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Fig. 7. Convergence behavior of(x � x̂ ) with respect to time in Case 2.

Fig. 8. Convergence behavior of(s� ŝ) with respect to time in Case 2.
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Consistency of a Time-Stepping Method for a Class of
Piecewise-Linear Networks

M. Kanat Çamlıbel, W. P. M. H. Heemels, and J. M. (Hans) Schumacher

Abstract—In this brief, we will study the computation of transient solu-
tions of a class of piecewise- linear (PL) circuits. The network models will
be so-called linear complementarity systems, which can be seen as dynam-
ical extensions of the PL modeling structure as proposed by [1]. In par-
ticular, the numerical simulation will be based on a time-stepping method
using the well-known backward Euler scheme. It will be demonstrated, by
means of an example, that this widely applied time-stepping method does
not necessarily produce useful output for arbitrary linear dynamical sys-
tems with ideal diode characteristics. Next the consistency of the method
will be proven for PL networks that can be realized by linear passive circuit
elements and ideal diodes by showing that the approximations generated by
the method converge to the true solution of the system in a suitable sense.
To give such a consistency proof, the fundamental framework developed in
[2] is indispensable as it proposes a precise definition of a “solution” of a
linear complementarity system and provides conditions under which solu-
tions exist and are unique.

Index Terms—Circuit simulation, linear complementarity problem, pas-
sivity, piecewise-linear networks, switched circuits.

I. INTRODUCTION

Simulation of switched networks is a problem that has been studied
extensively in circuit theory [1], [3]–[9]. Roughly speaking, there are
two main approaches, namely event-tracking (see e.g., [4], [5]) and
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time-stepping methods (see [1], [7]–[9] for electrical networks and
[10]–[14] for unilaterally constrained mechanical systems with friction
phenomena). Representing a hybrid systems point of view (see for in-
stance [15]),event-tracking methodsare based on considering the sim-
ulation interval as a union of disjoint subintervals on which the circuit
topology (called “mode” in the hybrid systems terminology) remains
unchanged. On each of these subintervals we are dealing in general
with differential and algebraic equations(DAE), which can be solved
by standard integration routines (DAE simulation). As integration pro-
ceeds, one has to monitor certain indicators (mostly given by inequali-
ties, e.g., related to currents through diodes being nonnegative) to deter-
mine when the subinterval ends (event detection). At this event time a
mode transition occurs, which means that one has to determine what the
new circuit topology will be on the next subinterval (mode selection).
If the continuous state at the event time is not consistent with the se-
lected mode, a state jump is necessary (re-initialization). The complete
numerical simulation method is based on repetitive cycles consisting of
DAE simulation, event detection, mode selection and re-initialization.

Time-stepping methodsreplace the describing equations directly by
some “discretized” equivalent. Numerical integration routines are ap-
plied to approximate the system equations involving derivatives and all
algebraic relations are enforced to hold at each time-step. In this way,
one has to solve at each time-step an algebraic problem (sometimes
called the “one-step problem”) involving information obtained from
previous time-steps. In contrast with event-driven methods, time-step-
ping methods do not determine the event times accurately, but “over-
step” them, which puts the convergence of the approximations in a suit-
able sense (called “consistency”) into question.

In this brief, we will study the consistency of a time-stepping method
that is based on the well-known backward Euler integration scheme for
a class of piecewise-linear (PL) electrical circuits. The used network
models are so-calledlinear complementarity systems[15]–[19], which
can be seen as dynamical extensions of the PL model structure that
has been introduced by Van Bokhoven [1], [8]. Van Bokhoven’s model
is based on the linear complementarity problem of mathematical pro-
gramming [20] and covers many well-known canonical PL descriptions
[21] (see also [2]). As such complementarity modeling is very powerful
and many dynamical PL circuits are captured by (dynamic) linear com-
plementarity systems.

Time-stepping methods may be preferable to event-tracking methods
in particular in situations where many mode changes take place. In fact
there do exist examples of linear complementarity systems (see e.g.,
Example 2 below), for which the event times (the times at which the
mode changes) accumulate, i.e., the system displays an infinite number
of switches (mode transitions) in a finite time-interval. It is obvious
that this behavior causes difficulties for an event-tracking method as
simulation beyond the accumulation point is in principle not possible
without using some heuristic tool. Time-stepping can be an effective
alternative in such situations.

As mentioned before, the time-stepping method that we will study
here is based on the well-known backward Euler scheme and has been
described, for instance, in [1], [7]. [8], for electrical networks. Similar
methods have been used in a mechanical context in [10]–[14]. A nice
feature of the method is that it is straightforward to implement and
many algorithms (e.g., Lemke’s algorithm [20], Katzenelson’s algo-
rithm [22] and others [8]) are available to solve the one-step problems
consisting of linear complementarity problems.

