
 

 

 University of Groningen

Derived classes as a basis for views in UML/OCL data models
Balsters, H.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Balsters, H. (2002). Derived classes as a basis for views in UML/OCL data models. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/45329a82-dac3-4e17-8efb-fe3e91b3e3c7


 1

Derived Classes as a basis for Views in UML/OCL Data 
Models 

 
 

H. Balsters                                
University of Groningen 

Faculty of Management and Organization 
P.O. Box 800 

9700 AV Groningen 
 

h.balsters@bdk.rug.nl 
 
 

SOM-theme A            Primary processes within firms 
 
 
 
Abstract 
UML is the de facto standard language for analysis and design in object-oriented frameworks. 
Information systems, and in particular information systems based on databases and their applications, 
rely heavily on sound principles of analysis and design. Many present-day database applications 
employ object-oriented principles in the phases of analysis and design due to the advantages of 
expressiveness and clarity of such languages as UML. Database specifications often involve 
specifications of constraints, and the Object Constraint Language (OCL) - as part of UML - can aid in 
the unambiguous modelling of database constraints. One of the central notions in database modelling 
and in constraint specifications is the notion of a database view. A database view closely corresponds 
to the notion of derived class in UML. This paper will show how the notion of a derived class in UML 
can be given a precise semantics in terms of OCL. We will then demonstrate that the notion of a 
relational database view can be correctly expressed as a derived class in UML/OCL. A central part of 
our investigation concerns the generality of our manner of representing relational views in OCL. An 
important problem that we address in this respect is the representation of product spaces and  relational 
joins. Joins are often essential in view definitions, and we shall demonstrate how we can express 
Cartesian products and  joins within the current framework of UML/OCL language by employing the 
notions of derived class. As a consequence, OCL will be shown to be equipped with the full expressive 
power of the relational algebra, offering support for the claim that OCL can be useful as a general 
query language within the framework of the UML/OCL data model.  
 
Keywords 
UML, derived classes, OCL, information systems design, database modelling, database views, query 
languages 
 
 

mailto:h.balsters@bdk.rug.nl


 2

Introduction 
 
Information systems, and in particular information systems based on databases and their 
applications, rely heavily on sound principles of analysis and design. This paper focuses on 
particular principles of analysis and design related to database applications. Following 
[BP98], we can state that object-oriented (OO) modelling can prove to be very beneficiary in 
(relational) database applications.  A database is a permanent, self-descriptive repository of 
data stored in files. A database is self-descriptive in the sense that it not only contains the 
data, but also a description of the data structure, or schema. In databases, the data usually 
change rapidly, while the schema stays relatively static. A database management system 
(DBMS) consists of software managing access to the data. DBMSs provide generic 
functionality for a broad range of applications; one of the foremost features of a DBMS is the 
availability of a query language offering an interactive means for reading and writing data 
from the database. A relational database has data represented as tables, and a relational 
DBMS manages access to tables of data and associated structures in highly effective and 
efficient manner. (Relational databases use SQL as a data manipulation language, and tables 
are called relations in SQL.) Relational database applications can benefit substantially from 
OO modelling. The OO paradigm provides a uniform framework for both the design of 
database code and programming code. Database and their applications can thus be developed 
in one and the same conceptual framework. In fact, one can say that integrating relational 
databases into object-oriented applications is state of the art in software development practice. 
OO data models offer high-level modelling primitives leading to clear and concise 
specifications of database schemas. A high-level description of a database schema in terms of 
an OO data model can easily be mapped to a relational database schema employed by a 
conventional relational DBMS [BP98]. Hence, the analysis and design stage of a (relational) 
database can be separated in a clear and meaningful fashion. 
 
The most important OO modelling language is UML, being the de facto standard for OO 
analysis and design of information systems [OMG99]. Recently, researchers have 
investigated possibilities of UML as a modelling language for (relational) databases. [BP98] 
describes in length how this process can take place, concentrating on schema specification 
techniques. [DH99, DHL01]  investigate further possibilities by employing OCL (the Object 
Constraint Language [WK99]) for specifying constraints and business rules within the context 
of relational databases. Some researchers take a very general approach investigating 
possibilities of UML/OCL; e.g., [AB01] treat OCL as a general query language for UML data 
models, and [EP00] use OCL as a general language for business modelling. Current research, 
however, has not yet shown an effective way to deal with an important aspect of (relational) 
database modelling, namely modelling of so-called database views. A (database) view is a 
derived table (or derived relation, in SQL), meaning that a view does not exist as a physical 
relation; rather a view is defined by an expression much like a query [GUW02]. Views, in 
turn, can be queried as if they existed physically, and in some cases, we can even modify 
view content. That is, a user is offered the impression that a view is some base relation inside 



 3

the database, but in fact it is a derived (or virtual) relation defined in terms of the actual base 
relations constituting the database. View definitions are an important asset in database 
applications, because users are usually only interested in a part of the database, and not in the 
complete underlying corporate database. Hence, it is important that users have access to that 
part of the database considered relevant for their category of database applications. Another 
application area for views can be found in the realm of Federated Databases, where legacy 
databases are to interoperate by employing a so-called mediating system. This mediating 
system can be considered as an integration of a set of certain database views defined on the 
component legacy database systems. The research in this paper is actually inspired by work 
on modelling federated databases as a system of database views [BB00]. 
 
