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Abstract
We perform a bifurcation analysis of normal-internal resonances in
parametrized families of quasi-periodically forced Hamiltonian oscillators, for
small forcing. The unforced system is a one degree of freedom oscillator, called
the ‘backbone’ system; forced, the system is a skew-product flow with a quasi-
periodic driving with n basic frequencies. The dynamics of the forced system
are simplified by averaging over the orbits of a linearization of the unforced
system. The averaged system turns out to have the same structure as in the
well-known case of periodic forcing (n = 1); for a real analytic system, the non-
integrable part can even be made exponentially small in the forcing strength. We
investigate the persistence and the bifurcations of quasi-periodic n-dimensional
tori in the averaged system, filling normal-internal resonance ‘gaps’ that had
been excluded in previous analyses. However, these gaps cannot completely
be filled up: secondary resonance gaps appear, to which the averaging analysis
can be applied again. This phenomenon of ‘gaps within gaps’ makes the quasi-
periodic case more complicated than the periodic case.
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1. Introduction

This paper studies families of quasi-periodically forced nonlinear Hamiltonian oscillators at
normal-internal resonances. The motivating example, which is quite representative for the
general case considered later on, is the quasi-periodically forced mechanical pendulum

ẍ + α2 sin x = εg(t), (1)

where x, t ∈ R, α > 0 and ε � 0. Quasi-periodicity of the forcing g means that there is a
frequency vector ω = (ω1, . . . , ωn) with rationally independent components, and a smooth
function G : T

n → R such that

g(t) = G(ω1t, . . . , ωnt).

Here T
n = R

n/2πZ
n. The oscillator is said to be at a normal-internal 1 : � resonance6, if α

satisfies

〈k, ω〉 + �α = 0,

for some k ∈ Z
n\{0}, some � ∈ {1, 2, . . .}, and if � is the smallest positive integer with this

property. Throughout this paper, the frequency vector ω is fixed and Diophantine, while the
parameter α ranges over a compact interval not containing 0.

A classical question, which has been posed explicitly by Stoker [80] but which goes back
to the acoustical investigations of Helmholtz and Rayleigh [53,76], asks for solutions of (1) that
are quasi-periodic with the same frequency vector as the forcing: so-called response solutions.
The central question of this paper is whether response solutions exist, and if so, how these
solutions behave as the parameter α takes values near a normal-internal resonance value.

We reformulate the question in geometric terms by associating with the differential
equation (1) a dynamical system on the phase space T

n × R
2 by posing

θ̇ = ω,

ẋ = y,

ẏ = −α2 sin x + εG(θ);
(2)

here θ ∈ T
n and x, y ∈ R. Any invariant torus that can be represented as the graph of a

function τ = (τ1, τ2) : T
n → R

2 corresponds to a family of response solutions

x(t) = τ1(ωt + θ0),

parametrized by θ0, and vice versa. Hence, in geometric terms Stoker’s problem asks for
invariant tori of the system (2) in graph form. The forcing strength ε will be regarded as a
perturbation parameter. For ε = 0, the torus τ = 0 is invariant; we are interested in the fate of
this torus if ε is small and positive.

The unperturbed torus is normally elliptic, and its normal frequency is equal to α.
Kolmogorov–Arnold–Moser (KAM) theory shows that for small ε > 0, this torus will
persist for the parameter α taking values in a Cantor set of positive Lebesgue measure
(cf [8, 19, 59, 60, 69, 75]). The complement of this Cantor set consists of countably many
open intervals—usually called ‘gaps’ in this context—whose union is dense. These gaps
correspond to normal-internal resonances; in their presence standard KAM theory cannot be
applied directly. Note that in the well-known periodic analogue of this problem, that is in
the case n = 1 (cf [67]), response solutions are known to persist for all α ranging over some
compact interval.

6 It would be more precise (and more cumbersome!) to speak of a gcd(k) : � resonance, where gcd(k) of an integer
vector k ∈ Z

m\{0} is the greatest common divisor of its components ki . It turns out that the only difference to the
case gcd(k) = 1 lies in a slightly different van der Pol transformation, see equation (12).
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The main goal of this paper is hence to analyse what happens in a given normal-internal
resonance gap. After averaging at the resonance under consideration, and lifting to a suitable
covering space, the system can be written as the sum of an integrable part, which may be
reduced to a one degree of freedom system, and a very small non-integrable part. Analysis of
the integrable part yields that there are two types of gaps. At a normal-internal 1 : 1 resonance,
the invariant torus is ‘pushed away’ from the origin, and two more tori are generated in a
quasi-periodic centre-saddle bifurcation. At a normal-internal 1 : 2 resonance the invariant
torus changes from being normally elliptic to normally hyperbolic—and back—in two quasi-
periodic frequency-halving bifurcations. This second type of gap is proof-generated in classical
KAM-schemes, which control the normal behaviour of invariant tori tightly. Consequently
this type of gap is not present in [6, 7], where an alternative scheme is used.

1.1. Phenomenology

To illustrate the dynamical phenomena we are interested in, numerical simulations of system (2)
have been performed for the case n = 2,ω = (1,− 1

2 + 1
2

√
5) (cf [24]). ForG, the trigonometric

rational function

G(θ) = (3 + cos θ1 + cos θ2)
−1

has been taken, whose Fourier coefficients are all non-zero. The perturbation strength has been
set to ε = 0.05.

Response solutions have been computed numerically for a range of values of the
parameter α. The method works roughly as follows: system (2) induces a Poincaré map
of the Poincaré section θ1 = 0 onto itself. Invariant tori of the system correspond to invariant
circles of the Poincaré map, with rotation number −π + π

√
5. An explicit parametrization

of such an invariant circle is obtained by representing it as a Fourier series and computing its
Fourier coefficients numerically. Then, the invariant curve can be continued with respect to
the parameter α (for more details, see [31,56]). The results are summarized in figure 1, where
on the vertical axis the L2 norm of the Fourier series is plotted against the parameter α.

In the figure, it can be seen clearly how invariant tori are ‘pushed away’ by 1 : 1 resonances;
however, these resonances do not destroy the tori. As remarked before, ‘classical’ KAM
theory handles only the case where response solutions have an amplitude of order O(ε): this
corresponds to the lower part of the curves. The ‘spikes’ are cut off, and hence correspond to
the ‘gaps’ in the Cantor sets for which classical KAM theory fails to find invariant tori. These
gaps will be almost completely ‘filled’ by the results of this paper.

Another case for which gaps occur in the KAM Cantor sets is for 1 : 2 resonances.
Although in that case invariant tori are not pushed away, their normal linear behaviour changes
from elliptic to hyperbolic and back again. Classical KAM theory also fails for these tori: this
gives rise to another kind of ‘gap’ in the KAM Cantor sets, which will be filled completely by
this paper.