Convergence problems of time-stepping methods for mechanical
systems subject to unilateral constraints or friction have been studied

by Stewart [11], [23]. He shows that for a broad class of nonlinear
constrained mechanical systems there always exists asubsequence
of approximating time functions that converge to a real solution of
the mechanical model. In the context of mechanical systems subject
to unilateral constraints or friction, the complementarity conditions
appear between theforce andpositionvariables. A direct translation
to electrical circuits would not yield networks with complementarity
conditions between the voltage and current variables which is the
case for ideal diodes. Therefore, the results that have been obtained
in [11], [23] do not cover electrical networks containing ideal diodes,
which are included in the class of PL networks studied in this paper.
Therefore, the objective of the current brief is to show that for the
class of PL circuits that can be realized by linear passive elements
and ideal diodes (complementarity conditions) the backward Euler
time-stepping method is consistent. Moreover, we will even prove that
the whole sequence (and not only a subsequence) of the approximating
time functions converges to the real transient solution of the network
model, when the step size decreases to zero.

II. NOTATION

Throughout the brief, ( n) denotes the set of (n-tuples of) real
numbers. + denotes the set of nonnegative real numbers, i.e.,+ =
[0; 1). For the real part of the complex number�, we writeRe(�). For
anyx, y 2 n, x ? y means thatx>y = 0. Inequalities for vectors
are always meant to hold componentwise.

The Euclidean and maximum norm of a vectorx 2 n will be de-
noted bykxk := n

i=1 x
2
i andkxk1 := max1�i�n jxij, respec-

tively. For a real numberr 2 , we use the notationdre to denote the
smallest integer larger than or equal tor. We writeO(x) for any func-
tion such thatlim supx!1 jO(x)j=x <1. We say that a proposition
P(x) holds for all sufficiently small (large)x if there existsx0 > 0
such that it holds for all0 � x � x0 (x0 � x).

The set of real matrices withn rows andm columns is de-
noted by n�m. For anyA 2 n�m, J � f1; 2; . . . ng, and
K � f1; 2; . . . ; mg, AJK denotes the submatrixfAjkgj2J; k2K .
If J = f1; 2; . . . ; ng (K = f1; 2; . . . ; mg), we also writeA�K
(AJ�). For anyA 2 n�m kAk := supkxk=1 kAxk denotes the
matrix norm induced by the Euclidean vector norm. A square matrix
A 2 n�n is said to be nonnegative (positive) definite ifx>Ax � 0
(x>Ax > 0) for all 0 6= x 2 n. We write�(A) for the set of
eigenvalues ofA and�(A) := max�2�(A) j�j for the spectral radius
of A. By the symmetric part ofA, we mean the matrix1=2 (A+A>).
The identity matrix is denoted byI . Given two matricesA 2 n �m

andB 2 n �m, the matrix obtained by stackingA overB is denoted
by col(A; B).

The set ofn-tuples of square integrable functions on(t0; t1) is de-
noted byLn2 (t0; t1). The notationhx; yi denotes the inner product of
x, y 2 Ln2 (t0; t1), i.e., hx; yi =

t

t
x>(t)y(t)dt. The norm on

Ln2 (t0; t1) is defined bykxk = hx; xi1=2. Moreover, the time func-
tion xj
 denotes the restriction of the time functionx to the interval

. We say that the sequencefxkg � Ln2 (t0; t1) converges(converges
weakly) to x if limk!1 kxk � xk = 0 [limk!1hxk � x; yi = 0 for
all y 2 Ln2 (t0; t1)].

The typewriter font will be used for distributions to distinguish them
from functions. The spaceL�(0; � ) consists of the distributions of the
form u = uimp + ureg whereuimp = u0� is called theimpulsive part
with u0 2 andureg 2 L2(0; � ) is called theregular part. We say
that the sequence of distributionsfuk0 �+u

k
regg � L�(0; �) converges

(weakly) tou0 �+ureg, if fuk0g converges tou0 andfukregg converges
(weakly) toureg in L2-sense.
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The matrix triple(A; B; C) with A 2 n�n, B 2 n�m and
C 2 m�n is said to beminimalif (A; B) is controllable and(C; A)
is observable (see for instance [24]).

III. L INEAR COMPLEMENTARITY SYSTEMS

We begin by briefly recalling the linear-complementarity problem
(LCP) of mathematical programming. For an extensive survey on the
problem, the reader is referred to [20].

Problem 1 [LCP(q; M)]: Givenq 2 m andM 2 m�m, find
z 2 m such that

0 � z ? q +Mz � 0: (1)

We say thatz solvesLCP(q; M ) if z satisfies (1). The set of all so-
lutions of LCP(q; M ) will be denoted by SOL(q; M). Note that the
so-called complementarity (1) conditions also appear in the ideal diode
characteristicv � 0, i � 0, andiv = 0. Not surprisingly, the linear
complementarity problem plays a major role in the analysis of networks
with ideal diodes. As discussed in [2, Sec. 3], many dynamical PL elec-
trical networks can be cast as linear complementarity systems by fol-
lowing the ideas developed in [1]. A linear complementarity system is
given by

_x(t) =Ax(t) +Bu(t) (2a)

y(t) =Cx(t) +Du(t) (2b)

0 �u(t) ? y(t) � 0 (2c)

whereu(t) 2 m,x(t) 2 n, y(t) 2 m andA,B,C, andD are ma-
trices of appropriate dimensions. We denote (2) by LCS(A; B; C; D).
For more details on LCS, we refer to [16]–[19].

