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Abstract

This paper deals with mathematical formulation of bond graphs. It is proven that
the power continuous part of bond graphs, the junction structure, can be associated with
a Dirac structure and that equations describing a bond graph model correspond to an
implicit port-controlled Hamiltonian system with dissipation. The condition for well-
posedness of the modelled system are given and representations suitable for numerical
simulation are derived. The index of the representations is analysed and sufficient con-
ditions for computational efficiency are given. The results are applied to some models
arising in automotive applications.

1 Introduction

In most of the current modelling and simulation approaches of physical systems, some sort
of network representation is used to make explicit that the physical system model under
consideration is an interrelated set of elementary conceptss. This way of modelling has several
advantages. From a physical point of view it is usually natural to regard the system as
composed of functional components, possibly from different domains (mechanical, electrical,
and so on). The knowledge about subsystems can be stored in libraries, and is reusable for
later occasions. Due to this modularity, the modelling process can be performed in an iterative
way, gradually refining -if necessary- the model by adding other subsystems. Furthermore,
the approach is suited to general control design where the overall behaviour of the system is
sought to be improved by the addition of the other subsystems or controlling devices. From
a systematic-theoretic point of view this modular approach naturally emphasises the need for
the models of systems with external variables.

In this paper we concentrate on the mathematical description of a network representation
of energy-conserving physical systems called bond graphs. The bond graph approach is graph-
ically oriented and its outcome, the bond graph model, represents a multiport system based
on energy flows [1], [2], [3]. An important feature of this technique is that the cumbersome
job of writing down equations describing a physical system is replaced by drawning a picture
of the same by using a finite set of symbols. Once the bond graph is obtained, we can start
with its analysis and with the derivation of equations suitable for the numerical simulation.
These tasks can be fully automated [4], [5].



The purpose of this paper is to develop a theory of bond graphs in a mathematical lan-
guage. The mathematical results that have been obtained so far are sporadic. The approaches
reported in [6], [7], [8], [9], [10], [11], [12] represent combinatorial theory of bond graphs. Here,
a geometric approach is developed, elaborating on previous work on the structure of such dy-
namical systems [13], [14], [15], [16]. Firstly, we consider the power continuous part of a bond
graph model, called junction structure, and prove that every junction structure can be associ-
ated to the geometric notion of a Dirac structure [17], [18], which represents a general power
conserving interconnection structure of a physical system. Secondly, we prove that equations
describing a bond graph model corresponds to implicit port-controlled Hamiltonian system
with dissipation [17], [18], [19]. Also, the condition for well-posedness of the modelled system
are given and representations suitable for the numerical simulation are derived. The index
of representations is analysed and sufficient conditions for the representations to be compu-
tationally efficient are given. This theory is applied to some models arising in automotive
applications.

2 Bond graph models

A generic bond graph is shown in Figure 1. The bond graph formalism used here is based on
the classification of physical variables rooted in thermodynamics. This leads to the generalised
bond graph formalism that admits only one type of storage elements [2], [3].

SF e e SE
fSF

o\
2
&

Figure 1: Generic bond graph

Here, C stands for the collection of C-type multiports (energy storage multiport), R for
the collection of R-type multiports (energy dissipative element), SE for the collection of
SE-type ports and SF for the collection of SF-type ports. These elements are called power
discontinuous elements [2], [3]. JS stands for the junction structure. JS is connected to power
discontinuous elements by multi-bonds. With every multibond we can associate two power
variables: effort e* and flow £, o € {SE,SF,C,R}. They belong to dual spaces and their
duality product (e*|f*) represents the power that goes from or to the junction structure,
depending the positive orentation indicated by half-arrow, to or from the a-type multiport.
The integer n® inside a multibond denotes the dimension of the vectors e® and f*. If n® =1
then a multibond is simply called bond.

The constitutive relations for the C element are given by

%x = fC,

€ = 42 (o),

(1)

where x € X' is the vector of energy variables (such as displacement, momentum, charge,
flux, volume, etc), H € C® (X) is energy of the system and X is an n°-dimensional smooth



manifold.
The constitutive relation for the R element is given by

o (e, %, x) =0, (2)

where (2) defines n®-dimensional set Vx € X. The set has the properties that every pair
belonging to it satisfies the inequality (eR)T R > 0.
Furthermore, the constitutive relations of SE, SF elements are described by

SE
eSE _ uSE c R ,

SF
St = uSF e 7.

