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LIE SYMMETRIES AND DIFFERENTIAL GALOIS GROUPS
OF LINEAR EQUATIONS

W. R. OUDSHOORN AND M. VAN DER PUT

Abstract. For a linear ordinary differential equation the Lie algebra of its
infinitesimal Lie symmetries is compared with its differential Galois group.
For this purpose an algebraic formulation of Lie symmetries is developed. It
turns out that there is no direct relation between the two above objects. In
connection with this a new algorithm for computing the Lie symmetries of a
linear ordinary differential equation is presented.

1. Introduction

Some ordinary differential equations (ode’s) can be solved in an algebraic or
symbolic way. Algorithms for testing ode’s for the existence of symbolic solutions
and actually producing such solutions have been developed in two directions. The
oldest one is Lie’s theory of symmetries of an ode. Its goal is to compute the
Lie algebra of the infinitesimal symmetries of a given ode. If this Lie algebra
is sufficiently large, then the ode can be solved or at least be transformed into a
simpler form. The second theory concerns only linear ode’s and is called differential
Galois theory. It attaches a linear algebraic group G to a linear ode, which gives
precise information about symbolic solutions. This theory and the corresponding
algorithms are highly developed.

For the case of linear ode’s we will compare the two theories and the algorithms.
In particular, we present a new algorithm which computes the Lie symmetries of a
linear ode. In order to compare the two theories, we have to formalize the notion
of Lie symmetry. It is known (see [KM, ML] et al.) that the dimension of the Lie
algebra of symmetries of a linear ode of order n is equal to 8 for n = 2 and is equal
to n + 1, n + 2 or n + 4 for n > 2. The structure of the Lie algebra is known in
all cases. We will prove the same result, using our formalization, and moreover
give a complete classification of the equations for the cases n + 2 and n + 4. It
turns out that the exceptional cases n+ 2 and n+ 4 lead to exceptional differential
Galois groups G ⊂ GL(n), which are also computed. However, there is apparently
no direct connection between G and the Lie algebra of symmetries. Moreover, any
algebraic subgroup of GL(n) does occur as a differential Galois group for a linear
ode belonging to the “class n+ 1”.

Recently, a differential Galois theory for nonlinear ode’s has been proposed.
There is not enough information available to investigate a possible relation with
the Lie algebra of symmetries of ode’s.
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2. Definition of Lie symmetries

In the literature various definitions of Lie symmetries can be found. None of these
definitions are suitable for Picard-Vessiot theory and differential Galois groups.
Therefore we develop an algebraic context for differential equations and their Lie
symmetries which allows Picard-Vessiot theory. This algebraic context includes
most of the other definitions. For differential rings, Picard-Vessiot theory, and
differential Galois groups, we refer to [K, P].

Definition 2.1. The ring R of functions in x and y.
Let C be a field of characteristic 0 and R a commutative C algebra with a unit

1 6= 0. The ring R is equipped with two commuting derivations ∂
∂x and ∂

∂y , and is
supposed to have the following properties:

1) The subring {f ∈ R| ∂f∂x = ∂f
∂y = 0} is equal to C. (The elements of C will be

called constants).
2) R contains two elements x and y such that ∂x

∂x = ∂y
∂y = 1 and ∂x

∂y = ∂y
∂x = 0.

(The expressions ∂f
∂x and ∂f

∂y will be abbreviated to fx and fy. Other expressions,
like fxyx, then have an obvious meaning).

Let R
∂
∂y denote the subring of R consisting of the elements f with fy = 0. This

ring is invariant under ∂
∂x , and we will write d/dx for the restriction of ∂

∂x to R
∂
∂y .

Intuitively, we think of the above R as a ring of functions in x and y and of R
∂
∂y

as the subring of functions depending only on x. The following examples will make
this clear.

Examples 2.2.
(1) The case for which the Lie symmetries are most often defined concerns the

ring R of C∞-functions on the plane. That is, we take the two-dimensional vector
space R2 with coordinate functions x and y and let R be C∞(R2). On this ring we
have canonical derivations ∂

∂x and ∂
∂y . It is obvious that R together with x, y, ∂∂x ,

∂
∂y

and C = R satisfies Definition 2.1.
(2) One can consider variations on example (1) by taking R = C∞(U) or R =

C∞p , where U is an open connected subset of R2. In the second expression p is
a point of R2 and R is the ring of C∞-germs at p. Further, one can consider
complex-valued functions instead of real-valued ones.

(3) One can consider an open connected U ⊂ C2 and R = O(U) the ring of
holomorphic functions on U . Also here there are many variations possible.

(4) R is one of the rings C[x, y], C(x)[y], C[[x]][y], et cetera.

Definition 2.3. The ring A of polynomial differential equations over R.
The differential equations that we are interested in are polynomials in the deriva-

tives of y and those that have coefficients in R. We introduce variables y1, y2, . . . to
denote the derivatives of y and write y0 = y for notational convenience. More pre-
cisely, let {yi}i≥1 denote a countable set of variables. Then A := R[{yi}] is the free
polynomial ring over R equipped with a differentiation d/dx (the total derivative)
defined by

1) (d/dx)f = fx + y1fy for f ∈ R,
2) (d/dx)yk = yk+1 for k ≥ 0.
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By definition a (polynomial) differential equation is an element ω ∈ A. One
considers an extension of differential rings E ⊃ R ∂

∂y and writes again d/dx for the
derivation on E. A solution f ∈ E of ω has the following meaning:

1) A homomorphism of differential rings φ : A → E, i.e., φ ◦ d/dx = d/dx ◦ φ,
such that φ is the identity on R

∂
∂y and such that

2) φ(y) = f and φ(ω) = 0.
Let 〈ω〉 ⊂ A denote the ideal generated by ω and all its derivatives (d/dx)mω.