Let us briefly compare these findings with the results in the case of periodic forcing n = 1
(see [67] for a survey). There the resonance gaps are isolated. However, the same amplification
of response solutions is observed for the parameter α close to a 1 : 1 resonance (kω + α = 0
and k �= 0). At a 1 : 2 resonance—that is kω + 2α = 0 with k odd—the response solution
changes from elliptic to hyperbolic and back again, through two period doubling (also called
frequency halving) bifurcations (cf [17, 18, 27, 41]). For higher resonances kω + �α = 0 with
� � 3, periodic orbits with � times the period branch off from the response solution.

All these periodic resonance phenomena reappear in our quasi-periodic case, but now
forming a dense set. In fact, in the case n = 1 the parameter values of α for which kω+�α = 0
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Figure 1. Response diagram of (1) and (2). Shown are the parameter α on the horizontal axis,
against the L2 norm of the response solution on the vertical axis. Classical KAM-theory can only
prove the existence of invariant tori whose L2 norm is below some bound c, which is of the same
order O(ε) as the forcing, as ε → 0. Moreover the normal dynamics of these invariant tori should be
elliptic, which fails to be the case for 1 : 2 resonances (the corresponding gaps are not shown in this
figure).

Figure 2. Two more response diagrams associated with the 1 : 1 normal-internal resonance. The
left plot shows the big resonance for α near the golden number − 1

2 + 1
2

√
5 = 0.618 . . ., and the

right plot is a magnification of the ‘secondary’ gap that appears in the left plot.

for some fixed �—the resonances—form a set of isolated points; the corresponding set forn � 2
is dense.

This denseness of resonances leads us to expect ‘secondary’ resonances located on the
‘primary’ resonance curves. To illustrate these, the left-hand picture in figure 2 zooms in
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on the interval [0.54, 0.70] ⊂ [0.5, 1.5] of figure 1. In this way the ‘primary’ resonance at
α = − 1

2 + 1
2

√
5 is magnified and a ‘secondary’ resonance at α ≈ 0.563 813 becomes visible.

Although resonances form a dense set, the width of the associated gaps decreases rapidly (in a
first approximation, this width is proportional to the corresponding Fourier coefficient of the
forcing functionG(θ), see section 5) and the numerical detection of these phenomena becomes
difficult.

In order to obtain a two-dimensional impression of the dynamics in phase space, ‘quasi-
periodic’ Poincaré sections of system (2) are displayed in figure 3. These are constructed by
taking the first return map under the flow of (2) to the set � = {θ1 = 0, θ2 ∈ [a, b]} × R

2,
where [a, b] is a small interval, and then plotting the resulting points only using their
R

2-coordinates.
Figure 4 shows three slices of the phase space for the case k = (0,−3), � = 2, clearly

showing a period doubling bifurcation.

1.2. Setting of the problem

In the sequel, the phenomena illustrated in the previous subsection are analysed using a series
of well-known techniques, such as (efficient) normal form analysis, van der Pol liftings, local
equivariant bifurcation theory and KAM theory.

Figure 3. Six phase portraits associated with the 1 : 1-resonance, the first three for α ≈ − 1
2 + 1

2

√
5,

and the other three for ‘a gap within that gap’ (α ≈ 0.563 813, see figure 2, left).

Figure 4. Three phase portraits associated with a 1 : 2-resonance, for −3(− 1
2 + 1

2

√
5) + 2α ≈ 0.
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Note that the following Hamiltonian system is equivalent to equation (1)

θ̇ = ω,

İ = ε
∂G

∂θ
(θ)x,

ẋ = y,

ẏ = −α2 sin x + εG(θ),

(3)

where the added variable I ∈ R
n is canonically conjugate to θ ∈ T

n. System (3) is an
autonomous Hamiltonian system on the phase space T ∗(Tn × R) = T

n × R
n × R × R =

{θ, I, x, y}, with symplectic form dθ ∧ dI + dx ∧ dy and Hamilton function

H(θ, x, I, y) = 〈ω, I 〉 + 1
2y

2 − α2 cos x − εG(θ)x.

This motivates the introduction of a more general (parametrized) Hamiltonian

H = 〈ω, I 〉 + α
x2 + y2

2
+ h̃(x, y;α) + εG(θ, x, y;α, ε), (4)

where h̃ contains terms of order O(|(x, y)|3), and whereG is an arbitrary real analytic function.
For ε = 0, the torus (x, y) = (0, 0) is invariant and a response solution. This response solution
is said to be at a normal-internal 1 : � resonance at α = α0, if

〈k, ω〉 + �α0 = 0

for some k ∈ Z
n\{0}, some � ∈ {1, 2, . . .}, and if � is the smallest positive integer with this

property.
Note that system (3) is a special case of this general form. Moreover, note that this general

parametrized Hamiltonian is generic in the universe of parametrized families of ‘forced’ (or
‘driven’ or ‘skew’) Hamiltonian systems

K = 〈ω, I 〉 + k(θ, x, y),

which have the property that the ‘torus dynamics’

θ̇ = ω

are decoupled from the ‘normal dynamics’

ẋ = ∂k

∂y
, ẏ = − ∂k

∂x
.

This set-up keeps ω constant, and allows concentration on the normal behaviour of invariant
tori, while not having to worry about possible internal resonances. For the rest, we want our
system to be ‘as generic as possible’ and ‘sufficiently smooth’, although in the later parts of
the paper, the Hamiltonian (4) is assumed to be real analytic in all its arguments.

Remark 1.1.

(i) We make the general conjecture that the analysis of this paper is, suitably modified, valid
for the more general system

H = H0(I ) + α
x2 + y2

2
+ h̃(x, y;α) + εG(θ, I, x, y;α, ε)

in the universe of ‘ordinary’ Hamiltonian systems. Restricting ourselves to the forced
case in this paper is mainly for convenience, but also because this setting is interesting in
its own right.

Indeed, there are many models in celestial mechanics that are written as periodic
or quasi-periodic perturbations of autonomous Hamiltonian systems; for instance



Normal-internal resonances at quasi-periodic forcing 1757

[31, 37, 45–48]. The families of invariant tori in such models must present the phenomena
studied here. In fact, the classical KAM theory for this case (cf [59,60]), avoids the normal-
internal resonance gaps under study here by excluding the corresponding values in the
action and/or parameter spaces.

(ii) Our restriction to a real analytic universe (endowed with the compact-open topology on
holomorphic extensions) is partly for convenience. Large parts of this treatment also work
in Cs for s ∈ N ∪ {∞} large, e.g. the normal form transformations, the van der Pol lifting,
Kupka–Smale genericity [25,26], and the quasi-periodic persistence results [20,75]. Real
analyticity is crucial, however, to obtain exponential estimates on the remainder terms in
the normal forms, which in turn determine the widths of the gaps [22, 23, 71, 79].

