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Nonlinear Switched Systems with State Dependent 
D well-Time’ 

Claudio De Persis’, Raffaella De Santis3, and A. Stephen Morse4 

Abstract 

The asymptotic convergence of nonlinear switched sys- 
tems in the presence of disturbances is studied in this 
paper. The system switches among a family of inte- 
gral input-testate stable systems. The time between 
two consecutive switchings is not less than a value m. 
This dwell-time TD is allowed to take different values 
according to a function whose argument is the state of 
the system at the switching times. We propose a dwell- 
time function which depends on the comparison func- 
tions which characterize the integral input-testate sta- 
bility and guarantees the state of the switched system 
to converge to zero under the action of disturbances 
with “bounded energy”. The main feature of the anal- 
ysis is that it does not rely on the property that the 
switching stops in finite time. The two important cases 
of locally exponentially stable and feedforward systems 
are analyzed in detail. 

1 Introduction 

A successful strategy to deal with a largely uncertain 
system, whose model is unknown but belongs to one 
of many families of nominal (and known) models, is 
to design a controller for each family of possible mod- 
els, and then let a supervision logic decide from time 
to time what is the better controller to place in the 
feedback loop. This control strategy is typically known 
as switching or logic-based or supervisory control ([14], 
[E], [16], [12], 171, [lo], [SI, [ll]). The study of a logic- 
based supervisory control system usually boils down 
to the analysis of the “convergence” properties’ of a 
switched system, which depends on the piecewise con- 
stant switching signal U generated by the supervision 
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logic and is driven by disturbance signals which t y p  
ically are in L,, p E (l,m]. If the switched sys- 
tem is linear, then the convergence property is proven 
by testing whether or not the linear switched sys- 
tem is asymptotically stable ([15]). If the system is 
not linear then things are more complicated because, 
as it is well-known, the simple asymptotic stability 
doesn’t guarantee any “bounded-input bounded-state” 
or “convergent-input convergent-state” property. In 
[lo] it was shown that, if it is possible to design the 
supervisory control system in such a way that each 
system of the family which defines the switched sys- 
tem is input-testate stable (ISS) ([17]) with respect 
to the disturbance signal and if the switching stops in 
finite time, then the state of the switched system ex- 
hibits the desired convergence property. However, it 
is not always possible to design a control law which 
guarantees the input-testate stability of a closed-loop 
system. A weaker property than input-testate stabil- 
ity is the integml input-twstate stability, introduced in 
[la]. There are various examples of systems which can- 
not he rendered ISS but can be made integral inpnt-te 
state stable (iISS). The supervision of integral input-te 
state stabilizing controllers has been analyzed in [8]. In 
that paper, the authors examined the case in which the 
switching among a family of integral input-twstate sys- 
tems is orchestrated by the “scaleindependent hystere- 
sis“ switching logic ([9]). As already noted in [ll], the 
analysis of the behavior of a control systems supervised 
by a hysteresis switching logic depends on the property 
that under certain conditions the switching stops in fi- 
nite time. This is an idealistic situation which is un- 
likely to occur in the presence of noise and exogenous 
disturbance. So in order to deal with more realistic sce- 
narios, one is urged to take in consideration different 
switching logics, such as the dwell-time switching logic. 
This kind of switching logic has been used e.g. in [15] 
to infer stability properties of a switched linear system. 
Indeed, there are simple examples of stable linear sys- 
tems whose state response can diverge to infinity if the 
switching among them occurs with an “improper tim- 
ing”. A way to remedy this situation is to constrain the 
switching signal to “dwelll at each value for at  least a 
constant amount of time, usually called “dwell-time”. 
Despite of what happens in the linear case, however, a 
constant dwell-time can lead to an unsatisfactory he- 
havior for nonlinear systems. It is then important to 
consider the case of nonlinear switched systems with a 
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dwell-time which can change as time goes by. An ex- 
ample of this kind of analysis has been provided in [ll], 
where it has been shown that a system without distur- 
bances, which switches among globally asymptotically 
stable systems with a dwell-time which is “constant 
only on the average”, preserves its stability property, 
provided that the Lyapunov functions which character- 
ize the asymptotic stability are “similar” in a suitable 
sense (cf. [ l l]) .  
In this paper, we introduce a different kind of “time 
varying” or “adaptive” dwell-time to deal with the 
presence of disturbances. The analysis is not based on 
Lyapunov-like arguments, and this allows to avoid un- 
necessary conditions on the Lyapunov functions. We 
consider the case in which the value assumed by the 
dwell-time depends on the value of the state at which 
the system is. This dependence is described by means 
of a suitable function whose expression is explicitly de- 
termined. After introducing some preliminary defini- 
tions in Section 2, we show in Section 3 that the state 
of the switched system, in the presence of a disturbance 
with bounded energy, globally converges to zero, pro- 
vided that the dwell-time function is suitably chosen. 
This result is then particularized in Section 4 to the 
case of locally exponentially stable systems and in Sec- 
tion 5 to systems in feedforward form. The latter case 
is particularly important to address the problem of su- 
pervisory control of systems in the presence of control 
constraints. For lack of space, we do not analyze the 
behavior of supervisory control systems with state d e  
pendent dwell-time switching logic and its application 
to the control of largely uncertain systems in the pres- 
ence of constraints, for which we refer the reader to [3], 
151. Concise comments on these subjects are given in 
Section 6. 
Most of the proofs have been omitted from the paper 
and can be found in (41. 

