for (F, G, ε) =
(1.8, 1.65, 0.01), respectively, ε = 0.066, ε = 0.0665, ε = 0.0685. (a)–(d) Power spectra of
the repellors in (A)–(D). The same initial point as for figure 17 has been used.
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Table 7. Lyapunov exponents (in the reversed time) and dimension of the repellors in figure 55.

DL λ1 λ2 λ3 e1 e2 e3

A 2 4.5 · e−5 2 · e−5 −0.47 6 · e−6 3 · e−6 4 · e−6
B 1 2 · e−5 −0.041 −0.35 2 · e−6 2 · e−5 3 · e−5
C 2.083 0.035 −2 · e−4 −0.42 1 · e−4 2 · e−6 1 · e−4
D 2.37 0.2 6.7 · e−5 −0.56 5 · e−4 1 · e−6 6 · e−4

Figure 56. Left: argument θ of the complex conjugate eigenvalues of DP on the fixed points
belonging to the curve of HSN points, in the parameter space M= {F, G, ε}. Right: local
bifurcation diagram of P close to the point HSN at ε = 0.245 (plotted at the left with a small
box), inside the plane M0.245 = {ε = 0.245}. The graph has been affinely transformed by plotting
G̃ = G − 1.36 × (F − 1.5). The vertical width is 2 × 10−4.

in the creation of the quasi-periodic attractor Q1 from the period-two curve 4C1 (figure 7).
Indeed, by the analogies between Q1 and U we call the latter a quasi-periodic Hénon-like
repellor.

Seemingly, for all (F, G) the torus repellor T is destroyed long before ε reaches 0.5. As
a consequence, the frayed boundary QHsub may possibly persist only for small values of ε.
Furthermore, the torus repellor is the boundary between the basins of two different attractors,
the circle C1 and the point A. Probably, the strange repellors born at the destruction of T

still are basin boundaries, although of fractal dimension. However, for some values of (F, G)

inside M0.5, both the circle attractor C1 and the torus have disappeared (section 4.5), and the
fixed point attractor A is the unique invariant object. This might be due to the fact that the
basin of A swallows the other.

We return to the disappearence of the HSN between ε = 0 and ε = 0.5 . It is possible to
continue the codimension two point HSN as a function of ε. In figure 56 a plot of the evolution
of the (positive) argument of an eigenvalue of modulus 1 is displayed. The same figure shows
also the Hopf and saddle-node bifurcation curves, tangent to each other at the HSN point, for
ε = 0.245 . The curves are rather close for this value of ε. Guided by these results, we see
that a codimension three bifurcation takes place between ε = 0.277 and ε = 0.5 . A better
understanding of this is object of further investigation.

5.2. Bifurcations of codimension two and higher

The disappearance of the torus repellors implies that the frayed curve of quasi-periodic
Hopf bifurcations QHsub is destroyed by some higher codimension bifurcation. Strong
resonances could take place on QHsub, similarly to what occurs for the Hopf curves H1

and H2 (section 4.3). In fact, several strong resonance points were found there at ε = 0.5
(sections 4.2 and 4.1). These points occur in couples delimiting gaps in the Hopf curves. The
first open question is to determine the bifurcation diagram close to these strong resonance
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points and the implications for the breakdown of circles and tori. Although no strange
attractors were found in the neighbourhood of the strong resonances, the theory prescribes
their occurrence, perhaps confined in exponentially small regions in the parameter plane
(cf [13, 14, 59]).

Secondly, the two endpoints of such resonance gaps merge into one degenerate strong
resonance at ε = 0 (since no gaps occur on the Hopf curves). From this degenerate point, two
curves of strong resonance points come out in the parameter space M = {F, G, ε}; bounding,
at each ε fixed, a gap on a Hopf curve contained inside parameter plane Mε . Then, how do
these curves of Bogdanov–Takens bifurcations evolve inside M?

This discussion leads naturally to take codimension three bifurcations into account. Such
phenomena can only be individuated by using three control parameters in system (2). We have
proved the occurrence of a Hopf-saddle-node bifurcation of higher codimension inside the
parameter space M = {F, G, ε}; section 4.3. This follows indeed by a continuity argument:
at ε = 0.277 there is a Hopf saddle node point (see figure 15), while at ε = 0.5 it has
disappeared. A bifurcation causing HSN to disappear could be a codimension three Hopf-
saddle-node strong resonance, where the three eigenvalues ofP areµ1 = 1, µ2 = exp(2π ip/q)

and µ2 = exp(−2π ip/q), with q = 1, . . . , 4.
All the previous questions can be dealt with from an experimental point of view, namely

by studying the driven Lorenz-84 model in deeper detail. This requires careful numerical
tools, due to the large period and to the tiny size of the domains where some phenomena occur.
Furthermore, some of the codimension two and three bifurcations found in the model, like the
codimension two and the degenerate Hopf-saddle-node, have yet to be studied even from a
theoretical viewpoint. For this it is of help to construct of suitable local model maps. This will
be object of future research.

