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ENHANCING FUNCTIONAL NEUROIMAGES: WAVELET
DENOISING AS AN ALTERNATIVE TO GAUSSIAN

SMOOTHING

Abstract

We present a general wavelet-based denoising scheme for functional neuroimages
and compare it to Gaussian smoothing, the standard method in functional neuroimag-
ing. We adapted WaveLab thresholding routines to 2D data, and tested their effect
on the signal-to-noise ratio of noisy images. In a simulated time series test, we also
investigated the shapes of detected activations after denoising.
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1 INTRODUCTION

Functional neuroimages are often denoised by convolving them with a Gaussian smoothing
kernel. This removes noise but it also changes the intensity variation of the underlying image;
details in the image are suppressed. We propose wavelet denoising as an alternative to Gaussian
smoothing.
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We focus on functional magnetic resonance imaging (fMRI) time series. In an fMRI exper-
iment, a series of scans is made of a test person performing a task inside an MRI scanner. Local
magnetic properties change in brain regions involved in that task, due to local changes in blood
oxygenation levels [1]. Detecting and describing those changes is the key task in fMRI time
series analysis. Statistical analysis of fMRI data has already been done in the wavelet domain
[2, 3] and in the spatial domain after denoising in the wavelet domain [4].

The novelty of this paper is the comparison of wavelet denoising and Gaussian smoothing,
the standard denoising tool in functional neuroimaging. Wavelet thresholding was done with
WaveLab routines [5], which were extended to 2D data. We tested these methods on images
with known signal-to-noise ratios (SNRs) and noise distributions, and we investigated the SNRs
after denoising. We also compared the shapes of detected regions in simulated time series with
the original active region. Generally, wavelet-based methods introduce fewer detection errors
because shapes in the images are less deformed.

The rest of this paper is organised as follows. In section 2, wavelet-based denoising is
introduced. These schemes are tested on 2D images in section 3, and on a simulated fMRI time
series in section 4. Section 5 contains some general conclusions.

2 WAVELET-BASED DENOISING

Wavelet bases are bases of nested function spaces, which can be used to analyse signals
at multiple scales. Wavelet coefficients carry both time and frequency information, as the basis
functions vary in position and scale. The fast wavelet transform (FWT) efficiently converts a
signal to its wavelet representation [6]. Spline wavelet bases (see Fig. 1a) are well suited for
image processing [7]. In a one-level FWT, a signalc0 is split into an approximation partc1 and

← FWHM →
 

(a) (b) (c) (d)

Figure 1. (a) Symmetric orthonormal cubic spline scaling function and wavelet, (b) a 2D
wavelet transform of an MR image, (c) the full width at half maximum of a Gaussian, (d)
the active spot in the simulated time series.

a detail partd1. In a multilevel FWT, each subsequentci is split into an approximationci+1 and
detaildi+1. For 2D images, eachci is split into an approximationci+1 and three detail channels
d1
i+1, d

2
i+1, andd3

i+1, for horizontally, vertically, and diagonally oriented details, respectively (see
Fig. 1b). The inverse FWT (IFWT) reconstructs eachci from ci+1 anddi+1.
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The WaveLab package by Donoho et al. [5] contains thresholding schemes for wavelet-
based denoising: InvShrink, MinMaxThresh, MultiMAD, SUREThresh, VisuThresh with hard
or soft thresholding, HybridThresh, and WaveJS (James-Stein) [8, 9]. An important property of
these denoising schemes is the degree of smoothness of the denoised image [4].

Wavelet denoising thresholds the detail coefficients. Determining the threshold for each
decomposition level and each channel gives extra flexibility. Furthermore, with an unknown
noise model, a level-dependent threshold is preferable. Therefore, our denoising routines process
each detail channel at each scale (see Fig. 1b) individually. Orthogonal spline FWTs can be
computed efficiently in the frequency domain [7]. This computation produces complex numbers,
which cannot be thresholded directly because complex numbers are not ordered. We use the
polar representation and threshold only the magnitudes, keeping the phases.

3 DENOISING 2D IMAGES

As a test, we used the wavelet-based and Gaussian denoising routines to enhance a 2D MR
image. We used various degrees of Gaussian smoothing (characterised by the filter width, or
FWHM, see Fig. 1c). The signal-to-noise ratio (SNR) of the images before and after denoising
were compared as follows. We used white noise and1/f noise for the tests. Noiseε1(x) was
added to the original imagef0(x), yieldingf1(x) = f0(x)+ε1(x). Letσf denote the standard de-
viation of a signalf . The SNR of the noisy image was computed as SNR1 = 10 log10(σf0/σε1).
The noise of the denoised imagef2 was computed asε2(x) = f2(x)− f0(x). This resulted in a
new SNR, denoted by SNR2 = 10 log10(σf0/σε2).
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Figure 2.Performance of the denoising schemes. The SNR of the denoised image is plotted
against the SNR of the noisy input image.

