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SHAPE-ONLY GRANULOMETRIES AND
GRAY-SCALE SHAPE FILTERS

E. R. Urbach, M. H. F. Wilkinson

Institute for Mathematics and Computing Science,
University of Groningen, P.O. Box 800, 9700 AV, Groningen,
The Netherlands

Abstract Multiscale methods which provide a decomposition of an image based
on scale have many uses in image analysis. One class of such methods
from mathematical morphology is based on size distributions or granu-
lometries. In this paper a different type of image decomposition based
on shape but not scale is proposed. Called a shape granulometry or
shape distribution, it is built from a family of morphological thinnings,
rather than openings as in the case of size distributions. An implemen-
tation based on scale invariant attribute thinnings is presented, and an
example of an application is shown.

Keywords: Multi-scale analysis, connected filters, granulometries, attribute thin-
nings.

1. Introduction
Size distributions or granulometries form an important class of multi-scale tools
in mathematical morphology. They were initially introduced by Matheron [5],
and have found many applications (for a recent review of granulometries see
[10]). Intuitively, a size distribution can be considered as a set of sieves of
different grades, each allowing details of certain size classes to pass. They can be
used to classify or extract image details of different size classes (scales). Usually,
the width of each detail is the relevant size criterion. Apart from their use in
image filtering, size distributions can be used to generate morphological pattern
spectra, which summarize the action of a size distribution on a particular image
in a single, 1-D array [6, 7].

More formally, a size distribution consists of an ordered set of operators
each of which convert an image to a new image in which features smaller than
a particular size are absent. These filters must be idempotent, anti-extensive,
and increasing, which means they must be openings. Many, though not all
[6, 7], types of opening can be used as granulometries.
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Figure 1. Decomposition of binary image of nuts and bolts of different sizes into dif-
ferent shape classes: (left) original image; (middle) attribute thinning with criterion:
number of holes > 0; (right) difference between (left) and (middle).

Fairly recently Breen and Jones [3] proposed a new type of size distribution
based on attribute openings, which belong to the class of connected filters.
These allow the use of many size criteria other than width, such as area, length
of the diagonal of the minimum enclosing rectangle, moment of inertia, etc.,
to define the “grades” of the morphological sieves. They also put forward the
idea of attribute thinnings, which allow image filtering based on shape, rather
than size criteria. Fig. 1 shows an example. Their work is related to that of
Bangham et al. [1, 2], who also proposed the use of connected set openings
and closings for image decompositions.

In this paper we extend these ideas to shape granulometries or shape distri-
butions, which are ordered sets of shape filters. We introduce the latter as scale
invariant thinnings, which are idempotent, anti-extensive, but not increasing.
They allow extraction of pattern spectra based on shapes, rather than sizes of
details, which could be useful if the type of details searched for are character-
ized by shape rather than size. This might be the case when trying to find
e.g. human faces in natural images. Because the distance to the camera may
vary, scale may carry less information about the presence of certain objects
than shape. An example of a decomposition of a binary image based on shape
rather than size is shown in Fig. 1, where the nuts are separated from the bolts
based on the number of holes.

In this paper a theory of shape distributions is proposed, and the case of
attribute shape distributions is dealt with in detail. Furthermore, a criterion
for decomposition of grey-scale images in terms of shape is proposed. It is
shown that a new type of grey-scale attribute thinning, called a subtractive
rule attribute thinning is needed to provide an image decomposition which
meets this criterion. Finally, we briefly show some results of an application of
shape filters to the problem of blood vessel enhancement in 3D angiograms,
which have recently been published [11].

2. Theory
The theory of size distributions and attribute filters is presented only very
briefly here. For more detail the reader is referred to [3, 4, 5, 8, 10]. In the
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following discussion binary images X and Y are defined as subsets of the image
domain M ⊂ Rn (usually n = 2), and grey-scale images are mappings from M
to R.

2.1 Binary size and shape distributions

Definition 1 A binary size distribution or granulometry is a set of operators
{αr} with r from some totally ordered set Λ (usually Λ ⊂ R or Z), with the
following three properties

αr(X) ⊂ X (1)
X ⊂ Y ⇒ αr(X) ⊂ αr(Y ) (2)

αr(αs(X)) = αmax(r,s)(X), (3)

for all r, s ∈ Λ.