Till now, researchers have not been fully complete in capturing the notion of database view 
within the UML/OCL data model. The idea is that OCL provides expressiveness in terms of 
relatively abstract set definitions that should prove to be sufficient to capture the general 
notion of (relational) database view. This idea of employing abstract object-oriented set 
definitions to captures views and constraints has also been pursued on the full level of object-
oriented databases, be it not in the context of UML/OCL language, but rather in the context of 
an experimental OODB user language in combination with an underlying theoretical 
semantics [BBZ93, BV92]. In the more specific context of relational databases and OCL, 
[DH99] offer a framework for representing constraints within the relational data model, but a 
general notion of database view is lacking. Database views and query languages are strongly 
related topics, since views are basically no more than named queries. [GR97] was one of the 
first papers to investigate the possibilities of a query language for UML; further investigations 
can be found in [AB01] and [MC99].  [AB01] have attempted to demonstrate that OCL can 
offer the basis for a general query language for UML data models by showing how to 
represent Cartesian products and projections in OCL, thus paving the way to the claim that 
OCL has the same expressive power as the so-called relational algebra [D00, GUW02]. By 
demonstrating such a result, one could also claim to have a basis for representing views 
within OCL. The approach taken in [AB01], however, has some shortcomings. First of all, 
their solution is rather complex, leading the authors to propose certain language extensions to 
OCL as an alternative solution to the problem. Furthermore, in [MC99] it is claimed -on 
theoretical grounds- that OCL cannot have the expressive power of the so-called  relational 
calculus. Since the expressiveness of the relational calculus and the relational algebra are 
equivalent [D00], there seemingly is an inconsistency between the two results offered in 
[AB01] and [MC99]. The inconsistency, however, is based on a different approach on treating 
Cartesian products in UML/OCL. We will discuss both  [MC99, AB01] in detail, pointing out 
that both approaches contain certain flaws that can be remedied by a new approach adopted in 
our paper. In particular, we will offer an alternative approach for establishing the result that 
the expressiveness of OCL includes that of the relational algebra. We will do so by showing 
how to offer the notion of derived class a formal basis within the framework of UML/OCL, 
and subsequently use this notion of derived class to represent the notions of Cartesian product 
and (relational) join. This result will establish that OCL includes the expressiveness of the 



 4

relational algebra, and we will do so in a relatively simple manner and without resorting to 
language extensions of OCL. Once we have established the result that OCL includes the 
expressiveness of the relational algebra, then we also have provided a basis for representing 
the general notion of (relational) database view. 
 
This paper is structured as follows. Throughout the paper, we shall use as a running example 
of a database taken from [GUW02] employing views. Furthermore, all OCL-constructs used 
in this paper can be found in the basic work of [WK99]. Section 1 offers an introduction to 
the concept of a view. We will offer some possible attempts to define views in terms of 
UML/OCL; each attempt will, however, fall short demonstrating that certain at first sight 
plausible solutions need closer inspection. Section 1 furthermore offers a description of the 
basic OCL semantics for the notion of derived class in UML. Purpose is to show how the 
notion of database view can be expressed as a derived class in UML/OCL. A derived class is 
a device for denoting a virtual class, defined in terms of already existing (base) classes (and 
possibly other views). Views can be queried independently, with a semantics explained 
entirely in terms of queries on base classes.  Section 2 contains issues concerning more 
complex view definitions and their representation in UML/OCL. Section 3 discusses the 
central research question regarding adequacy of our approach to offer a general definition 
mechanism for database views in UML/OCL. Section 4 treats Joins and Cartesian products in 
UML/OCL. Section 5 treats expressiveness of OCL as a relational query language, 
establishing our main result. The paper ends with a short summary of our results. 
 
 
1. Database views and a simple view representation in UML/OCL 
 
Let’s consider the case that we have a class called Emp1 with attributes  nm1  and  sal1, 
indicating the name and salary of an employee object belonging to class  Emp1 
 
 
 
 
 
 
Now consider the case where we want to add a class, say  Emp2, which is defined as a class 
whose objects are completely derivable from objects coming from class  Emp1. The 
calculation is performed in the following manner. Assume that the attributes of  Emp2  are 
nm2  and  sal2  respectively (indicating name and salary attributes for Emp2 objects), and 
assume that for each object  e1:Emp1  we can obtain an object  e2:Emp2  by stipulating that 
e2.nm2=e1.nm1  and  e2.sal2=(2 * e1.sal1). By definition the total set of instances of  Emp2  
is the set obtained from the total set of instances from Emp1 by applying the calculation rules 
as described above. Hence, class  Emp2  is a view of class  Emp1, in accordance with the 
concept of a view as known from the relational database literature. In UML terminology 

          Emp1 
 
nm1: String 
sal1:  Integer 



 5

[BP98], we can say that Emp2  is a derived class, since it is completely derivable from other 
already existing class elements in the model description containing model type Emp1.  
 
We will now show how to faithfully describe Emp2 as a derived class in UML/OCL in such a 
way that it satisfies the requirements of a (relational) view. First of all, we must satisfy the 
requirement that the set of instance of class Emp2 is the result of a calculation applied to the 
set of instances of class Emp1. The basic idea is that we introduce a class called  Database 
that has associations to classes  Emp1  and  Emp2. A database object will reflect the actual 
state of the database, and the system class  Database will only consist out of one object in any 
of its states. Hence the variable  self  in the context of the class  Database  will always denote 
the actual state of the database that we are considering. In the context of this database class 
we can then define the calculation obtaining the set of instances of  Emp2  by taking the set of 
instances of  Emp1  as input. 
 