5.3. Global bifurcations and model maps

Beyond the questions discussed in the previous section, some global bifurcations taking place
in the Lorenz-84 system have to be better understood, like the three-dimensional Shil’nikov
homoclinic tangency of a saddle focus fixed point. Evidence for the occurrence of such
bifurcations was presented in section 4.4, but the relationship with the creation of Shil’nikov-
like attractors (sections 4.10 and 5.1.2) is not yet clear. This could be investigated by
constructing appropriate model maps.

Model maps could also be used to investigate the creation of quasi-periodic Hénon-like
attractors (section 4.9.3) and repellors (section 5.1.3). In particular, one might also consider
cascades of quasi-periodic period doublings of invariant circles. Research is in progress in
these directions.

Appendix A. On the numerical methods

Appendix A.1. Integration and continuation

The numerical computation of the trajectories of system (2) is performed using a Taylor
expansion of the solutions around time t (cf [15]). We use the polynomial approximation

(x(t + h), y(t + h), z(t + h)) �
N∑

k=0

(xk(t), yk(t), zk(t))h
k,

where

xk(t) = 1

k!

dk

dtk
x(t), yk(t) = 1

k!

dk

dtk
y(t), zk(t) = 1

k!

dk

dtk
z(t). (15)
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Given an initial point (x0, y0, z0), the coefficients (15) for k � 1 are computed recursively
using the Leibnitz rule. One has, for example,

dk

dtk
y2 =

k∑
m=0

k!

m!(k − m)!
dmydk−my = k!

k∑
m=0

ymyk−m

For k � 1, substituting expressions like above in (2), one gets

xk+1 = (−axk − ∑k
m=0(ymyk−m + zmzk−m) + aFεck)

k + 1
,

yk+1 = (−yk +
∑k

j=0(xjyk−j − bxjzk−j ) + Gεsk)

k + 1
,

zk+1 = (−zk +
∑k

j=0(bxjyk−j + xjzk−j ))

k + 1
,

where ck(t) = (1/k!)dk/dtk cos(ωt) and sk(t) = (1/k!)dk/dtk sin(ωt). We usually fixed the
order of the Taylor polynomial to N = 24, since this showed good convergence in the testing.
On the other hand, a variable step size option is adopted. After computing all coefficients
(xk, yk, zk), the step size h is determined by

h = min

{(
η

aN

)1/N

,

(
η

aN−1

)1/(N−1)
}

,

where ak = max(|xk|, |yk|, |zk|) and η = 10−16. The first variational equations of system (2)
are handled in a similar way. For a specific treatment of the Taylor method, see [37].

We briefly describe the method used to compute curves of (bifurcations of) fixed points,
based on [57]. For other strategies, see [40, 54]. For many other related problems, like
continuation of cusp points or homoclinic tangencies, see [16]. Let (x0, y0, z0) be a fixed point
of P at parameter values F0, G0, ε0 and suppose F0 and ε0 are kept fixed. It is convenient to
consider G as a fourth variable. We look for zeroes of the function H, defined by

H : R4 × I → R3, H(q, G)
def= P(q) − q, q = (x, y, z), (16)

knowing that q0 = (x0, y0, z0) is a solution for G = G0. Under the condition that the derivative
Dq,GH = Dq,GP−I has maximal rank, the implicit function theorem guarantees the existence
of a curve α(s) ∈ R4 of solutions of passing through (q0, G0). A point (q̃1, G̃1) on α(s) is
predicted using interpolation and used as initial seed for a Newton corrector. The point (q1, G1)

obtained after this refinement lies on the curve q(s).
There exist procedures to do continuation of invariant circles. Some are based on the

continuation of the Fourier coefficients [22], other on a derivation of the graph transform [12]
and on fixed points of a synthesized return map using non-integer powers of a map [58].