Since (1) and (2) define αr as anti-extensive and increasing, respectively, and
(3) implies idempotence, it can be seen that size distributions are openings.
Let us define a scaling Xλ of set X by a scalar factor λ ∈ R as

Xλ = {x ∈ Rn|λ−1x ∈ X}, (4)

and likewise, a scaling fλ of a grey-scale image f is defined as

fλ(x) = f(λ−1x) ∀λ−1x ∈ M. (5)

An operator φ is said to be scale invariant if

φ(Xλ) = (φ(X))λ or φ(fλ) = (φ(f))λ (6)

for all λ > 0. A scale invariant operator is therefore sensitive to shape rather
than to size. Using these notions we define shape operators and shape filters.

Definition 2 A shape operator is an image operator which is scale, rotation
and translation invariant. A shape operator which is idempotent is a shape
filter.

In the digital case, pure scale invariance will be harder to achieve due to
discretization artefacts, but a good approximation may be achieved.

Definition 3 A binary shape distribution is a set of operators {βr} with r from
some totally ordered set Λ, with the following three properties

βr(X) ⊂ X (7)
βr(Xλ) = (βr(X))λ (8)

βr(βs(X)) = βmax(r,s)(X), (9)

for all r, s ∈ Λ and λ > 0.

Thus, a shape distribution consists of operators which are anti-extensive, and
idempotent, but not necessarily increasing. Therefore, these operators are not
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openings, but have the same properties as the attribute thinnings defined by
Breen and Jones [3] (these are discussed in section 2.2). To exclude any sen-
sitivity to size, we add property (8), which is just scale invariance for all βr.
Extension to grey level is straightforward.

Definition 4 A grey-scale shape distribution is a set of operators {βr} with r
from some totally ordered set Λ, with the following three properties

(βr(f))(x) ≤ f(x) (10)
βr(fλ) = (βr(f))λ (11)

βr(βs(f)) = βmax(r,s)(f), (12)

for all r, s ∈ Λ and λ > 0.

2.2 Attribute thinnings

As stated above, shape distributions are ordered sets of scale invariant thin-
nings. We will now show that attribute thinnings as defined by Breen and
Jones [3] can provide such sets of operators. Binary attribute thinnings are
based on binary connected openings. The binary connected opening Γx(X) of
X at point x ∈ M yields the connected component of X containing x if x ∈ X,
and ∅ otherwise. Thus Γx extracts the connected component to which x be-
longs, discarding all others. Breen and Jones then use the concept of trivial
thinnings ΦT , which use a non-increasing criterion T to accept or reject con-
nected sets. A criterion T is increasing if the fact that C satisfies T implies
that D satisfies T for all D ⊃ C. The trivial thinning ΦT of a connected set
C with criterion T is just the set C if C satisfies T , and is empty otherwise.
Furthermore, ΦT (∅) = ∅. The binary attribute thinning is defined as:

Definition 5 The binary attribute thinning ΦT of set X with criterion T is
given by

ΦT (X) =
⋃

x∈X

ΦT (Γx(X)) (13)

It can be shown that this is a thinning because it is idempotent and anti-
extensive [3]. The attribute thinning is equivalent to performing a trivial thin-
ning on all connected components in the image, i.e., removing all connected
components which do not meet the criterion. It is trivial to show that if the
criterion T is scale invariant:

T (C) = T (Cλ) ∀λ > 0 ∧ C ⊆ M, (14)

so are ΦT and ΦT . Assume T (C) can be written as τ(C) ≥ r, r ∈ Λ, with
τ some scale invariant attribute of the connected set C. Let the attribute
thinnings formed by these T be denoted as Φτ

r . It can readily be shown that

Φτ
r (Φ

τ
s (X)) = Φτ

max(r,s)(X). (15)

Therefore, {Φτ
r} is a shape distribution, since attribute thinnings are anti-

extensive, and scale invariance is provided by the scale invariance of τ(C). An
example can be seen in Fig. 1.
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Various grey-scale generalizations of these filters have been proposed and
are compared in [8]. An efficient algorithm for computing these filters based
on a tree of flat zones in the image was also put forward in the same paper.
Filtering is reduced to different methods of modifying this tree structure. In
section 3 this algorithm and various thinnings based on different modification
strategies are discussed. First we will discuss the desirable properties of these
filters if they are to be used for shape decomposition of an image.