 
                                                           
 
 
 
                      *                                                                                                          *                                                    
 
                                                                                                                                              
                                                     
 
 
 
 
 
Note that we have used a prefix-qualification by adding a slash to  Emp2  indicating that 
Emp2  is a derived class definition [BP98].  Moreover, we have added an operation, called   
convertToEmp2, meant to coerce an arbitrary  Emp1-object to an  Emp2-object. This 
operation can be defined by the following OCL-specification 
 
 
context Emp1::convertToEmp2( ): Emp2
post: self.convertToEmp2.nm2 = self.nm1 and

self.convertToEmp2.sal2 = (2*self.sal1)

We now have all the ingredients necessary to specify the relation coupling the derived class 
Emp2 to the original class  Emp1. This is done by including an invariant specification in the 
class  Database  telling us how to calculate the set of instances of  Emp2  from the set of 
instances of Emp1 
 
context Database inv:

self.Emp2 = self.Emp1→ collect(e:Emp1 | e.convertToEmp2) and

Emp1.allInstances = self.Emp1 and

      Database 

                 Emp1 
 
nm1:String 
sal1: Integer 
 
convertToEmp2( ): Emp2 

           /Emp2 
 
nm2:String 
sal2: Integer 



 6

Emp2.allInstances = self.Emp2

In this way we explicitly specify Emp2 as the result of a calculation performed on Emp1, and 
we also stipulate that the only Emp1- and Emp2-objects in the database are those obtained 
from the links starting from the database-object  self.  
 
Discussion: How not to represent views 
A reader might have the idea that there is an alternative (and rather simple) way to define 
database views in UML/OCL employing constraints, and without having to introduce the 
notion of derived class. We wish to discuss this topic here, because it deals with somewhat 
widespread misconception of what a database view actually is. Consider our example of 
Emp2 as a database view derived from the base class Emp1. One might be inclined to think 
that Emp2 could also be defined indirectly by employing suitable constraints. For example, 
one could introduce Emp2 as an extra model type (hence not as a derived class), and then 
stipulate the following two constraints 
 
context Emp2 inv:

Emp1.allInstances →
exists(e1 | e1.nm1 = self.nm2 and 2*e1.sal1 = self.sal2)

context Emp1 inv:

Emp2.allInstances →
exists(e2 | e2.nm2 = self.nm1 and e2.sal2 = 2*self.sal1)

 
This way the content of class Emp2  -seemingly-  is defined as the desired content of class 
Emp1, with appropriately changed values for the name and salary components. The thing that 
is wrong with this approach is that this does not constitute a view definition. This approach 
rather defines two autonomous base classes that are constrained by one another, and it does 
not reflect the desired result that Emp2 is a virtual class with content that is derived from 
class Emp1 by calculation. That is, the desired situation is the one where Emp1 can freely 
change its contents (due to updates performed by users of the database), irrespective of the 
content of Emp2; the content of the virtual class Emp2 should then be deducible on demand 
and at any given moment by performing a suitable calculation on the content of Emp1. This 
reflects the situation that a view is basically no more than a named query result. 
 
Defining views through constraint definitions is an often made mistake. This mistake, though 
understandable, leads to a faulty conception of what a view should constitute. A view should 
constitute a virtual class, completely derivable in terms of existing base classes in the model, 
at any given moment and on demand. For this reason, we employ the concept of derived class 
to represent view definitions in UML/OCL. 
 
In the following section we will elaborate on our approach by offering more complex 
examples where views are constructed from more than one base class. 



 7

 
 
2. Complex database views in UML/OCL 
In this section we will take some examples from the standard database text by [GUW02], and 
show how we can express complex view representations in  UML/OCL. The basic principles 
developed in the previous section will be applied to a broad class of view definitions, thus 
demonstrating the general applicability of our approach to express database views in 
UML/OCL. 
 
Consider the following base classes (taken from [GUW02]) 
 
 
                                                              
                                                                *                                  * 
                                                           
 
 
                                
                                                                                                                                   
                   *                                                                                                                                           * 
 
 
 
 
 
 
 
 
Assume that we are confronted with the task of defining certain views with these three classes 
as base classes to be used in the view definitions. Consider, for example, the view  
ParamountMovie, defined as the class of those movies produced by the Paramount studio. 
Furthermore, we stipulate that we will only consider attributes title and year in this particular 
view. This would result, in UML/OCL-terms, in a derived class, where we have to take into 
account 
 

(1) that we only register attributes  title  and  year 
(2) a constraint that the studio name is equal to ‘Paramount’ 

 
As in the previous section, we start by introducing a system class called  Database  with 
associations to the classes  Movie  and   Studio. We also add the definition of a derived class   
ParamountMovie  representing the desired view definition. 
 
 
 
 
 

         Movie 
 
title:        String 
year:       Integer 
length:    Integer 
inColor: Boolean 

   MovieExecutive 
 
name:        String 
address:    String 
id#:            Integer 
netWorth: Integer 

       Studio 
 
name:    String 
address: String 



 8

 
 
 
 
 
                                                                                                                               * 
 
                                                                          *                                                   *                                                       
                                          
                                                  *                                       * 
 
 
 
 
                              
 
 
 
 
 
 
The class  Movie  is augmented with an operation called  convertToPM, which takes a movie- 
object as input and results in a corresponding object from the class ParamountMovie. This 
operation is defined in the following OCL-specification 
 
context Movie::convertToPM( ): ParamountMovie
post: self.convertToPM.title = self.title and

self.convertToPM.year = self.year

 
Furthermore, the system class  Database  is equipped with the following invariant expressing  
 

(1) that the derived class  ParamountMovie  is the result of a calculation (invoking  
convertToPM) performed on the base class  Movie 

(2) that the only movie-objects in the database are those obtained from the links starting 
from the database-object  self.  

 
context Database inv:

self.ParamountMovie = self.Movie→
collect(m:Movie | m.studio.name=‘Paramount’| m.convertToPM)
and
Movie.allInstances = self.Movie

 
We now treat a slightly more complex view definition involving input from more than one 
base class. Consider the view  MovieProducer defined as the class of objects consisting of 
movie titles combined with the name of their producer. This view is seemingly more complex 
than the previous cases, since it involves input from more than one base class. Basically, 

       Database 

           Movie 
 
           . . . . 
 
convertToPM( ): 
  ParamountMovie 

   MovieExecutive 
 
           . . . . 