(3)

As said before, the junction structure is a power continuous part of a bond graph. It means
that it can not accumulate, dissipate or generate power. It only distributes the power between
the power discontinuous elements in a power continuous way. A generic junction structure is
shown in Figure 2.

Figure 2: Junction structure

Here, 7@ stands for a-mulitport (port if n® = 1). The ports represents the connection of
JS to the power discontinuous elements. The main feature of the junction structure is power
continuity, i.e. a zero power balance at its ports, that is

<eSE| _ fSE> + <_eSF|fSF> T <eC|fC> + <eR|fR> =0. (4)

Therefore JS relates the flows f = (—fSE,fSF,fc,fR) and efforts e = (eSE, —e5F eC, eR) of
the ports to each other. The nature of these relations is examined in section 4.

3 Dirac structures

In this section we recall the definition of a Dirac structure as a general representation of a
power conserving interconnection structure of a physical system [18].

We start with the space of power variables (TxX x V) x (THX x V*), for some finite
dimensional linear space }V and the smooth finite dimensional manifold X, with the power
defined by

P = (e|f), (e,f) € (TxX x V) x (TxX x V¥)
where (e|f) denotes the duality product. We call T5xX x V the space of flows f, and the
dual space T7 X x V* the space of efforts. Closely related to the definition of power there
exists a canonically defined bilinear form ((,)) on the space of power variables (TxX x V) x
(T X x V*), defined as

({0, (2:0) = (1) + ().



Definition 1 (Definition of Dirac structure [17], [20]) A Dirac structure on a differ-
entiable manifold X x 'V is given by a smooth vector subundle D C (TX x V) x (T*X x V*)
such that the linear space D (x) C (TxX x V) x (TxX x V*) satisfies the relation

D+ (x) =D (x),
where L denotes orthogonal compliment with respect to the bilinear form ((,)).
Locally about every point (x,v) € X x V, we may find n x n (n is dimension of the
manifold X x V) matrices E (x) and F (x) depending smoothly on x, such that locally [19],

[18]
D(x) = {(f,e) € (TxX x V) x (T2 X x V*)}

Here, the matrices F (x), E (x) satisfy the following two conditions
rank condition:

rank [F (x) E (x)] = n,

power conservation:

Ex)F'(x)+F(x)E" (x) =0.

This representation is called kernel representation. Closely related to the kernel representation
there exists an image representation defined by [20]

ET (x)

D) =t (| o g |) = {00): £ =BT r e = K7 (2}

4 Geometric formulation of a bond Graphs

As said in the section 2, junction structure relates efforts and flows to each other. Suppose
that this relation at the point x is given by

J(e,f,x)=0

Define the space D (x) as
D (x) = {(e,f) : I (e,f,x) = 0}

Proposition 1 D (x) is a Dirac structure on X x V where X is an n°-dimensional smooth
manifold and V = R?>"+n" +n®

Proof: The junction structure is composed of junctions (1-junctions, 0-junctions) and trans-
ducers( transformers and gyrators).
The constitutive relations of 1-junction (see Figure 3) are given by

J k
DTS I
i=1

i=j+1

fi=..=fj=..= fp
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Figure 4: 0-junction

The constitutive relation of 0-junction (see Figure 4) are given by

J k

=Y fi+ > fi=0,
i=1 i=j+1

€l =..=6€6; = ... = €.

A transformer having n; incoming ports and ns outgoing ports is shown in Figure 5.
e e,
T_m MTF n T
f, (R,(x),R,(x)) f,

Figure 5: Transformer

The constitutive relations of the transformer are given by

R () R ]| ¢ | =0

(e ([Rs () R ()" | 2 | =0

So the constitutive relations of transformer whose ratio is (—R (x),I,,,) are given by

e = RT (X) €9,
fg = R(X) fl,

which represents the regular form of transformer. Finally, a gyrator having ni incoming ports
and no outgoing ports is shown in Figure 6. The constitutive relation of the gyrator are given



R MGY T

fi (R(x).R(x) L.

Figure 6: Gyrator

R () Ra)] | | <o

(ke (IR () Re D)™ | 5 | =0

The elements of the matrices R; (x), Ra (x) are the smooth function on the manifold X and
rank [R; (x) R (x)] is constant Vx € X. If the matrices R; (x), Ry (x) do not depend on x
then the symbols MTF, MGY are replaced by TF, GY.