IV. SIMULATION OF LCS

The aim of this section is to discuss two approaches for the simula-
tion of LCS.

A. Event-Tracking Methods

From a hybrid system point of view, LCS(A; B; C; D) has2m

modes depending on the complementarity conditions (2c) that indicate
which diodes are blocking and which ones are conducting. The system
is governed in modeK by the DAE

_x =Ax +Bu (3a)

y =Cx+Du (3b)

ui =0; if i =2 K (3c)

yi =0; if i 2 K (3d)

as long as the inequality constraints

yi � 0 if i =2 K (4a)

ui � 0 if i 2 K (4b)

hold. By starting in modeK � f1; 2; . . . ; mg, an event-tracking
method integrates the DAE (3) by standard routines and monitors the
inequalities (4). In case of a violation of (4), the event time (the time just
before the violation) has to be determined in order to find out the mode
which will be active after the event. Once the new mode is determined,
the above procedure repeats itself again. One of the main disadvantages
of this type of approach arises if there is an accumulation of events. In
principle, event-tracking methods cannot go beyond such an accumu-
lation point without using some kind of heuristic tool. In what follows,
we give an example of an LCS having accumulation of events.

Fig. 1. Trajectory with initial state (2, 2).

Example 2: Consider the following example (its time-reversed ver-
sion is due to [25, p. 116])

_x1 =�sgnx1 + 2sgnx2

_x2 =�2sgnx1 � sgnx2

wheresgnx is the set-valued (relay) function given by

sgnx =

�1; if x < 0

[�1; 1]; if x = 0

1; if x > 0

:

As shown in [26], [27], this type of systems can be cast as LCS. So-
lutions of the system are spiraling toward the origin, which is an equi-
librium. Since(d=dt)(jx1(t)j + jx2(t)j) = �2 whenx(t) 6= 0 along
trajectoriesx of the system, solutions reach the origin in finite time
(see Fig. 1 for a trajectory). Every crossing from one quadrant to an-
other corresponds to an event (relay switch). Therefore, on a finite time
interval there are infinitely many events, i.e., events do accumulate.

This example shows that the event-tracking methods might not be
the most efficient methods for the simulation of LCS.

B. The Backward Euler Time-Stepping Method

An alternative for event-tracking is the time-stepping method. Typi-
cally, such a method tries to replace approximately the overall system
description by a discretized equivalent instead of considering several
linear DAE as an event-tracking method does. A frequently used time-
stepping scheme (see [1], [7]–[9]) is based on the well known back-
ward Euler method. For LCS the method consists of discretizing the
system description by applying the backward Euler integration routine
and imposing the complementarity conditions at every time step. This
comes down to the computation ofuhk+1, yhk+1, andxhk+1 given xhk
through the linear complementarity problem given by

xhk+1 � xhk
h

=Axhk+1 +Buhk+1 (5a)

yhk+1 =Cxhk+1 +Duhk+1 (5b)

0 � yhk+1 ? uhk+1 � 0: (5c)

Note that we use roman font for the numerical approximations.
In the above relations,�hk denotes the value at thekth step of the
corresponding variable for the step sizeh > 0. Based on this scheme,
one can construct approximations of the transient response of an LCS
on an simulation interval[0; � ] by applying the algorithm below.

Algorithm 3:(fuhkg; fx
h

kg; fy
h

kg) =App.(A; B; C; D; x0):

1) Nh = d�=he.
2) xh�1 := x0.
3) k := �1.
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4) Solve theone-step problem

yhk+1 =C(I � hA)�1xhk + [D + hC(I � hA)�1B]uhk+1

0 �uhk+1 ? yhk+1 � 0:

5) xhk+1 := (I � hA)�1xhk + h(I � hA)�1Buhk+1:
6) k := k + 1:
7) If k < Nh goto 4).
8) Stop.

The one-step problem in step 4) is given by a linear complementarity
problem. In general a linear complementarity problem may have mul-
tiple solutions or have no solutions at all. We shall proceed by assuming
unique solvability of the problem. The assumption is introduced here
for reasons of generality; later on we will prove that the assumption is
implied by passivity.

Assumption 4:For all sufficiently smallh > 0, LCP(C(I �
hA)�1x; G(h�1)) has a unique solution for allx, whereG(h�1) is
given byD + hC(I � hA)�1B.

This assumption implies that for all sufficiently smallh > 0, Al-
gorithm 3 generates an output, which is unique. Hence, for a given
step sizeh > 0 (sufficiently small), we can define the approximations
(uh; xh; yh) 2 L�(0; � ) given by

u
h
imp = huh0 � (6a)

x
h
imp = hxh0 � (6b)

y
h
imp = hyh0 � (6c)

u
h
reg(t) = uhl

x
h
reg(t) = xhl
y
h
reg(t) = yhl

whenever(l� 1)h � t < lh (6d)

whereuhk , xhk andyhk , k = 0; 1; . . . ; Nh have been obtained from
Algorithm 3. One of the main goals of the paper is to prove that for a
passive system these approximations converge in a suitable sense. This
property is calledconsistencyof the numerical method. In the following
example, we illustrate that Algorithm 3 is not always consistent even if
Assumption 4 holds.