      /ParamountMovie 
 
title: String 
year: Integer 

      Studio 
 
       . . . . 



 9

however, we can achieve our goal in much the same manner as in the previous cases. The 
derived class  MovieProducer  is defined by the following model type 
 
 
 
 
 
 
 
 
and again we assume a database association from the system class  Database  to this derived 
class. Input classes for this derived class are the two base classes  MovieExecutive  and  
Movie. In this case, however, there already exists a link from the  Movie  class to the 
MovieExecutive  class. Hence, a single movie-object will suffice to provide information 
concerning both the movie- and the corresponding  movieExecutive-object. We therefore 
augment the  Movie  class with an extra operation  convertToMP, which converts a movie- 
object to the corresponding  movie producer object 
 
 
 
 
 
 
 
 
 
The operation  convertToMP  is defined in the following OCL-specification 
 
context Movie::convertToMP( ): MovieProducer
post: self.convertToMP.movietitle = self.title and

self.convertToMP.producer = self.MovieExecutive.name

 
Furthermore, the class  Database  is augmented with the following invariant expressing  
that the derived class  MovieProducer  is the result of a calculation (invoking  convertToMP) 
performed on the base class  Movie 
 
context Database inv:

self.MovieProducer = self.Movie→
collect(m:Movie | m.convertToMP)

 
Yet another example concerning inputs coming from more than one base class will be 
discussed below. This example deals with two input classes that are more or less non-related, 
in the sense that one base class cannot necessarily be reached from another base class through 

    /MovieProducer 
 
movietitle: String 
producer:   String 

           Movie 
 
           . . . . 
 
convertToPM( ): 
  ParamountMovie 
 
convertToMP( ): 
  MovieProducer 



 10

a sequence of object navigations (as was the case in our previous example concerning 
multiple class inputs). Consider the following example pertaining to employees, where the 
classes Emp1 and Emp2 are two base classes, the first with attributes nm1 and sal1, whereas 
the second class has attributes nm2 and sal2. Assume that we wish to define a view (a derived 
class), say Emp, consisting of those employee objects with a name value belonging to both 
the classes Emp1 and Emp2, and with a salary equal to the sum of the two corresponding 
salary values in class Emp1 and class Emp2, respectively. We assume that name values are 
unique in both Emp1 and Emp2. Furthermore, we will equip the derived class Emp with 
attributes nm and sal. Our starting situation deals with two classes 
 
 
 
 
 
 
In order to achieve our derived class Emp as defined above, we define two auxiliary classes 
(both of them derived classes): class Emp12 will consist of the Emp1-objects that can be 
associated to an Emp2-object, and class Emp21 will consist of those Emp2-objects that can be 
associated to an Emp1-object. Again, this will be done by also introducing a system class 
called Database with association links to the base classes Emp1 and Emp2 
 
 
 
 
                                   *                                                         * 
                               
 
 
 
 
               *                                                                                                    * 
 
  
 
 
 
 
Derived classes Emp12 and Emp21 are defined as follows 
 
context Database inv:

self.Emp12 = self.Emp1 →
select(e1:Emp1| self.Emp2 →

exists(e2:Emp2| e1.nm1=e2.nm2))
and

self.Emp21 = self.Emp2 →
select(e2:Emp2| self.Emp1 →

Emp1 
 
nm1: String 
sal1:Integer 

Emp2 
 
nm2: String 
sal2: Integer 

   Database 

    /Emp12 
 
nm1:String 
sal1: Integer 

      /Emp21 
 
nm2: String 
sal2:  Integer 

    Emp1 
 
      . . .  

      Emp2 
 
       . . .  



 11

exists(e1:Emp1| e1.nm1=e2.nm2))

 
We can now link an Emp1-object to an Emp2-object by introducing an operation, called  
getE2, within the class Emp12 by the using following constraint 
 
context Emp12::getE2:Emp21
post: self.getE2.nm2=self.nm1 
 
The actual derived class, called Emp, that we are aiming for can now be defined as follows 
 
 
 
                                                                                                                               
                                                                                                                          * 
 
                                      *                                        *     
 
 
 
                          *                                                                   *           
 
 
 
 
 
Within the context of the class Emp12 we introduce an additional operation, called 
convertToEmp, which links an Emp12-object to an Emp-object 
 
context Emp12::convertToEmp:Emp
post: self.convertToEmp.nm = self.nm1 and

self.convertToEmp.sal = self.sal1 + self.getE2.sal2 
 
Finally, using the following constraint, we can define the derived class Emp by  

context Database inv:

self.Emp = (self.Emp12 →
collect(e1:Emp12| e1.convertToEmp))

                               → asSet 

This example demonstrates that we can also represent a view constructed from two more or 
less independent base classes. Again, our approach consists of first defining a database system 
class, and then defining suitable conversion functions to obtain suitable links from base 
classes to derived classes. An appropriate calculation on the database level using constraints 
finally yields the desired view definition. 
 
 
3. Intermediate discussion: generality of our approach 

  Database 

   /Emp12 
 
       . . . 

   Emp1 
 
     . . .  

   /Emp21 
 
       . . . 

   Emp2 
 
     . . . 

