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Abstract—in this brief, we will study the computation of transient solu-
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time-stepping methods (see [1], [7]-[9] for electrical networks arloy Stewart [11], [23]. He shows that for a broad class of nonlinear
[10]-[14] for unilaterally constrained mechanical systems with frictiononstrained mechanical systems there always exissbaequence
phenomena). Representing a hybrid systems point of view (see for @fi-approximating time functions that converge to a real solution of
stance [15])event-tracking methodse based on considering the simthe mechanical model. In the context of mechanical systems subject
ulation interval as a union of disjoint subintervals on which the circuib unilateral constraints or friction, the complementarity conditions
topology (called “mode” in the hybrid systems terminology) remainappear between thierce and positionvariables. A direct translation
unchanged. On each of these subintervals we are dealing in gen@alectrical circuits would not yield networks with complementarity
with differential and algebraic equation®AE), which can be solved conditions between the voltage and current variables which is the
by standard integration routineBAE simulation. As integration pro- case for ideal diodes. Therefore, the results that have been obtained
ceeds, one has to monitor certain indicators (mostly given by inequati-[11], [23] do not cover electrical networks containing ideal diodes,
ties, e.g., related to currents through diodes being nonnegative) to detdrich are included in the class of PL networks studied in this paper.
mine when the subinterval endsvent detection At this event time a Therefore, the objective of the current brief is to show that for the
mode transition occurs, which means that one has to determine whatdlss of PL circuits that can be realized by linear passive elements
new circuit topology will be on the next subintervah@de selection and ideal diodes (complementarity conditions) the backward Euler
If the continuous state at the event time is not consistent with the $iene-stepping method is consistent. Moreover, we will even prove that
lected mode, a state jump is necessaayiffitialization). The complete the whole sequence (and not only a subsequence) of the approximating
numerical simulation method is based on repetitive cycles consistingiofie functions converges to the real transient solution of the network
DAE simulation, event detection, mode selection and re-initializatiomodel, when the step size decreases to zero.

Time-stepping methodsplace the describing equations directly by
some “discretized” equivalent. Numerical integration routines are ap-
plied to approximate the system equations involving derivatives and all

algebraic relations are enforced to hold at each time-step. In this wayrnroughout the briefR (R") denotes the set of:¢tuples of) real
one has to solve at each time-step an algebraic problem (sometifgfmbersR. denotes the set of nonnegative real numbersRe.=
called the “one-step problem”) involving information obtained fron[uo, oc). For the real part of the complex numbemwe writeRe(\). For
previous time-steps. In contrast with event-driven methods, time-stegy 2, y € R*, » L y means that ' y = 0. Inequalities for vectors
ping methods do not determine the event times accurately, but “ovare always meant to hold componentwise.
step” them, which puts the convergence of the approximations in a suitThe Euclidean and maximum norm of a vectoe R™ will be de-
able sense (called “consistency”) into question. noted byll«|| := /322, «7 and||zls := maxi<i<n |2:], respec-
In this brief, we will study the consistency of a time-stepping methdévely. For a real number € R, we use the notatiofr| to denote the
that is based on the well-known backward Euler integration scheme fpallest integer larger than or equatoNe writeO () for any func-
a class of piecewise-linear (PL) electrical circuits. The used netwdjRn Such thatimsup,_ [O(x)|/« < oc. We say that a proposition
models are so-calldihear complementarity systerf&5]-[19], which P(x) hoId; for all sufficiently small (large} if there existsry > 0
can be seen as dynamical extensions of the PL model structure t%uaih that it holds for alb S 2 < ro (o < 2). .
has been introduced by Van Bokhoven [1], [8]. Van Bokhoven’s model he set of real matrices with rows andm columns is de-
’ noted byR"*™. For anyA € R"™™,J C {1,2,... n}, and

is based on the linear complementarity problem of mathematical prp- ~ {1,2,....m}, A denotes the submatrifd i} jes. rer -