1.3. Outline

We outline the analysis performed in the rest of this paper. As mentioned before, we consider
the Hamiltonian

H = 〈ω, I 〉 + α
x2 + y2

2
+ h̃(x, y;α) + εG(θ, x, y;α, ε).

Observe that for ε = 0 this Hamiltonian is integrable. Its dynamics leave invariant an elliptic
n-dimensional torus τ(θ) = 0 of graph form and a surrounding family of invariant (n + 1)-tori.
The term εG is regarded as a perturbative forcing term. We are interested in the fate of the
n-torus when ε is small and positive, in particular for α in a small neighbourhood of a normal-
internal resonance value α0 �= 0 satisfying

〈k, ω〉 + �α0 = 0 (5)

for certain � ∈ {1, 2, . . .} and k ∈ Z
n\{0}.

If � ∈ {1, 2}, classical KAM-theory cannot be applied to this perturbation problem
directly. However, by restricting to a single normal resonance, the problem may be transformed
as follows. For α close to α0, ε close to 0 and (x, y) in a neighbourhood of 0 (whose size
depends on ε), a resonant normal form is computed. By a van der Pol transformation the system
is lifted to a suitable covering space, where it can be split into an integrable system (that can be
reduced to a one degree of freedom ‘backbone’ system) and a non-integrable remainder term
of arbitrary high order in all variables.

The ‘backbone’ system is equivariant with respect to the deck transformations of the
covering space, and hence equivariant bifurcation theory is invoked to analyse its bifurcations
with respect to the parameter α. Our main concern, persistence of quasi-periodic response
tori of graph form, then reduces to analysing the persistence of response tori of the integrable
‘backbone’ system under small non-integrable perturbations. For this part of the analysis,
we draw on results of quasi-periodic Hamiltonian bifurcation theory already available. From
the bifurcation diagrams obtained in this way, the response diagram near the resonance (5) can
be reconstructed, using ‘classical’ KAM-theory (cf [8,9,11,19,52,55,61,63,69,80]). To this
end we use the following Diophantine conditions: the parameter α should satisfy

|〈k′, ω〉 + �′α| � γ

|k′|τ , (6)

for all (k′, �′) ∈ Z
n\{0} × {±1,±2} that are different from the (k, �) which satisfy (5).

These conditions effectively define a Cantor set inside the resonance gap around (5). Though
we are mainly interested in the case that � ∈ {1, 2}, for completeness sake the case � � 3 will
be included as well. We emphasize that our approach deals with one normal frequency at a
time.
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We give a brief overview of the effects of the perturbation, depending on the value of �.
If � = 1, the response torus is ‘pushed away’ by the perturbation and standard KAM theory
does not apply. If � = 2, the torus is not affected but its normal behaviour can change from
elliptic to hyperbolic. In this case, KAM theory could be applied directly without including
the normal directions (see [7]). If � � 3, the normal stability of the torus is not affected and
standard KAM machinery can be applied; in this case the effect of the resonance is the ‘birth’
of new invariant response tori.

Combining the normal form approach with Neishtadt–Nekhoroshev estimates, which
can be obtained in the real-analytic case as in [22, 23, 60, 71, 79], leaves only gaps that are
exponentially small in the perturbation strength ε.

Indeed, our analysis shows that normally elliptic tori, known to exist outside these gaps,
can be continued inside where they may or may not pass through quasi-periodic bifurcations.
However, the continuation is not complete: new gaps show up because of (6), which have
to be treated the same way. This ‘inductive principle’ suggests an infinite repetition of the
bifurcation patterns at ever smaller scales. Compare with the ‘bubbles inside bubbles’ as they
occur in dissipative quasi-periodic bifurcation theory [4, 8, 32–34, 84].

Note that in the formulation of the perturbation problem, there is no essential difference
between the periodic case n = 1 (cf [17,18,27,38,67,80]), and the quasi-periodic case n � 2.
In the sequel we shall often compare these two cases; the main difference between them is that
normal-internal resonances yield isolated gaps in the periodic scenario, but a dense union of
gaps in the quasi-periodic scenario.

Remark 1.2. The gaps associated with � = 0 in ‘classical’ KAM-theory concern the internal
resonances, which are of a different type. They are in fact excluded in this paper, since ω has
been fixed at some Diophantine value. Various violations of the corresponding non-resonance
conditions are dealt with elsewhere (see for instance [9, 14, 15, 55, 70, 75, 83]).

1.4. Organization

This paper is organized as follows. In section 2 we simplify the Hamiltonian (4) in two steps.
First a formal normal form is developed. Second, by a van der Pol transformation, we lift the
system to a covering space adapted to the resonance.

After truncation and reduction, a one degree of freedom system is obtained, which is the
same as in the periodic case. In section 3 this one degree of freedom system is investigated
for its own sake, since it forms the backbone of our perturbation problem. Our main interest
is in the (relative) equilibria, since they correspond to response solutions in the full system.
They can be continued by the implicit function theorem. The analysis is simplified by suitable
scalings, allowing us to retain only significant lowest order terms of the system.

The corresponding dynamics in n + 1 degrees of freedom of the integrable part of the
normal form is reconstructed in section 4 using structural stability arguments. Section 5
re-incorporates the non-integrable terms neglected earlier on, and KAM techniques are applied
to show persistence of response solutions, solving the original perturbation problem. Actually,
by using normal forms with exponentially small remainders, the new gaps in the parameter
space are shown to be exponentially small in the perturbation parameter ε.

In the appendix, details are presented on how the normal forms are obtained, as well as
how existing results on the persistence of quasi-periodic tori can be applied to our special case.

2. Simplifications of the Hamiltonian

Several canonical transformations are applied to our Hamiltonian system with Hamiltonian (4),
simplifying it stepwise. We begin by putting the normal linear part into standard form. After
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the nonlinear part is put into a formal resonant normal form, which also is quite standard (cf,
e.g. [5, 9, 10, 29, 30, 50, 65, 81]). In this way the dynamics normal to the torus decouples from
the ‘internal’ part (the quasi-periodic forcing), which allows a (formal) reduction to a system
with one degree of freedom. Finally, by a van der Pol transformation (also known as ‘passing
to co-rotating coordinates’) the system is lifted to a covering space (see for instance [1,27,51]).

2.1. Preliminaries

On the phase space T
n × R

n × R
2 with symplectic structure

∑
dθi ∧ dIi + dx ∧ dy we have

the Hamiltonian (4)

H(θ, I, x, y;α, ε) = 〈ω, I 〉 + h(x, y;α) + εG(θ, x, y;α, ε), (7)

where 〈·, ·〉 denotes the standard inner product, and where h = (α/2)(x2 +y2)+h̃. Consider the
one degree of freedom system defined by h(x, y;α). As the origin is an elliptic equilibrium, it
follows for ε = 0 and for fixed I that the n-torus T

n × {(0, 0)} is a normally elliptic invariant
torus for the full system defined by (4). The quadratic part h2 of h reads as

h2(x, y) = α
x2 + y2

2
.