2 Preliminaries 

We consider the family of nonlinear maps F := 
{A,(x,d),p E P }  indexed by the parameter p, taking 
on values in the set P .  Each map A, : Rn x WP + Wn 
of F is assumed to be locally Lipschitz. For each piece- 
wise constant signal U : [0, co) -+ P ,  we can define the 
switched nonlinear system 

5 = A,(x, d) , (1) 

where d : [ O , c o )  + IWP is a measurable and locally 
essentially bounded function. We additionally assume 
the following 

Assumption 1 For each p E P system 

is integml input-to-state stable (iISS), that is to 
say (cf. [18], 111)’ there exist class-K, functions 
a(.),8,(.),8,(.), and a class-K function y(.) such that 
the solution x(t) of (2) from the initial condition 
x( to)  = xo under the input d(.) exists for  all t 2 t o  
and satisfies 

t 
+(t)/) I & ( & ( l z ~ l ) e - ( ~ - ~ ” )  + 1 y(ld(r)l)d.r , 

t o  

(3) 
for  all t > t o  2 0, all 20 E Rn and all d(.). 

The inputs d(.) in (1) are required to satisfy 

~ = y ( I d ( . i ) l ) d r  < (4) 

where y(.) is the function which appears in (3). 
Finally, we define the class S of admissible switching 
signals U : [0, m) + P as that set of piecewise constant 
sigoals which: 

(i) Exhibit an infinit,e number of switching times in 
the interval [0, m); 

and such that: 

(ii) Denoted with 7 := {0 =: to, t l , .  . . , t j , .  . .} the in- 
finite and strictly increasing sequence of switch- 
ing times, and with 7~ : W ~ O  -+ R,o a continuous 
function, the difference ti+l - ti  is greater than 
or equal to m(lx(ti)l) for each i = 0,1,. . ., where 
z(ti) is the solution of (1) at time ti. 

Our aim is to find a function m(.) such that the state 
of the system (1) asymptotically converges to zero as 
time goes to infinity. Property (i) is introduced to 
prevent the problem to become trivial. Indeed, if 
u(t )  = q for t > T on, then the switched system b e  
comes x = A,(x, d) for t 2 T ,  and asymptotic conver- 
gence trivially descends from the iISS property and (4) 
(cf. Proposition 6 in [U]). Property (ii) says that a 
switching signal is admissible if it dwells at  a certain 
q E P for an amount of time which  is not less than 
a prescribed value before switching to  a new parame 
ter in P. The time which U dwells at  the parameter 
u(ti)  depends on the value of the state of the switched 
system at the switching time ti, and is computed ac- 
cording to the function -(.). 
Before proceeding, we note that in the present setting 
no finite escape time exists for the solutions of (1) (cf. 
i18l). 

