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Further results on switched control of linear systems with 
constraint s1 

Claudio De Persis', RaiTaella De Santis3, and A. Stephen Morse4 

Abstract 

In a previous paper ( [ a ] ,  see also 131) we proposed a su- 
pervisory control system to globally regulate to  zero the 
state of a very poorly modeled, open-loop unstable but 
not exponentially unstable, linear process in the p re r  
ence of input constraints. The process to control was 
unknown but assumed to  belong to a finite family P of 
nominal models. In this paper, the analysis is extended 
to  the case in which P is not finite and is a closed, 
bounded subset of a real, finite-dimensional, normed 
linear space. In this analysis, the property of the multi- 
estimator/multi-controller of being "robustly" integral 
input-to state stable is exploited. 

1 Introduction 

Logic-based switched controllers provide a systematic 
approach to the problem of controlling processes whose 
model is very uncertain. By very uncertain model, it 
is typically meant that, t,he actual model of the process 
B is an  unknown member of a family of systems of the 
form F = UpEp{Np} where each Wp is a given nomi- 
nal process model and P is an infinite set of indices or 
points. The approach relies on a family of candidate 
controllers C := {C, : p t P }  and on a supervisor - 
generating a piece-wise constant signal U which t,akes 
on values in '7'. The candidate controller Cp is designed 
to  control the nominal process model N p .  The role of 
the supervisor is to choose within the family C from 
time to time the controller to be put in the feedback 
loop, thus realizing the switched controller C,. An 
estimation-based supervisor consists of three subsys- 
tems, a multi-estimator E: a bank of monitoring signal 
generators M,, p E P ,  and a switching logic S. E is a 
system with state x whose input is the pair of input and 
output vectors of P, a.nd whose p t h  output is a signal 
y p .  The multi-estimator is designed in such a nay t.hat 
the behavior from its input to yp coincides with the 
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inputfoutput behavior of the process provided that W, 
is the actual process model and no measurement noise 
or disturbances are present. A monitoring signal gen- 
erator M, is a system whose input is the p t h  output 
estimation error ep := y ,  - y and whose out.put pp is a 
suitably defined signal which measures the size of the 
ep. The third subsystem of an estimator-based super- 
visor is a switching logic S w,hose role is to  generate U 

by assessing the signals pppis. 
The estimation-based supervisory control for linear sys- 
tems is now very well-understood ([14, 131). By exploit- 
ing the exponential stability property, it is possible to 
devise a logic that allowing sufficiently slow snitching 
among the candidate controllers guarantees the desired 
state regulation of the unknown process. The interest 
in the present paper, as well as in the papers 12, 41, is 
focused on the same problem of regulation for linear 
uncertain processes, but with the additional presence 
of wnstmints on the input. The constraints make the 
problem very difficult because the usual tools which 
have been used to attack the problem cannot be utilized 
anymore. Indeed, no control law exists which allow to 
achieve global exponential stability when the input is 
constrained. Neither other properties such as input- 
t e s t a t e  stability (ISS) ([16]) which have been success- 
fully used in 191 to  deal with supervisory control of non- 
linear systems can be guaranteed unless an unpractical 
restriction on the magnitude of the output estimation 
errors ep's is assumed. Nevertheless, it has been shown 
in [a, 41 that, relying on a weaker property than ISS, 
i.e. integral ISS or iISS ([17]), and on a new swit,ching 
logic which adjusts at each switching instant the time 
needed by each controller to be in the loop before being 
replaced by a different controller, it is possible to design 
a supervisory control architecture capable of stabilizing 
the state of the process despite of the uncertainty and 
the input constraint. An important feature of the su- 
pervisor is that it is guaranteed to well-perform even 
in the case the switching never stops, as it.is often the 
case in practical situations. 
In 12, 41, the interest was centered around the case in 
which the possible nominal models for the unknown 
process belong to  a family with a finite number of el- 
ements. The present contribution shows how to ex- 
tend the results of [Z, 41 to the case in which the pa- 
rameter p represent,ing the uncertainty in the process 
does not take on a finite number of values but rather 
ranges in a continuum of points. The main technical 
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concept the result of this paper is based on is that of 
iISS which is robust to arbitrarily small parameter mis- 
match (cf. Section 4). For the class of systems we are 
interested in, such a robust iISS c m  be est.ablished by 
following the arguments in (12, 18, 31. Among the sys- 
tems for which the results of the paper are applicable, 
we point out for instance the chain of integrators with 
unknown sign, i.e. 