Fig. 2 shows SNR2 plotted against SNR1 for every tested method. Wider Gaussian smooth-
ing kernels perform better for only the lowest input SNRs, and smaller kernels perform better
with moderate and high input SNRs. All Gaussian smoothing methods have a maximum output
SNR; this maximum decreases as the FWHM increases. The wavelet methods perform as well
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as Gaussian smoothing for low SNRs, and better for higher SNRs. VisuThresh with soft thresh-
olding is good for low SNRs, but not for high SNRs. SUREThresh performs badly for the lowest
SNRs, but it is the best method for high SNRs. The difference between these methods is that
VisuThresh with soft thresholding introduces relatively much smoothness in the images, while
SUREThresh introduces little smoothness (see also [4]).

The output SNR of smoothing wavelet methods (HybridThresh, WaveJS, and VisuThresh
with soft thresholding) are higher for low input SNRs, but as the input SNR increases, the output
quality of the less smoothing wavelet methods improves faster. We discuss the effect of smooth-
ing on shapes and intensity distributions in the images in greater detail in section 4. Wavelet
denoising schemes perform consistently for both noise models we used, while the SNR im-
provement of Gaussian smoothing differs between white noise and1/f noise. This is important,
because for neuroimages the appropriate noise model is often unknown. To improve the SNR,
wavelet denoising schemes provide a good alternative to Gaussian smoothing.

4 DENOISING A SIMULATED TIME SERIES

In most neuroimaging applications the SNR cannot be computed, because it is unknown
which part of the signal is noise. Therefore, we constructed an artificial time series by making 64
copies of the MR image of the previous section, superimposing a time signalb(t) on a small part
of the image (see Fig. 1d), and adding noise with a known distribution and SNR. LetFx0 (t) denote
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Figure 3. Average of the temporal SNRx2 over all voxelsx of the original spot in the de-
noised time series, plotted against the input spatial SNR.

the value at positionx and at timet of the time series with the time signal superimposed, but
without noise, andFx1 (t) andFx2 (t) the noisy and denoised time series. The temporal noise and
the temporal SNR are denoted byεx2 (t) = Fx2 (t)−Fx0 (t)− b(t) and SNRx2 = 10 log10(σb/σεx2 ),
whereσb andσεx2 are the temporal standard deviations ofb(t) andεx2 (t), respectively.
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4.1 Effect on the temporal SNR

Fig. 4 shows the average of SNRx2 over all voxelsx inside the active spot, as a function
of the spatial input SNR. Gaussian smoothing with a larger FWHM performs better for a low
input spatial SNR, but this hardly improves when the input SNR increases. For higher input
SNRs, smaller kernels are better, because they deform the image less severely. The wavelet-based
methods generally perform better than Gaussian smoothing, except for low SNRs. Smoothing
wavelet-based methods are better for low SNRs, less smoothing methods are better for moderate
and high SNRs.

4.2 Effect on the shape of the detected spots

We also compared the temporal SNR maps of the denoised time series. Fig. 4 shows tem-
poral SNR maps of the area containing the active spot. In the noise-free case, all points in the
spot have the same temporal SNR. With heavy Gaussian smoothing, the detected spot becomes
elliptic. Gaussian smoothing and smoothing wavelet-based methods, which perform well for
low input SNRs, change the shape and the intensity distribution of the detected region. Less
smoothing wavelet-based methods show smaller deformations. We segmented the images into
an ‘active’ area and a ‘non-active’ area, using a histogram-based threshold. We computed the
number of points labelled ‘active’ outside the original spot, and points labelled ‘non-active’ in-
side the original spot. Heavy Gaussian smoothing yielded many errors of the first type, and both
Gaussian smoothing and smoothing wavelet-based methods showed more errors of the second
type. This was due to deformations of the active spot. Especially the less smoothing wavelet
denoising schemes keep the edges of the spot sharp. This difference may have serious conse-
quences when statistical activity maps are built from denoised fMRI time series.

5 CONCLUSIONS

We have compared wavelet denoising and Gaussian smoothing in two settings: 2D images
and time series of 2D images, both contaminated by white or1/f noise. Smoothing wavelet
methods are favourable when the SNR of the input image is relatively low, non-smoothing
wavelet-based methods are better for images with a higher SNR. A disadvantage of Gaussian
smoothing is the dramatic change of the shape of active regions and their distributions of SNR
values. This effect is much less severe in wavelet-based denoising.

In future work, we will make statistical analyses of denoised fMRI data to test our denoising
methods, with a focus on the shape of regions detected with statistical methods. We expect to find
similar results in PET data, although the noise model and the expected SNR are different from
those in fMRI. Another future direction is the use of temporal, as opposed to spatial, denoising
of neuroimaging data.
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Figure 4. Temporal SNR maps in the area around the active spot. The original images were
perturbed by white noise (left) and1/f noise (right) with a spatial SNR of 10 dB.
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