‘X is the class of functions 10, m) - [O, m) which are zero at 
zero, strictly increasing and continuous, IC, is the subset of IC 
mmisting of all those functions that are unbounded. 
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Fact 1 If Assumption 1 holds, then for each U E S ,  
for each initial condition x(O), and for each input d( . ) ,  
the response of system (1) ezists for all t E [0, cu). 

Indeed, let the response of system (1) exist for all t E 
[O,T), with T 5 03. Let ti be the largest switching 
time such that ti < T.  Then for all t E [t;,T), the 
response of (1)  satisfies (3), that is 

t 
a(lx(t)l) 5 e,(ez(Ix(ti)j)e-('-t.)) + y(ld(s)l)ds , L. 

for,t € [ti ,T).  The two terms on the left-hand side 
of the previous inequality are both bounded on.the in- 
terval [ti,T) and therefore Ix(t)l is bounded on [ti,T). 
This implies that necessarily T = 03. 

3 State dependent dwell-time function and 
convergence property 

In this section, we show how to choose the func- 
tion n(.) to guarantee asymptotic convergence for the 
switched system. To this end we introduce the follow- 
ing notation. 

Let a(.), e,(.), &(.) E K, be as in (3). Define the 
functions 

Before introducing the main convergence result, we 
state an intermediate result. The result ensures that 
the sequence of the states {x ( t ; ) }  at the switching times 
of the switched system converge to zero. 

Lemma 1 Consider system ( l ) ,  ossume that 
Assumption 1 holds and that there ezists 
lim,,o+ TA(T)  =: T A ,  with TA < +W. Let U E S with 
Junction 7~ : Wzo + R>o satisfying 

TA(.)  being defined as in (6). Then, for each X Q  E W", 
Jor each input d( . )  fulfilling (d), the solution x ( t )  of (1) 
starting f m m  the initial condition x ( 0 )  = X Q  and under 
the input d( . )  is such that 

lim Ix(ti)l = 0 
;-m 

3Note that T A ( ~ )  > 0 for all 7 > 0. Indeed, setting t-= fo  and 
replacing iz(to)l with r in (3) we obtain that a(.) 5 @I(&(?)). 
As a(.) is a strictly increasing function, th? qrevious inequality 
also implies, for I > 0, that a(r/3)/2 < @I(&(T) ) .  Therefore, 
B;'(a(r/3)/2) =: SI(?) < &(T) =: sz(T), and @ z ( T ) / & ( ~ )  > I 
for all r > 0. 

Using Lemma 1 we can then prove that if the function 
m(.) satisfies (7) the state x( . )  itself converges to zero. 

Theorem 1 Consider system (l), assume that 
Assumption 1 is true and that there exists 
limv-o+ rA(r) =: T A ,  with TA < +CO. Let o E S with 
function m : W ~ Q . -  R>Q satisfying (7). Then, for 
each xo E W", for each input d(.) fulfilling (4), the 
solution x ( t )  of (1) starting from the initial condition 
x (0 )  = X Q  and under the input d(.) is such that 

lim lx(t)l = 0 
e-, 

Remark. In the case system (1) is linear, the function 
T A ( T )  in (6) is equal to a constant for all r 2 0. As a 
matter of fact, it is well-known (see [IS]) that for linear 
systems the iISS property is equivalent to asymptotic 
stability, and the inequality (3) can be written for in- 
stance as 