Recall that h̃ = h − h2 contains the higher order terms. For ε = 0, the variables can be
interpreted geometrically as follows. Individual tori are given by I = I0 and parametrized
by θ . They model the quasi-periodic forcing. We refer to (θ, I ) as the internal variables and
to (x, y) as the normal variables of the tori.

Invariant n-tori of (7) give rise to families of response solutions. For ε = 0, the response
solution is x = 0 = y. From standard KAM-theory (see [19] and references therein), we
know that response solutions exist also for small non-zero ε, and that they are of order O(ε),
provided the Diophantine conditions

|〈k, ω〉 + �α| � γ

|k|τ , for all k ∈ Z
n\{0} and all � ∈ {0,±1,±2} (8)

are met, where τ > n − 1 and γ > 0. We take τ constant, but allow γ to depend on
the perturbation parameter ε. Note that for � = 0 these conditions express that the internal
frequency vector ω is Diophantine. The main interest of this paper is however to study the
case that a Diophantine condition for � = ±1 or ±2 is violated. To this end we investigate
the case that α is close to α0 which is such that for some (fixed) k ∈ Z

n\{0} and � ∈ {1, 2}
the equation (5):

〈k, ω〉 + �α0 = 0

holds. For instance, it turns out that for � = 1 the response solution is at a distance O(ε1/3)

of the ‘unperturbed torus’ x = 0 = y. This necessitates a semi-global approach; we do not
view the occurring bifurcations as isolated phenomena, but focus on the total structure of the
bifurcation diagram close to the resonance (5). This approach also yields new insights for the
resonance 〈k, ω〉 + 3α0 = 0, therefore we investigate (5) also in the case � � 3.

2.2. Formal normal form

We begin with a basic observation. Let two pairs (k1, �1), (k2, �2) ∈ Z
n\{0}×N both satisfy (5).

Since ω is Diophantine, this implies �2k1 = �1k2. It follows that there is at most one pair (k, �)
satisfying (5), for which � > 0 and gcd(k) = gcd(k1, . . . , kn) = 1; here gcd(k) of an integer
vector k ∈ Z

m\{0} is the greatest common divisor of its components ki . Consequently the
‘remaining’ Diophantine conditions (8) are valid for sufficiently small γ . In the neighbourhood
of the resonance (5) we have the following result.
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Theorem 2.1 (formal normal form). Consider the Hamiltonian (4) where for τ > n− 1 and
γ > 0 the frequency vector ω satisfies the Diophantine conditions

|〈k′, ω〉| � γ

|k′|τ ,

for all k′ ∈ Z
n\{0}. For some k ∈ Z

n\{0} and � ∈ {1, 2, . . .}, let α0 satisfy a resonance
condition 〈k, ω〉 + �α0 = 0, and let α be sufficiently close to α0. Given L ∈ N, for sufficiently
small ε there exists a real analytic and canonical change of variables �(·;α, ε)

� : T
n × R

n × R
2 −→ T

n × R
n × R

2

(θ, I, x, y) �→ (θ, J,X, Y )

close to the identity at (x, y, α, ε) = (0, 0, α0, 0), such that the following holds. By the change
of variables, the Hamiltonian (4) is transformed into normal form

H ◦ �−1(θ, J,X, Y ;α, ε) = N(θ, J,X, Y ;α, ε) + R(θ,X, Y ;α, ε). (9)

The integrable part N of the normal form reads

N = 〈ω, J 〉 + α0
X2 + Y 2

2
+ (α − α0)

X2 + Y 2

2
+ c

(
X2 + Y 2

2

)2

+ aε
X2 + Y 2

2
+ AεRe((X − iY )�ei(〈k,θ〉−ψ0))

+
∑

κ,m,j1,j2

Fκ,m,j1,j2(α − α0)
j1εj2(X2 + Y 2)mRe((X − iY )κ�ei(κ〈k,θ〉−ψκ,m,j1 ,j2 )) (10)

with κ � 0, j1 + j2 + 2m + κ� � L− 1, and ψ0,m,j1,j2 = 0, where the sum does not contain the
terms that are explicitly displayed; the remainder R of the normal form satisfies the estimate

R(θ,X, Y ;α, ε) ≡ OL(X, Y, α − α0, ε).

The proof is based on the normalization of the Hamiltonian H with respect to the action of

H2(θ, J,X, Y ) = 〈ω, J 〉 + α0
X2 + Y 2

2
. (11)

The details are given in the appendix.

Remark 2.1.

(i) The system is non-degenarate whenever c �= 0 and A �= 0, which will be assumed
throughout. By reversing the direction of time, if necessary, we can restrict our attention
to c < 0.

By an appropriate scaling of the Hamiltonian, the constant c, which gives the second
Birkhoff coefficient, can be replaced by −1. This leaves us with two cases, A > 0
and A < 0. By a rotation over an angle π/� in the normal direction, that is, in (X, Y )-
coordinates, these cases are shown to be equivalent. However, for clarity’s sake we shall
give phase portraits for both.

(ii) We will see in section 3 that in most cases the higher order part (the last sum term) of (10)
can be considered as being part of the non-integrable remainder R of the normal form.
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2.3. Reduction to an autonomous system on a covering space

The integrable part N of the normal form (10) is equivariant with respect to the adjoint action
of the normal ‘linear’ part H2, given in (11), of the Hamiltonian. Since ω is non-resonant,
the first term 〈ω, J 〉 of H2 generates a free T

n-action. For non-zero α0 the second term
generates a further free T

1-action. As these two actions commute they define a T
n+1-action. In

the case of normal non-resonance, this T
n+1-action is again free; if additionally Diophantine

conditions (8) hold, we obtain persisting normally elliptic quasi-periodic response solutions
(see again [19, 59, 70, 75]).

Given the resonance relation (5), the T
n+1-action is not free but reduces to a T

n-action. And
even this T

n-action is not free (unless � = 1), for the n-torus (x, y) = (0, 0) has isotropy Z�:
there is a Z� sub-action of the T

n-action that leaves every point of the n-torus (x, y) = (0, 0)
fixed. This situation is most conveniently treated by lifting the normal form (9) to an �-fold
covering of T

n ×R
n ×R

2 on which the T
n-action is free. On the covering space the integrable

part N of the normal form will be invariant under the free T
n-action; in fact, after introduction

of suitable coordinates it will not depend explicitly on any ‘torus variable’.
To obtain this, we proceed as follows. First, a basis of the lattice defining T

n is chosen
that is adapted to the resonance (5), in such a way that N depends only on a single angle. This
allows us to continue as if we were in the periodic case.