I1 = plxz , I, = ~ 2 x 3  , . . . , xn = p,sat(u) , 

where thepi's satisfy 0 < p - 5 Ipi/ 5 p but are otherwise 
unknown. 

The main result of the paper is Theorem 1 in Section 
6. Before that, the formalization of the problem and 
the class of systems of interest are given in Section 2. 
Sections 3, 4, 5 contain the description of the compo- 
nents the supervisory control architecture is composed 
of. 

2 Problem Formulat ion 

Consider a process P which is unknown hut is assumed 
to  admit the model of a SISO linear system, whose 
transfer function is a member of the known class 

CP = U {VP(S)} 3 (1) 
PEP 

where P is a closed, bounded subset of a real, finite- 
dimensional, normed linear space and 

is a strictly proper transfer function with W(s)  a manic 
polynomial and up(s) ,  Pp(s )  coprime polynomials. As- 
sume that 

Assumption 1 For any p E P ,  d l  the poles of vp(s) 
lie in the closed left-half plane. 

Let nu be an upper bound on the McMillan degree 
of each vp and (AE,bE), with AE E R""""" and 
bE E R"""', a controllable pair with AE Hurwitz. 
Then (1141, Section IV) for each p E P there exists 
a cp E R'XZ"w such that the triple 

(cp, Ap, b )  := 

is a stabilizable and detectable realization of vp(s ) .  
Note that even if the models in Cp may significantly 
differ from each other, their state space realizations 

have all the same dimension and the dependence on the 
parameter p is summarized in the vector cp only, which 
is required to  satisfy the following: 

Assumption 2 The function p + cp is continuous. 

The constraints on the input are taken into account by 
introducing the saturation function sat(.), which has 
the following properties (see e.g. [lo]). 

Definition. A locally Lipschitz function sat(,) : R + R 
is said to  be a saturation function if 

(i) sat(0) = 0 and rsat(r)  > 0 for all T # 0, 

(ii) there exist k,  > 0 such that Isat(r)l I for all T 
and liminfI+m lsat.(r)l 2 4, 

origin and sat'(0) = 1. a 
(iii) sat(r)  is differentiable in a neighborhood of the 

Incorporating the saturation function in the models (3), 
we obtain the nonlinear systems 

- 
(4) 

Ip = A,z,+bsat(v) 
Y =  C P X P  

N, : 

where v is generated by the switched controller C, 

As in 12, 41, also in this paper no unmodeled dynamics 
affect the plant, i.e. the "exact matc_hing case is con- 
sidered. This means that the model P of the plant with 
input constraints, namely 

( 5 )  
Ip = Apxp+ bsat(u) 
Y = 9 X P I  

with xp E R", n = 2n,, U E R, y E R, is such that 
there exists a parameter p* for which 

Ap = A,. , cp = cp. . ( 6 )  

The feedback loop we are considering is thus that de- 
picted in Figure l .  The control problem is t o  design 
a multi-controller CO and the supervisory architecture 
which acts on 61, through the switching signal U so as 
to globally regulate to zero the state of the process P 
despite of the large uncertainty on its model. 

3 Identifier-based Multi-estimator and 
Monitor ing Signal Generator 

We consider, as in 1141, a (state-shared) multi-estimator 
described by the equations 
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Figure 1: Feedback interconnection. 

Multi-estimator (7) can also he rewritten in the more 
compact form 

(8) 
5 = Ax+bsat(v) +dy 
y, = cpx,  P E P .  

The outputs y,, p E P, generated by the multi- 
estimator (8) are used to obtain the output estimation 
errors e, = y, - y which feed the monitoring signal 
generators Bap 

M, : bp = - X P ,  + leP1* , P,(o) > 0 ,  P E  P . (9) 

The monitoring signal generators are input-testate 
stable, provided that X > 0. Also note that the ex- 
act matching condition (6) and the equations of the 
output estimation errors show that e,. gecays expo- 
nentially to zero, i.e. lep.(t)i < Cexp(-At), for some 
positive numbers C, x. 
Of course, in view of the nature of P, equations (9) 
cannot he implemented. An implemenhable equivalent 
way to generate the monitoring signal pLp makes use 
of a weighting matrix 1,V ([14]), which is generated hy 
a (finite dimensional) causal dynamical systems whose 
inputs are x and y: 