Ix(t)l 5 ((c~x(to)l)"re-'"-'"))~ + 7 l O t  ld(T)I*dr 

for suitable positive real numbers c, k ,  7. Therefore, 
&(r)  = rk ,  &(r) = (cr)'/lr, a(.) = r ,  and from (5) and 
(6) we have T A ( T )  = In(6c)/k (cf. e.g. (44) in [15]). 4 

If Assumption 1 holds, the functions &(.),&(.) which 
appear in the dwell-time function (7) are class-K, 
functions. In general, this is not enough to guaran- 
tee that the condition lim,,,,+ TA(T)  < +w is ful- 
filled. One may look for a different set of functions 
a(.), GI(.), e,(.) for which both the assumptions of The- 
orem 1 hold. In many cases, as for instance those con- 
sidered in the next two sections, it is more convenient 
to use the following result which does not require T A ( ~ )  

to be defined for r = 0. It states that, if the dwell-time 
is set equal to a suitable constant value when the state 
of the system enters a neighborhood of the origin, then 
the state will remain arbitrarily close to the origin, al- 
though it does not necessarily converge. 

Lemma 2 Consider system (1) and assume that As- 
sumption 1 hold. Given any 6 > 0, let P be a positive 
real number such that T = 8;'(01(36)). Let U E S with 
function TD : R t o  - W>Q satisfying 

T A ( - )  6eing defined os in (6). Then, for each X Q  E 
R", for each input d( . )  fulfilling (4), there exists a time 
Ta such that the solution x ( t )  of (1) starting from the 
initial condition x (0)  = X Q  and under the input d(.) 
satisfies 

for  all times t 2 Ta. 
Ix(t)l < 6 1 
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Lemma 2 shows that if the dwell-time is set equal to 
a constant value when the state is in a neighborhood 
of the origin, then we obtain regulation of the state 

If an additional assumption on the maps A,(x, d )  holds, 
we can give an expression to  the function 6 ( . ) .  

each system (2) has an additional property, namely 
that of being locally exponentially stable. The aim of 
the next section is to  explain this in detail. 

corollary 1 the hypotheses of L~~~~ 3: 

a3 

2a2 
IJ Assumption 9 is fulfilled and k = -, then 

4 Switching among locally exponentially stable (13) holds with b(r) = br, for some a > 0. , ,  . .  .. 
systems 

a3 If Assumption 3 is fulfilled, k = y, and for each 
JU2 Assumption 1 implies that for each p E P the zero- 

input system associated with ( 2 )  is globally asymptot- 
ically stable. We strengthen here this requirement ask- 
ing that for each p E P it is also locally exponentially 
stable, namely (see e.g. 1131) 

p E P, A p ( x ,  0 )  is continuously differentiable for 
all 1x1 E p,S], then (19) holds with 6(r )  = 8rz, 
for some 6 > 0. 

We can now introduce the main result of this section. 

Assumption 2 Far each p E P, system 

is globally asymptotically stable and locally ezponen- 
tially stable, i.e. there exist class-K, functions a l ( . ) ,  
a 2 ( . ) ,  a3(.), positive Teal numbers alraZ,a3, S and a 
smooth function W p ( x )  : Wn + W, such that 

for all x E Wn and 

a i ( s ) = a i s 2 ,  i = l , 2 , 3 ,  (11) 

for all s E (0,4 

The following is a technical lemma which eases the 
proof of Theorem 2 below. 

Lemma 3 Consider system ( l ) ,  and assume that As- 
sumption 2 holds and there ezists a switching time ti 
such that the solution x ( t )  of (1) satisfies Ix(t)i 5 B for 
all t 2 ti. Let k- be a constant such that k E ( 0 , 2 ]  

and o E S with 
2a2 

Then there ezists a class-K function 6 ( . )  such that 

The result asserts t.hat the state of a system which 
switches among iJSS, locally exponentially stable sys- 
tems, converges to zero even when the dwell-time of the 
switching signal is set equal to a constant in a neigh- 
borhood of the origin. 