Appendix A.2. Estimates of Lyapunov exponents

The Lyapunov exponents are estimated according to the algorithm described by Galgani
et al [7]. The first variational equations of system (2) are integrated during a period T , with
the identity matrix as initial condition. The canonical orthonormal basis is thereby mapped
onto a new set of vectors (v1

1, v1
2, v1

3). Each vector tends to align itself along the direction of
maximal expansion (or of minimal compression). Thus all v1

1, v1
2, and v1

3 tend to collapse
onto one direction. To prevent this, the Gramm–Schmidt process is applied to (v1

1, v1
2, v1

3)

after a few steps of the numerical integrator, yielding a set (ṽ1
1, ṽ1

2, ṽ1
3) of orthogonal vectors.

Define w1
j = ṽ1

j /‖v1
j‖ for j = 1, 2, 3. Then a new frame of vectors (v2

1, v2
2, v2

3) is computed
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by integrating the first variational equations taking as initial condition the orthonormal vectors
(w1

1, w1
2, w1

3) from the previous step. At iteration step k, define

ck
j =

k∏
i=1

‖ṽk
j‖ and wk

j = ṽk
j

‖ṽk
j‖

for j = 1, 2, 3.

The orthonormalization process does not change the direction of vk
1, so that wk

1 still points
to the direction of maximal stretch. Denoting by λ1, λ2, and λ3 the Lyapunov exponents, in
decreasing order, the length ck

1 of vk
1 is approximately proportional to ekλ1 . The plane spanned

by vk
1 and vk

2 is not changed by the Gramm–Schmidt process and tends to adjust to the subspace
of maximal growth of surfaces. The rate of growth of areas is proportional to ek(λ1+λ2). In
particular, since vk

1 = wk
1 and wk

2 are orthonormal, the length of the projection of vk
2 upon wk

2 is
proportional to ekλ2 . A similar argument for growth of volumes yields that ck

j is proportional
to ekλj . Therefore, the Lyapunov exponent λj is estimated by the averages

λj ≈ 1

k
log(ck

j ), with k = 1, 2, . . . , N. (17)

For the computation of the Lyapunov spectrum of a single attractor, a total of N = 105 iterates
of DP is carried out. After a transient of 104 iterations, only the maxima of ck

j over consecutive
blocks of 100 iterations of DP are used. This idea goes back to [15]. After computing a number
of blocks, say 150, we compute the average of the ck

j as in (17). Then a new set of 50 blocks is
computed and the ck

j are averaged over the last 150 blocks. The maximum of the differences
between the last three averages is used as an estimation for the error in the Lyapunov exponent.
Results of a test with 105 iterates of DP are shown in figure 57(a). The solid line joins the
maxima of ck

1 on blocks of 100 iterates. The small black boxes are the estimates obtained by
averaging over 150 blocks.

Because of the high computational cost of integrating variational equations for a long
period T = 73, when scanning for Lyapunov exponents for several parameter values (like
in figures 12(b)–(d)), a quicker procedure has been adopted. For each parameter value, 104

iterates of DP are in total computed (sometimes 2×104), preceded by a transient of 500 iterates
of P. When detecting a periodic point D, the iteration is stopped and the Lyapunov spectrum
is at once computed from the eigenvalues of D. The last 1000 approximations obtained by
(17) are averaged. This provides the desired estimate.

For more precise methods of estimation of the Lyapunov exponents, see [24].

Figure 57. (a) Test on the computation of Lyapunov exponents, for F = 5 and G = 1.29. See
text for explanation.
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Appendix A.3. Power spectrum estimation

For the technical terminology and the definitions of several concepts used in this section,
we refer the reader to [9, 51]. The power spectra are estimated by using the discrete fourier
transform (DFT). Given an array c of complex values (called time series [17]) its DFT is the
array:

ĉ = (ĉ0, ĉ1, . . . , ĉN−1), where ĉk
def= 1

N

N−1∑
n=0

cn exp

(
−2π i

nk

N

)
. (18)

In practice, the DFT of an array is computed using a fast fourier transform (FFT) algorithm.
The power spectrum is a plot of the square moduli of the coefficients ck against so-called
Fourier frequency fk = k/N .

Given a P-invariant set W, a (real) time series is constructed in the following way. An orbit
of P with N points on W is first determined by iteration. We mostly fix N = 216 and compute
N points qk starting from q0 ∈ W, where qk = P(qk−1) ∈ R3. To produce a time series, this
orbit has to be ‘measured’ by means of an observable � : R3 → R (cf [17]). In most cases, we
chose � as the projection onto the coordinate y, yielding the time series y = (y0, . . . , yN−1),
with yk = �(qk). Then an estimate of the power spectrum of W is obtained by plotting the
square modulus |ŷk|2 against the Fourier frequency fk , for k = 0, . . . , N/2. If the attractor W

is an invariant curve, the fundamental frequency is the rotation number modulo 1/2. In the
case of the circle C1 (figures 45(a) and (b)) the fundamental frequency is close to the Fourier
frequency with the highest peak. For 2C1, one has to take a Fourier frequency corresponding
to one half of that with the highest peak. Pictures such as figure 36 left are produced by
computing power spectra on circle attractors, usually with a low number of iterates, e.g. 4096
points. A few comments of technical nature have to be added.