It may be proved that any of these elements can be related to a Dirac structure [5]. By
using the fact that the composition of two or more Dirac structures is a Dirac structure [20],
one concludes that D (x) is a Dirac structure on X x V.

This means that relations describing junction structure are given by:

FRE) ] ey [ (EEE)T] g e
(FSF (x))T £SF (ESF (x) T _eSF _
e O I M I B ©
L) | LRt ] Loe
F(x) E(x)

The graphical representation of a generic bond graph together with all constitutive rela-
tions is shown in Figure 7.

SE

uSe j

O(f " x)IR%i JS 7(C :H(x)

D(x)

Figure 7: 1-junction

The equation (5) can be rewritten in the following way
(—£55, 655 £C R 55 e eCe?) € D (x). (6)
By inserting (1), (2), (3) into (6), the equations describing the dynamics of a system, whose
bond graph model is shown in Figure 7, are obtained:
SE uSF % fR ySE, _eSF 2H(x)
(—f , vt x, fu el )€’D(x), M)
Q (R, eR, x) = 0.

6



Therefore, the equations describing the system whose bond graph model is shown in Figure
7 are in the form of implicit port-controlled Hamiltonian (PCH) system with the dissipation
[19].

5 Well posedness and equation suitable for numerical simula-
tion

The equation given by (7) are not in form suitable for numerical simulation. In this section
we show how (7) may be transformed into more suitable form. Before that, we introduce
some assumptions about the system described by (7). First we introduce the definitions of
well-posedness of implicit PCH system with dissipation.

Definition 2 (Well-posedness of implicit PCH system with dissipation) Implicit PCH
system with dissipation is well-posed if

dim (DU (x)) = nSE + 05 vx e X,
where
DY (x) = {(e5F, £57) : 3 (£55,£C, %, 5", &) s.t. (f,e) € D (x) ande® =0} .

Proposition 2 (Well-posed implicit PCH with dissipation) The system described by
(7) is well-posed if and only if

rank (ESF x))T = 5% + 15F 4 rank ((FC (x))T) , Vx € X.

Proof: An admissible effort eC is represented by e® = (FC (x))T A, A € R™. Since e© = 0,
then \ € ker ((FC (x))T) It means that the space DV (x) may be rewritten as

(F (x;) ] ker ((FC (x))T> .

(FSF (x)) " FS® (x)) "
rank (ESF (x))T = rank (ESF (x))T ker (FC (x))T + rank ((FC (x))T) =
(FC(x)" (FC (%) "

rank | (ESF (x T xer (F¢ (x))T + rank ((FC (x))T) = dim (DY (x)) + rank ((FC (x))T) .

Now the claiming of the proposition is straightforward.
Remark: The system is not well-posed if either rank ([F5F (x) ESF (x)]) < n®F + nSF or
rank ([F5F (x) ESY (x)]) = n®" + 75" but some columns of F€ (x) linearly depend on columns



of the matrices F5F (x) , ESF (x). In the first case, the matrix [F5F (x) ESF (x)]T is not a full
rank matrix and one can find a nonzero matrix [A (x) B (x)] such that
[A (x) B (x)] [FS® (x) BSF (x)] " =0, ¥x € X.
By postmultiplying the last equation with A € R", one obtains that
Ax) (F® (x)TA+B (x) (B (x)) A=A (x) " + B(x) " =0
S———— S——

eSE fSF
It means that junction structure implies a dependency between the efforts of SE-ports and
the flows of SF-ports. In other words, the input signals can not be chosen arbitrarily. In the

second case, one can find a full rank matrix [A (x) B (x) C (x)] such that both [A (x) B (x)]
and C (x) are non-zero matrices and such that the following relation is satisfied

[A (x) B (x) C (x)] [FSE (x) ESF (x) F© (x)]T =0, V¥xe X.

Similarly, the last relation implies A (x) €5F + B (x) f5F 4+ C (x) f© = 0. If the power variables
eSF 57 are discontinuous function in time, then also the energy variables (the states of the
system) are discontinuous function. Therefore, the sources have to be capable to generate an
infinite amount of power, which has no physical justification.

