

 University of Groningen

An Open Framework for Reverse Engineering Graph Data Visualization
Telea, Alexandru C.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A. C. (2002). An Open Framework for Reverse Engineering Graph Data Visualization. University of
Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/0a394fd1-cf8d-4421-ab2b-363d74451355

An Open Framework for Reverse Engineering Graph Data Visualization

Alexandru C. Telea
Department of Mathematics and Computer Science

Eindhoven University of Technology, The Netherlands

1 Introduction

Reverse engineering (briefly RE) provides a conceptual framework
for describing the process of software understanding and concept
abstraction. Most RE software tools for use some form of visual rep-
resentation and manipulation of the RE data. In most cases, such
data consists of an attributed, multi-level, directed graph [4]. The
nodes of this graph describe software artifacts at different abstrac-
tion levels, such as functions, classes, components, and packages.
The graph’s arcs describe the relations between the artifacts, such
as containment, requirements and provisions, and modification de-
pendencies. Finally, the graph’s attributes describe properties such
as size, cost, modification time, and various software metrics.

However powerful, most existing RE tools are based on inter-
nal architectures which seriously limit the options for customisa-
tion of the several RE tasks such as data abstraction, simplification,
and visual presentation. Several attempts have been made to design
generic RE frameworks, which allow users to define and customize
operations for their specific tasks. However, such frameworks are
still too rigid to be easily reusable out of the context for which they
were initially designed.

We propose here an open toolkit for RE data exploration. Since
RE data is mainly graph data, our toolkit is potentially useful in other
domains that need graph visualization. The toolkit’s main novel el-
ement is a flexible architecture that groups the graph-related opera-
tions into several classes and provides a mechanism for these classes
to communicate with each other. We experienced that the imple-
mentaton of new graph-related operations in the toolkit, such as spe-
cific metrics or visualizations, was considerably easier than when
using similar toolkits. Moreover, the toolkit strives to minimize the
time needed by end users to design custom visualizations for graph
data in general and RE data in particular. Since the toolkit was ini-
tially targeted for usage in the industry, spcial attention was payed
to usability issues.

2 Toolkit Architecture

Figure 1 shows the usual sequence of operations done in a typical
reverse engineering session. First, the graph data is read e.g. from

load
data

selection

 attribute
computation mapping viewing

editing

Figure 1: Operation pipeline

a code analysis tool. Next, the graph is transformed by several op-
erations such as editing, selection, and attribute computation. Edit-
ing operations change the structure of the graph, e.g. by adding or
deleting nodes and/or edges, or by performing graph clusterings,
which group related nodes into ’super-nodes’ to produce a simpler,

but structurally similar, graph. In the following, we shall focus on
the selection, attribute computation, and mapping operations.

2.1 Selection Operations

Selection operations are of particular importance. Regardless of
what an operation does, all operations need a common way to spec-
ify the data they work on. In general, this is a subset of the whole
graph. In a typical scenario, a user creates several such subsets
(’select’ a part of the entire data, or ’filter’ out some other part
(Sec. 2.1)), then perform the desired editing and attribute compu-
tation (Sec. 2.2) on the selected data. Finally, the selected data is
visualized by producing a graph layout and mapping it to a visual
representation (Sec. 3).

In our toolkit, we completely separate the specification of this
subset (which are the nodes and edges to work on) and the oper-
ation specification (what to do with he selected nodes and edges).
The selections are manipulated in the system as named objects, thus
they are similar to variables in a usual program. The above princi-
ple leads to a minimal, but still powerful architecture which provides
the desired amount of flexibility in the specification of the operations
as well as keeping their implementation simple and efficient in the
toolkit.

We have implemented several selection operations in the toolkit,
as follows. Conditional selections select all nodes and/or edges
which satisfy a criterion given as a function on the nodes’ and edges’
attributes. Structural selections select all nodes and/or edges which
satisfy a topological criterion. Frequently used structural selections
in RE applications are selecting all direct and indirect descendants,
or sub-components, of a node (also called ’vertical slicing’ the RE
data) and selecting all nodes on the same level of abstraction (also
called ’horizontal slicing’ the RE data) [4]. Finally, set selections
perform boolean combinations (intersection, union, etc) on several
selection objects. They are useful as part of more complex activities.