If for an integer vector k ∈ Z\{0} its greatest common divisor gcd(k) is equal to 1,
then there exist integer vectors v2, . . . , vn ∈ Z

n such that the determinant of the linear map
Lk = (k v2 . . . vn)

T is equal to 1 (cf [36], chapter 10). This linear map is obviously not unique.
The map Lk ∈ SL(n,Z) defines a transformation θ̂ = Lkθ of the n-torus T

n to itself, with the
property that

θ̂1 = 〈k, θ〉.

Note that in these coordinates N is independent of the other angles θ̂2, . . . , θ̂n, which have
consequently become cyclic variables.

In the general case that the greatest common divisor κ0 of the ki is not necessarily equal
to 1, we write k as κ0k̃, where for k̃ ∈ Z

n we have gcd(k̃) = 1. As above, we can find a linear
map Lk̃ ∈ SL(n,Z) whose first row equals k̃. By applying Lk̃ to the n-torus, the integrable
part N of the normal form becomes a function of (θ̂ , Ĵ , X, Y ;α, ε), where Ĵ = (L−1

k̃
)TJ is

the vector of the new actions J conjugate to θ̂ :

N = 〈ω̂, Ĵ 〉 + α0
X2 + Y 2

2
+ (α − α0)

X2 + Y 2

2
−

(
X2 + Y 2

2

)2

+ aε
X2 + Y 2

2
+ AεRe((X − iY )�ei(κ0 θ̂1−ψ0))

+
∑

κ,m,j1,j2

Fκ,m,j1,j2(α − α0)
j1εj2(X2 + Y 2)mRe((X − iY )κ�ei(κκ0 θ̂1−ψκ,m,j1 ,j2 )).

Here ω̂ = Lk̃ω is the new frequency vector; in particular, we have that ω̂1 = 〈k̃, ω〉 =
(1/κ0)〈k, ω〉. Note that the resonance condition now reads as κ0ω̂1 + �α0 = 0.

We are now in the position to mimic the treatment of the periodic case, by introducing
co-rotating coordinates through a so-called van der Pol transformation. The system is lifted by
this transformation to an �-fold covering space, on which the normal dynamics of N decouple
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from the quasi-periodic forcing terms. The transformation is given by(
X

Y

)
=

(
cos κ0ϕ1 − sin κ0ϕ1

sin κ0ϕ1 cos κ0ϕ1

) (
Q

P

)
,

θ̂1 = �ϕ1 +
ψ0

κ0
,

Ĵ1 = κ0

�

P 2 + Q2

2
+

1

�
I1, (12)

θ̂j = ϕj , for j = 2, . . . , n,

Ĵj = Ij , for j = 2, . . . , n.

After the van der Pol transformation the averaged part N of the Hamiltonian is of the form

N(I,Q, P ;α, ε) = 〈ω̂�, I 〉 + F(Q,P ;α, ε) (13)

with ω̂� = (ω̂1/�, ω̂2, . . . , ω̂n), and with F given by

F = (α − α0)
Q2 + P 2

2
−

(
Q2 + P 2

2

)2

+ aε
Q2 + P 2

2
+ AεRe(Q − iP)�

+
∑

κ,m,j1,j2

Fκ,m,j1,j2(α − α0)
j1εj2(Q2 + P 2)m Re((Q − iP)κ�ei(κψ0−ψκ,m,j1 ,j2 )). (14)

By construction the lifted dynamics is equivariant with respect to the deck group of the �-fold
covering space; this group is isomorphic to Z�. It is generated by

(ψ, I,Q, P ) �→


ψ1 +

2π

�
,ψ2, . . . , ψn, I,


 cos

2π

�
sin

2π

�

− sin
2π

�
cos

2π

�


 (

Q

P

)
 . (15)

Furthermore, on the covering space N is independent of the torus variables. By reducing
the (now free) T

n-action, or in other words by restricting to the normal dynamics of N , a one
degree of freedom system is obtained, which has Hamiltonian F . After this reduction, the
Z�-symmetry reads as

(Q, P ) �→


 cos

2π

�
sin

2π

�

− sin
2π

�
cos

2π

�


 (

Q

P

)
. (16)

Observe that in the present �-fold covering space the resonance condition (5) is trivially
satisfied, as k has been mapped to 0 ∈ Z

n and α0 to 0 ∈ R.

In the next section we analyse the reduced Z�-symmetric one degree of freedom system F

for � = 1, 2, 3, 4, . . ..

Remark 2.2.

(i) Notice that for � �= 1 further reduction of the Z�-symmetry would give rise to a conical
singularity at the origin of the reduced phase space (cf [40, 41, 62]). It is exactly to avoid
this singularity that we work with Z�-equivariant systems on the covering space.

(ii) We make a short remark on parametrically forced systems. As an example consider the
nonlinear Hill–Schrödinger equation

ẍ + (α2 + ερ(t)) sin x = 0
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(cf [17, 18, 24, 27]). For quasi-periodic ρ(t) this fits into the framework of this paper if
G(ωt, x, y) = −ρ(t) sin x is taken. However, the nonlinear Hill–Schrödinger equation is
not ‘as generic as possible’, since x = ẋ = 0 is always an invariant manifold, and hence,
if put in the present framework, for � = 1 we would have that A = 0.

The remaining resonances (5) with � � 2 of the present investigation, however, lead
to a Z�-symmetric lifted system where (x, y) = (0, 0) actually is invariant, and hence the
classification obtained will be the same as that for parametric resonances (cf [18, 27]).

3. The one degree of freedom ‘backbone’ system

As a result of the various transformations performed in the previous section, we have obtained
the Hamiltonian

H = 〈ω̂�, I 〉 + F + R,

which is defined on an �-fold cover of the original phase space. In this section the ‘backbone’
Hamiltonian F = F(Q,P ;α, ε) is analysed; the next two sections investigate the dynamical
consequences of adding to F the integrable term 〈ω̂�, I 〉 and the non-integrable term R, and
of projecting the system back to the base of the covering.

Recall that the backbone system F is Z�-symmetric, where � depends on the type of
normal-internal resonance. Below F will be truncated even further: the order of truncation
will be the lowest possible, depending on �, such that we maintain a sufficient amount of
control over the equilibria and their bifurcations to be able to prove their persistence under the
non-integrable perturbation R later on.

Remark 3.1.

(i) The origin (Q, P ) = (0, 0) is always a critical point of F(Q,P ;α, ε) for � � 2; however,
generically it is not a critical point when � = 1.

(ii) The present backbone system is the same slow system as would be obtained in the
periodically forced case n = 1. Hence to a large extent the one degree of freedom
dynamics is as in [2, 67]. Whenever bifurcations occur, these are governed by the
corresponding singularity of the (planar) Hamiltonian function and its universal unfolding.
Following [74] simple adjustments have to be made where such a singularity has to be
unfolded in a Z�-symmetric context.

3.1. The case � = 1

In the case � = 1 the Hamiltonian F of the one degree of freedom backbone system reads

F(Q,P ;α, ε) = (α − α0)
Q2 + P 2

2
−

(
Q2 + P 2

2

)2

+ AεQ + · · · , (17)

where the ‘· · ·’ indicate those terms in F that will be dropped below. In this case the deck
group Z� is trivial.