It is easy to verify that given W ,  solution of (lo), the 
monitoring signal can he computed hy the relation 

jLp(t) = [c, - l]W(t)[c, - 11'. (11) 

4 Multi-controller 

Following a standard approach in supervisory control 
(cf. 19, 7, 4]), the controller is designed for a system 
obtained from the multi-estimator (8) hy "injecting" 
the variable y = yp-ep, thus making the system input- 
output equivalent to the p t h  model N,. The resulting 
system - keeping in mind that A, = ( A  + dc,) - is 
described by equations of the form 

(12) 
j. = A,x+ bsat(v) - de, 
yp = cpx 

It can he shown (see for instance [3, 51) that since, 
for each p E P, the pair (A,, b)  is stabilizable and A, 
has no eigenvalue in the open right-half plane of the 
complex plane, syst,em (12) can he made integral input- 
t-state stable (IISS) and locally exponentially stable 
with a suitable feedback. We recall that [16] 

Definition. A system-t = f(E,u) is iISS if there exist 
functions' a(.),O,(.),Oz(-) E Km, y(.) E K, such that 
for all CO, all U, and for all t 2 0, 

4 E ( t , G , u ) I )  5 81(&(1E01)e-t) +/ 'r(lu(s)l)ds. 
0 

(13) 

The function y(.) is sometimes referred to as the gain 
function. 

Lemma 1 ([3], [MI) For each p E P, there ezists a 
feedback law U = xp(x), such that the closed-loop sys- 
tem 

x = A,z + bsat(X,(x)) - de, , (14) 

is iISS with respect to e, with quadratic gain func- 
tion. In particular, there exist class-K, functions 
a(.),01(.),02(.), and a constant 7 > 0 such that the so- 
lution x(t) of (14) from the initial condition x(to) = x~ 
under the input e, satisfies, for all t 2 to 2 0, all XU 

and all ep, 

a(lx(t)l) 5 ij,(g2(Ixu/)e-(t--to)) + j t T ~ e , ( . ) / 2 d T  . 
CO 

(15) 
Also, there ezist positive real numbers a l ,  az ,  a3, S ,  and 
smooth functions IV, : WZn" --t R, such that allx/* 5 
W,(x) 5 a21zI2 and 

aw, - 
-(A+ + bsat(xp(x))) 5 --a31zI2 (16) 

OX 

for all IzI E [0,8] 

In the present setting, in which P consists of a con- 
tinuum of points, we make use of a family of con- 
trollers C = {@, : p E P}, which guarantees stronger 
stability properties, namely, we assume that the con- 
troller makes the system "robustly" integral input-te 
state stable. 

Assumption 3 There exist an E > 0 and a family of 
feedback laws {U = %(x) : p E P} such that for each 
p, q E P, with lp - qI 5 E ,  the system 

i = A,x + bsat(xq(x)) - de, , (17) 

'IC is the clas of functions 10, m) - 10, m) which are zero at 
aero, strictly increasing and continuous. IC, is the subclass of 
functions K which are unbounded. 
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Figure  2: Supervisory control system in the presence of input saturation. 
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is iISS with respect to e, with quadratic gain func- 
tion. In particular, there ezist class-K, functions 
u(.) ,Sl( .) ,62(.) ,  and a eonstant 7 > 0 such that the so- 
lution x(t)  of (17) from the initial condition x(to) = xo 
under the input e, satisfies (15), for all t 2 to 2 0, all 
xo and all e,. 
Also, there exist positive real numbers a l , a 2 , a s , S ,  and 
smooth functions W, : R’”“ + R, such that al/x1’ 5 
W,(z) 5 a21z/’ and (16) holds for all 1x1 E [ O , S ] .  