2.2 Attribute Computation Operations

Attribute computation operations take a selection as input and com-
pute one or several attributes on the selection’s nodes and/or edges.
Attributes are stored (and retrived) in the nodes and edges as name-
value pairs, so a node or edge may have any number of attributes
during its lifetime. We have found this system much more flexible
than e.g. strong-typed designs which associate a fixed set of typed
attributes with a node or edge. Two kinds of attribute computation
operations have been implemented:

� metrics: several metrics specific to reverse engineering are
provided, such as component coupling and cohesion, intercon-
nection strength, and common clients and suppliers [4]. Im-
plementing a new metric operation is typically a simple task,
since such such operations take usually only a few lines of
code.

� layouts: in contrast to other approaches [3], we regard graph
layouts simply as operations that compute 2D or 3D posi-
tional attributes for the nodes and/or edges. The required in-

Figure 2: Visualization of 600 artifacts in mobile phone software

erface a layout algorithm needs to provide to be integrated in
our toolkit is minimal. Integrating layout tools such as GEM
[1] and GraphViz [2] has taken under 50 lines of code in our
toolkit.

3 Mapping Operations

Mapping operations take as input selections with position attributes
computed by layout operations and map them to a set of graphical
objects that can be readily visualized. For each node and edge in the
input selection, the mapping operation will produce a specific glyph,
or graphical object, similarly to scientific visualization applications
(Fig. 2). Users can supply their own Tcl procedures (see Sec. 4) to
control the glyph creation. In this way, one can easily visualize sev-
eral attributes of the selected nodes and edges in a variety of ways.

The final step of the visualization pipeline views the glyphs pro-
duced by the mapping step in an interactive 2D or 3D viewer based
on the Open Inventor toolkit [5], where users can zoom in, change
the viewpoint, and interactively select nodes and edges to subse-
quently apply editing, layout, or attribute computation operations on
them, thus loop the pipeline in Fig. 1.

4 Applications and Evaluation

The toolkit comes as a C++ core library of around 10000 source
lines. Atop of this library, several custom operations (layouts, map-
pers, glyphs, and metrics) are implemented as short scripts in the
dynamically interpreted Tcl language. Complete applications add
an extra layer of user interfaces written in Tk atop of the Tcl layer.
The example in Fig. 3 shows around 800 software artifacts extracted
from 600,000 lines of C code from a moble phone application devel-
oped by NOKIA. Building the visualizations in Figs. 3 and 2 took
under 10 minutes and under 20 lines of Tcl script code.

Overall, our toolkit is quite similar to the GVF described in [3].
However, the concepts of selections, mapping operations, glyphs, as
well as the interactive Tcl layer give are not present explicitly in the
GVF. It is still to be seen whether these concepts make our toolkit
more readily usable for our applications than the GVF.

References

[1] M. HIMSOLT, GraphEd user manual, Technical report, Fakul-
tat fur Informatik, Universitat Passau, Innstrasse 33, D-8390

Figure 3: Visualization of object oriented data

Passau, 1992.

[2] E. KOUTSOUFIOS, S. NORTH, GraphViz, DOT and NEATO
Documentation, http://www.research.att.com.

[3] M. S. MARSHALL, I. HERMAN, G. MELANCON,
An Object-Oriented Design for Graph Visualization,
http://www.cwi.nl/InfoVisu/GVF

[4] H. MULLER, M. ORGUN, S. TILLEY, J. UHL, A Reverse
Engineering Approach to Subsystem Structure Identification,
Software Maintenance: Research and Practice, 5(4):181–204,
1993.

[5] J. WERNECKE, The Inventor Mentor: Programming Object-
Oriented 3D Graphics with Open Inventor, Addison-Wesley,
1993.