Since F is considered for Q, P and ε all three close to 0, a suitable scaling yields the
dominant terms of an expansion in ε. For the present case � = 1 such a scaling is given by

ε = µ3, Q = µq,

α − α0 = δµ2, P = µp.
(18)

We now drop the higher order terms in µ and divide the truncated F(P,Q;α, ε) by the
remaining common factor µ4. This leads to

f (q, p; δ) = δ
q2 + p2

2
−

(
q2 + p2

2

)2

+ Aq. (19)
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Note that this amounts to a rescaling of time. Indeed, had we divided by µ2 instead of µ4 then
the scaling (18) would amount to a conjugacy between the flows of the Hamiltonian vector
fields defined by f and by the truncation of F , that is, a coordinate change that maps orbits
into orbits and does respect the time-parametrization. Since we do rescale time the two flows
are no longer conjugate but only dynamically equivalent.

Also note that the Hamiltonian f has, unlike F , a reversing symmetry (q, p) �→ (q,−p)

(see section 3.5 for more details).

Proposition 3.1 (� = 1). Consider the Hamiltonian system with Hamiltonian f as given
by (19), and let A �= 0. This system has at most three equilibria, all on the line p = 0.
A centre-saddle bifurcation of equilibria occurs at

δCS := 3

(
A

2

)2/3

.

For δ > δCS, there are three equilibria, two elliptic and one hyperbolic; for δ < δCS, there is a
single elliptic equilibrium. This is a generic scenario, structurally stable for sufficiently small
perturbations.

Proof. We look for the critical points of f , that is, points (q, p) such that the right-hand
sides of

q̇ = δp − (q2 + p2)p,

ṗ = −δq + (q2 + p2)q − A,

both vanish. As the fixed points have to satisfy p = 0, equilibria are given by

A + δq − q3 = 0. (20)

Since the scaled system only depends on the single parameter ∼ δ, generically only centre-
saddle bifurcations are expected to occur, for which two equilibria collide and disappear. This
is expressed by the equations

A + δq − q3 = 0, δ − 3q2 = 0.

These equations yield a single bifurcation parameter value δCS = 3(A/2)2/3, the corresponding
bifurcating equilibrium being (q, p) = (qCS, 0) with qCS = −(A/2)1/3. The parametrized
family is a generic one parameter unfolding corresponding to a non-degenerate centre-
saddle bifurcation (cf [12, 52, 66]); here we have used standard singularity theory. Note
that at bifurcation, the equilibrium (qCS, 0) is parabolic. The system (19) contains no further
bifurcations. �

The bifurcation diagram at this resonance, which is shown in figure 5, can be described
as follows: for increasing δ the amplitude of the elliptic equilibria starts to increase at the
resonance. At δ = δCS a centre-saddle bifurcation takes place, generating two additional
equilibria, one elliptic and the other hyperbolic. As δ increases further, the amplitude of the
hyperbolic branch starts to increase as well and approaches that of the non-bifurcating elliptic
branch. The elliptic branch generated at the bifurcation tends to 0 as δ increases past δCS (see
figures 3(a)–(c)). Also compare with [80] (chapter IV, section 2), or [2, 67].

Remark 3.2. Equilibria of the system f correspond to response solutions of the system N

of the previous section, and their distance to the origin is related to the amplitude of those
solutions. Here and in the following, we shall abuse terminology by referring to the ‘amplitude’
of an equilibrium when we have the distance to the origin in mind. The scaling (18) translates
‘amplitudes’ of f into ‘amplitudes’ ofF : equilibria of f of order O(1) correspond to responses
with amplitudes of order O(ε1/3) in the original system F .
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Figure 5. (a) Response diagram for the case � = 1: dotted lines indicate the position of elliptic
equilibria, solid lines correspond to hyperbolic equilibria. Compare with figure 2, of which the
present picture is a scaled version (see also Stoker [80]). (b) Structurally stable phase portraits
in an (δ, A) diagram: for constant A, the figure shows a one-dimensional bifurcation diagram for
the bifurcation parameter δ. The dashed horizontal line corresponds to the (excluded) non-generic
case A = 0. Compare with figures 3(a) and (c).

3.2. The case � = 2

For the next case � = 2, the significant part of the one degree of freedom Hamiltonian reads

F(Q,P ;α, ε) = (α − α0)
Q2 + P 2

2
−

(
Q2 + P 2

2

)2

+ aε
Q2 + P 2

2
+ Aε(Q2 − P 2) + · · · .

(21)

Note that this system is Z2-equivariant, with the symmetry acting by (Q, P ) �→ (−Q,−P).
In this case, an appropriate scaling is

ε = µ2, P = µp,

α − α0 = δµ2, Q = µq.
(22)

Again we drop the higher order terms in µ and divide the truncated F(P,Q;α, ε) by the
remaining common factor µ4. This leads to

f (q, p; δ) = (δ + a)
q2 + p2

2
−

(
q2 + p2

2

)2

+ A (q2 − p2). (23)

As before, the scaled and truncated system f is reversible with respect to (q, p) �→ (q,−p).

Proposition 3.2 (� = 2). Consider the Hamiltonian system with Hamiltonian f as given
by (23), and let A �= 0. The origin (q, p) = (0, 0) is always an equilibrium of this system.
Hamiltonian pitchfork bifurcations from the origin occur at δ = δ1

PF and δ = δ2
PF, where

δ1
PF := −a − 2A, and δ2

PF := −a + 2A.

If A > 0, then δ1
PF < δ2

PF, and the origin is hyperbolic for δ ∈ ]δ1
PF, δ

2
PF[, elliptic for δ < δ1

PF
and δ > δ2

PF. At δ1
PF, a pair of elliptic equilibria on the line q = 0 branches off from the origin;

at δ2
PF, a pair of hyperbolic equilibria lying on the line p = 0 branches off.
If A < 0, we have that δ2

PF < δ1
PF, and the origin is hyperbolic for δ ∈ ]δ2

PF, δ
1
PF[

and elliptic for δ < δ2
PF and δ > δ1

PF. At δ2
PF, a pair of elliptic equilibria lying on the
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Figure 6. (a) Response diagram for the case � = 2: dotted lines indicate elliptic equilibria,
solid lines correspond to hyperbolic equilibria. (b) Structurally stable phase portraits in a
(δ, A)-bifurcation diagram.

linep = 0 branches off from the origin; at δ1
PF, a pair of hyperbolic equilibria on the line q = 0

branches off.
This is a generic scenario, structurally stable for sufficiently small Z2-equivariant

perturbations.

Proof. We obtain as equations of motion

q̇ = (δ + a)p − (
q2 + p2

)
p − 2Ap,

ṗ = − (δ + a)q +
(
q2 + p2

)
q − 2Aq.

