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(Non-)Abelian Gauged Supergravities in Nine Dimensions

E. Bergshoeffa, T. de Wita, U. Grana, R. Linaresa and D. Roesta

aCentre for Theoretical Physics, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands

We construct five massive deformations of the unique nine–dimensional N = 2 supergravity, each with two
parameters. All of these deformations have a higher–dimensional origin via Scherk–Schwarz reduction and cor-
respond to gauged supergravities. The gauge groups we encounter are SO(2), SO(1, 1)+, R, R+ and the unique
two–dimensional non–Abelian Lie group CR

1, which consists of scalings and translations in one dimension.
We make a systematic search for two classes of vacuum solutions: maximally symmetric solutions with constant

scalars and half-supersymmetric domain wall solutions. In the first category we find explicit solutions in the form
of (non-supersymmetric) de Sitter space solutions. In the second category we find precisely the three classes of
domain wall solutions that were given in an earlier work.

1. Introduction

The procedure of gauging a global symmetry
includes the replacement of the ordinary deriva-
tive by a covariant derivative:

∂µ −→ Dµ = ∂µ + gAµ . (1)

Here Aµ is the gauge field and g is the gauge
coupling constant which acts as a deformation
parameter of the ungauged theory. In the case
of Einstein gravity with scalars one can consider
as an independent deformation the addition of a
scalar potential V (ϕ):

R + (∂ϕ)2 → R + (∂ϕ)2 + m2V (ϕ) . (2)

In the supersymmetric case, i.e. the case of gauged
supergravity, the two deformations are not inde-
pendent. Supersymmetry relates the two defor-
mation parameters:

g = m . (3)

Due to the scalar potential the Minkowski
spacetime is no longer a maximally supersymmet-
ric vacuum solution of the gauged supergravity.
Instead we will search for other vacuum solutions,
like, e.g., non-supersymmetric de Sitter space so-
lutions. A natural class of half-supersymmetric
vacuum solutions that makes use of the scalar

potential is the set of domain wall solutions. Re-
cently, domain wall solutions of supergravity the-
ories have attracted attention in view of their rel-
evance for a supersymmetric Randall-Sundrum
scenario [1,2], the domain wall/QFT correspon-
dence [3,4] and applications to cosmology [5,6].
In all these applications the properties of the do-
main walls play a crucial role and these properties
are determined by the details of the scalar poten-
tial.

Motivated by this we studied general domain
wall solutions in D=9 dimensions [7]. We took
D=9 because on the one hand this case shares
some of the complexities of the lower-dimensional
cases, on the other hand the scalar potential for
this case is simple enough to study the corre-
sponding domain wall solutions in full detail. The
supergravity theory we considered in [7] was ob-
tained by a generalized Scherk-Schwarz (SS) re-
duction of D=10 IIB supergravity. This is not the
most general possibility in D=9. In this talk we
will present a systematic search for massive de-
formations of the unique D=9, N=2 supergravity
theory. All deformations we find correspond to
gauged supergravities. The hope is that the D=9
case will teach us something about the more com-
plicated situation in D < 9 dimensions. The re-
sults presented in this talk are taken from [8].
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2. Massive deformations of D=9, N = 2 Su-
pergravity

The field content of the unique D = 9, N = 2
massless supergravity theory is given by (i = 1, 2)

eµ
a, φ, ϕ, χ, Aµ, A(i)

µ , B(i)
µν , Cµνρ, ψµ, λ, λ̃ .

(4)

The massless 9–dimensional theory has four
global scaling symmetries, with parameters
α, β, γ and δ, respectively. The scaling weights
of all these symmetries are given in Table 1.

It turns out that only three out of the four scal-
ing symmetries given in Table 1 are linearly inde-
pendent. There is a relation

4
9α − 8

3β = γ + 1
2δ . (5)

The massless N=2, D=9 theory also has an
SL(2, R) symmetry whose explicit rules can be
found in [8].

We now turn to massive deformations of the
9D theory. To obtain these deformations we will
apply a SS reduction which can be best illustrated
by an example. Consider a single scalar field:

L̂ =
√

−ĝ
(
∂ϕ̂

)2
, (6)

which is invariant under the R–symmetry ϕ →
ϕ + c. In the SS procedure one gives the field a
dependence on the compactification coordinate z
which is governed by a global symmetry, in this
case the R–symmetry:

ϕ̂(x, z) = ϕ(x) + mz . (7)

Using the standard reduction rules the La-
grangian reduces to

L =
√−g

((
Dϕ

)2 + m2
)

, (8)

where Dµφ = ∂µϕ − mAµ with Aµ being the
Kaluza-Klein vector.