Example 5: Consider the linear complementarity system (con-
sisting of a triple integrator with complementarity conditions)

_x1 =x2; _x2 = x3; _x3 = u; y = x1

0 �u ? y � 0

with the initial statex0 = (0 �1 0)>. Algorithm 3 gives

(uhk ; y
h
k) =

(h�2; 0); if k = 0

0;
k(k + 1)

2
h ; if k 6= 0:

It follows from (6d) that

kyhregk �
(N �1)h

(N �2)h

kyh(N �1)k
2 dt

1=2

= O(h�1=2)

wheneverNh � 2. Therefore,yhreg is far from being convergent as it
is not bounded ash converges to zero. For three different values ofh,
the trajectories ofyhreg on [0, 1] are depicted in Fig. 2.

This example indicates that one should be cautious in applying a
time-stepping method to a general LCS. As a consequence, verification
of the numerical scheme in the sense of showing consistency is needed.

Fig. 2. Nonconvergence of backward Euler approximations for the triple
integrator with ideal diode characteristic.

V. PRELIMINARIES

A. Passivity of a Linear System

In the sequel, we are mainly concerned with linear passive-comple-
mentarity systems.

Definition 6 [28]: The system(A; B; C; D) given by (2a) and (2b)
is said to bepassive (dissipative with respect to the supply rateu>y)
if there exists a functionV : n ! + (astorage function), such that

V (x(t0)) +
t

t

u>(t)y(t)dt � V (x(t1))

holds for all t0 and t1 with t1 � t0, and all (u; x; y) 2
Lm+n+m
2 (t0; t1) satisfying (2a) and (2b).
We state a well-known theorem on passive systems which is some-

times called the positive real lemma.
Lemma 7 [28]: Assume that(A; B; C) is minimal. Then the fol-

lowing statements are equivalent.

1) (A; B; C; D) is passive.
2) The matrix inequalities

K = K> � 0 and
A>K +KA KB � C>

B>K � C �(D+D>)
� 0

have a solution.
3) G(s) is positive real, i.e.,G(�)+G>(�) � 0 for all � 2 with

� =2 �(A) andRe(�) > 0.

Moreover, if (A; B; C; D) is passive all solutions of the matrix in-
equalities in item 2 are positive definite.

Throughout the brief, we will frequently use the following assump-
tion.

Assumption 8:(A; B; C) is a minimal representation andB is of
full column rank.

B. Solution Concept for LCS

Before precisely defining the solution concept of
LCS(A; B; C; D), we need to mention several spaces of functions
and distributions. The spaceB denotes the space of Bohl functions,
i.e., functions having rational Laplace transforms. The spaceB�
consists of the distributions of the formu = uimp + ureg, where
uimp = u0 � is called theimpulsive partwith u0 2 andureg 2 B is
called theregular part. A distributionu 2 Bn� is said to beinitially
nonnegative, if its Laplace transform̂u(s) satisfiesû(�) � 0 for all
sufficiently large� 2 .
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Next, we recall the notion of aninitial solution which is of consid-
erable importance in the analysis of linear complementarity systems.

Definition 9: The triple(u; x; y) 2 Bm+n+m
�

is aninitial solution
of LCS(A; B; C; D) with initial statex0 if there exists an index set
I � f1; 2; . . . ; mg such that

_x =Ax+Bu+ x0�; y = Cx+Du

yi =0 if i 2 I; ui = 0 if i =2 I

hold in the distributional sense (for more details see [2]), andu andy
are initially nonnegative.

Now, we can give a precise definition of what is meant by a solu-
tion of LCS(A; B; C; D). Actually, the (global) solution concept for
general linear complementarity systems (see [16]) is more complicated
than the one we will present. In the case of linear passive complemen-
tarity systems, it can be trimmed as shown in [2].

Definition 10: The triple(u; x; y) 2 Lm+n+m
�

(0; � ) is a(global)
solutionof LCS(A; B; C; D) on [0; � ] with initial statex0 if the fol-
lowing conditions hold.

1) There exists an initial solution(u; x; y) such that

(uimp; ximp; yimp) = (uimp; ximp; yimp):

2) The equations

_x =Ax +Bu+ x0 �

y =Cx+Du

hold in the distributional sense.
3) For almost allt 2 [0; � ], 0 � ureg(t) ? yreg(t) � 0.
Notice that the above definition is equivalent to the integral form

given in [2, Def. VII.1]. The proof of the following theorem can be
found in [2] and deals with the existence and uniqueness of solutions
to linear passive complementarity systems.

Theorem 11: Suppose that(A; B; C; D) is such that Assumption
8 holds and(A; B; C; D) is passive. Let� > 0 be given. For each
x0, there exists a unique solution(u; x; y) 2 Lm+n+m

�
(0; � ) of LCS

(A; B; C; D) on [0; � ] with initial statex0.

VI. M AIN RESULTS

The following theorem is the basis of our consistency proof as it
states sufficient conditions that imply consistency. The theorem is
based on Assumption 4 rather than directly on the passivity property.
Due to space constraints, we cannot include the proof here; see [29] or
[30, Ch. 6] for full details.