The kernel of the above φ clearly contains 〈ω〉.
The differential equation ω is called linear homogeneous if it has the form∑
0≤j≤n ajyj with all aj ∈ R

∂
∂y and linear if it has the form a+

∑
0≤j≤n ajyj with

a, a0, . . . , an ∈ R
∂
∂y .

The classical idea of Lie symmetry of a differential equation ω is a C∞-automor-
phism φ of (say) R2, which preserves the collection of integrals (graphs of solutions
in R2) of ω. One is not interested in a single φ but in a differentiable one-parameter
group {φt}t∈R of such automorphisms. The derivative at t = 0 of this family is
a vector field ∇ := ξ ∂∂x + η ∂

∂y for certain C∞-functions ξ, η. The φt and ∇ also
transform the derivatives yk and the differential equation ω. Lemma 2.4 produces
the natural formulas for ∇yk. One supposes, for convenience, that the integrals
for ω determine ω, or more precisely determine the ideal 〈ω〉. The automorphism
φt transforms the integrals of ω to the integrals of φtω. Thus the collection of
integrals is stable under φt precisely if the ideal 〈ω〉 is stable under φt. Suppose
that this holds for all t, then also ∇(〈ω〉) ⊂ 〈ω〉. In this way our formal definitions
of vector field and Lie symmetry of ω are justified. More generally, one can consider
a differential ideal I ⊂ A, i.e., an ideal such that d/dx(I) ⊂ I. One defines the Lie
symmetries of I as the Lie algebra of the ∇ satisfying ∇(I) ⊂ I.

A vector field ∇ or ∇ξ,η is a derivation of R of the form ∇(f) = ξfx + ηfy with
(fixed) ξ, η ∈ R.

Lemma 2.4. For any ξ, η ∈ R, the vector field ∇ξ,η has a unique extension to a
derivation of A (with the same name) such that the Lie bracket [d/dx,∇ξ,η] is a
multiple of d/dx.

Proof. We note that extending ∇ξ,η to a derivation of A amounts to choosing
∇ξ,ηyk ∈ A for all k ≥ 1. Any choice is valid and determines an extension. The
relation [d/dx,∇ξ,η] = h(d/dx) applied to x implies h = dξ/dx. The same relation
applied to yk for k ≥ 0 yields ∇ξ,ηyk+1 = d(∇ξ,ηyk)/dx − dξ/dx · yk+1. This
determines the extension of ∇ξ,η to A. The expression D := [d/dx,∇ξ,η]− dξ/dx ·
(d/dx) is again a derivation of A. By construction D(yk) = 0 for k ≥ 1. For f ∈ R,
one easily calculates that D(f) = 0. This shows that D = 0.

The unique extension of the vector field ∇ = ∇ξ,η to A is called the prolongation
of ∇. In the sequel we will identify a vector field with its prolongation to A. The
collection of all vector fields forms a Lie algebra L with respect to the Lie brackets
defined by [∇1,∇2] = ∇1∇2 −∇2∇1.

Definition 2.5. Let ω ∈ A be a differential equation. The Lie algebra of (point)
symmetries Lω of ω is the Lie algebra consisting of the elements ∇ ∈ L satisfying
∇(〈ω〉) ⊂ 〈ω〉. We note that the last condition is equivalent to ∇(ω) ∈ 〈ω〉.



352 W. R. OUDSHOORN AND M. VAN DER PUT

Lemma 2.6. Let n ≥ 2 and suppose that ω ∈ A has the form yn+ terms involving
only yk with k < n. Then ∇ = ∇ξ,η ∈ L is a Lie symmetry for ω if and only if
∇(ω) = (ξx + ηy − (n+ 1)dξ/dx)ω.

Proof. The expressions (d/dx)mω have the form yn+m+ terms involving only yk for
k < n+m. They generate 〈ω〉. Any f ∈ R[y1, . . . , yn+m] can be written uniquely as
f = q ·(d/dx)mω+r with q ∈ R[y1, . . . , yn+m] and r ∈ R[y1, . . . , yn+m−1]. It follows
easily from this that 〈ω〉 ∩ R[{yk}k<n] = 0. By induction on N , one easily shows
that for N ≥ 2, the expression ∇yN is equal to (ξx+ηy−(N+1)dξ/dx))yN+ terms
involving only yk for k < N . We conclude that ∇(ω) = (ξx+ηy−(n+1)dξ/dx)yn+
terms involving only yk with k < n. Then ∇(ω) − (ξx + ηy − (n + 1)dξ/dx)ω ∈
R[{yk}k<n]. Now the statement follows.