Remark. If matrix A, in system (17) is neutrally 
stable, then the control lay ,y,(z) is actually linear, 
i.e. there exists a matrix F, for which x,(x) = F,x. 
Therefore, system (17) with ep = 0 can be rewritten as 
j: = A,x + bsat(F,z + U ) ,  where U = (F, - F,)z. The 
results in [ll] guarantee the existence of a Lyapunov 
function V ( z )  and a number X > 0 for which V 5 
- - J X ~ *  + XJxllvl. Therefore, letting E be such that /q  - 
pl 5 E implies / /Fq-Fpl\  5 1/(2X), asymptotic stability 
of the system is drawn. If system (17) has an L2-b 
C,-like stability property when e, f 0, then using the 
same arguments of the proof of Lemma 4 in [3], it is 
also possible to  prove integral ISS of (17) with respect 
t o  ep with a quadratic gain function. For more general 
matrices A,’s, similar conclusion can be drawn using 
arguments of the kind found in [IS] and [12]. o 

5 Switching logic 

The last component of the supervisory control archi- 
tecture, namely switching logic S, is described in this 
section. S is the recently introduced (13, 51) adjutable 
dwell-time switching logic. The switching logic is de- 
signed as a hybrid dynamical system whose inputs are z 
and W and whose state is composed by a discrete-time 
variable X E R, a continuous-time variable r (timing 
sagnal) and the piece-wise constant signal o : [O, m) + 

P. To describe the functioning of B we need to intrw 
duce some-notatjon. 
Let a(,) ,  SI(.), &(.) E K, and al,a?,as,s > 0 he as 
in Assumption 3. Define the functions 

Sl(r) : = & ‘ ( m ( r / 3 ) / 2 ) ,  &(r)  : = & ( r ) ,  (18) 

and set’ 

rn(r) := ln(6’~(r)/Bl(r)) , r > 0 .  (19) 

Let F := 8,’(6’1(39)), and fm a “dwell-time” function 
7~ : R t o  + R,o satisfying 

Adjustable  Dwell-Time Switching Logic S ([3, 51). 
Set o(0) = argmin,,,{Np(0)}. Suppose that at  some 
time to, o has just changed its value to p .  At this 
time, the timing signal r is reset t o  0 and a variable 
X is set equal t o  Iz(to)/, that is in X is “stored” the 
magnitude of the state of the plant at  that switching 
time. Compute now the dwell-tzme T D ( X ) .  At the end 
of the switching period, when r = n ( X ) ,  if there exists 
the minimal value q E P such that wLn is smaller than 
pc3 then o is set equal to q, r is reset to zero and the 
entire process is repeated, Otherwise, a new search for 
the minimal value q E P such that p, is sinaller than 
pm is carried out. 

6 Main Resul t  

We can now analyze the supervisory control system 
that we have introduced in the previous sections. The 
multi-estimator E described by the equations (8), the 
family of controllers C = {C, : p E P}  described 
in Assumption 3, the monitoring signal generators Ap 
characterized by equation (10) and the switching logic 
S compose the switching controller 

The closed loop system to  analyze is composed by the 
unknown process P of the form ( 5 )  and the switching 
controller (21) (see Figure 2). 

First of all we note the following 

posed (cf. (3, 51). 
2Note thst Bz(r)/Bi(r) > 1 for all 7 > 0 ,  and (19) is well- 
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Fact 1 If Assumption 3 holds, then for each set of ini- 
tial conditions xp(O), z(O), p p ( 0 )  > 0,  p E P ,  u(O), the 
respomes of the superviso y control system (S), (Zl), 
and (9), and of the process (5) exist for all t E [0, CO). 

Indeed, system (21) can be rewritten as 

j: = A,x + bsat(y,(z)) -de,  , (22) 

and the property is an easy consequence of the integral 
input-twstate stability of the system with respect to  
e,, for any fixed value of U .  

The following lemma concerning the switching signal U 

generated by S can be proven as Lemma 1 in [14]. 

both U and a* are constant for all t E [t i ,  t;+l). 
If we consider the differential equation in (21) under 
the feedback interconnection y = yo. - eo., namely 

. 
j: = A,.x + bsat(y-(x)) -de,. , (23) 

by Assumption 3 we have that the state of the switching 
controller satisfies for all t E [t;,t;+,), 

Denote cqp. := c, - cp., For any q E P., we can write 

(25) e ,  = Y ,  - Y = Yq - (YP .  - .P.) 
(c ,  - cp.)x - e,. = cqP.x - ep .  . - - 