Remarks

1. Each power spectrum is computed from a single time series inside W. Another possibility
is to compute a number m time series’ in W—all with the same length N and with distinct
initial points—and then to average the m spectra (cf [1]).

2. Before computing a power spectrum, the array y is brought to zero average. Furthermore,
a Hanning windowing of order two is applied in order to reduce frequency leakage. In
particular, we first apply the translation

y 
→ u = (u0, . . . , uN−1), with uj = yj − 1

N

N−1∑
k=0

yk.

FFT is performed on a second array v, defined by

vk = Hk
2 uk, where Hk

2 = 2

3
cos

(
1 − 2π

k

N

)2

(Hanning windowing, see again [9, 51]). After that, the resulting coefficients, denoted
again by ŷk for simplicity, are normalized by dividing for the norm of the array
H = (H 0

2 , . . . , HN−1
2 ).

3. We note that frequencies are computed modulo 1, since all frequencies lying outside
the interval [0, 1) are shifted inside this interval. This phenomenon, called aliasing, is
unavoidable when dealing with discrete time evolutions. Indeed, since no sampling of
a continuous time evolution is performed, the Nyquist frequency is always fixed at 1/2.
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Figure 58. (a), (b) Tests on the propagation of errors in the DFT algorithm. See text for explanation.

The frequency range is further restricted to [0, 1/2], since the power spectrum of a real
sequence r is symmetric with respect to 1/2. One indeed has r̂N−k = ¯̂rk , since

r̂N−k = 1

N

N−1∑
n=0

rn exp

(
−2π i

(N − k)n

N

)
= 1

N

N−1∑
n=0

rn exp

(
2π i

kn

N

)
.

The last remark provides motivation to introduce the following notation:

f mir 1
2

def= 1 − (f mod 1) = (−f )mod 1.

For example, 0.28 mir 1
2 = 0.72 and 1.91 mir 1

2 = 0.09. Given the above symmetry, the power
spectrum has the same value at f and at f mir 1

2 .
A simple test has been performed to estimate the propagation of random errors in the

FFT algorithm. Given a time series a, a ‘random’ perturbation b is prepared as follows. We
generate a sequence of random numbers rk with uniform probability distribution in [0, 1] and
define bk = mkyk , where

mk =
{

1 − 10−14 if rk < 0.5,

1 + 10−14 otherwise.

The DFTs â and b̂ are computed and the second is subtracted from the first, yielding an
array c. The square moduli of the coefficients ck are plotted against k/N . For the two tests
in figures 58(a) and (b), an orbit on the circle attractor in figure 7(B) respectively on the SA
in figure 10 have been used. The size of the sample has been kept to N = 216. In the first
case, the propagated error |ck|2 varies between order 10−35 and 10−31. Therefore, we have
that 0.001 � |ck|/10−14 � 0.1, and the same holds for the second case. Since the size of the
sample is of order 1, we conclude that the random error propagates to the amplitudes divided
by a factor ranging between 0.1 and 0.001.

Remark A.1. The power spectrum is often used as an estimator of the spectral density of a
stationary stochastic process. Given a stationary, zero-average, discrete time stochastic process
{Xn}n∈Z on a probability space (�, ν), the autocorrelation function is defined by

γX : Z → C, γX(n) = E[XnX0],

where E denotes the expected value with respect to ν. A white noise stochastic process is
characterized by γX(n) = 0 except at n = 0, where γX(0)=1. Furthermore, the spectral
density [17] is constant.

Consider a P-attractor W ⊂ R3 and suppose that it has a unique Sinai–Ruelle–Bowen
measure27 ν. This allows us to define a process {Xn}n∈Z on the probability space (W, ν), where

27 In fact, this is a rather strong assumption, (see, e.g. [66]).
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Xn = Y ◦ Pn is the nth iterate of P on W, measured by the observable Y : W → R. Then
power spectra like in figure 9(A) indicate a practically constant spectral density. This implies
that the random variables Xn and Xm are uncorrelated when m �= n.
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