/Emp 
 
nm: String 
sal: Integer 



 12

From the three examples offered in the previous sections, we can see how view definitions in 
general can be expressed in UML/OCL-notation. We have adopted a very broad class of view 
definitions involving 
 

(1) attribute renaming 
(2) attribute value computations 
(3) constraint definitions 
(4) inputs coming from more than one base class, but related through object navigation 
(5) inputs coming from more than one base class, and not related through object 

navigation 
 
Our approach has adopted the following steps 
 

(1) define a database class as the root class of the system 
(2) employ suitable conversion functions in the base classes to coerce from base objects 

to view objects  
(3) within the framework of the database class, define the adequate invariant to express 

the computation of the desired database views 
 
We are now faced with the problem to formulate the generality of our approach. Basically 
speaking, a view is nothing else than a (named) query. Each view state can be regarded as the 
answer to an associated query. Any query, in turn, can be associated to a corresponding view 
definition. Hence, to support the claim that we have offer a general framework for 
representing relational views in UML/OCL, we will we have to demonstrate, in some sense, 
that we can express an arbitrary relational query in UML/OCL. If, for example, we can show 
that OCL has at least the expressive power of the relational algebra, then we can indeed claim 
that OCL has adequate expressiveness for representing general view constructions. In our 
case, we will restrict ourselves to views without aggregates and grouping constructions. Our 
restriction is made, because we want to concentrate on basic results. It will not be a problem, 
however, to extend our results to views including aggregates and grouping; this can be done 
in a natural and straightforward manner.  
 
In the section 5, we will demonstrate that OCL actually has the expressive power of the 
relational algebra (without aggregates and grouping). We shall offer our result by showing 
how to represent database joins, as well as general Cartesian products in UML/OCL. This 
problem concerning expressiveness of UML/OCL as a relational query language has been 
addressed by various researchers [MC99, AB01]; in section 5 we will also discuss the 
adequacy and correctness of their results and relate those results to our own. 

 
4.  Joins and Cartesian products in OCL 
This section is concerned with offering a solution to deal with database joins and product 
spaces in OCL based on the view concept. First we will consider the concept of database join. 



 13

We will then proceed by offering a treatment of Cartesian product spaces represented in 
UML/OCL and how we can alternatively base joins on this concept of product space. 
 

Joins 
A join (also natural join) pairs tuples in two relations that match in some way. This match of 
two relations  X  and  Y, denoted by  X-JOIN-Y, consists of pairing those tuples from  X  and 
Y, such that they agree in whatever attributes are common to the schemas of  X  and  Y. More 
precisely, let  a1 , a2 , ..., an  be all the attributes that are common in the attribute sections of 
both  X  and  Y. Then a tuple  x  and a  tuple  y  are successfully paired if and only if  x  and  
y  agree with each of the attributes  a1 , a2 , ..., an .  The result of the pairing consists of a so-
called joined tuple which has as attributes all of the attributes obtained from taking the union 
of the attributes from  X  and  Y. The joined tuple by definition agrees with  x  for all of the 
attributes of  x, and it agrees with  y  for all of the attributes of  y. When  x  and  y  are 
successfully paired, the joined tuple will agree with both tuples on the attributes they have in 
common. Joining is an essential operation in databases, and we will show how the natural join 
can be represented in UML/OCL. 
 
Consider two classes  X  and  Y, represented as model types in a UML diagram (where we 
have omitted the attributes declarations)  
 
 
 
 
 
 
We shall represent the Join by a derived class called  X-JOIN-Y

* * *

The join condition involves inspection of overlapping attributes occurring in classes  X  and  
Y. (We shall assume that in the case of coinciding attributes, the corresponding domain types 
in classes  X  and  Y  are the same.) 

context DB def:

                       DB 
 
join (e:X, e’ :Y) : X-JOIN-Y 
XY-JOIN ( ) : Set (X-JOIN-Y) 

  X 
 
 . . .

  /X-JOIN-Y 
 
         . . .

  Y 
 
. . .

          X 
 
 
         . . .  

          Y 
 
 
         . . . 



 14

let D = X.attributes → intersect(Y.attributes)

let D1 = X.attributes − D

let D2 = Y.attributes − D

The attributes of X-JOIN-Y are, by definition, equal to

X.attributes → union(Y.attributes)

 
The join of two objects is now specified by 
 
context DB::join(e :X, e’:Y) : X-JOIN-Y

pre : D → forall (d:String | e.d=e’.d)

post: D1 → forall (d:String | join(e,e’).d = e.d )

D → forall (d:String | join(e,e’).d = e.d )

D2 → forall (d:String | join(e,e’).d = e’.d)

This operation constitutes the join calculation of two objects taken from class  X and  Y 
respectively. We now offer the definition of the  XY-JOIN operator which calculates the set 
of joinable objects taken from classes  X  and  Y 

context DB::XY-JOIN( ) : Set(X-JOIN-Y)

post: result = (self.X →
collect(e:X | self.Y → collect(e’:Y | join(e,e’))))

→ asSet

context DB inv:

self.X = X.allInstances and
self.Y = Y.allInstances and
self.X-JOIN-Y = X-JOIN-Y.allInstances and
self.X-JOIN-Y = self.XY-JOIN

 
This last invariant states that  X-JOIN-Y  constitutes the complete set of instances of the join 
of  X  and  Y, due to the following two conditions 
 

(1) the derived class  X-JOIN-Y  is the result of a calculation (invoking  the database 
operation XY-JOIN) performed on the base classes  X  and  Y 

(2) the only  X-JOIN-Y objects in the database are those obtained from the links starting 
from the database-object  self.  

 
There is also a more general approach to defining joins. This approach is based on first 
defining the notion of the product space of two classes, and subsequently defining the join of 
these two classes as a subset on the product. The definition below thus offers a somewhat 
more basic solution in defining the join-concept in OCL. 
 



 15

 
 
 
Product spaces in OCL 

 
We now offer a solution to deal with product spaces in OCL. Our solution much resembles 
the approach we have already adopted to describe joins in OCL. It offers a clean 
representation of product spaces based on the view concept.  
 
The Cartesian product of two sets  X  and  Y, consists of those pairs that can be formed by 
taking the first element of the pair to be any element of  X, and the second element to be any 
element of  Y. By convention, the first element of the pair precedes the second element. The 
product of two sets is denoted by  X×Y. Should X and Y  be relations, then the members of X 
and Y are tuples, usually consisting of more than one component; the members of  X×Y are 
tuples , with one component for each of the components of the constituent tuples from X  and 
Y. We now show how to represent Cartesian products in UML/OCL. 
       