3. Linear equations and their symmetries

In the sequel, we will assume that K := R
∂
∂y has one of the following forms:

(i) a differential field with an algebraically closed field of constants C.
(ii) Some ring of real or complex valued C∞ functions. If this ring of functions

is defined on some open connected subset U of R, then it turns out that the Lie
symmetries of an equation may change if U is replaced by some open connected
subset of U (see Remark 4.3 (3)). We prefer, therefore, to work locally on R and
consider C∞0 , the ring of germs at 0 ∈ R of complex valued C∞-functions. This ring
has zero divisors which may be not welcome in some calculations. Occasionally, we
will make the assumption that some leading coefficient is invertible.

In order to guarantee that certain linear equations do have enough solutions, we
have to extend K. In case (i) this means that K is replaced by some Picard-Vessiot
extension. In case (ii) no extension is needed.

We consider only linear equations of the form ω = yn + an−1yn−1 + · · ·+ a1y1 +
a0y+ a with an−1, . . . , a0, a ∈ K and leading coefficient 1. In case (i) the condition
about the leading coefficient is superfluous. In case (ii) this is essential since a
leading coefficient, which has a zero of a certain order or even has all its derivatives
0 at the point 0, will generate new and different phenomena.

The first step is a reduction to the homogeneous linear situation, i.e., a = 0.
After extending K we may assume that there is a solution f ∈ K of ω. We define
new “variables” and derivations by

X = x, Y = y − f, ∂

∂X
=

∂

∂x
+ (df/dx) · ∂

∂y
,

∂

∂Y
=

∂

∂y
.

Further the Yk are defined as (d/dX)kY . These formulas are not seen as an auto-
morphism of R and A. It just means that we have introduced new elements X,Y
in the ring R and new elements Yk in A, satisfying the same rules. In particular,
ω has the same Lie symmetries as before. Now ω is homogeneous with respect to
the {Yk} and has again leading coefficient 1. In the sequel we will consider only
homogeneous equations.

3.1. Equations of order 2 and symmetric powers. We start with the linear
homogeneous equation ω = y2. Its Lie algebra of symmetries consists of the ∇ =
∇ξ,η satisfying ∇y2 ∈ 〈y2〉. The formula for ∇y2 reads

(ηy − 2ξx − 3ξyy1)y2 − ξyyy3
1 + (ηyy − 2ξxy)y2

1 + (2ηxy − ξxx)y1 + ηxx.
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This leads to the equations

ξyy = 0, ηyy = 2ξxy, 2ηxy = ξxx, ηxx = 0.

It follows that ξ, η are elements of R
∂
∂y [y] of degrees ≤ 2 and ≤ 3 with respect

to the variable y. A straightforward calculation shows that the solution space has
dimension 8 over C. Finally one can verify that the Lie algebra Ly2 is isomorphic
to sl(3)C .

A geometric interpretation can be given as follows. The integrals for y2 are the
lines ax + by + c = 0 in the plane. We can also see those lines as lines in the
projective plane P2

C . The group of automorphisms of P2
C is the projective linear

group PGL(3)C . This group preserves the collection of lines. The Lie algebra of
this group is sl(3)C and coincides, according to the formal calculation above, with
Ly2 .

The next case that we consider is ω = y2 + ay1 + by with a, b ∈ K. According
to Lemma 2.6, ∇ = ∇ξ,η ∈ Lω satisfies E := ∇ω − (ηy − 2ξx − 3ξyy1)ω is zero. A
straightforward calculation yields E = −ξyyy3

1 + (ηyy − 2ξxy + 3aξy)y2
1 + ∗y1 + ∗

for some ∗ ∈ R. We conclude that ξyy = ηyyy = 0, and so ξ, η ∈ K[y]. Thus for
the calculation of Lω we may replace R by K[y]. This simplifies the situation.
The coefficients of ξ, η with respect to the variable y are solutions of a set of
linear differential equations with respect to the variable x. Instead of solving the
equations, we will choose new “variables” and derivations such that ω reads as y2

for the new variables.
We assume that there is an invertible element f , solution of ω. In case (i) one has

to replace K by a Picard-Vessiot extension. In case (ii) a solution f with f(0) = 1
exists. Then one makes the following change of variables and derivations:

X = x, Y = f−1y,
∂

∂X
=

∂

∂x
+
f ′

f
y
∂

∂y
,

∂

∂Y
= f

∂

∂y
, Yk = (d/dX)kY.

For the new variables the function 1 is a solution of ω. Equivalently, we assume to
begin with that the solution space of ω is C1 + Cg. In case (ii) we may suppose
that g(0) = 0. This makes g into a local coordinate. Again we make a change of
variables and derivations:

X = g, Y = y,
∂

∂X
=

1
g′

∂

∂x
,

∂

∂Y
=

∂

∂y
, Yk = (d/dX)kY.

After this change we write x, y, etc., for the new variables and derivations. Now ω
has the solution space C1 + Cx. This implies that ω = ay2 with a ∈ K invertible.
Thus we have reduced the calculation of the Lie symmetries of ω to the case y2.

Proposition 3.1. The algebra of Lie symmetries of y2+ay1+by is, after a possible
extension of K, isomorphic to sl(3)C .

We remark that for the case that we have avoided, namely K = C∞(U) with
U ⊂ R, open and connected, the proposition remains valid. Indeed, the differential
equations for the coordinates of ξ and η with respect to y are linear and have
invertible leading coefficients. Locally on U there is a solution space of dimension
8 and locally the Lie algebra is isomorphic to sl(3). By continuation of this system
of solutions, this also holds globally on U .