Applying the above outlined SS dimensional
reduction we obtain a number of massive defor-
mations in nine dimensions, as illustrated in Fig-
ure 1. By employing the different global symme-
tries of 11D, IIA and IIB supergravity we obtain
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Figure 1. Overview of all reductions discussed in this talk. These cases can all be interpreted as gauged su-
pergravities, with gauged symmetry and corresponding gauge field as given in the Figure. Mass parameters
in the same box, such as m11, mIIA or m1, m2, m3, form a multiplet under SL(2, R).
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seven deformations of the unique D = 9 super-
gravity.

Note that the different massive deformations
can be related. Symmetries of the massless the-
ory become field redefinitions in the massive the-
ory that only act on the massive deformations.
This means that the mass parameters transform
under such transformations: they have a scaling
weight under the different scaling symmetries and
fall in multiplets of SL(2, R). In Table 2 the mul-
tiplet structure of the massive deformations un-
der SL(2, R) is given. The mass parameter m̃4

is defined as the S-dual partner of m4 and can
not be obtained by a SS reduction of IIA super-
gravity. All these deformations correspond to a

Table 2
This tables indicates the different multiplets that
the D=9 mass parameters form under SL(2, R).

mass parameters SL(2, R)

(m1, m2, m3) triplet
(m4, m̃4) doublet

(m11, mIIA) doublet
mIIB singlet

gauging of a 9D global symmetry. In particu-
lar, it is always the symmetry that is employed
in the SS reduction Ansatz that becomes gauged
upon reduction. The corresponding gauge vec-
tor is always provided by the metric, i.e. is the
Kaluza–Klein vector of the dimensional reduc-
tion. In all but one case this is the complete story
and one finds an Abelian gauged supergravity. It
turns out that there is one exception, i.e. the case
with m4 �= 0, where we find a non-Abelian gauge
symmetry. The (non-semi-simple) gauge group is
CR

1, the group of scalings and translations of the
real line. Further details of the different massive
deformations can be found in [8].

3. Combining Massive Deformations

We next try to combine the different massive
deformations we found above. Requiring that the

fermionic field equations transform under super-
symmetry to a complete set of bosonic field equa-
tions restricts us to five cases, each containing two
nonzero mass parameters:

• Case 1 with {mIIA, m4}: this combination
can also be obtained by Scherk-Schwarz re-
duction of IIA employing a linear combina-
tion of the symmetries α̂ and β̂, guarantee-
ing its consistency. It is also a gauging of
both this symmetry and (for m4 �= 0) the
parabolic subgroup of SL(2, R) in 9D, giv-
ing the non-Abelian gauge group CR

1.

• Case 2,3,4 with {�m, mIIB}: as in the case
with mIIB = 0 and only �m this combina-
tion contains three different, inequivalent
cases depending on �m2 (depending crucially
on the fact that mIIB is a singlet under
SL(2, R)):

– Case 2 with {�m, mIIB} and �m2 = 0.
– Case 3 with {�m, mIIB} and �m2 > 0.
– Case 4 with {�m, mIIB} and �m2 < 0.

All these combinations can also be obtained
by Scherk-Schwarz reduction of IIB em-
ploying a linear combination of the sym-
metries δ̂ and (one of the subgroups of)
SL(2, R), guaranteeing its consistency. All
cases (assuming that mIIB �= 0) correspond
to the gauging of an Abelian non-compact
symmetry in 9D. Only in the special case
�m2 < 0, mIIB = 0 corresponds to a SO(2)–
gauging.

• Case 5 with {m4 = − 12
5 mIIA, m2 = m3}:

this case can be understood as the general-
ized dimensional reduction of Romans’ mas-
sive IIA theory, employing the R

+ symme-
try that is not broken by the mR deforma-
tions: β̂ − 5

12 α̂. It gauges both this lin-
ear combination of R

+’s and the parabolic
subgroup of SL(2, R) in 9D, giving a non-
Abelian gauge group provided m4 �= 0.

All five cases are gauged theories and have a
higher–dimensional origin. Both case 1 and case
5 have a non-Abelian gauge group provided m4 �=
0.
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4. Solutions

We have constructed a variety of gauged super-
gravities with 32 supersymmetries. They all have
in common that there is a scalar potential. Our
next goal is to make a systematic search for solu-
tions that are based on this scalar potential. In
the next Subsections we will search for two types
of solutions: (i) 1/2 BPS domain wall (DW) solu-
tions and (ii) maximally symmetric solutions with
constant scalars, i.e. de Sitter (dS), Minkowski
(Mink) or anti–de Sitter (AdS) solutions.