Suppose that the system described by (7) is well-posed. The set of admissible efforts of
C-ports is represented by

DO (x) = {eC : 3 (e5F, —e5T, &R, —£5F, £5F £C Rt (f,e) € D (x))} .
Assumption 1 (Constant dimensionality of D€ (x)) It is assumed that
dim (D€ (x)) = nf, Vx € X.
Now, we show how equations suitable for the numerical simulation can be derived.

Proposition 3 Consider implicit PCH system with dissipation described by (7). Supposed
that the system is well-posed and that the assumption 1 holds. Then (7) is equivalent with the
following representation:

OH

% =J°(x) o K FG ) A+ GOR (x) f* + GOV (x) u, (8)
0=G" (0 9 (x), (9)

ef = (GO (x))" %—if (%) + GRU (x) u, (10)

Q (f%,8%,x) =0, (11)

y=— (@ ()" 20— (6™ () TR+ 37 () u. (12)

R o N R T
Q (F,8%,x) = Q (T (x) (f*,e") ,x),

T (x) is the regular and power-conserving transformation of power variables of R-ports and
JC (x),JY (x) are the skew-symmetric matrices.



Proof: The relation (5) can be rewritten as

E” (x)e" + F¥ (x) f¥ + Ef (x) e® + FR* (x) fR = 0 (13)
where T -
(B ()" (FS* (x)) "
E"(x)= | (FF )" | ,F (x)=| BFx) | .

(BEC (x))" (FC (x))"
eSE _fSE

e’ = fSF , v = _eSF
eC £C

The well-posedness of the system and Assumption 1 guarantee that the matrix FV (x) is
constant rank matrix. So by performing row like operation to (13), the following can be
obtained

[O( FY (x) ]fu[@?(x)]e”[gg(x)]eR+[§§(x>]fR:0_ ”

ng+nR) x(n—nR)
The matrix F} (x) has the following form

FY (x) = diag (I,se, L,sv, F{ (x))

C Cc _

and F{ (x) is a full rank matrix Vx € X. Furthermore, e can be expressed as e¢ =

(FC (x))T A= [Oncmsxa 00 xnse (FY (x))T OnanR] A. It means that

(ker (FC (x)))T e =0

Therefore, by performing row like operations on the last nS + n® rows of (14), the following
is obtained

FY (x) EY (x) FT (x) Ef (x)
Opoxnonmy | ¥+ | BY (%) | €Y+ | Opoxnr [ F5+ | Opounr [ € =0 (15)
OnRx(n—nR) E3 (x) F (X) E; (X)

and the matrix EY (x) has the following form
Ej (x) = [ OnganE OnganF Eg (X) ] .

The matrix ES (x) is a full rank matrix and ES (x) (FY (x))T = 0,Vx € X. Since n®
power variables of R-element have to be expressed as a function of other n® ones then
rank [F§ (x) E} (x)] =nR, Vx € X. Suppose that

FI (x) (FF (x) " +BE (%) (BF (x))' =Tz, Vx€ X.

If it is not a case then, it can be achieved by multiplying the third row in (15) from the left
side by

M

(F5 G0 (F (0) " + B (o) (BF () )

9



Power conservation yields (block matrices at the position (1,3) and (3,3) of the expression
E(x)F' (x) + F(x) ET (x) =0)

FY () (B (x))! + [Ef (x) FF ()] [F} (0) B (9] =0, (16)
Ef (x) (F§ (x)) " +F§ (%) (B} (x)) =0.
Consider the following transformation of power variables of R-ports
fR] [FR(x) ERF(x) ] [e®
BRI i

~ J

T7(x)
Straightforward computation shows that

T (x) TT (x) = Iz,
oo, N T = [ )

The second condition guarantees that the transformation is power-conserving, i.e. <eR|fR> =
(e®|f®). By inserting (17) into (15) and taking into account (15) the following is obtained

FY (x) EY (x) ~Fr () (By (") |
Ongx(n—nR) "+ | EY (x) | e" + 0,,¢«nr 4
0, R (n_nR EY (x) 2
nRx(n—nR) 3 0, «nRr (18)
O(nSE—HLSF—I—nIC)XnR
Ongan gt =0

L

n

where
EY (x) = BY (x) — [F} (x) BF ()] [F} (x) B ()] TEY (x).