Again, consider two classes  X  and  Y, represented as model types in a UML diagram (where 
we have omitted the attributes declarations) 
 
 
 
 
 
We shall represent the Cartesian product by using a derived class called  /X×Y.  Again, we 
will declare a database object  DB  with associations to the classes  X, Y  and  /X×Y 
 
 
 
 
 
 
 
                                                           
                                                l            *           *           r 
                                                 
 
 
 
The derived class  X×Y   has associations, called  l  and  r, to the classes  X  and  Y  
respectively. 
 
 

       X 
 
     . . . 

      Y 
 
     . . . 

 DB 

    /X×Y 

  X   Y 



 16

We now add to the class  DB  two operations called  prod  and  PROD; prod  will indicate the 
concatenation of two tuples to one tuple, and  PROD  will deliver the Cartesian product of the 
two classes  X  and  Y. 
 
context DB prod(e:X, e’:Y): X×Y
post : prod(e,e’).l = e and

prod(e,e’).r = e’

 
context DB PROD( ): Set(X×Y)
post : result = (self.X →

collect(e:X | self.Y →
collect(e’:Y| prod(e,e’)))

→ asSet

 
In order to insure that all instances of the classes  X  and  Y  should be taken into account, we 
stipulate the following invariant for the system class  DB  
 
context DB inv:

self.X = X.allInstances and
self.Y = Y.allInstances and

self.X×Y = X×Y.allInstances and

self.X×Y = self.PROD

 
In this manner, X×Y  constitutes the complete set of instances of the Cartesian product of  X  
and  Y, since 
 

(3) the derived class  X×Y  is the result of a calculation (invoking  PROD) performed on 
the base classes  X  and  Y 

(4) the stipulation that the only  X×Y-objects in the database are those obtained from the 
links starting from the database-object  self.  

 
 
Joins revisited 
 
Based on the product space of two classes, we can now offer an alternative definition of the 
join of two classes. This works as follows. 
 
X-JOIN’-Y =

X×Y →
select(t : X×Y| (t.l.attributes intersect(t.r.attributes)) →

forall(d :String| t.l.d=t.r.d))

 



 17

This definition yields the natural join of classes  X  and  Y. Note that this definition of the 
join-concept is equivalent to the previous join definition given in section 5. By equivalent we 
mean that each element in the set pertaining to first definition of the join corresponds to 
exactly one element of the set pertaining to the second definition of the join, and vice versa. 
Hence, these two sets are not exactly the same (for example the sets are built from different 
syntactical constructs), but are isomorphic. Our second definition has the advantage, however, 
that it is based on the more simple concept of Cartesian product. 
 
5. OCL as a query language 

 
This section deals with the expressiveness of OCL as a query within the UML/OCL data 
model. We will show that OCL has at least the same expressiveness as the relational algebra. 
We will also compare the results of our work with that of other authors concerning this topic. 
Surprisingly, some authors have achieved results contradicting our own findings. We will 
discuss adequacy and correctness of their results, and demonstrate some shortcomings in their 
approach. 

 
The idea of using UML/OCL as a query language has been investigated in various papers 
[GR97, MC99, AB01]. We will discuss the approaches taken in [MC99, AB01], 
demonstrating that both papers contain certain shortcomings. We will also show that our 
solution does not fall prey to these shortcomings, offering an actual basis for OCL as a 
general query specification language within the context of relational databases. 
 
Feasibility of our approach  
 
Basically, a query language has the same expressive power as the relational algebra, when 
that language supports the following operations [D00, GUW02] 
 
1. The usual set operations  -union, intersection, and difference-  applied to relations 
2. Operations that remove parts of a relation: selection eliminates some rows (tuples), and 
projection eliminates some columns 
3. Operations that combine the tuples of two relations, including Cartesian product, which 
pairs the tuples of two relations in all possible ways, and the join operation, which selectively 
pairs tuples from two operations with the same attribute values for those attributes that belong 
to both relations 
4. An operation called renaming that does not affect the tuples of a relation, but changes the 
name of the relation schema; i.e., the names of the attributes of the relation, or the name of the 
relation itself. 
 
We claim that we can represent all operations mentioned above, hence demonstrating that 
UML/OCL offers sufficient support for general query specifications as offered in the 
relational data model. In the context of our approach, the problem of representing relational 



 18

algebra operations will be reduced to the problem of defining a suitable derived class that can 
handle the corresponding relational operation.  
 
We shall now discuss the four categories of operations as mentioned above. 
 
 
1. The set operations  -union, intersection, and difference:  
These operations are standard in OCL, be it that these operations are only defined when the 
underlying types of the sets involved are the same [WK99]. In the case of relations, that is 
exactly the kind of restriction what we wish to employ: in the relational algebra (and also in 
SQL) we can only take the union, intersection, and difference of relations that have the same 
component structure (i.e. the same underlying type). 
 
2. The operations selection and projection:  
Selection is a standard construction in OCL with the same effect as the selection operation in 
the relational algebra. Projection in the relational algebra involves selecting a subset of the set 
of attributes of the relation in question, and then taking only those components into account 
that pertain to that particular subset of attributes. This operation is not directly supported in 
OCL (only projection on a single attribute is supported), but can be simulated in a series of 
steps. In our approach, the context of the problem would be to define a derived class  C’ 
containing a subset of the attributes of some base class  C. This can easily be done by adding 
an operation to the class  C, called convertToC’ (say), that has as its sole task to convert an 
object from  C  to an object in  C’. The definition of  convertToC’ is offered by stipulating 
that   
 
self.convertToC’.a = self.a   
 
for each attribute  a  occurring in the subset of attributes in question. 
 