We will also be interested in a slightly different kind of symmetry. Let K be as
above. Then K[∂] denotes the skew ring of differential operators in which ∂ stands
for the operator d

dx . The multiplication in this skew ring is given by ∂a = a∂ + a′,
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with a′ = da
dx . For any operator L ∈ K[∂], L 6= 0, with an invertible leading

coefficient, one considers the operators b∂+ a with a, b ∈ K, such that L(b∂+ a) is
a left multiple of L. We will call an element b∂ + a with this property a symmetry
of the operator L. The C-vector space of the symmetries of the operator L forms a
Lie algebra with respect to the Lie-brackets given by

[b1∂ + a1, b2∂ + a2] = (b1∂ + a1)(b2∂ + a2)− (b2∂ + a2)(b1∂ + a1).

By comparing degrees and the leading coefficients, one sees that b∂+a is a symmetry
if and only if there is an ã ∈ K with L(b∂ + a) = (b∂ + ã)L. We make a few
observations:

(1) The case where L has degree 0, i.e., L = A ∈ K∗, is not so interesting, since
any b∂ + a is a symmetry. We note that ã = a− bA′A .

(2) Let the degree of L be n > 0 and write L = A(∂n + · · · ). The solution space
V of L, either in a Picard-Vessiot extension of K or in C∞0 , is a vector space of
dimension n over C. This solution space determines L up to its leading coefficient.
If b∂ + a is a symmetry of L, then clearly b∂ + a maps V into V . On the other
hand, suppose that b∂ + a maps V into V . One writes (b∂ + a)L = (b∂ + ã)L +R
with R an operator of lower degree than L. Since R vanishes on V , one has R = 0.
Thus b∂ + a is a symmetry of L if and only if the operator b∂ + a maps V into
itself. Further ã = a+ nb′ − bA′A .

(3) The symmetries b∂ + a of a1(∂ + a0) are given by the equation a = a0b + c
for any b ∈ K and c ∈ C.

(4) The symmetries b∂ + a of a2(∂2 + a1∂ + a0) are given by the equations
2a′ = −b′′ + a1b

′ + a′1b and b′′′ + (4a0 − 2a′1 − a2
1)b′ + (2a′0 − a1a

′
1 − a′′1)b = 0. The

solution space for the b∂ + a clearly has dimension 4 over C.
Let L be the differential operator ∂2 + a1∂ + a0. The (n − 1)-st symmetric

power Ln of L can be defined as follows. Let f1, f2 denote a basis over C of the
solution space of L. Then Ln is the monic operator of degree n such that its space
of solutions has basis {fd1 fe2 | 0 ≤ d, e; d+ e = n− 1}. There is another description
of the operator Ln. Consider a nonzero solution e0 of L. Then Ln is the monic
operator, of smallest degree, with Lne

n−1
0 = 0.

Proposition 3.2. Let L be the differential operator ∂2 + a1∂ + a0.
(a) The (n− 1)-st symmetric power Ln of L has the form

∂n + bna1∂
n−1 + (cna2

1 + dna
′
1 + ena0)∂n−2 + · · · ,

where bn = n(n−1)
2 , cn = n(n−1)(n−2)(3n−1)

24 , dn = n(n−1)(n−2)
6 , en = (n+1)n(n−1)

6
are positive integers.

(b) Ln has the same symmetries as L.
(c) Suppose that Ln(b∂ + a)− (b∂ + ã)Ln, with ã = a+ nb′, has degree ≤ n− 3.

Then Ln(b∂ + a) = (b∂ + ã)Ln.

Proof. (a) We describe an algorithm for the calculation of Ln, which will also prove
the required formula. One considers a nonzero solution e0 of L and its derivative
e1. By assumption, e′0 = e1 and e′1 = −a0e0 − a1e1. One defines monic operators
Mi of degree i for i = 1, . . . , n− 1, by Mie

n−1
0 = (n− 1) · · · (n− i)en−i−1

0 ei1. Thus
M1 = ∂ and Mi+1 = (∂+∗a1)Mi+∗a0Mi−1 holds for i ≤ n−2 with certain integers
∗. For certain integers ∗, the operator T := (∂ + ∗a1)Mn−1 + ∗a0Mn−2 maps en−1

0

to 0. Hence Ln = T .
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By induction one proves that Mi has the form

∂i + ∗a1∂
i−1 + (∗a2

1 + ∗a′1 + ∗a0)∂i−2 + · · ·

with integers ∗. The same formula holds then for Ln. The integers ∗ in the formula
for Ln can be calculated by choosing special cases for a1 and a0.

(b) and (c). Again let f1, f2 be a basis of the solution space of L. If b∂ + a is a
symmetry for L, then bf ′i + afi, for i = 1, 2, are in Cf1 + Cf2. Then b∂ + a maps
the solution space of Ln into itself and thus b∂ + a is a symmetry for Ln.

One easily calculates that the C-vector space S of the b∂+a such that the degree
of Ln(b∂ + a)− (b∂ + a+ nb′)Ln is ≤ n− 3, has dimension 4. S contains the space
of symmetries of L, and therefore S is equal to the space of symmetries of L.