Since A �= 0, the equilibria (q, p) satisfy either of the following sets of equations:

q = 0, p = 0,

q = 0, 2A − (δ + a) + p2 = 0,

p = 0, 2A + (δ + a) − q2 = 0.

The equilibria are given by

(q, p) ∈ {(0, 0), (0,±√
δ + a − 2A), (±

√
δ + a + 2A, 0)}.

The equilibrium (q, p) = (0, 0) undergoes two subsequent bifurcations.
If A > 0, this equilibrium is elliptic for δ < −a − 2A, parabolic for δ = −a − 2A, and

as it turns hyperbolic for δ > −a − 2A, the pair of elliptic equilibria

(q, p) = (±
√
δ + a + 2A, 0) (24)

branches off. At δ = −a + 2A the equilibrium (q, p) = (0, 0) is again parabolic, turning
elliptic for even larger values of δ while a second pair of equilibria, this time hyperbolic ones,
branches off from the origin.

The obvious modifications for the case A < 0 are left to the reader.
In the present Z2-equivariant context these Hamiltonian pitchfork bifurcations are

generic. �
The two bifurcations take place in the orthogonal planes q = 0 and p = 0. Compare this

with [27] figures 5 and 8, and again with [80] (chapter IV, section 2) and [2, 38, 67].
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Remark 3.3. Since in the scaled system given by f the ‘amplitude’ of equilibria off the origin
is of order O(1), the corresponding equilibria in the original system F have an amplitude of
order O(ε1/2).

3.3. Higher order resonances: the cases � � 3

For completeness also the case � � 3 is included, although these resonances will not produce
gaps and only give rise to bifurcations (cf, e.g., [19, 38]).

Considering (14) in the present context, the suggested scaling is

ε = µ, P = µp,

α − α0 = δµ, Q = µq,
(25)

which leads to

F = µ3(δ + a)
q2 + p2

2
+ µ4(F0,1,2,0 + F0,1,1,1δ + F0,1,0,2δ

2)
q2 + p2

2

− µ4

(
q2 + p2

2

)2

+ µ�+1ARe(q − ip)�

+
∑

5�2m+j1+j2��+1

µj1+j2+2mF0,m,j1,j2δ
j1(q2 + p2)m + O(µ�+2).

Note that the term aµ3 can be removed by solving

δ = −a + µ(λ − F0,1,2,0 − F0,1,1,1δ − F0,1,0,2δ
2),

for the new bifurcation parameter λ. This time we truncate F including order O(µ�+1) before
dividing by µ4 and obtain

f (q, p; λ,µ) = λ
q2 + p2

2
−

(
q2 + p2

2

)2

+ µC(q2 + p2; λ,µ) + Aµ�−3Re(q − ip)�.

Here the term µC(q2 + p2, δ, µ) corresponds to the large sum in the expression for F .

Remark 3.4. For � = 3 the T
1-symmetry breaking term Aµ�−3Re(q − ip)� is of the same

order in µ as the leading order T
1-symmetric terms, while it is of smaller order when � > 3.

Therefore the cases � = 3 with µ = 0, and � > 3 with µ > 0 small but non-zero, are analysed
separately.

3.3.1. The case � = 3. In the case � = 3, which is considered next, the invariant
torus (q, p) = (0, 0) is normally elliptic for all values of λ �= 0. For a certain value λCS

of λ there is a centre-saddle bifurcation of invariant tori outside the origin. The normally
hyperbolic torus generated in this bifurcation then approaches the origin, disappears for λ = 0,
and reappears again for λ > 0. The symmetries of the (truncated) Hamiltonian

f (q, p; λ, 0) = λ
q2 + p2

2
−

(
q2 + p2

2

)2

+ A(q3 − 3p2q) (26)

are the deck transformations (generated by the (2π/3)-rotation about the origin) and the
reversing involution (q, p) �→ (q,−p) (together with their (2π/3)-rotated counterparts).
The equations of motion are

q̇ = λp − (q2 + p2)p − 6Apq,
ṗ = −λq + (q2 + p2)q − 3A(q2 − p2).

(27)
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Proposition 3.3 (� = 3). Consider the Hamiltonian systems given by f (see (27)) where
A �= 0. Three simultaneous Z3-related centre-saddle bifurcations occur as λ passes through

λCS = − 9
4A

2 < 0.

At λ = 0 the origin has a Z3-equivariant transcritical bifurcation. This scenario is structurally
stable for sufficiently small Z3-equivariant perturbations.

Proof. First consider the case that A > 0. The right-hand side of (27) always vanishes at the
origin (q, p) = (0, 0). For λ > λCS one readily computes six further equilibria, three elliptic
equilibria at

(q, p) ∈
{
(β, 0),

(
−β

2
,
β
√

3

2

)
,

(
−β

2
,−β

√
3

2

)}
,

with β = 3
2A + 1

2

√
9A2 + 4λ, and three hyperbolic equilibria at

(q, p) ∈
{
(γ, 0),

(
−γ

2
,
γ
√

3

2

)
,

(
−γ

2
,−γ

√
3

2

)}
,

with γ = 3
2A − 1

2

√
9A2 + 4λ. Note that these equilibria coalesce ‘pairwise’ for λ = λCS

and that the latter three coalesce with the origin for λ = 0. On both sets of equilibria the
deck transformations yield even permutations, while the reversing transformations act as the
transpositions. These symmetries allow us to concentrate on the equilibria at (β, 0) and (γ, 0).

For λ = λCS we develop f into a (Taylor) polynomial in the point ( 3
2A, 0, λCS), i.e. we

write (q, p; λ) = ( 3
2A + ξ, η, λCS + ν) and obtain

f (ξ, η; ν) = −27A2

4
η2 − A

2
ξ 3 +

3A

2
νξ + · · · ,

where ‘· · ·’ denotes both constant and higher order terms. This proves that a (non-degenerate)
centre-saddle bifurcation takes place, at ( 3

2A, 0) and hence also at its 2π/3-rotated counterparts,
when λ passes through λCS.

A
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λ λ

Figure 7. (a) Response diagram for the case � = 3: dotted lines indicate elliptic equilibria,
solid lines correspond to hyperbolic equilibria. (b) Structurally stable phase portraits in a
(λ,A)-bifurcation diagram.
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Similarly, we put p ≡ 0 and obtain near (q, λ) = (0, 0)

f (ξ, 0; ν) = Aξ 3 +
ν

2
ξ 2 + · · · ,

where ‘· · ·’ stands for the sole higher order term −ξ 4/4. Consequently, a transcritical
bifurcation takes place along the q-axis, and hence also along its (2π/3)-rotated counterparts,
when λ passes through 0. Since the only two occurring bifurcations at λ = λCS and at λ = 0
are versally unfolded by the family of Hamiltonian systems defined by (27), we have structural
stability.