gramming [20] and covers manywell-known canon.lcaI.PL deSCI’IptIOIiI'SJ = {12, ....n} (K = {1,2,.... m}), we also writeAsx
[21] (see also [2]). As such complementarity modeling is very powerfELlJ.)_ For anyA € R™™™ ||A|| = supj, =1 | 4z|| denotes the
and many dynamical PL circuits are captured by (dynamic) linear comratrix norm induced by the Euclidean vector norm. A square matrix
plementarity systems. A € R"*" is said to be nonnegative (positive) definitexif Az > 0
Time-stepping methods may be preferable to event-tracking meth@@s$ 4. > 0) for all 0 # = € R™. We writes(A) for the set of
in particular in situations where many mode changes take place. In faidenvalues off andp(A4) := maxye,(a) |A| for the spectral radius
there do exist examples of linear complementarity systems (see eofi.4. By the symmetric part aft, we mean the matrik/2 (4 + A").
Example 2 below), for which the event times (the times at which thEhe identity matrix is denoted h§. Given two matricest € R"«*™
mode changes) accumulate, i.e., the system displays an infinite nun®dB € R"**™, the matrix obtained by stacking overB is denoted
of switches (mode transitions) in a finite time-interval. It is obviou8Y col(4, B).
that this behavior causes difficulties for an event-tracking method as’he seE ofe-tuples of square integrable functions.(cta, t1) is de-
simulation beyond the accumulation point is in principle not possibPted byﬁ?(to, t1). The notation(z, ,;92 dgnotes the inner product of
without using some heuristic tool. Time-stepping can be an effectite ¥ € /‘2/_(“” tf)’ Le., (r, y) = to, ’ (H)y(t)dt. The norm on
alternative in such situations. L5 (to, 1) is defined by]|z|| = (x, )'/2. Moreover, the time func-

As mentioned before, the time-stepping method that we will stu r:/\:/L"Q det%Otteti the restriction Ofg:ze(ftlmf functiorto the interval
here is based on the well-known backward Euler scheme and has bagi'c 52 that the sequentey } C L3 (o, #1) convergegconverges
) . . . . weakly to z if limg— o ||z — || = 0 [limg—oc {(zr — 2, y) = 0 for
described, for instance, in [1], [7]. [8], for electrical networks. S|m|la£lII y € L2 (to, t1)]

. . . S L 2 > .

methods have been usgd ina rngchan!cal context in [_10]_[14]' A NICeTHe typewriter font will be used for distributions to distinguish them
feature of the method is that it is straightforward to implement angh ., functions. The spacks (0, ) consists of the distributions of the
many algorithms (e.g., Lemke’s algorithm [20], Katzenelson’s algqgym ¢ = Uimnp 4 Wreg Wherelin,, = uoé is called thempulsive part
rithm [22] and others [8]) are available to solve the one-step problemgh «, ¢ R andu,.. € £2(0, 7) is called theregular part We say
consisting of linear complementarity problems. that the sequence of distributiofig} 6 +uf..} C £s(0, 7) converges

Convergence problems of time-stepping methods for mechani¢aleakly) touo 6 + w.,, if {ug } converges ta, and{u}.. } converges

systems subject to unilateral constraints or friction have been studigeakly) tou,.; in £2-sense.

[I. NOTATION
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The matrix triple(A, B, C) with A € R**", B € R"™™ and
C' € R™*" is said to beminimalif (A, B) is controllable andC, 4)
is observable (see for instance [24]).

IIl. LINEAR COMPLEMENTARITY SYSTEMS

We begin by briefly recalling the linear-complementarity problem
(LCP) of mathematical programming. For an extensive survey on the
problem, the reader is referred to [20].

Problem 1 [LCRgq, M)]: Giveng € R™ andM € R™*™, find
z € R™ such that

0<zlg+Mz2>0. (1)

We say that solvesLCP(g, M) if = satisfies (1). The set of all so-
lutions of LCP¢, M) will be denoted by SOlg, M). Note that the Fig- 1. Trajectory with initial state (2, 2)
so-called complementarity (1) conditions also appear in the ideal diode
characteristio < 0,¢ > 0, andiv = 0. Not surprisingly, the linear  Example 2: Consider the following example (its time-reversed ver-
complementarity problem plays a major role in the analysis of networkgn is due to [25, p. 116])
with ideal diodes. As discussed in [2, Sec. 3], many dynamical PL elec-

trical networks can be cast as linear complementarity systems by fol- &1 = —sgury + 2sgna
lowing the ideas developed in [1]. A linear complementarity system is g = —2sgnxy — sgn o
given by wheresgn « is the set-valued (relay) function given by
#(t) = Ax(t) + Bu(t) (2a) -1, if r <0
y(t) = Ca(t) + Du(t) (2b) sgnr=q [-1.1]. ifr=0.
1, if >0
0<u(t) Ly(t) >0 (2c)

As shown in [26], [27], this type of systems can be cast as LCS. So-
whereu(t) € R™,z(t) € R",y(t) € R™ and4, B, C',andD are ma- lutions of the system are spiraling toward the origin, which is an equi-
trices of appropriate dimensions. We denote (2) by LESB, C, D). librium. Since(d/dt)(|z1(t)| + |x2(t)]) = —2 whenz(¢) # 0 along