3. The operations Cartesian product and join: 
The previous section was entirely devoted to the representation of Cartesian products and 
joins in UML/OCL. We have shown that for any given two classes  X  and  Y, we can 
represent the Cartesian product and the join of these two classes as derived classes  X×Y   and  
X-JOIN-Y, respectively. 
 
4. The renaming operation: 
Representing the renaming operation in the context of our approach, would reduce to the 
problem  to define a derived class  C’ containing a renamed set of the attributes of some base 
class  C. This can easily be done by adding an operation to the class  C, called convertToC’ 
(say), that has as its sole task to convert an object from  C  to an object in  C’. The definition 
of  convertToC’ is offered by stipulating that   
 



 19

self.convertToC’.a’ = self.a   
 
for each attribute combination   a’,  a   where  a’  is the renamed version of the attribute  a. 
 
 
We have, hence, shown that it is possible to represent the expressive power of the relational 
algebra within the framework UML/OCL data model employing the concept of derived class. 
 
We now proceed by discussing the approaches taken in other papers to represent the relational 
algebra in the UML/OCL data model. 
 
The other approaches: adequacy and correctness aspects 
 
Basic results regarding expressiveness of OCL as a query language are mainly found in the 
papers [MC99, AB01]. In [AB01] an alternative solution for representing Cartesian products 
is offered, aimed at disclaiming the result offered in [MC99] that OCL does not have the 
expressive power of the relational calculus. We will first treat the approach offered in 
[AB01], and then discuss the treatment offered in [MC99]. 
 
The approach taken in [AB01] has as its major shortcoming (as the authors themselves also 
indicate) that the solution offered is rather complex, leading the authors to propose certain 
language extensions to OCL as an alternative solution to the problem. Basically, [AB01] 
show that by using a suitable association class it is possible to represent Cartesian products of 
class types. For example, consider two arbitrary class types  R  and  S (i.e., non-related by any 
given association in the model), then it is possible to introduce an association class  R×S  as 
follows 
 
 
                   *                             * 
 
 
 
 
A constraint is then added pertaining to this particular association class  R×S   
 
context R×S inv:

 R×S.allInstances → size = (R.allInstances→size) *

(S.allInstances→size)

 
This constraint establishes the desired properties of the association by indirectly saying that 
each of the elements of classes  R  and  S are indeed represented in some tuple of the class 

   S    R 

     R×S 



 20

R×S. In this way [AB01] claim they have R×S as a correct representation for the Cartesian 
product of  R and  S. We now proceed by offering our comment on the adequacy and 
correctness of this solution. First of all, it should be noted that this solution demands the 
introduction of a separate new model type (like R×S), each time a Cartesian product is 
needed. In the second place, the constraint offered above is not sufficient to represent all 
relevant properties of Cartesian products. For example, using this combination of an 
association class  R×S and the accompanying constraint offered above, there is no difference 
to be made between a Cartesian product R×S and a Cartesian product S×R: hence, the anti-
symmetry property of Cartesian products is lost. One could argue that the ordering of the two 
components is implicitly given by navigation on the class names R and S, but this still leaves 
another problem to be solved. Another problem posed by the solution is that it is not clear 
how to represent the Cartesian product of a class with itself (reflexivity); i.e., how do we 
represent a Cartesian product like  R×R, and how do we distinguish between the ordering of 
the two components (since navigation through class names will not help here)? The main 
problem both with anti-symmetry and reflexivity is that no distinction has been made by 
projecting on a left- and a right component when traversing from the product to its component 
classes; a situation that our solution (cf. section 4) does take into account. Furthermore, in 
[AB01] it is argued that the solution they have offered (especially due to the rather 
cumbersome way of dealing with projections on classes, as well as joins) suggests that it 
might be better to opt for a language extension of OCL to deal with Cartesian products. We 
conclude by saying that the solution offered in [AB01] is not adequate (and also not 
completely correct) to deal with Cartesian products, due to the introduction of new model 
types, its indirect way of dealing with product definitions, and a not completely correct 
treatment of relevant properties (such as reflexivity and anti-symmetry) of Cartesian products. 
 
The other approach that we will discuss, is found in [MC99], where it is claimed -on 
theoretical grounds- that OCL cannot have the expressive power of the so-called relational 
calculus. Since the expressiveness of the relational calculus and the relational algebra are 
equivalent [D00], there seemingly is an inconsistency between the two results offered in 
[AB01] and [MC99]. We shall show that the results in [MC99] contain certain flaws, thus 
leaving the desired result that OCL has the expressive power of the relational calculus open 
for validation. 
 
Again, assume that we have two arbitrary class types  R  and  S (i.e., non-related by any given 
association in the model). In  [MC99]  a modeltype  RS  is then introduced  
 
 
                                      *                     * 
 
 
 
augmented with the following (database-, or root-) constraint 

   R      RS     S 



 21

 
context Database inv:

R.allInstances →
Union(S.allInstances) →

forall(r,s:oclAny |
if r.oclType.name = s.oclType.name
then true

else RS.allInstances → exists(t:RS | t.R=r and t.S=s))

 
where  oclAny  denotes the root of the context of the UML model [WK99]. 
 