3.2. Equations of order ≥ 3. We start by indicating a computation (see also
[KM]).

Lemma 3.3. Let ∇ = ∇ξ,η be a Lie symmetry of the homogeneous linear element
ω = yn + an−1yn−1 + · · ·+ a1y1 + a0y ∈ A with all aj ∈ K. If n > 2, then ξy = 0
and ηyy = 0.

Proof. According to Lemma 2.6, we have that ∇(ω) = (ξx + ηy − (n+ 1)dξ/dx)ω.
We prefer to work with the operator M = ∇ − ξ(d/dx). This operator has the
properties [d/dx,M ] = 0 and M(f) = (η − ξy1)fy for f ∈ R. Thus M is K-linear
and M(yk) = (d/dx)kM(y) = (d/dx)k(η − ξy1). The condition is now that the
expression E(ω) := M(ω)− (ξx + ηy − (n+ 1)dξ/dx)ω + ξ(d/dx)(ω) is 0. We want
to calculate the coefficients of the monomials y1yn−1 and y2yn−1 in E(ω). Write
ω = yn + ω̃. Then E(ω) = E(yn) + E(ω̃). It can be seen that E(ω̃) does not
contain the terms y2yn−1 and y1yn−1. Thus we have to compute those coefficients
in the expression E(yn) = (d/dx)n(η − ξy1)− (ξx + ηy − (n+ 1)dξ/dx)yn + ξyn+1.
The coefficient of y2yn−1 turns out to be −

(
n+1

2

)
ξy; hence, ξy = 0. Using this, one

computes that the coefficient of y1yn−1 is nηyy. Therefore, ηyy = 0.

As before, we conclude that for the determination of Lie symmetries of ω we
may replace R by K[y] and A by K[y, y1, y2, . . . ]. In the sequel we will consider
only vector fields ∇ξ,η with ξy = ηyy = 0.

We want to identify the homogeneous elements of A with the operators K[∂].
This will simplify the calculation and give some theoretical insight into the prop-
erties of Lie symmetries. Let Linear ⊂ A denote the set of the linear expressions
anyn + an−1yn−1 + · · · + a1y1 + a0y + a with n ≥ 0 and an, . . . , a0, a ∈ K. The
homogeneous expressions will be identified with Linear/K ⊂ A/K. One considers
the K-linear isomorphism φ : K[∂]→ Linear/K given by φ(

∑n
i=0 ai∂

i) =
∑n

i=0 aiyi
modulo K (here y0 stands for y).

The operator d/dx acts on Linear/K and corresponds with multiplication on the
left by ∂ in K[∂]. In formula φ(∂ ·L) = d/dx(φ(L)). Consider ξ, η with ξy = ηyy = 0
and the operator M = ∇ξ,η−ξ(d/dx). This operator M on A commutes with d/dx,
is K-linear, M(1) = 0, M(y) = η−ξy1, M(yk) = (d/dx)k(M(y)). We note that on
Linear/K, the formula for M(y) reads ηyy − ξy1. This operator corresponds with
M̃ acting upon K[∂] and given by L 7→ L · (−ξ∂ + ηy). The operator ∇ = ∇ξ,η
also acts on Linear/K and corresponds with the operator ∇̃ξ,η on K[∂], given by
L 7→ L(−ξ∂ + ηy) + ξ∂L.
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Proposition 3.4. Fix a monic L ∈ K[∂] of degree n > 2 and let ω = φ(L). The
map ∇ξ,η 7→ ξ∂ − ηy provides a surjective homomorphism of Lω, the algebra of Lie
symmetries of ω, to the Lie algebra of the symmetries of the operator L. The kernel
of this map consists of the Lie symmetries in Lω of the form ∇0,η with η in the
solution space of ω (or L).

Proof. ∇ξ,η belongs to Lω if and only if ∇ξ,ηω = (ηy−nξ′)ω (see Lemma 2.6). This
implies ∇̃ξ,ηL = (ηy − nξ′)L or equivalently L(−ξ∂ + ηy) = (−ξ∂ + ηy − nξ′)L. In
other words, ξ∂−ηy is a symmetry for the operator L. A straightforward calculation
shows that the map of the propostion is a homomorphism from the Lie algebra Lω
to the Lie algebra of the symmetries of L. The kernel of this map consists of the
∇0,η ∈ Lω with ηy = 0. It is easily seen that the η’s with ηy = 0 and ∇0,η ∈ Lω
are just the elements in K (or in a Picard-Vessiot extension of K) with L(η) = 0.

Now let b∂ + a be a symmetry of L. Define ξ = b and η = η0 − ay with,
for the moment, an unknown η0 ∈ K. By construction, the required equation
∇b,−ayω = (ηy − nξ′)ω holds modulo K. Thus we have to choose η0 such that
∇0,η0ω = f := (ηy − nξ′)ω − ∇b,−ayω ∈ K. This is the differential equation
L(η0) = f and has a solution (after taking a Picard-Vessiot extension of K). This
shows that the map is surjective.