For more details on LCS, we refer to [16]-[19]. trajectoriese of the system, solutions reach the origin in finite time
(see Fig. 1 for a trajectory). Every crossing from one quadrant to an-
other corresponds to an event (relay switch). Therefore, on a finite time
interval there are infinitely many events, i.e., events do accumulate.
The aim of this section is to discuss two approaches for the simula-Thjs example shows that the event-tracking methods might not be

IV. SIMULATION OF LCS

tion of LCS. the most efficient methods for the simulation of LCS.
A. Event-Tracking Methods B. The Backward Euler Time-Stepping Method
From a hybrid system point of view, LG8, B, C, D) has2™ An alternative for event-tracking is the time-stepping method. Typi-

modes depending on the complementarity conditions (2c) that indicgfgly, such a method tries to replace approximately the overall system
which diodes are blocking and which ones are conducting. The systgacription by a discretized equivalent instead of considering several

is governed in modé” by the DAE linear DAE as an event-tracking method does. A frequently used time-
&= Az + Bu (3a) stepping scheme (see [1], [7]-[9]) is based on the well known back-

ward Euler method. For LCS the method consists of discretizing the

y=Cx+ Du (3b)  system description by applying the backward Euler integration routine

and imposing the complementarity conditions at every time step. This

ui =0, ifi ¢ K (3¢)  comes down to the computation of ., v/, ,, andx}, givenzx]
y: =0, ifi € K (3d) through the linear complementarity problem given by
. . . _h -
as long as the inequality constraints M~+1h Xk :AXZJrl + BHZH (5a)
y, >0ifi ¢ K (4a) N N N
) Yit1 =Cxpq + Dugyy (5b)
w; >0ifi € K (4b) N ;
o ) 0 <ypsr Lupy >0 (5¢)
hold. By starting in modes’ C {1, 2, ..., m}, an event-tracking

method integrates the DAE (3) by standard routines and monitors fNgte that we use roman font for the numerical approximations.
inequalities (4). In case of a violation of (4), the event time (the time jut the above relationss denotes the value at theth step of the
before the violation) has to be determined in order to find out the mo@grresponding variable for the step size- 0. Based on this scheme,
which will be active after the event. Once the new mode is determingdle can construct approximations of the transient response of an LCS
the above procedure repeats itself again. One of the main disadvant&jean simulation intervdD, 7] by applying the algorithm below.

of this type of approach arises if there is an accumulation of events. InAlgorithm 3:({ug:}, {xi:}, {vi}) =App.(A, B, C, D, zo):

principle, event-tracking methods cannot go beyond such an accumuil) N, = [7/h].

lation point without using some kind of heuristic tool. In what follows, 2) x"; := .

we give an example of an LCS having accumulation of events. 3) k= —1.
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4) Solve theone-step problem -

Vi1 =C( —hA) "5} + [D+ hC(I — hA)”™ Bluj,y ot _
0< 11Z+1 1 YZ-H > 0. ine -

5) xiyq == (I — hA)" "<} + h(I — hA)™' Buj . -

6) k:= k+ 1. =r - - \ =

7) If k < N, goto 4). o ' N —

8) Stop. of - —

The one-step problem in step 4) is given by a linear complementarity J — _— _
problem. In general a linear complementarity problem may have mul- J = — AN
tiple solutions or have no solutions at all. We shall proceed by assuming T he0?
unigue solvability of the problem. The assumption is introduced here % ov 0z 03 of 05 08 07 o5 o9 I

for reasons of generality; later on we will prove that the assumption is
implied by passivity. Fig. 2. Nonconvergence of backward Euler approximations for the triple

Assumption 4:For all sufficiently small» > 0, LCP(C(I — integrator with ideal diode characteristic.
nA)~'z, G(h™Y)) has a unique solution for ait, whereG(h™') is
given byD + hC(I — hA) ' B.

This assumption implies that for all sufficiently small> 0, Al-
gorithm 3 generates an output, which is unique. Hence, for a gival passivity of a Linear System
step size: > 0 (sufficiently small), we can define the approximations
(u*, £, y") € L£s(0, 7) given by

V. PRELIMINARIES

In the sequel, we are mainly concerned with linear passive-comple-
mentarity systems.