Theorem 12 [29]: Consider LCS(A; B; C; D) such that Assump-
tion 4 holds andD is nonnegative definite. Let� > 0 andx0 2 n

be given. Also let(uh; xh; yh) be given by (6) via Algorithm 3. Sup-
pose that there exists an� > 0 such that for all sufficiently smallh
khuh0k � � andkuhregk � �. For any sequencefhkg that converges
to zero, we have the following statements.

1) There exists a subsequencefhk g � fhkg such that
(fuh g; fyh g) converges weakly to some(u; y) and
fxh g converges to somex.

2) The triple(u; x; y) is a solution of LCS(A; B; C; D) on [0; � ]
with the initial statex0.

3) If the solution (u; x; y) is unique for the initial statex0
in the sense of Definition 10, then the complete sequence
(fuh g; fyh g) converges weakly to(u; y) and fxh g con-
verges tox.

Note that these conditions do not hold for the system that has been
considered in Example 5. We shall show in the Appendix that the con-
ditions of Theorem 12 are satisfied in the case of passive complemen-
tarity systems so that the following result holds.

Fig. 3. RLC circuit with ideal diodes.

Theorem 13: Consider LCS(A; B; C; D) such that Assumption
8 holds and(A; B; C; D) is passive. Let� > 0 andx0 2 n be
given. Let(u; x; y) be the unique solution of LCS(A; B; C; D) on
[0; � ] with the initial statex0. Also let (uh; xh; yh) be given by (6)
via Algorithm 3. Then,(fuhg; fyhg) converges weakly to(u; y) and
fxhg converges tox as the step sizeh tends to zero.

We illustrate Theorem 13 in a simple example.
Example 14: Consider the linear RLC circuit (withR = 1
,L = 1

H andC = 1 F) coupled to two ideal diodes, as shown in Fig. 3. The
network is described by

_x1 =x2 � u1 + u2; _x2 = �x1 � x2 � u2

y1 =�x1; y2 = x1 + x2 + u2

0 �u ? y � 0

wherex1 is the voltage across the capacitor,x2 is the current through
the inductor,u1 andu2 are the current through, andy1 and y2 are
(minus) the voltage across diode 1 and 2, respectively. For two different
initial states, we apply the backward Euler time-stepping method. The
first initial state isx0 = col(�e; 1). In Fig. 4, the approximating state
trajectories for the step sizes 0.1, 0.5 and 0.025 are depicted. Note that
there are two events (topology changes) of the circuit. The second ini-
tial state we consider isx0 = col(1; 1). As shown in [2, Example 6.3],
this initial state isinconsistentin the sense that the corresponding so-
lution contains a Dirac impulse in theu-trajectory and hence a discon-
tinuity in the state. As expected from Theorem 13, the approximating
state trajectories converge to the actual ones. In Fig. 5, the approxi-
mating trajectories are depicted for the step sizes 0.1, 0.5 and 0.025.
For reasons of clarity we draw the successive computed values of the
approximations as horizontal lines; in practice of course one would use
for instance PL interpolation. Note that we also picture the solution
with inequalities in (6d) replaced bylh � t < (l+ 1)h.

VII. CONCLUSIONS

In this brief, we studied the consistency of a time-stepping method
based on the backward Euler integration routine. The method has
proven itself already in practice for the transient simulation of PL
electrical circuits and constrained mechanical systems. However,
one cannot indiscriminately apply this method for general classes of
discontinuous systems as shown by an example in this brief. The main
result of the brief has presented a rigorous proof of the consistency
of the backward Euler time-stepping method when applied to a class
of networks that can be modeled as linear passive electrical networks
with ideal diodes (or stated differently, can be modeled as linear pas-
sive complementarity systems). In spite of the mixed continuous and
discrete behavior of the circuit and the possibility of Dirac impulses
occurring at the initial time, we have shown the convergence of the
approximations to the actual transient solution of the network model.

Of course, it would be interesting to generalize these results to other
systems of a mixed continuous and discrete nature. In particular, we are
currently studying the consistency of the backward Euler method for
dynamical systems with relays (see [27] as a first step in this direction)
and for other linear complementarity systems. For systems where the
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Fig. 4. State trajectories for the initial statex = col(�e; 1).

backward Euler time-stepping scheme does not generate proper output
(like the triple integrator), it is useful to consider extensions of the time-
stepping algorithm that are consistent.

APPENDIX

In the following lemma, we state some results for the matrix inverse
(I � hA)�1.

Lemma 15: LetA 2 n�n. The following statements hold.

1) k(I � hA)�1k � (1=(1� �h)) for all h with �h < 1 where�
is the largest eigenvalue of(1=2) (A + A>).

2) There exists an� > 0 such thatk(I � hA)�1k � � for all
sufficiently smallh.

Proof: 1) By the Wazewski inequality (see e.g., [31, Theorem
8.1]), keAtk � e�t for all t where� is the largest eigenvalue of
(1=2) (A+A>). Reference [32, Theorem 1.5.3] gives now the desired
inequality.

2) It can easily be verified by using item 1 thatk(I � hA)�1k �
1=(1� �) whenever�h � � < 1.