Theorem 3.5. Let L ∈ K[∂] be a monic operator of degree n ≥ 3 and let ω = φ(L).
Then:

(a) The dimension of Lω can only be n+ 1, n+ 2 or n+ 4.
(b) The dimension is n+ 4 if and only if L is the (n− 1)-st symmetric power of

a monic operator of degree 2.
(c) The dimension is n+ 2 if and only if L is not an (n− 1)-st symmetric power

of an operator of degree 2 and moreover there is a ∆ := b∂+a with b invertible and
there are constants ci ∈ C such that cn = 1 and L = b−n

∑n
i=0 ci∆

i. In the case
where K is a differential field, b and a belong to some Picard-Vessiot extension of
K.

Proof. (a) and (b). By Proposition 3.4 we have to show that the dimension of the
Lie algebra of the symmetries of L can only be 1, 2 or 4. Of course, any constant
c ∈ C is a symmetry for L and this dimension is at least 1. Using Proposition 3.2,
there is a unique monic operator L2 of degree 2 such that L = Ln + R, where Ln
is the (n− 1)-st symmetric power of L2 and R is an operator of degree m ≤ n− 3.
If b∂ + a is a symmetry of L, then Ln(b∂ + a)− (b∂ + ã)Ln, with ã = a+ nb′, has
degree ≤ n − 3. Thus (b∂ + a) is a symmetry of both Ln and R. If R = 0, then
the dimension of the space of symmetries of L is 4. If R 6= 0 then R = A∂m + · · ·
and Aã = A(a + mb′) − bA′ holds. Together with ã = a+ nb′ this implies bn−mA
is a nonzero constant. This property can at most be valid for a single b (up to a
multiple). Therefore, the dimension of the symmetries of L is at most 2.

(c) If L has the form of the statement, then clearly ∆ is a symmetry of L and
the dimension of the Lie symmetries of ω is ≥ n+ 2. On the other hand, suppose
that L has a symmetry ∆ := b∂ + a with b invertible (b and a are allowed to lie
in a Picard-Vessiot extension of K). Then we can of course write L = b−nM with
M :=

∑n
i=0 ci∆

i, where cn = 1 (and all ci in some Picard-Vessiot extension of K).
The condition L∆ = (∆ +nb′)L translates into M∆ = ∆M , and this easily implies
that all ci are constants.
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Corollary 3.6. The operator L = b−n
∑n

i=0 ci(b∂ + a)i, with ci ∈ C and cn =
1, has a four-dimensional space of symmetries if and only if there are constants
λ1, λ2 ∈ C such that all the roots, counted with multiplicity, of the polynomial∑
ciT

i are {mλ1 + (n− 1−m)λ2| m = 0, . . . , n− 1}.

Proof. If L is the (n − 1)-st symmetric power of a monic operator L2, then the
symmetry b∂ + a of L is also a symmetry of L2. Thus L2 = b−2(∆2 + d1∆ + d0),
with ∆ = b∂ + a and d1, d0 ∈ C. Write L2 = b−2(∆− λ1)(∆− λ2) with λi ∈ C. It
is easily seen that the (n− 1)-st symmetric power of L2 is

b−n
n−1∏
m=0

(∆− (mλ1 + (n− 1−m)λ2)).

The proof follows from this formula.

4. Galois theory and Lie symmetries

In this section we suppose that K is a differential field with an algebraically
closed field of constants C of characteristic 0.

Theorem 4.1. Let L ∈ K[∂] be a monic operator of degree n > 2 such that the
homogeneous equation φ(L) has an n+4-dimensional space of Lie symmetries (over
a Picard-Vessiot extension of K). By Theorem 3.5, L is the (n− 1)-st symmetric
power of a monic operator L2 ∈ K[∂] of degree 2. Then the following holds :

(a) The differential Galois group of L is isomorphic to G/N , where G ⊂ GL(2)C
is the differential Galois group of L2 and N is the finite normal subgroup

N = G ∩ {λ · id| λn−1 = 1}.

(b) Let K̃ ⊃ K be the Picard-Vessiot field for L2. Then the Lie symmetries ∇ξ,η
of φ(L) are defined over K̃, i.e., ξ, η ∈ K̃[y].

Proof. Let V be the solution space of L2 with its G-action. Then symn−1 V is the
solution space for L and the induced action of G on this space is the differential
Galois group of L. This proves (a). For (b), it suffices to show that a symmetry
b∂ + a of L has coordinates a, b ∈ K̃. Let f1, f2 be a basis of V . Then bf ′1 +
af1, bf

′
2 + af2 ∈ V ⊂ K̃. Hence a, b ∈ K̃.

We now take a closer look at part (c) of Theorem 3.5. Let K̃ ⊃ K be a
Picard-Vessiot field which contains the coordinates a and b of ∆ = b∂ + a. The
relation between a and b is given by the formula 2a′ = −b′′ + a1b

′ + a′1b of sub-
section 3.1, where the operator ∂2 + a1∂ + a0 ∈ K[∂] is such that the degree of
L − symn−1(∂2 + a1∂ + a0) is ≤ n − 3. After shifting ∆ over a constant, we may
therefore suppose that 2a = −b′ + a1b.

Let σ be a differential automorphism of K̃/K. Then σ(∆) = σ(b)∂ + σ(a) is
also a symmetry of L ∈ K[∂]. By assumption we are in the “n + 2 case”. Thus
σ(∆) = λ∆ + µ with λ ∈ C∗, µ ∈ C. Then σ(b) = λb and, by our choice of a, also
σ(a) = λa. We conclude that µ = 0.