This constraint indirectly says that each of the elements of classes  R  and  S are indeed 
represented in some tuple of the class RS. In this way [MC99] claim they have RS as a correct 
representation for the Cartesian product of  R and  S. We now proceed by offering our 
comment on the adequacy and correctness of this solution. First of all, it should be noted that 
this solution demands (as also was the case in [AB01]) the introduction of a separate new 
model type (like RS), each time a Cartesian product is needed. In the second place, the 
constraint offered above is not sufficient to represent all relevant properties of Cartesian 
products; the combination of an association class  RS and the accompanying constraint 
offered above yields no difference between a Cartesian product RS and a Cartesian product 
SR. Hence, also in this case the anti-symmetry property of Cartesian products is lost. 
Reflexivity also poses a problem: how to represent the Cartesian product of a class with 
itself?  (The definition of RR is not at all clear from the definition of Cartesian product in the 
setting of [MC99].) The main problem (as was the case in [AB01]) both with anti-symmetry 
and reflexivity is that no distinction has been made by projecting on a left- and a right 
component when traversing from the product to its component classes; a situation  -again-  
that our solution (cf. section 4) does take into account. We conclude by saying that the 
solution offered in [MC99] is not adequate (and also not completely correct) to deal with 
Cartesian products, due to the introduction of new model types and a not completely correct 
treatment of relevant properties (reflexivity and anti-symmetry) for Cartesian products. The 
conclusion drawn in [MC99] that OCL does not have the expressive power of the relational 
calculus, is partly based on their treatment of Cartesian product (introducing complexities 
when trying to define arbitrary projections on attributes). This paper proposes a contrary 
result, by demonstrating (cf. previous section) that by offering a different treatment of 
products (and joins) of classes  -based on derived classes rather than introduction of certain 
new model types-  that OCL has the expressive power of the relational algebra (and hence the 
relational calculus). 
 
 
 
 
 



 22

6. Summary 
 
Information systems, and in particular information systems based on databases and their 
applications, rely heavily on sound principles of analysis and design. This paper focuses on 
particular principles of analysis and design related to database applications. Our main aim is 
to show how the notion of a derived class in UML can be given a precise semantics in terms 
of OCL. We then demonstrate that the notion of a relational database view can be correctly 
expressed as a derived class in UML/OCL. A central part of our investigation concerns the 
generality of our manner of representing database views in OCL. An important problem that 
we address in this respect is the representation of Cartesian product spaces and relational 
joins. Joins are often essential in view definitions, and we shall demonstrate how we can 
express products and joins within the current framework of UML/OCL language by 
employing the notions of derived class. As a consequence, OCL will be shown to be equipped 
with the full expressive power of the relational algebra, offering support for the claim that 
OCL can be useful as a general query language within the framework of the UML/OCL data 
model.  
 
 
Acknowledgements 
 
Special thanks go to my colleague Bert de Brock for proof reading my solutions, and helping 
me out with various problems regarding the connection between OCL and the relational data 
model. 
 
 
References 
 
[AB01]           Akehurst, D.H., Bordbar, B.; On Querying UML data models with OCL;  
                       «UML» 2001 - The Unified Modeling Language, Modeling Languages,  
                       Concepts, and Tools, 4th International Conference, Toronto, Canada, 2001,  
                       Proceedings. Lecture Notes in Computer Science 2185, Springer, 2001 
[BB00]           Balsters, B., de Brock, E.O.; A general framework for the design of federated  
                       database systems; SOM Research Series 01A26, University of Groningen, 2000 
[BBZ93] Balsters, B., de By, R.A., Zicari, R.; Sets and constraints in an object-oriented  
                      data model; Proceedings Seventh European Conference on Object-Oriented  
                       Programming (ECOOP), Kaiserslautern, Germany, July, 1993. 
[BP98]           Blaha, M., Premerlani, W.; Object-oriented modeling and design for database  
                       applications; Prentice Hall, 1998 
[BV92]           Balsters, B., de Vreeze, C.C.; A semantics of object-oriented sets; Third  
                       International Workshop on Database Programming Languages (DBPL; eds.  
                       Abiteboul, Kannelakis), Morgan Kaufmann Publishers, California USA, 1992. 
[D00]              Date, C.J.; An introduction to database systems; Addison Wesley, 2000 

http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html


 23

[DH99]           Demuth, B., Hussmann, H.; Using UML/OCL constraints for relational  
                       database design; «UML»'99: The Unified Modeling Language - Beyond the  
                       Standard, Second International Conference, Fort Collins, CO, USA, 1999,  
                       Proceedings. Lecture Notes in Computer Science 1723, Springer, 1999 
[DHL01]        Demuth, B., Hussmann, H., Loecher, S.; OCL as a spevcification language for  
                        business rules in database applications; «UML» 2001 - The Unified Modeling  
                        Language, Modeling Languages, Concepts, and Tools, 4th International  
                        Conference, Toronto, Canada, 2001, Proceedings. Lecture Notes in Computer    
                        Science 2185, Springer, 2001 
[EP00]            Eriksson, H., Penker, M.; Business modeling with UML; OMG Press, Wiley,  
                        2000 
[GR97]           Gogolla, M., Richters, M.; On constraints and queries in UML; Proceedings  
                        UML’97 Workshop “The Unified Modeling Language – Technical Aspects  
                        and Apllications”, 1997 
[GUW02]       Garcia-Molina, H., Ullman, J.D., Widom, J.; Database systems; Prentice Hall,  
                        2002 
[MC99]           Mandel, L., Cengarle, M.V.; On the expressive power of OCL; FM’99 –  
                        Formal Methods, World Congress on Formal Methods in the Development of  
                        Computing Science; Lecture Notes in Computer Science 1708, Springer, 1999      
[OMG99]       Object Management Group; Unified Modelling Language Specification,  
                        version  1.3; June 1999; http://omg.org 
[WK99]          Warmer, J.B., Kleppe, A.G.; The object constraint language; Addison Wesley,  
                        1999 
 
 
 
 

http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html

	University of Groningen
	P.O. Box 800
	9700 AV Groningen
	
	
	SOM-theme A            Primary processes within firms


	Abstract
	
	4.  Joins and Cartesian products in OCL


	Joins


	The attributes of X-JOIN-Y are, by definition, equal to
	X.attributes ( union(Y.attributes)

	Joins revisited