A. Rational Complementarity Problem

It can be shown that there is a one-to-one relation between the initial
solutions to LCS(A; B; C; D) with initial statex0 and theproper

Fig. 5. State trajectories for the initial statex = col(1; 1).

solutions of the so-calledrational complementarity problem(see for
instance [17], [19]).

Problem 16 [RCP(x0; A; B; C; D)]: Given x0 2 n and
(A; B; C; D) with appropriate sizes, find̂u(s) 2 m(s) and
ŷ(s) 2 m(s) such that

ŷ(s) = C(sI � A)�1x0 + [C(sI � A)�1B +D]û(s)

andû(s) ? ŷ(s) for all s 2 , andû(�) � 0 andŷ(�) � 0 for all
sufficiently large� 2 .

The following proposition states the above mentioned one-to-one
relation which is given by the Laplace transform and its inverse.

Proposition 17 [17]: The triple (u; x; y) is an initial solution of
LCS(A; B; C; D)with initial statex0 if and only if its Laplace trans-
form (û(s); x̂(s); ŷ(s)) is such that(û(s); ŷ(s)) is a proper solu-
tion of RCP (x0; A; B; C; D) andx̂(s) = (sI � A)�1x0 + (sI �
A)�1Bû(s).

We shall use the following proposition which establishes the relation
between the solutions of the one-step problem and the solutions of the
rational complementarity problem.

Proposition 18: Consider a matrix quadruple(A; B; C; D) such
that Assumption 4 holds. We have the following statements for allx0 2
n.

1) RCP (x0; A; B; C; D) has a unique solution.
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2) For all sufficiently smallh,

û(h�1) = huh0 ; x̂(h�1) = hxh0 ; ŷ(h�1) = hyh0

where(û(s); ŷ(s)) is the solution of RCP (x0; A; B; C; D),
x̂(s) = (sI � A)�1x0 + (sI � A)�1Bû(s) and(uh0 ; x

h
0 ; y

h
0 )

is the solution of the one-step problem of Algorithm 3 fork = 0.
Proof: 1) Observe the basic fact that if LCP(q; M ) is solv-

able then LCP(�q; M ) is also solvable provided that� � 0. As
a consequence, Assumption 4 implies together with the identity
h(I � hA)�1 = (h�1I � A)�1 that for all sufficiently smallh,
LCP(C(h�1I � A)�1x0; G(h�1)) has a unique solution. From
[17, Theorem 4.1 and Corollary 4.10], we can conclude that RCP
(x0; A; B; C; D) has a unique solution.

2) Let (û(s); ŷ(s)) be the solution of RCP (x0; A; B; C; D).
It can be easily seen that̂u(h�1) solves LCP(C(h�1I �
A)�1x0; G(h�1)) for all sufficiently smallh. Note that if z is a
solution of LCP(q; M ) then�z is a solution of LCP(�q; M ) provided
� � 0. Therefore,h�1û(h�1) solves LCP(C(I�hA)�1x0; G(h�1))
for all sufficiently smallh. In other words, for all sufficiently smallh

û(h�1) = huh0 ; x̂(h�1) = hxh0 ; ŷ(h�1) = hyh0 (7a)

wherex̂(s) = (sI �A)�1x0 + (sI �A)�1Bû(s).

B. Some Results on LCPs

We will present in this subsection some results on LCPs, that will
be needed to prove the main result (Theorem 13) for linear passive-
complementarity systems.

Proposition 19: LetM 2 m�m be a positive definite matrix and
zi the unique solution of LCP(qi; M ) for i = 1; 2. Then

kz1 � z2k � m3=2

�(M)
kq1 � q2k

where�(M) denotes the smallest eigenvalue of the symmetric part of
M , i.e.,(1=2) (M +M>).

Proof: By ref. [20, Lemma 7.3.10 and Proposition 5.10.10], we
havekz1 � z2k1 � (m=�(M))kq1 � q2k1. It yieldskz1 � z2k �
(m3=2=�(M))kq1 � q2k sincekzk � m1=2kzk1 andkzk1 � kzk
for all z 2 m.

Using the passivity property, we can compute a lower bound on
�(G(h�1)) withG(s) := D+C(sI�A)�1B, that will be useful for
the application of Proposition 19.

Lemma 20: Consider a matrix quadruple(A; B; C; D) such that
Assumption 8 holds and(A; B; C; D) is passive. Let�(N) denote the
smallest eigenvalue of the symmetric part of a matrixN . The following
statements hold.

1) D � 0.
2) u 6= 0 andu>Du = 0 imply thatu>CBu > 0.
3) There exists an� > 0 such that�(D + hCB) � �h for all

sufficiently smallh.
4) There exists a� > 0 such that�(G(h�1)) � �h for all suffi-

ciently smallh whereG(s) = D + C(sI � A)�1B.
Proof: 1)–2) It follows from [30, Lemma 3.8.2].

3) It follows from [30, Lemma 5.7.6].
4) It is known from matrix theory (see e.g., [33, Property 9.13.4.9])

that�(N1 + N2) � �(N1) + �(N2) for all square matricesN1 and
N2. Hence, we get from item 3 that�(G(h�1)) � �(D + hCB) +
O(h2) � �h for some� > 0 and all sufficiently smallh.