4.1. 1/2 BPS Domain Wall Solutions
In [7] we already made a systematic search

for half-supersymmetric Domain Wall (DW) solu-
tions of the gauged supergravities corresponding
to the cases 2, 3 and 4 (with mIIB = 0). Due to
a one-to-one relationship with 7-branes in D=10
dimensions [9] we could even make a systematic
investigation of the quantization of the mass pa-
rameters by using the results of [10,11].

We now want to investigate whether the
five massively deformed supergravities we
found in the previous Section allow new half-
supersymmetric DW solutions. Since we are
looking for 1/2 BPS solutions it is convenient
to solve the Killing spinor equations, which are
obtained by setting the supersymmetry variation
of the gravitino and dilatinos to zero. The pro-
jector1 for a DW is given by 1

2 (1 ± γy), where y
denotes the transverse direction. We find that,
in order to make a projection operator in the
Killing spinor equations, we are forced to set all
mass parameters to zero except for �m, which
corresponds to cases 2, 3 and 4 of Section 3 with
mIIB = 0. This is a consistent combination of
masses and we obtain three classes of domain
wall solution which were discussed in detail in
[7].

To summarize, we find that there are no new

1From a general analysis of the possible projectors in 9
dimensions, we find that there is a second projector given
by 1

2
(1± iγt). This projector would give a Euclidean DW,

i.e. a DW having time as a transverse direction. Note
that such a Euclidean DW can never be 1/2 BPS since if
there existed a Killing spinor it would square to a Killing
vector in the transverse direction, i.e. time, which is not
an isometry of the euclidean DW.

codimension-one 1/2 BPS solutions to the D=9
supergravity theories we obtained in the previ-
ous Sections, as compared to the three classes of
domain wall solutions given in [7].

4.2. Maximally Symmetric Solutions with
Constant Scalars

The second category of vacuum solutions we
consider are the solutions with all three scalars
constant. This is a consistent truncation in two
cases which both have two mass parameters. In
this truncation one is left with the metric only
satisfying the Einstein equation with a cosmolog-
ical term

Rµν − 1
2gµνR = −Λgµν , (9)

with Λ quadratic in the two mass parameters. De-
pending on the sign of this term one thus has
anti-de Sitter, Minkowski or de Sitter geometry.

We find that solutions with constant scalars are
possible in the following massive supergravities:

• D=10 with {m11} has Λ =
+36m11

2e−3φ̂/2, which gives rise to de
Sitter10 [12], breaking all supersymmetry.
The D=11 origin of this solution is Mink11

written in a basis where the x–dependence
is of the required form [12]:

ds2 = e2m11x
(−dt2 + e2m11tdx2

9 + dx2
)
.

(10)

• D=9, Case 1 with {mIIA = − 2
3m4} has

Λ = + 63
4 m4

2eφ−3ϕ/
√

7, which gives rise
to De Sitter9, breaking all supersymme-
try. This case follows from the reduction of
Mink10 by using a combination of IIA scale
symmetries that leave the dilaton invariant
so that. This particular scale symmetry al-
lows a SS reduction of a configuration with
a zero dilaton sothat, after reduction, one
is left with a non-trivial metric field only.

• D=9, Case 4 with {mIIB, m3} has Λ =
+28mIIB

2e4ϕ/
√

7, which gives rise to de
Sitter9 for non-vanishing mIIB. This case
follows from the reduction of Mink10 by us-
ing a combination of IIB scale symmetries

(Non-)Abelian gauged supergravities in nine dimensions 859
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that leave the dilaton invariant. Note that
for vanishing mIIB this reduces to Mink9,
despite the presence of m3 [13]. For either
mIIB or m3 non-zero this solution breaks all
supersymmetry.

5. Conclusions

We have constructed five different D=9 mas-
sive deformations with 32 supersymmetries, each
containing two mass parameters. All these five
theories have a higher–dimensional origin via
SS reduction from D=10 dimensions. Further-
more, the massive deformations gauge a global
symmetry of the massless theory. The gauge
group we have obtained are the Abelian groups
SO(2), SO(1, 1)+, R, R+ and the unique two–
dimensional non-Abelian Lie group CR

1 of scal-
ings and translations on the real line.

We have analyzed the possibility of combining
massive deformations to obtain more general mas-
sive supergravities that are not gauged or do not
have a higher–dimensional origin. Our analysis
shows that the only possible combinations are the
five two–parameter deformations, which are all
gauged and can be uplifted. We have not made a
systematic search for massive D=9 supergravities
that are not the combination of gaugings and we
cannot exclude that there are more possibilities.
This requires a separate calculation.

Finally, not all gauged supergravities we con-
structed are necessarily the leading terms in a
low-energy approximation to (compactified) su-
perstring theory. The deformations with �m �= 0
or mIIA = 1

12m4 �= 0 definitely correspond to a
sector of (compactified) string theory. The other
cases are less clear sofar [8].
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