2.3 Shape decomposition

If we wish to decompose an image into its constituent components based on
shape rather than size, we would intuitively require that after filtering with
grey-scale attribute thinning φT

r derived from binary attribute thinning ΦT
r , no

structures which do not meet the criterion T are present in the resulting image.
Moreover, the difference image f −φT

r (f) should only contain structures which
do not meet T . Let peak component P k

h at grey level h be the kth connected
component of the threshold set Xh(f) of image f which is defined as

Xh(f) = {x ∈ M|f(x) ≥ h}. (16)

The intuitive requirements now mean that all peak components of φT
r (f) meet

T , and all peak components of f − φT
r (f) do not. More formally

ΦT
r (Xh(φT

r (f))) = Xh(φT
r (f)) (17)

and
ΦT

r (Xh(f − φT
r (f))) = ∅ (18)

for all h.
In the next section we will show that a new extension for grey-scale attribute

thinnings is needed to meet these criteria. However, it is not trivial to charac-
terize all filters that share these properties, other than that they must be shape
filters which form a shape-distribution.

3. The Max-Tree
The Max-Tree representation was introduced by Salembier et al [8] as a more
versatile structure to separate the filtering process in three steps: construc-
tion, filtering and restitution. Jones [4] proposed a similar structure called a
component tree, intended for non-flat attribute filtering and segmentation. A
Max-tree is a tree where the nodes represent sets of flat zones. The Max-Tree
node Ck

h consists of the subset of P k
h with grey level h. The root node represents

the set of pixels belonging to the background, that is the set of pixels with the
lowest intensity in the image. The Max-Tree is a rooted tree: each node has
a pointer to its parent, i.e. the nodes corresponding to the components with
the highest intensity are the leaves (see Fig. 2). Hence the name Max-Tree:
the leaves correspond to the regional maxima. This means that the Max-Tree
can be used for attribute openings or thinnings. Conversely, a tree in which
the leaves correspond to the minima is called a Min-Tree and can be used for
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Figure 2. The peak components of a grey-scale image X (left), the corresponding
attributes (middle) and the Max-Tree (right)

attribute closings or thickenings. During the construction phase, the Max-Tree
is built from the flat zones of the image.

After this, the tree is processed during the filtering phase. Based on the
criterion value T (P k

h ) of a node Ck
h , the algorithm takes a decision on whether to

preserve or to remove it. Two classes of strategies exist: (i) pruning strategies,
which remove all descendants of Ck

h , if Ck
h is removed, and (ii) non-pruning

strategies in which the parent pointers of children of Ck
h are updated to point at

the oldest “surviving” ancestor of Ck
h . If T is non-increasing, such as perimeter

or I/A2, where I/A2 denotes the moment of inertia divided by the square of
the area, pruning strategies must either remove nodes which meet T , or leave
nodes which do not. It is trivial to see that no pruning strategy can meet both
decomposition properties of (17) and (18). Salembier describes four different
rules for the algorithm to filter the tree: the Min, the Max the Viterbi and the
Direct, decision. The first three are pruning strategies. In addition to these we
introduce a new, non-pruning strategy: the Subtractive decision.

The decisions of these rules are as follows:

Min A node Ck
h is removed if T (P k

h ) < r or if one of its ancestors is removed.

Max A node Ck
h is removed if T (P k

h ) < r and all of its descendant nodes are
removed as well.

Viterbi The removal and preservation of nodes is considered as an optimiza-
tion problem. For each leaf node the path with the lowest cost to the
root node is taken, where a cost is assigned to each transition. For details
see [8].

Direct A node Ck
h is removed if T (P k

h ) < r; its pixels are lowered in grey level
to the highest ancestor which meets T , its descendants are unaffected.

Subtractive As above, but the descendants are lowered by the same amount
as Ck

h itself.