I Definition 6 [28]: The systeniA, B, C, D) given by (2a) and (2b)

by = hub 8 6a) . - : A
Himp = 100 (6a) is said to bepassive (dissipative with respect to the supply rate;)
Xl = hag 6 (6b) if there exists a functio®’: R* — R, (astorage functiol such that
h h ¢
Yimp = hyO 6 (60) i1
) , ' Vit + [T (a0t 2 Via(t)
urég(t) =uy to
X (t) = af 3 wheneverl — 1)h <t < h (6d) )
i (1) = yb holds for all tc and ¢; with ¢, > ¢, and all (u, z,y) €
e ' L™ (1, 1) satisfying (2a) and (2b).
whereu”, < andy?, & = 0, 1, ..., N, have been obtained from We state a well-known theorem on passive systems which is some-

Algorithm 3. One of the main goals of the paper is to prove that for

tgnes called the positive real lemma.

passive system these approximations converge in a suitable sense. Tigmma 7 [28]: Assume that, B, C') is minimal. Then the fol-

property is called¢onsistencef the numerical method. In the following

lowing statements are equivalent.

example, we illustrate that Algorithm 3 is not always consistent even if 1) (4. B, C, D) is passive.

Assumption 4 holds.

2) The matrix inequalities

Example 5: Consider the linear complementarity system (con-

AT 7- L T
sisting of a triple integrator with complementarity conditions) K=k > A K+KA KB-C <
v=Roz0and g o —4ph) =0
Ty =2, &2 =x3, T3=uU, Y =21 .
have a solution.
0<uly>0

with the initial statexo = (0 —1 0) . Algorithm 3 gives

3) G(s)is positive real,i.e G(N\)+GT(X) > 0forall A € C with
A ¢ o(A) andRe(N) > 0.
Moreover, if (A, B, C, D) is passive all solutions of the matrix in-
equalities in item 2 are positive definite.

—2 B .
W (R, 0), ifh=0 Throughout the brief, we will frequently use the following assump-
(wg, yi) = o B+ 40 tion.
’ 2 ’ ) Assumption 8:(A, B, C') is a minimal representation arfglis of

It follows from (6d) that

“(Np—1)h
h
T ( /
(Np—2)h

wheneverN;, > 2. Thereforey

2

1/
Iy ¢n, I dt) =O(h'/?)

h
Teg

full column rank.

B. Solution Concept for LCS

Before precisely defining the solution concept of
LCS(A4, B, C, D), we need to mention several spaces of functions
and distributions. The spad® denotes the space of Bohl functions,

is far from being convergent as iti.e., functions having rational Laplace transforms. The spBge

is not bounded ab converges to zero. For three different valueé pf consists of the distributions of the form = uwimp + ureg, Where

the trajectories oﬁ’cg on [0, 1] are depicted in Fig. 2.

Uimp = uo 6 is called thempulsive parwith vo € R anduw..; € B is
This example indicates that one should be cautious in applyingcalled theregular part A distributionu €

5 is said to benitially

time-stepping method to a general LCS. As a consequence, verificatfmmnegativeif its Laplace transfornii(s) satisfiesi(c) > 0 for all
of the numerical scheme in the sense of showing consistency is needediciently larges € R.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 3, MARCH 2002 353

Next, we recall the notion of aimitial solution which is of consid- R
erable importance in the analysis of linear complementarity systems.
Definition 9: The triple(u, x, y) € By*T "™ is aninitial solution
of LCS(A, B, C, D) with initial statex, if there exists an index set 1
1C {1, 2, ..., m} such that D & €3 %L \ £z

x=Ax+ Bu+ 206, y=Cx+ Du
yi =0 ifiel, u,=0 ifi ¢l

hold in the distributional sense (for more details see [2]), @agdy Fi9- 3. RLC circuit with ideal diodes.
are initially nonnegative.

Now, we can give a precise definition of what is meant by a solu- Theorem 13: Consider LCS(A, B, C, D) such that Assumption
tion of LCS(A, B, C, D). Actually, the (global) solution concept for 8 holds and A, B, C, D) is passive. Let > 0 andzo, € R" be
general linear complementarity systems (see [16]) is more complicaggiden. Let(u, x, y) be the unique solution of LC84, B, C, D) on
than the one we will present. In the case of linear passive compleméh-7] with the initial statexo. Also let (u", x", y") be given by (6)

tarity systems, it can be trimmed as shown in [2]. via Algorithm 3. Then({u"}, {y"}) converges weakly tu, y) and
Definition 10: The triple(u, x, y) € £7T"T™(0, 7) is a(global) {x"} converges ta as the step sizk tends to zero.

solutionof LCS(A, B, C, D) on[0, 7] with initial statex, if the fol- We illustrate Theorem 13 in a simple example.

lowing conditions hold. Example 14: Consider the linear RLC circuit (witR = 1Q, L =1
1) There exists an initial solutioft, %, ¥) such that H andC = 1 F) coupled to two ideal diodes, as shown in Fig. 3. The

network is described by

(Wimnp s Ximp, Yimp) = (Timp, Kimp yimp)'