The power-conservation yields
w W T A\ w
FY (x) (BY (%) +EY (x) (FY (x))" =0, (19)

FY (x) (BY (x))" =0. (20)

Since the matrix FY (x) is full rank matrix Vz € X, then the matrix EY (x) may be represented
as follows _
El' (x) = -F{' (x) J (). (21)

By inserting (21) into (18), one obtains
Y =J (x)e" + (EY (x))T TR + ker (FV (x))T A
0=y (x)e"
et = —EY (x)e”
Inserting (21) into (20) gives
J(x)+JIT(x) =0.

10



Splitting J (x) as

EY (x) as .
G™Y (x
E‘?iv (X) = [ o (GC’R((X)))T ] )

and replacing ES (x) by GT (x), ker (F{ (x))T by G (x) the equations (8)-(12) are obtained.

6 Index of system

In this section, the computational issue of the system described by (8)-(12) is investigated.
A measure for expected difficulties in the numerical simulation of the system of equations is
the index. The definition of the (differential) index is given.

Definition 3 (Local differential index [21]) Consider a system described by the following
implicit equation

Q (%,2,u) = 0. (22)

Equation (22) has a local differential index m at the point (2o, uo) if m is the minimal number
such that there exists a neighbourhood of the point (z4,u,) in which the system of equations

Q (i’ Z, u) = O’
dQ (i’ z’ u) _ 0
dt 7
d™Q (2,2, u)
= 7 ),
de¢m

can be uniquely solved for z as a function of z,u only.

The equation (12) is an output equation and it can be omitted from the index analysis. By
inserting (10) into (11) the following set of equations are obtained

OH

% =J (x) S D+ G ) A+ GOR (x) f* + GOV (%) u, (23)
0=G" (0 2 (), (24)
0=0(f% x,u). (25)

Proposition 4 (Index two system) Consider the system described by (25)-(25). Assume
that for x = x, and u = u, the equation (24) is satisfied and that there exists % such that
(25) is satisfied. If

det (a% (GT (x) %—Z (x)) G (x))x:xo £0 (26)

11



det (M) £0 (27)

then the system (23)-(25) has a differential indez two at the point (Xo, TR, Ao, Uo)-
Proof: In this case z = (x, A, f). Differentiation of (25) gives

N (FR
0 (I Wk L 1 (x,w, 0, FR) 0.
5 (F%)

Now it is clear that if the condition (27) is satisfied then the last equation can be solved for
‘™. Differentiation of (24) gives

aor (6709 52 09) G 01+ Lo (x u A Y =0

If the condition (26) is satisfied then last equation can be uniquely solved for A. Therefore for
the given value of x,, £, u, A, can be uniquely computed. Differentiation of the last equation
gives
8 T BH 3 R .
8)(—T (G (X) a—x (X)) G(X) A+L3 (X,)\,f ,u,u) =0.
It is clear that if the condition (26) is satisfied then the last equation can be uniquely solved
for A. So the index of (23)-(25) is two.

Remark 1 (Index two system) Since (24) does not depend on X then the index two system
(23)-(25) is computationally efficient [21].

Suppose that the matrix G* (x) is defined by

G" () = (ker (G (o))

By premultiplying (23) with G* (x), the following system of equations is obtained
OH

Gt (x) % = Gt (x)I° (x) o 0+ Gt (x) GOR (x) IR + G+ (x) GOV (x) u, (28)
0=G6" (0 % ), (29)
0=20(f* x,u). (30)

Proposition 5 (Index one system) Consider the system described by (28)-(30). Assume
that for x = x, and u = U, the equation (29) is satisfied and that there exists % such that
(30) is satisfied. If the conditions (26) and (27) are satisfied then the system (28)-(30) has a
differential index one at the point (xo,f(f{,uo).

Proof: In this case z = (x, fR). The part of the proof regarding the calculation of T is the
same as in the proof of Proposition 4. Now, we concentrate on calculation of x. Differentiating
(29) and regrouping the derivatives on the left side gives the following

- o) | ¥ =T (e Fh0).



If the condition (26) is fullfiled then the rank of the matrix on the left side is full Vx € X.
For proving this, the following identity is used

rank [ A ] = rank (A) + rank (BAJ‘) , Al =ker (A).

B

7 Example

A classical simplified half-car model [4], known as bicycle model, is shown in Figure 8. There
is no suspension, nor any bushing to consider. It is assumed that the width of the system is
neglectable. The front wheel can be steered over the angle ¢.

A

Y

v

Figure 8: Bicycle model: Ideal physical model.