T h e o r e m  2 Consider system ( I ) ,  and assume that 
Assumptions 1 and 2 hold. I'st 6(.) and k be the Junc- 
tion and, respectively, the positive constant introduced 
in Lemma 9, and y(.) the Junction for which (3) holds. 
Define SI(.),&(.) as in (5) and TA(.) as in (6) and set 

P := 0;'(O1(3s)) , (14) 

with 1 as in Assumption 2. Let o E S with r ~ ,  : Rzo + 

R,o satisfviag 

where al , a2 are as in (11). If there exists a finite c > 0 
such that 6(r)  5 c ~ ( T )  for all T 2 0, then, for each 
xo E Rn, for  each input d( . )  fulfilling (4), the solution 
x( t )  of (1) starting from the initial condition x(0)  = xo 
and under the input d ( . )  is such that 

lim Ix(t)l = 0 
1-, 

Proof:  Since Assumption 1 holds, the function 
m(.) satisfies (15) and F =  8;'(6'1(39)), we know from 
Lemma 2 that there exists a switching time Ts such 
that Iz(t)l 5 S for all t 2 Ts. We also know from 
the proof of Lemma 2 (see [4]) that, for each switching al Ix( t ) /2  5 a2/z ( t i ) /2  . + a z / * 6 ( l d ( r ) l ) d r ,  a1 l. 

for all t 2 t i .  
(13) time t k  2 Ts, we have 1x(tk)l < F .  Hence, from (15), 

m ( l x ( t r ) l )  2 l/kln(a2/al) for each t k  2 Ts and using 
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Lemma 3 we can say that there exist a classic function 
a(.) and a k > 0 such that (13) holds for t ? Tx. 
Moreover, d( . )  fulfilling (4) and b(r) 5 cy(.) for all 
r 2 0, imply that 

and the convergence to zero of the state of the switched 
system follows from (13) in view of Proposition 6 of 
IW. 

In the next section, we examine an important class of 
systems for which the results of the theorem above a p  
plies. 

5 T h e  Case of Feedforward Systems 

Consider the class of nonlinear feedforward system of 
the form 

X i  = Ais1 + f i ( z z , .  . . , X ~ - I , X ~ , U , ~ )  

f ,  = A u x W + f v ( u , d ) ,  

with z = (zT . . .xT)' E R", ?I E Rm and d E WP, 
satisfying the assumption (cf. Assumption 2.1 in [19]) 

Assumption 4 The fi's are locally Lipschitz for all 
z, U ,  d ;  fi(0, . . . , 0)  = 0; The linearization at the origin 
with d = 0 is stabilizable; The matrices Ai's are criti- 
cally stable; There exist continuous and nondecreasing 
functions pi(l(zi+t,. . . ,zv,u)l) ,  such that 

Ili(xi+i,. ..,. " , u , d ) - f i ( x i + i ,  . . . ,x",u,O)I i 
~i(l(zi+i,, . . , X n ~ ) l ) l d /  . 

For this class of system, the following result is well 
known (cf. 1191, Theorem 2.2). 

Theorem 3 ([19]) For system (16) satisfying Assump- 
tion 4 there ezists a feedback law U = x(x) such that, 
for any initial condition xo t W" and any disturbance 
d( . )  E CZ, the trajectory of the closed-loop system sat- 
isfies 

where the class-K, functions &(.),y&(.) are indepen- 
dent of xo  and d(.). Moreover, when d = 0,  the closed- 
loop system is globally asymptotically stable and locally 
exponentially stable. 