Fig. 2 shows the peak components of a 1-D grey-scale image, their attribute
values, and the corresponding Max-Tree. The results of applying the Min,
Max, Direct and Subtractive methods on this image with r = 10 are shown
in Fig. 3. Which of these rules is the most appropriate depends mainly on
the application, e.g. image filtering or decomposition. It can be shown that
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Figure 3. Result after filtering the image in Fig. 2 with (from left to right) Min,
Max, Direct and Subtractive decision, with r = 10.

Original f Rule �Tr (f) f � �Tr (f) �Tr (f � �Tr (f))

Min

Max

Dir.

Sub.

Figure 4. Grey-scale decomposition of image f using I/A2 > r thinning with
r = 1.1 using two pruning (max and min) and two non-pruning filtering strategies.
Left: original image; filtered image φT

r (f), difference image f − φT
r (f) and filtered

difference image φT
r (f − φT

r (f)) are shown for all four methods (the two rightmost
columns have been contrast enhanced for clarity). The min filter removes the small
bars within the larger circles from the image, whereas the max pruning strategy leaves
the large circles in the filtered image. Of the non-pruning rules, the direct method
has the problem that the difference image contains non-compact details, as can be
seen by re-filtering with φT

r (rightmost row)
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Figure 5. An application of connected set filters (grey-scale attribute thinning)
to filament extraction: (left) maximum intensity projection of magnetic resonance
angiogram 2563 volume data set; (right) result using an attribute thinning as shape
filter. The attribute used was I/V 5/3, with I the moment of inertia, and V the
volume of a peak component; the attribute threshold was 2.0.

the subtractive rule alone satisfies both (17) and (18). Consider an image with
just three nested peak components P 1

3 ⊂ P 1
2 ⊂ P 1

1 at grey levels 3, 2, and
1, respectively. Furthermore let τ(P 1

3 ) ≥ r, τ(P 1
2 ) < r, and τ(P 1

1 ) ≥ r. No
pruning strategy can simultaneously retain P 1

3 and P 1
1 , while removing P 1

2 .
This means that they cannot satisfy both (17) and (18). Using the direct rule,
the difference f − φT

r (f) will consist of a zero background with one or more
connected regions at grey level 1, consisting of those pixels of P 1

2 which have
grey level 2, i.e. the members of C1

2 (which need not be connected). In general
a peak component of this image may satisfy T . In the case that C1

2 is a single
connected region, this means that τ(C1

2 ) ≥ r. In the subtractive case, the
difference image consists of only those peak components which do not satisfy
T . An example of these properties is shown in Fig. 4: in the case of the
subtractive rule, the filtered image φT

r (f) contains only elongated structures,
and f − φT

r (f) contains only compact structures.

4. Discussion
It has been shown that image decomposition using shape rather than scale
is feasible through the concept of shape distributions. Furthermore, binary or
grey-scale attribute thinnings constitute such shape distributions if appropriate
scale invariant attributes τ are used, and the criteria have the form τ(C) ≥ r.
In the grey-scale case, the two properties desirable for image decomposition
have been formulated, and it has been shown that a new form of grey-scale
attribute filtering using the subtractive rule has these properties, unlike those
proposed previously.

An interesting property of shape filters is that a single shape filter is a
multi-scale operator, and can be used to replace multi-scale operators in cer-
tain applications. Because multi-scale operators are typically implemented by
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combining the outputs of several filters (at least one at each scale), replacing
them by a single shape filter can yield considerable speed gains. These ap-
plications can be found in any area where details with given shape properties
may be present at different scales. One such application concerns enhancement
of blood vessels in angiograms [11]. An example is shown in Figure 5. Fila-
mentous details of all scales were detected with a single subtractive attribute
filter, in which τ = I/V 5/3, and r = 2 with I the moment of inertia and V
the volume. Previously, multi-scale methods using banks of oriented filters at
different scales were used, requiring 10 minutes on an 8 CPU Ultrasparc-based
machine for a 256 × 256 × 103 volume [9]. By contrast, The 2563 volume in
Figure 5 was filtered in 42 s on a 400 MHz Pentium II [11], with the added
advantage that all scales were considered, not just three as in [9].

In future work we will investigate the properties and uses of pattern spectra
based on shape distributions, and on fast algorithms for their computation.
Furthermore, more work is needed to see whether other shape filters besides
the ones discussed exist. For example, the non-flat filters proposed by Jones
[4] may provide extensions to the formalism proposed here.
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