The following auxiliary lemma will be needed in the sequel.
Lemma 21: Let P = fx 2 njAx � bg be a given nonempty

polyhedron withA 2 n�m and b 2 m and letx� be equal to
argminx2P kxk. There exists an index setJ � f1; 2; . . . ; ng such
thatx� = argminA x=b kxk.

Proof: Consider the convex quadratic optimization problem
minAx�b (1=2)x

>x. The well-known Kuhn–Tucker conditions are

necessary and sufficient for this problem because of its convexity
(see for instance [20, Chapter 1.2]), i.e.,x� is the solution of the
optimization problem above if and only if there exists au 2 m

such thatx� = A>u; Ax� � b, u � 0; u>(Ax� � b) = 0.
Take such a vectoru. Let J = fijui > 0g andv = uJ . Then,x�

satisfiesx� = (AJ�)
>v; AJ�x

� = bJ . Note that these are necessary
and sufficient (Kuhn–Tucker) conditions for the convex quadratic
minimization problemminA x=b (1=2)x>x.

To formulate the next lemma, we need to recall the concept of a
dual cone.

Definition 22: For any nonempty setQ � m, the set
fw 2 mjw>v � 0 for all v 2 Qg is called thedual coneof
Q and is denoted byQ�.

Lemma 23: Let M 2 m�m be nonnegative definite andQ =
SOL(0; M). We have the following statements.

1) LCP(q; M ) is solvable if and only ifq 2 Q�.
2) For eachq 2 Q�, there exists a unique least-norm solutionz� 2

SOL(q; M) such thatkz�k � kzk for all z 2 SOL(q; M).
3) There exists� > 0 such that for allq 2 Q� kz�(q)k �

�kqk, wherez�(q) denotes the least-norm solution (see item 2)
of LCP(q; M ).

Proof: 1) It follows from [20, Exercise 3.12.1 and Corollary
3.8.10].

2) This follows from the fact that SOL(q; M) is a nonempty poly-
hedron wheneverq 2 Q� [20, Theorem 3.1.7(c)].

3) Define

�(A) = max min
Ax=y

kxkjy 2 imA and kyk = 1

if A 6= 0 and zero otherwise. Take

� =
p
2 max
J�A

max
K�A

� ((col(I; �IJ �; M; �MJ�))K�)

whereAk = f1; 2; . . . ; kg. For anyq 2 Q�, we know from the
items 1 and 2 that LCP(q; M ) is solvable and that there exists a unique
least-norm solutionz�(q). Let J = fijz�i (q) > 0g. Clearly,P =
fvjvJ � 0, vJ = 0, qJ + MJJvJ = 0, andqJ + MJ JvJ �
0g � SOL(q; M) and z�(q) 2 P . Note thatP is a polyhedron,
sinceP = fvjAv � bg whereA = col(I; �IJ �; M; �MJ�)
and b = col(0; 0; �q; qJ ). Moreover, it is obvious thatz�(q) =
argminAv�b kvk. Then, according to Lemma 21 there existsK �
f1; 2; . . . ; 3mg such thatz�(q) = argminA v=b kvk. Thus, we
havekz�(q)k � �(AK�)kbKk. Note thatkbKk2 � kbk2 � kqk2 +
kqJk2 � 2kqk2 and

p
2�(AK�) � �. Consequently,kz�(q)k �

�kqk.

C. Proof of Theorem 13

After these results on LCPs, the proof of the main result on linear
passive complementarity systems is in order. The proof will be based
on showing that the requirements of Theorem 12 are fulfilled for this
class of linear complementarity systems.

Lemma 24: Consider LCS(A; B; C; D) such that Assumption
8 holds and(A; B; C; D) is passive. For all sufficiently smallh,
LCP(hC(I � hA)�1x; G(h�1)) has a unique solution for each
x 2 n.

Proof: The statement follows from the positive definiteness of
G(h�1) for all sufficiently smallh (Lemma 20 item 4) together with
[20, Theorem 3.1.6 of ]).

Lemma 25: Consider LCS(A; B; C; D) such that Assumption 8
holds and(A; B; C; D) is passive. Let� > 0 andQ = SOL(0; D),
i.e.,Q = fz 2 mjz � 0, Dz � 0 andz>Dz = 0g be given. Also
let (fuhkg; fxhkg; fyhkg) be produced by Algorithm 3. The following
statements hold for all sufficiently smallh.



356 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 3, MARCH 2002

1) Cxhk 2 Q� for all k 6= �1.
2) There exists an� > 0 independent ofx0 such thatkuhkk �

�kx0k for all k 6= 0.
Proof: 1) It is evident from (5b) and (5c) thatuhk solves

LCP(Cxhk ; D) when k 6= �1. SinceD is nonnegative definite
(Lemma 20 item 1),Cxhk 2 Q� due to [20, Corollary 3.8.10].