Remark. 
form 

The control law proposed in 1191 has the 

u=sat(K1z+sat(K~x+sat(.. .+sat(&z)))) ,  (18) 

where K; E Wmxn and sat(.) is a generalized saturation 
function, i.e. a function which is differentiable at the 
origin and satisfies lsat(u + U )  - sat(u)l 5 min{alvl,b} 
and Isat(u) - uI 5 auTsat(u) for some a > 0 and b > 0 
and for all u,v E Rm. 
If the functions f i ( . )  in (16) are continuously differen- 
tiable in a neighborhood of ( z , u , d )  = (O ,O,O) ,  then 
choosing a function sat(.) which is continuously dif- 
ferentiable in a neighborhood of the origin as well, 
yields that the map which defines the closed-loop sys- 
tem is continuously differentiable in a neighborhood of 
( z , d )  = (0,O). o 

The following lemma, which is a consequence of the 
results of 1191 and [2], points out that the feedback 
U = ~ ( z )  renders the system (16) integral input-tm 
state stable with a quadratic gain function. 

Lemma 4 For system (16) satisfying Assumption 4 
there exists a feedback law (18) such that the closed- 
loop system (IS), (18) is iISS with respect to the dis- 
turbance d( . ) .  I n  particular, (3) holds for some a(.). 
el(.), & ( . ) E  Km a n d f o r y ( r )  = 7'. 

Remark. It is possible to prove that the integral input- 
tmstate stability of the closed-Ioop system (16),(18) 
holds with different gain functions y(.). However, the 
importance of having a quadratic function r(r) = r2 
stems from the fact that in the context of supervisory 
control this allows to deal with more general classes of 
uncertain systems (see [15], (51, [6] and Section 6). o 

The statement implies that if, for each p E P,  the sys- 
tems (2) which define the switched system f = A,(z, d )  
are obtained from a feedforward system of the form 
(16) satisfying Assumption 4 in closed-loop with a con- 
troller of the form (18), then Assumptions 1 and 2 are 
trivially satisfied, the former in particular with a func- 
tion y ( r )  = r2. Moreover, if Assumption 4 holds and 
the functions f z ( . ) ,  i = 1 , .  . . ,U, and sat(.) are contin- 
uously differentiable in a neighborhood of the origin, 
then (cf. Remark after Theorem 3) the hypotheses of 
Corollary 1 are satisfied and b(r )  = br2.  Therefore we 
have r(r) 2 cb(r), for any c E (0,1/6]. Hence, T h e e  
rem 2 yields the following consequence. 

Theorem 4 Consider system (1) and assume that for 
each p E P system (2) is obtained from a feedforward 
system of the form (16) satisfying Assumption 4 in. 
closed-loop with a controller of the form (18). Assume 
also that the functions ft(.),  i = 1,. ..,U, and sat(.) 
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are continuowly differentiable in a neighborhood of the 
origin. Let U E S with %(.) satisfying (15). Then, for  
each xo E R”, for each input d(.) fulfilling (4), with 
y(r) = r z ,  the solution x(t) of (1) starting from the 
initial condition x(0) = xo and under the input d ( . )  ZS 
such that limt,, lx(t)l = 0. 

6 Conclusive Comments 

In this paper we have presented results about the con- 
vergence of the state of nonlinear switched systems in 
the presence of disturbances. They generalize t,o non- 
linear systems the results available in [15] for linear s y s  
terns and are instrumental to  design supervisory con- 
trol architectures for nonlinear and largely uncertain 
systems. In particular, if the unknown process belongs 
to  a family of nominal models 3, indexed by a pa- 
rameter p which takes values in the set P, the results 
presented in this paper allow to introduce a state d e  
pendent dwell-time switching logic which orchestrates 
the switching among a family of candidate controllers, 
one for each component of the family 3, in such a way 
to  guarantee global regulation to  zero of the state of 
the process and global boundedness of dl the continu- 
ous states (see [3], [5]). A particularly important class 
of systems for which such a design is possible is that of 
linear plants which are open-loop unstable but not ex- 
ponentially unstable and whose control input is subject 
to  input constraint (cf. Sections 4 and 5). Observe also 
that, since we allow in Theorem 4 square integrable 
disturbances, our method is suitable to  deal with both 
cases in which P is a continuum of points (cf. [SI) and 
a finite set (see [15], Section 111, for more comments on 
this observation). 

Acknowledgments. The authors would like to  thank 
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