Bl =@y —u + Uy, dp=—T] —To — Uz
2) The equations Yr=—x1, Y2 =1 + T2 + U2
x=Ax+Bu+ 296 0<uly>0
y=Cx+ Du wherez, is the voltage across the capacitor, is the current through

hold in the distributional sense the_ inductor,u; andu, are t_he current through, _aryj and y» are
3) For almostalt € [0, 7], 0 < u, -(t) 1 ) >0 _(n_wl_nus) the voltage across diode 1 and 2, respectlvely._Fortwo different
. Pl = Tres ~ Yreglt) = U initial states, we apply the backward Euler time-stepping method. The
_ Notl_ce that the above definition is equwalen_t to the integral form; initial state iszo = col(—e, 1). In Fig. 4, the approximating state
given in [2, Def. VII.1]. The proof of the following theorem can beygiectories for the step sizes 0.1, 0.5 and 0.025 are depicted. Note that
found in [2] and deals with the existence and uniqueness of solutiqig e are two events (topology changes) of the circuit. The second ini-
to linear passive complementarity systems. _ tial state we consider ig, = col(1, 1). As shown in [2, Example 6.3],
Theorem 11: Suppose thatd, B, €', D) is such that ASSumption ;s initial state isnconsistentn the sense that the corresponding so-
8 holds and 4, B, C', D) is passive. Let > (J)r‘bf given. For each ion contains a Dirac impulse in thetrajectory and hence a discon-
wo, there exists a unique solutign, x, y) € L™ (0, 7) of LCS i )ity in the state. As expected from Theorem 13, the approximating
(4, B. C. D) on[0, 7] with initial statexo. state trajectories converge to the actual ones. In Fig. 5, the approxi-
mating trajectories are depicted for the step sizes 0.1, 0.5 and 0.025.
VI. MAIN RESULTS For reasons of clarity we draw the successive computed values of the

The following theorem is the basis of our consistency proof as qpproximations as horizon_tal lines; in practice of course one would_use
states sufficient conditions that imply consistency. The theorem @ instance PL interpolation. Note that we also picture the solution
based on Assumption 4 rather than directly on the passivity propeMyjth inequalities in (6d) replaced iy < ¢ < (I 4 1)h.

Due to space constraints, we cannot include the proof here; see [29] or

[30, Ch. 6] for full details. VII. CONCLUSIONS

_ Theorem 12 [29]: Consider LCS.4, B. C', D) suchthat ASSump- | thjs prief, we studied the consistency of a time-stepping method
tion 4 holds andD is nonnegative definite. Let > 0 andzo € R"  paseqd on the backward Euler integration routine. The method has
be given. Also letu”, x", y*) be given by (6) via Algorithm 3. Sup- roven itself already in practice for the transient simulation of PL
pose that there exists an > 0 such that for all sufficiently smak — gjectrical circuits and constrained mechanical systems. However,
[[Pug |l < o and|fur|| < o For any sequench, } that converges gne cannot indiscriminately apply this method for general classes of
to zero, we have the following statements. discontinuous systems as shown by an example in this brief. The main

1) There exists a subsequendé,} C {hx} such that result of the brief has presented a rigorous proof of the consistency

({u"*}, {y"=}) converges weakly to soméu,y) and of the backward Euler time-stepping method when applied to a class

{x"*} converges to some. of networks that can be modeled as linear passive electrical networks
2) Thetriple(u, x, y) isasolutionof LCS A4, B, C, D)on[0, 7]  with ideal diodes (or stated differently, can be modeled as linear pas-
with the initial statero. sive complementarity systems). In spite of the mixed continuous and

3) If the solution (u, x, y) is unique for the initial statero  discrete behavior of the circuit and the possibility of Dirac impulses
in the sense of Definition 10, then the complete sequenegcurring at the initial ime, we have shown the convergence of the
({u"*}, {y"*}) converges weakly tdu, y) and {x"*} con- approximations to the actual transient solution of the network model.
verges tox. Of course, it would be interesting to generalize these results to other

Note that these conditions do not hold for the system that has besyistems of a mixed continuous and discrete nature. In particular, we are

considered in Example 5. We shall show in the Appendix that the caturrently studying the consistency of the backward Euler method for
ditions of Theorem 12 are satisfied in the case of passive complemédgnamical systems with relays (see [27] as a first step in this direction)
tarity systems so that the following result holds. and for other linear complementarity systems. For systems where the
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Fig. 4. State trajectories for the initial statg = col(—e, 1).

Fig. 5. State trajectories for the initial state = col(1, 1).

backward Euler time-stepping scheme does not generate proper output
(like the triple integrator), it is useful to consider extensions of the timéolutions of the so-callechtional complementarity problersee for

stepping algorithm that are consistent.