Since L ∈ K[∂], we have σ(L) = L and thus λ−nb−n
∑
ciλ

i∆i = b−n
∑
ci∆i.

We conclude that λ is a root of unity, since L is not in the “n+ 4 case”. Therefore
K(b) ⊃ K is a cyclic extension of some degree d and a

b ∈ K. Further, L can be
written as b−n

∑[n/d]
i=0 di∆n−id with all di ∈ C and d0 = 1.
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Theorem 4.2. Let L ∈ K[∂] be a monic operator of degree n > 2, and suppose
that the homogeneous equation φ(L) has, over a Picard-Vessiot extension, an n+2-
dimensional space of symmetries. Let b∂ + a with b 6= 0 be a symmetry of L.
Then K(b) ⊃ K is a finite cyclic extension. The differential Galois group of L
over the field K(b) is an algebraic subgroup of the commutative algebraic group
Gs
m,C ×Ga,C = (C∗)s × C+ for some s ≤ n.

Proof. The only new statement is the one about the differential Galois group. In
proving this we may suppose that b ∈ K and L = b−n

∏s
i=1(∆−λi)mi with distinct

λi ∈ C and
∑
mi = n. Let us first consider the case where all mi are 1. The

Picard-Vessiot field K̃ ⊃ K contains nonzero elements fi for i = 1, . . . , n satisfying
(∆ − λi)(fi) = 0. The solution space of L is Cf1 ⊕ · · · ⊕ Cfn ⊂ K̃. Any differ-
ential automorphism σ of K̃/K satisfies σ(fi) = cifi for some ci ∈ C∗. Thus the
differential Galois group G is an algebraic subgroup of the torus (C∗)n.

Suppose now that, say, m1 > 1. Define the nonzero elements f1, . . . , fs ∈ K̃ by
(∆−λi)fi = 0. Let hf1 satisfy (∆−λ1)(hf1) = f1. Then hf1 is in the solution space
of L. Therefore h ∈ K̃. A straightforward calculation shows that h′ = b−1. The
solution space is now seen to have the basis {fihd| i = 1, . . . , s and d = 0, . . .mi−1}.
The action of a differential automorphism σ of K̃/K is seen to have the form
σ(fi) = cifi with ci ∈ C∗ and σ(h) = h+ c with c ∈ C. Thus the differential Galois
group is an algebraic subgroup of (C∗)s × C.

Remarks 4.3.
(1) We have seen that the monic operators L of degree n ≥ 3 such that φ(L) has

a Lie algebra of symmetries of dimension n+ 2 or n+ 4 have a rather special form
and as a consequence their differential Galois groups are also special. The converse
is not true as we will indicate.

Consider the case K = C(z). It is well known that any algebraic subgroup
G ⊂ GL(n,C) is the differential Galois group of a differential module M over
K of dimension n. We want to produce a cyclic vector e ∈ M such that the
monic operator L ∈ K[∂] of degree n, defined by Le = 0, admits only constants
as symmetries. This corresponds with the “n + 1 case” for the Lie algebra of
symmetries for φ(L).

Consider the special case where the differential moduleM has a trivial differential
Galois group. It is not difficult to produce a C-vector space V ⊂ K with dimension
n such that the only b, a satisfying bf ′+ af ∈ V for all f ∈ V are b = 0 and a ∈ C.
The monic differential operator L ∈ K[∂] with kernel V corresponds with a cyclic
vector for M and has only constants as symmetries. Explicit calculations for the
assertion in the general case are rather awkward; instead, we will give an intuitive
reasoning for the assertion that the set of the e ∈M , such that either e is not cyclic
or e is cyclic but the corresponding operator L has more symmetries, is a “thin”
subset of M and in particular 6= M .

Let S denote the union of the differential submodules N ⊂ M with N 6= M . A
vector e ∈M is cyclic if and only if e 6∈ S. It is well known that S 6= M , i.e., there
exists cyclic vectors. An alternative way to see this is to observe that there are rela-
tively few proper differential submodules of M , since those submodules correspond
to proper C-linear, G-invariant subspaces of the solution space ker(∂, K̃ ⊗K M),
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where K̃ ⊃ K is the Picard-Vessiot field for M . Thus the proper differential sub-
modules of M can be parametrized by finitely many algebraic varieties over C.
Then S is “thin”.

Now we consider a cyclic e ∈M such that L happens to be in the “n+ 4 case”.
Then L is the (n− 1)-st symmetric power of an operator of degree 2. Let N denote
the corresponding differential module of dimension 2. One can reformulate the
above as follows: There is an isomorphism ψ : symn−1N →M and a cyclic vector
f for N such that e is the image of f ⊗ · · · ⊗ f . We fix a basis of N and we fix
the isomorphism ψ. This determines a basis of M over K and the coordinates of
the element e, with respect to the induced basis of M , satisfy some homogeneous
equations over K. The module N is unique up to tensoring by a suitable one-
dimensional module. The choice of ψ is not unique, the collection of all ψ’s is
parametrized by an algebraic subgroup of GL(n,C). Thus the set of e’s, such that
the corresponding operator L is in the “n + 4 case”, is the union of a family of
proper algebraic subsets (over K) of M , parametrized by an algebraic variety over
C. This defines a “thin” subset of M .