Inertial frame is XOY. The velocities v s, v, s (vgr,vyr) are the velocities of the front wheel
(rear wheel) and v, v, are the velocities of the center of mass of the body. The angular
velocities of the wheels are denoted by w/,w” and the angular velocity of the body is denote
by w® and it is assumed that § is constant. The model of wheel-tire system is considered.
Schematic of tire is shown in Figure 9. Here, Fjo is longitudinal force (a € {f,r}), Fye
cornering force and Agza,Ayo are the constraint forces between the body and wheels. For
a=f,7*=7and for a =7, 7% = 0. The forces Fjo, Fjo are given by

Fra = dza (65a,p$a,pwa),
Fya = dye (65a,p$a,pya) y

13



where pgo,pye are the momenta of the wheel with respect to body frame, p,« is angular

momentum of the wheel with respect to polar axis, el = Rw® — vz0 and ei{a = Vya.

Do

C: C:m,
o Wl
1:SF —> I—>0—>TF—>1—=0 7:‘%
(-R,1) JF o
R
Fya Vo«
l<—0<—m
Vy(xl/ }\'yo'
C:m,

Figure 10: Bond graph model of wheel-tire system.

The mass of the tire is denoted by m;, polar inertia by I; and radius by R. The bond
graph model of wheel-tire system is given in Figure 10. Schematic of the vehicle’s body is
shown in Figure 11. The mass of the body is m and its inertia is I. The bond graph model
is shown in Figure 12.

The transformation matrices from the body frame to the wheel frames, C/ () and C",

14



0 X
Figure 11: Body of the vehicle: The ideal physical model

are given by
cf (6) = cos(6) sin(d) asin(d)
~ | —sin(d) cos () acos(d) |’

1 0 0
01 —-b|"
The bond graph model of the whole system is given in Figure 13. The equations describin

grap y g g q g
the system (8)-12 now become

cr—|

% =G (0) A+ GORFR GOy, (31)
oOH
_ T e
0=G" (9) x (%), (32)
R _ _ (CR\T 8_H
gt =— (GUR) o (x), (33)
_ _ (aCu\ToH
y=—(G"Y) g (%), (34)
0=0(f* &% x), (35)
where
xT:[x}‘ x? x;)r],
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T
xxf ‘ Vb
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Figure 12: Bond graph model of vehicle’s body
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1 00 00 0 —cos(d) —sin(d) —asin(J)
GT (5) = 01 00 0 0 sin(d) —cos(d) —acos(d)
0 001O0O0 -1 0 0
000O0T1FO0 0 -1 b
1 0 -R 0 O 0 000
(Gom)T [0 1.0 0 0 0 000
0 0 0 1.0 —-R 00 0}’
0 O 0 0 -1 0 O0O0O

(G '=[0o01000000],
H(x)=-x"M'x
M = diag (my, my, It, mg, my, I, m, m, I)

fR=[Fy Fy Fr Fp|',
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- zf+dzf 651:

( f,pzfapwf)
—Fyr + dyr (€X, par, pur)
—Fyr +dyr (e?r,pwr,pyr)

Now the index of the system is analysed. The condition (26) is checked.

aor (670 5 ) G0 =60 ;27 0G5 =G ()M G 0).

The rank of the matrix G (J) is full and M is a positive definite matrix. Therefore, the

conditions (26) is satisfied. Now, the condition (27) is analysed. Since
o0 (fR, &R, x)
il L e’ A )
OfR

then also the condition (27) is satisfied. Therefore the index of the system is two. The index
one system may be obtained by multiplying the equation (31) by G+ (§) where

asin(§) acos(é) 0 0 —b 0 0 O 1

sin(d) cos(d) 00 1 00 1 0

GL()=]| cos(d) —sin(d) 01 0 01 00
0 0 00 0 1000

0 0 10 0 00 0O

8 Conclusion

In this paper, a mathematical formulation of bond graphs has been developed. It has been
proven that every junction structure can be associated with a Dirac structure. Also, it
has been proven that equations describing a bond graph model correspond to an implicit
port-controlled Hamiltonian system with dissipation. The condition for well-posedness of a
modelled system has been given and representations suitable for the numerical simulation have
been derived. The index of the representations have been analysed and sufficient conditions
for the representations to be computationally efficient have been given. The theory has been
applied to some models arising in automotive applications.
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