In the following lemma, we state some results for the matrix inverse
(I-ha)t
Lemma 15: Let A € R**". The following statements hold.
1) (I = hA)™| < (1/(1 = AR)) for all 2 with Al < 1 whereA
is the largest eigenvalue 6f/2) (A + AT).
2) There exists an > 0 such thatl|(I — h4)™'|| < « for all
sufficiently small.

Proof: 1) By the Wazewski inequality (see e.g., [31, Theore
|| < eM for all t where ) is the largest eigenvalue of
(1/2)(A+ AT). Reference [32, Theorem 1.5.3] gives now the desire
inequality. ’

2) It can easily be verified by using item 1 thtl — hA) ™| <
1/(1 — 3) wheneven\h < 3 < 1.

8.1]), |

A. Rational Complementarity Problem

instance [17], [19]).

Problem 16 [RCPFxo, A, B, C, D)]: Given g
(A, B, C, D) with appropriate sizes, findi(s) €
4(s) € R™(s) such that
§(s) = C(sI — A) 'ag 4+ [C(sI — A)™' B+ D]a(s)

andi(s) L §(s) foralls € C, andi(s) > 0 andyg(o) > 0 for all
sufficiently larges € R.

€ R" and

APPENDIX R™(s) and

relation which is given by the Laplace transform and its inverse.
Proposition 17 [17]: The triple (u, x, y) is an initial solution of
LCS(A, B, C, D) withinitial stater, if and only if its Laplace trans-
Torm (4(s), &(s), 4(s)) is such that(i(s), §(s)) is a proper solu-
tﬁifn of RCP (o, A4, B, C, D) andi(s) = (sI — A) tag + (sI —
)~ Bii(s).
We shall use the following proposition which establishes the relation

rational complementarity problem.
Proposition 18: Consider a matrix quadrupled, B, C, D) such
that Assumption 4 holds. We have the following statements faraét

It can be shown that there is a one-to-one relation between the inifiél -

solutions to LCS(A, B, C, D) with initial statex, and theproper

1) RCP (o, A, B, C, D) has a unique solution.

The following proposition states the above mentioned one-to-one

between the solutions of the one-step problem and the solutions of the
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2) For all sufficiently smalf, necessary and sufficient for this problem because of its convexity
a(h™') = hul, (Y = hxt, G = hyl (sefe lfor ?nstance [20, Chapt_er 1.2)), i.ei*, is the sc_)lution of the
R R ) . optimization problem above if and only if there existasae R™
where(i(s), y(s))lls the solution ?f RCPa(y, A, IB (}J, [Z), such thate* = ATu, Ae® > b, u > 0, uT(J_/L,B* — b = 0.
f%("“') = (SI__ A)" wo + (s — A)7 " Bi(s) and_(u[;, X0, ¥0)  Take such a vectou. Let J =_{i|rui >_0} andv = uy. Then,z*
is the solution of the one-step problem of Algorithm 3 o= 0. satisfiess* = (AJ.)TU'/ Ajex* = by. Note that these are necessary
Proof: 1) Observe the basic fact that if LGR(M) is solv-  ang sufficient (Kuhn—Tucker) conditions for the convex quadratic
able then LCPR{q, M) is also solvable provided that > 0. AS  minimization problemmin 4, ,—, (1/2) 2" z.
a consequence, Assumption 4 implies together with the identityTo formulate the next lemma, we need to recall the concept of a
(I — hA)™" = (h~'I — A)~! that for all sufficiently smallh,  gual cone.

LCP(C(h™'I — A)~'xo, G(h™")) has a unique solution. From pefinition 22: For any nonempty se® C R™, the set
[17, Theorem 4.1 and Corollary 4.10], we can conclude that RC‘{PL'U € R"lw v > 0forallv € Q}is called thedual coneof

(z0, A, B, C, D) has a unique solution. Q and is denoted b@" .
2) Let (i(s), 4(s)) be the solution of RCPag, A, B, ¢, D). Lemma 23:Let M € R™*™ be nonnegative definite an@ =
It can be easily seen thafi(h™") solves LCRC(h™'I —  SOL(0, M). We have the following statements.

A) ao, G(h™1)) for all sufficiently smallh. Note that if > is a
solution of LCP§, M) thenaz is a solution of LCP{q, M) provided
a > 0.Thereforeh ™' a(h™") solves LCPC(I—hA) ‘ao, G(h™1))
for all sufficiently small%. In other words, for all sufficiently smakl

1) LCP(g, M) is solvable if and only ify € Q*.

2) For eachy € Q*, there exists a unique least-norm solutidne
SOL(q, M) such thal|z"|| < ||z|| forall z € SOL(q, M).