Suppose that L happens to be in the “n+ 2 case”. With the notation of Theo-
rem 3.5, we have that L = b−n

∑n
i=0 ci∆

i, with ci ∈ C and ∆ = b∂+ a. For a fixed
L of this form the collection of e’s with Le = 0 is a finite-dimensional subspace over
C. One can vary the operator L by varying b, a and the ci ∈ C. The union of all
the elements e ∈ M with Le = 0 for some L of the above form is again a “thin”
subset of M .

(2) For an operator L (say monic of degree n), one can identify the endomor-
phisms of the differential module K[∂]/K[∂]L with the operators M of degree < n
such that LM lies in K[∂]L. Over a suitable Picard-Vessiot extension of K the
space of all endomorphisms is isomorphic with the Lie algebra gl(n) of the matrices
of size n × n. The formalism of Lie symmetries asks for those endomorphisms M
which have degree ≤ 1. This is due to the restriction to infinitesimal transfor-
mation (or vector fields) in the plane. If one would allow vector fields involving
x, y, y′, . . . , y(n−1), then the Lie algebra of symmetries would be (for every L) iso-
morphic to the semidirect sum V oEnd(V ), where V is the solution space of L. The
elements of this space will be written as pairs (v,A) with v ∈ V and A ∈ End(V ).
The Lie algebra structure is given by [(v1, A1), (v2, A2)] = (A1v2 −A2v1, [A1, A2]).
The restriction to endomorphisms represented by operators M of degree ≤ 1 re-
places the part End(V ) by a Lie subalgebra E, containing the identity, and with
dimension 1, 2 or 4. Using Proposition 3.4, one easily determines this Lie subalgebra
E:

(a) In the “n+ 4 case”, the operator L is the (n− 1)-st symmetric power of an
operator L2 of degree 2. The solution space V can be identified with symn−1W ,
where W is the solution space of L2. The symmetries of L2 are identified with
End(W ) (acting upon W ). The injective homomorphism of Lie algebras End(W )→
End(V ) has image E. The structure of the Lie algebra of symmetries does not
depend on L in this case.

(b) In the “n+ 2 case”, the Lie subalgebra E is the two-dimensional space gen-
erated by the identity and the expression b∂+ a in the notation of Theorem 3.5(c).
In this case the Lie algebra depends on the operator L, since the action of b∂ + a
on the solution space V depends on L.

(3) The situation where K = C∞(U) with U an open connected subset of R
is slightly more complicated than C∞0 . Indeed, for a monic operator L ∈ K[∂] of
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degree n ≥ 3, the dimension of the space of Lie symmetries may vary from point
to point on U . This is due to the presence of C∞ functions on U with compact
support. An example is ∂n+ f, n > 2, with f ∈ C∞(R), f 6= 0, which has support
in [0, 1]. For an open connected set which has empty intersection with [0, 1], the
dimension of the space of Lie symmetries is n+ 4. For other connected open sets,
the dimension is at most n+ 2.

5. An algorithm for the symmetries

Let L ∈ K[∂] be a monic operator of degree n and let φ(L) ∈ A denote its
equation. We present here a new algorithm which computes the Lie symmetries of
φ(L). The Lie symmetries of φ(L) are easily deduced from the symmetries of the
operator. For n > 2 this follows from the formula −ξ∂ + ηy = b∂ + a, given in the
proof of Proposition 3.4. What follows is an algorithm computing the symmetries
of the operator L.

For n = 1, 2, the explicit solutions for the symmetries b∂+a are given in Section
3. For n > 2, we will use the symmetric powers of an operator ∂2 + a1∂ + a0

of degree 2. Symmetric powers of operators have been implemented in “DEtools”
of “MAPLE”. For the special case, which is needed here, the proof of part (a)
of Proposition 3.2 provides another algorithm. We will now give the steps of the
algorithm.

(1) L has degree n > 2 and can, by using part (a) of Proposition 3.2, be written
as symn−1(∂2 + a1∂ + a0) +R, where R has degree ≤ n− 3. If R = 0, then L and
∂2 + a1∂ + a0 have the same symmetries. They are given by the solutions of the
equations 2a′ = −b′′+a1b

′+a′1b and b′′′+(4a0−2a′1−a2
1)b′+(2a′0−a1a

′
1−a′′1)b = 0.

This is “class n+ 4”.
(2) If R 6= 0, then we write R = AL1, where L1 is monic of degree n1 ≥ 0. The

only possibility for b 6= 0 is (a nonzero multiple of) A−1/(n−n1). We will give b the
value A−1/(n−n1) and have to verify that b∂ + a, with 2a′ = −b′′ + a1b

′ + a′1b, is a
symmetry of both ∂2 + a1∂ + a0 and L1. For the first operator the verification is
obvious. We can then continue with L1.

(3) For n1 = 0, 1, 2, the verification follows from the explicit formulas in Section
3. If n1 > 2, then we write again L1 = symn1−1(∂2 + b1∂ + b0) +R1 such that the
degree of R1 is ≤ n1−3. We have to verify that b∂+a is a symmetry of ∂2+b1∂+b0.
If R1 6= 0 has degree n2, then we write R1 = bn2−n1L2. The condition is now that
the operator L2 has a constant leading coefficient and admits b∂+a as a symmetry.
Recursion completes the algorithm.
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