2) All inequalities involvingh are meant to hold for all sufficiently
smallh, and�1; �2; . . . ; �6 are suitably chosen positive constants in
this proof. Note that LCP(Cxhk ; D) is solvable for allk 6= �1 due
to item 1 and [20, Corollary 3.8.10]. Letu� be the least-norm solu-
tion of LCP(Cxhk ; D). Clearly,u� solves also LCP(Cxhk � hC(I �
hA)�1Bu�; G(h�1)). According to Proposition 19, we have

kuhk+1 � u�k �
m3=2

�(G(h�1))
kC(I � hA)�1xhk � Cxhk

+hC(I � hA)�1Bu�k;

sinceuhk+1 solves LCP(C(I � hA)�1xhk ; G(h�1)) andG(h�1) > 0
for all sufficiently smallh. By using the triangle inequality and Lemma
20 item 4, we obtain

kuhk+1 � u�k �
�1
h
kC[(I � hA)�1 � I]xhkk

+�1kC(I � hA)�1Bu�k:

Note that(I � hA)�1� I = hA(I �hA)�1. It can be easily verified
that Lemma 15 item 2 and Lemma 23 item 3 result in

kuhk+1 � u�k � �2kx
h
kk: (8)

Consequently, we get

kuhk+1k � ku�k+ kuhk+1 � u�k � �3kx
h
kk (9)

by applying the triangle inequality and employing Lemma 23 item 3
and (8). It follows that

kxhk+1k �kxhkk+ kxhk+1 � xhkk

�kxhkk+ (I � hA)�1 � I xhk

+ h(I � hA)�1Buhk+1 [from (5a)]

� (1 + �4h)kx
h
kk (from Lemma 15 item 2).

This implies that

kxhkk � �5kx
h
0k (10)

for some�5 > 0 sincelimh!0(1+�4h)
N = e� � (Lemma 15 item

3). HereNh = d�=he. Note that we have

kxh0k = kx0 + hBuh0k � �6kx0k (11)

from Lemma 6.3 item 2. Finally, (9), (10) and (11) establish the desired
inequality.

After all these preliminaries, we can prove Theorem 13.
Proof of Theorem 13:According to Lemma 24, Assumption 4

holds. Then, Proposition 18 item 1 implies that RCP(x0; A; B; C; D)
has a unique solution, say(û(s); ŷ(s)). It is known from [2, Theorem
3.6] thatû(s) is proper. Therefore, boundedness ofkhuh0k for all suffi-
ciently smallh follows from Proposition 18 item 2. On the other hand,
D is nonnegative definite due to item 1 of Lemma 20 and

kuhregk =
�

0

kuhreg(t)kdt
1=2

� �� 1=2kx0k (12)

due to (6) and Lemma 25 item 2. Finally, it is known from Theorem
11 that(u; x; y) is the unique solution on[0; � ] with the initial state
x0. As a consequence of Theorem 12 item 3,f(uh ; yh )g converges

weakly to (u; y) andfxh g converges tox for any sequencefhkg
that converges to zero. In other words,f(uh; yh)g converges weakly
to (u; y) andfxhg converges tox ash tends to zero.
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Using the Cyclostationary Properties of Chaotic Signals
for Communications

T. L. Carroll

Abstract—Cyclostationary signals have an expectation value which
varies periodically in time. Chaotic signals that have large components at
some discrete frequencies in their power spectra can be cyclostationary.
The cyclostationarity persists even if the discrete frequency components
are removed from the chaotic signal, leaving a signal with a purely broad
band frequency spectrum. In this brief, a communications system is
created by modulating information onto the periodic parts of a chaotic
signal and then removing the periodic parts from the frequency spectrum.
At the receiver, the periodic parts of the spectrum are restored by means
of a nonlinear operation. This system is demonstrated both in simulations
and real circuits, and the performance of this system is measured in
simulations. Finally, some of the reasons why such a scheme might be
useful are discussed.

Index Terms—Chaos, communication, cyclostationary.

I. INTRODUCTION

Chaotic circuits are natural generators of broad-band signals,
so there has been research into applying chaotic circuits to spread
spectrum communications [1]–[13]. Most of these communications
methods depend on having a synchronized chaotic receiver or at least
some sort of information about the chaotic signal at the receiver.
Difficulties in synchronizing chaotic receivers make most of these
techniques impractical for multi-user communications systems. In
addition, much research has focussed on the possible security of
chaotic communications systems.
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Fig. 1. (a). Chaotic Duffing circuit described by (1).R1 = R3 = R4 =
R5 = R6 = 10 k
; R2 = 39:2 k
; R7 = R10 = R12 = R13 = R14 =
R16 = R17 = R18 = 100 k
; R8 = R9 = R18 = 1 M
; R15 =
5:2 k
; C1 = C2 = C3 = 0:001 �F. The box labeledf corresponds to the
nonlinear functionf(x), while the box labeledg corresponds to the nonlinear
function g(x). All op amps are type 741 or equivalents. (b) Circuit used to
generate the functiong(x). R1 = R2 = R3 = R4 = R9 = 100 k
.
R5 = R7 = 680 k
. R6 = R8 = 2 M
. P1 = P3 = 20 k
 poteniometer.
P2 = P4 = 50 k
 poteniometer. The diodes are all type 1N485B. The
poteniometers are used to match different circuits to each other. The amplifier is
type 741. (b) Schematic of circuit used to createf(x) function.R1 = 10 k
.
R2 = 490 k
. R3 = 20 k
. R4 = R5 = R6 = 100 k
.
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