Fix a basis {cpIp.:. . . ~ cP,,.} of the row-vector space 
{c,,. : q E P'} and define (as in the proof of Lemma 

there exists a bounded function : P. w,,, such 
that s(q)C = c, - c,,.. Set E := C z .  Since the i-entry 
of E is ep. - ep. which (cf. (ii) of Lemma 2) is a signal 
in &[O,CO), E E L~[O,CO) as well. Note also that, for 
any 9 E T, le,? = Is(s)E- eP-l2 5 2/s(q)EI2 +21e,.12. 
Then, for any switching time t; 2 t', 

Lemma 2 Let 7 := {0 =: t o ,  t l , .  . . , t j , .  . .} be the se- 

closed bounded subset P. c P containing p' with the 
following properties. 

quence of switching times of a. Then there cask a in r14]) t,he matrk c = [c;,,. , , . 4_pr~,, Then 

(2) For any E > 0 there exist a finite switching time 
t' E 7 and a piecewise-constant signal U* : 
[O:co) -, P', whose switching times are a subset 
o f 7 ,  such that iu( t )  - a*(t)l 5 E for all t 2 t'; m te+l 

I=< t r  
1; leoy7)(T)lzdT = E/ le,yt.)(T)I2dT (ai) For each p E P*, e, E &IO, CO). 

. .  

5 ~ ~ ~ ' z l s ( u * ( t , ) ) E ( . r ) l * d r +  21ep.(i)12dr 

- < 1 ~ , w ~ e ( ~ ) ~ * d i + 2 ~ ~ m I e ~ . ( i ) I ~ d ~ ~ x l ,  

The lemma is instrumental in proving the following the- e=i r 
orem, which is the main result of the paper. 

Theorem 1 Let fi be the process (5), unknown mem- 
ber of the family of nominal plant models N,, with 
p E P: where P is a closed, bounded subset of a real, 
finite-dimensional, normed linear space. Suppose that 
Assumptions 1, 2 and 3 hold and that the function 
sat(.) is continuously diferentiable in a neighborhood 
of the origin. Consider the supervisory contml system 
described b y  the equations (.U), along with the state 
dependent dwell time switching logic S, with m(.) sat- 
isfying (20). Then, for each set of initial conditions 
xp(O), z(O), IY(0) > 0,  u(O), the response of the su- 
pervisory contml system exists for all t 2 0 and all the 
continuous states converge to zero as t goes to infinity. 

Proof: Let E be as in Assumption 3, and fix t' and U* 
according to  point (i) in Lemma 2. As a consequence 
of Assumption 3 (cf. Fact l), we are guaranteed that 
the response of the supervisory control system (21) and 
all the continuous states are bounded for all finite t .  In 
particular, for t 2 t', we know from point (i) in Lemma 
2 t.hat the switching signal U ( . )  generated by S satisfies 
Iu(t) - u'(t)l 5 E .  Note that if t ;  and ti+l are two 
consecutive switching times of U ,  with t; 2 t', then 

for some suitable constant k 2 0. Hence, from t* sys- 
tem (23) switches among integral input-to-state stable 
systems and is driven by an C2 signal. This yields the 
convergence to  zero of the state x ( t ) ,  in view of the fol- 
lowing result whose proof is omitted and can be found 
in [3], Theorem 4. 

Lemma 3 Consider system (23) and assume that on 
each switching interval [t;,ti+l), t; 2 t', it satisfies 
inequality (24). Let U be generated b y  the state depen- 
dent switching logic S. Then, for each z o  E R2"", for 
each input e,,.(.) E Cz, the solution x( . )  of.(23) start- 
ing from the initial condition x(0)  = xo and under the 
input e m . ( . )  is such that limt+, ix(t)I = 0. 

The convergence to  zero of the remaining continuous 
states of the supervisory control system descends from 
the detectability of the plant using standard arguments 
(cf. 191,171). rn 

Remark. From.the proof, it is understood that on 
the interval [ O , t * ) ,  the solution z(.) is guaranteed to 
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Figure 3: Timing diagram. 

be bounded. It is starting from t* that  convergence to  
zero of z(.) is guaranteed as well (see Figure 3). U 

7 Conclusions 

In this paper we have proposed a solution to the prob- 
lem of supervisory control of largely uncertain systems 
under input constraints, in the case in which the un- 
known process belongs to a continuum of nominal mod- 
els. The analysis rests on the concept of robust integral 
input-testate stability. Our design achieves global reg- 
ulation of the state to zero for plants which are open- 
loop unstable but not exponentially unstable. 
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