3) There existsx > 0 such that for all; € Q" [|z"(¢)| <

i(h™") =hug, (") =hxg, §(h7')=hys (7) allq]], wherez*(¢) denotes the least-norm solution (see item 2)
wherei(s) = (sI — A) " tag + (sT — A) "  Bii(s). [ of LCP(g, M).
Proof: 1) It follows from [20, Exercise 3.12.1 and Corollary
B. Some Results on LCPs 3.8.10].

We will present in this subsection some results on LCPs, that will 2) This follows from*the fact that SQly, M) is a nonempty poly-
be needed to prove the main result (Theorem 13) for linear passif@dron whenever € Q" [20, Theorem 3.1.7(c)].

complementarity systems. 3) Define
Proposition 19: Let M € R™*™ be a positive definite matrix and ] )
z; the unique solution of LCR{, M) fori = 1, 2. Then a(A) = max {ggly lzllly € imA and [jy[| = 1}
3/2
|21 — 22| < %”fﬂ — g2l if A # 0 and zero otherwise. Take
e

wherey(3) denotes the smallest eigenvalue of the symmetric part of « = v/2 max max  «((col(l, —Iree, M, =Mja))f,)
M, ie.(1/2)(M +MT). TEAm KA
Proof: By ref. [20, Lemma 7.3.10 and Proposition 5.10.10], wevhere A, = {1, 2, ..., k}. For anyq € Q", we know from the
have||z1 — z2||ec < (Mm/u(M))||g1 — ¢2]]- It yields||z1 — z2|| < items 1 and 2 that LCR( M) is solvable and that there exists a unique
(m®*? [ u(M))||q1 — 2| since||z]] < m*"?||z||e and||z]|« < ||z|| least-norm solution*(q). Let.J = {i|z}(¢) > 0}. Clearly,P =
forall z € R™. | | {’U|UJ > 0,vye = 0, q; + Mjvy = 0, andq(;c + Mjeguy >
Using the passivity property, we can compute a lower bound & C SOL(q, M) andz*(q) € P. Note thatP is a polyhedron,

w(G(h™ 1)) with G(s) := D+ C(sI — A)"' B, that will be useful for since? = {v|Av > b} whereA = col(l, —Ijce, M, —M7s)

the application of Proposition 19. andb = col(0, 0, —q, ¢7). Moreover, it is obvious that*(¢) =
Lemma 20: Consider a matrix quadrupled, B, C, D) such that arg mina,>s [[v||. Then, according to Lemma 21 there exisfs C
Assumption 8 holdsand4, B, C, D) ispassive. Let(N) denotethe {1, 2, ..., 3m} such that:"(¢) = argmina,,v=s ||v||. Thus, we
smallest eigenvalue of the symmetric part of a ma¥ixThe following  have||z*(¢)|| < a(Ax.)||bx||. Note that||bx||* < ||1B]1* < |l¢l* +
statements hold. les 1> < 2)lgl> andv2a(Ake) < a. Consequently)|z*(q)|| <
1) D > 0. o|lqll- u

2) u # 0 andu" Du = 0 imply thatu " C'Bu > 0.
3) There exists an > 0 such thay(D + hCB) > ah forall C. Proof of Theorem 13

sufficiently smallh. After these results on LCPs, the proof of the main result on linear
4) There exists @ > 0 such tha.(G(L ")) > jh for all suffi-  passive complementarity systems is in order. The proof will be based
ciently smallh whereG(s) = D + C(sI — A)™'B. on showing that the requirements of Theorem 12 are fulfilled for this
Proof: 1)-2) It follows from [30, Lemma 3.8.2]. class of linear complementarity systems.
3) It follows from [30, Lemma 5.7.6]. Lemma 24: Consider LC$A, B, C, D) such that Assumption

4) Itis known from matrix theory (see e.g., [33, Property 9.13.4.99 holds and(A, B, C, D) is passive. For all sufficiently small,
thatp (N, + N2) > pu(N1) 4+ p(N») for all square matriced; and LCPGHC(I — hA)™'Z, G(h™")) has a unique solution for each
Na. Hence, we get from item 3 that G(2™*)) > w(D + hCB)+ T € R".

O(h?) > Bh for someg > 0 and all sufficiently smalk. [ | Proof: The statement follows from the positive definiteness of
The following auxiliary lemma will be needed in the sequel. G(h™") for all sufficiently smallh (Lemma 20 item 4) together with
Lemma 21:Let P = {z € R"|Az > b} be a given nonempty [20, Theorem 3.1.6 of ]). [ |

polyhedron withA € R**™ andb € R™ and letz* be equal to Lemma 25: Consider LC$4, B, C, D) such that Assumption 8

arg min,cp ||z]|. There exists an index sétC {1, 2, ..., n} such holds and 4, B, C, D) is passive. Let > 0 andQ = SOL(0, D),

thatz™ = argmina, .=, ||2(|. ie,Q={z€R"|z>0,Dz>0andz" Dz = 0} be given. Also

Proof: Consider the convex quadratic optimization problertet ({uf'}, {x}, {y'}) be produced by Algorithm 3. The following
min x> (1/2) 2" z. The well-known Kuhn-Tucker conditions arestatements hold for all sufficiently smail



356 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 3, MARCH 2002

1) Cxh € Q" forallk # —1. weakly to (u, y) and {x"*} converges ta: for any sequencéh; }
2) There exists am > 0 independent oft, such thatjlu}|| < that converges to zero. In other word$n”, y")} converges weakly
al|zo|| for all & # 0. to (u, y) and{x"} converges ta ash tends to zero. [ |

Proof: 1) It is evident from (5b) and (5c) that? solves
LCP(Cx}, D) whenk # —1. Since D is nonnegative definite
(Lemma 20 item 1)C'x} € Q* due to [20, Corollary 3.8.10].

2) Allinequalities involving: are meant to hold for all sufficiently ~ One of the authors, M. K. Camlibel would like to thank the Depart-
sma”h’ andal, as, ..., ag are suitab|y chosen posi’[ive constants irﬁnent of Econometrics and Opera’[ions Research of the Tllburg Univer-
this proof. Note that LCR{x}, D) is solvable for allk # —1 due Sity, where he conducted research for this brief.
to item 1 and [20, Corollary 3.8.10]. Let" be the least-norm solu-
tion of LCP(Cx):, D). Clearly,«* solves also LCR{x; — hC(I — REFERENCES
hA) ' Bu*, G(h™1)). According to Proposition 19, we have
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Using the Cyclostationary Properties of Chaotic Signals (@
for Communications
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Abstract—Cyclostationary signals have an expectation value which
varies periodically in time. Chaotic signals that have large components at
some discrete frequencies in their power spectra can be cyclostationary.
The cyclostationarity persists even if the discrete frequency components
are removed from the chaotic signal, leaving a signal with a purely broad RS
band frequency spectrum. In this brief, a communications system is
created by modulating information onto the periodic parts of a chaotic
signal and then removing the periodic parts from the frequency spectrum. P1 [ p2l| P3
At the receiver, the periodic parts of the spectrum are restored by means
of a nonlinear operation. This system is demonstrated both in simulations
and real circuits, and the performance of this system is measured in
simulations. Finally, some of the reasons why such a scheme might be
useful are discussed. (b)
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Index Terms—Chaos, communication, cyclostationary.
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Chaotic circuits are natural generators of broad-band signals,

so there has been research into applying chaotic circuits to spread R: e

spectrum communications [1]-[13]. Most of these communications 34

methods depend on having a synchronized chaotic receiver or at least sy ey

some sort of information about the chaotic signal at the receiver. ©

Difficulties in synchronizing chaotic receivers make most of thesgg. 1. (a). Chaotic Duffing circuit described by (181 = R3 = R4
techniques impractical for multi-user communications systems. Ith = R6 = 10k, R2 = 39.2kQ, R7 = R10 = R12 = R13 = R14
addition, much research has focussed on the possible security/df = R17 = R18 = 100k, k8 = R9 = R18 = 1MQ, R15 =
chaotic communications svstems 5.2k,C1 = C2 = C3 = 0.001 uF. The box labeled corresponds to the

Y ) nonlinear functionf(z), while the box labeleg@ corresponds to the nonlinear
function g(z). All op amps are type 741 or equivalents. (b) Circuit used to
generate the functiop(z). R1 = R2 = R3 = R4 = R9 = 100 k2.
Manuscript received July 28, 2000; revised January 2, 2001. This paper w&is = R7 = 680 k2. R6 = R8 = 2 MQ2. P1 = P3 = 20 k2 poteniometer.

recommended by Associate Editor M. Di Bernardo. P2 = P4 = 50 k2 poteniometer. The diodes are all type 1N485B. The
The author is with the U.S. Naval Research Laboratory, Washington, Didteniometers are used to match different circuits to each other. The amplifier is

20375 USA. type 741. (b) Schematic of circuit used to crefife’) function. R1 = 10 k2.
Publisher Item Identifier S 1057-7122(02)02272-9. R2 =490 k2. R3 = 20 k2. R4 = R5 = R6 = 100 kf2.

U. S. Government work not protected by U. S. copyright.
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