If A < 0, the equilibrium (β, 0) and its images under the Z3-action are hyperbolic instead
of elliptic, whereas (γ, 0) and its images are elliptic instead of hyperbolic. The rest of the
proof is unchanged. �

Remark 3.5.

(i) An alternative proof of the second part, concerning the Z3-equivariant transcritical
bifurcation, can be given in the following way. First consider the proof of [12] in the general
non-symmetric context. This leads to the elliptic umbilic catastrophe, a three-parameter
universal unfolding of the planar singularity7 at (q, p; λ) = (0, 0, 0). The present Z3-
equivariant one-parameter unfolding then can be obtained from this by applying [74].

(ii) The response solutions of ‘amplitude’ of order O(1) and in particular the centre-
saddle bifurcations correspond to equilibria with amplitude O(ε) in the original system
determined by F .

3.3.2. The case � � 4. The remaining case is � � 4. In this case 2� equilibria, � elliptic
and � hyperbolic, bifurcate from the central equilibrium at (q, p) = (0, 0).

The scaled and truncated Hamilton function f is given by

f (q, p; λ,µ) = λ
q2 + p2

2
−

(
q2 + p2

2

)2

+ µC(q2 + p2; λ,µ) + Aµ�−3Re(q − ip)�, (28)

where as before we assumeA �= 0.Recall that Re(q−ip)� is shorthand for q�−(
�

2

)
p2q�−2+· · ·,

and that µ is related to the perturbation strength ε. If µ = 0, the equilibria outside the origin
(p, q) = (0, 0) lie on a circle

q2 + p2 = λ,

that is, they branch off from the origin at λ = 0. For µ �= 0 the µ�−3-term breaks that T
1-

symmetry to the Z�-symmetry of the deck group on the �-fold covering. This is seen most
easily in action-angle coordinates (ϕ, I ) introduced by

q − ip =
√

2Ieiϕ.

In these coordinates the Hamiltonian takes the form

f = λI − I 2 + µC(I 2; λ,µ) + µ�−3A(2I )�/2 cos �ϕ.

The deck group is generated by (ϕ, I ) �→ (ϕ + (2π/�), I ), and it maps elliptic and hyperbolic
equilibria on equilibria of the same type. Hence, there are saddles at �th roots of λ + O(λ2)

and centres at those 2�th roots that are not �th roots.

7 In the ‘ADE’ classification this singularity is referred to as D+
4 (see [3]).
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Figure 8. (a) Response diagram for the case � = 5: dotted lines indicate elliptic equilibria,
solid lines correspond to hyperbolic equilibria. (b) Structurally stable phase portraits in an
(λ,A)-bifurcation diagram.

3.4. On persistence

In all of the above cases we found that the reduced integrable parts of the normal form give rise to
a one-parameter family of one degree of freedom Hamiltonian systems, the so-called backbone
systems. These one-parameter families are structurally stable in appropriate universes of
symmetric systems; the corresponding symmetries are the deck symmetries of the covering.
The structural stability implies in particular that the special perturbations obtained by adding
terms of higher order do not change the qualitative behaviour of the reduced dynamics, as these
terms can be made arbitrarily small by decreasing ε.

In other words: after various transformations, we arrived at a normal form for our system,
which consisted of an integrable system and a non-integrable perturbation of arbitrary high
order in the perturbation strength. Analysis of the integrable system leads after reduction
of the torus symmetry to a planar (equivariant) Hamiltonian system, to which (equivariant)
singularity theory of planar functions is applied, compare with [28, 38, 42–44, 74, 82] (also
see [12, 13, 16–18, 21, 41, 64, 66, 67, 72]). We observe that in our case singularity theory
classifies up to smooth equivalences, meaning that addition of normalized higher order terms
would only give rise to a near-identity diffeomorphic distortion of the bifurcation diagrams
obtained so far.

Note that for � �= 1, instead of working in the universe of Z�-symmetric systems, we
might have chosen to reduce also the Z�-symmetry (16). This approach gives rise to a
conical singularity at the origin of the reduced phase space, which is not a manifold any
more (cf [40, 41, 62].) The singularity reflects that the T

n-action generated by (11) is not
free (unless � = 1), but has isotropy Z� at the central n-torus. It is exactly to avoid this
conical singularity that we lift the system to the covering space (before reducing the T

n-
action), always taking the Z�-symmetry into account. For the alternative approach of also
reducing the Z�-symmetry, the bifurcation scenarios can be described as follows.

In the case � = 2 the two pairs of elliptic and hyperbolic equilibria (that are generated
in the two bifurcations) each reduce to one (elliptic respectively hyperbolic) equilibrium on
the quotient space R

2/Z2, bifurcating off from the singular equilibrium (see [41] for a similar
treatment of Hamiltonian flip bifurcations through passage to a 2 : 1 covering).
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In the case � = 3 the Z3-equivariant transcritical bifurcation takes place in the singular
equilibrium, while the three centre-saddle bifurcations all get reduced to the same centre-saddle
bifurcation in one (regular) equilibrium on R

2/Z3, compare this with [2, 12, 38, 67].
For � � 4 one elliptic and one hyperbolic equilibrium bifurcate simultaneously off from

the singular equilibrium of R
2/Z�.

3.5. Reversible systems

In this subsection we outline how the arguments given in the previous sections have to be
changed for reversible systems.

Let H be a Hamiltonian defined on the phase space T ∗(Tn × R) = T
n × R

n × R
2 =

{θ, I, (x, y)}. Introduce the involution

I : (θ, I, x, y) �→ (−θ, I, x,−y). (29)

By definition the HamiltonianH is said to define a reversible Hamiltonian system ifH ◦I = H .
For instance, the pendulum example (1) is reversible if the function g is even in t . Similarly,
a Hamiltonian of the general class (4) is reversible if both h̃ and G are even in y, and if G is
‘even’ in θ as well. In general, many Hamiltonian systems coming from classical mechanics
have this property.

Reversibility is respected by the normalizing and covering transformations of the previous
section, compare for instance [27]. In particular this means that the integrable truncation N

is also reversible, implying that the backbone system F is invariant with respect to the
involution (Q, P ) �→ (Q,−P). This Z2 reflectional symmetry, combined with the Z� deck-
symmetry (16), gives rise to a D�-symmetry of the backbone system F .

Note that the truncation of F to lowest significant order, which throughout this section
has been denoted by f , always displays this extra symmetry, and that therefore it is actually
D�-symmetric whether the original system (7) is reversible or not (see equations (19), (23), (26)
and (28)). This is a quite common artifact of the normalization process (cf for instance [18]).

Let us briefly discuss the case � = 3 as an example. The model system (27) is structurally
stable within the universe of Z3-equivariant planar Hamiltonian systems. As (27) is reversible
this system is D3-equivariant and hence a fortiori structurally stable within the universe of
D3-equivariant planar Hamiltonian systems as well.

In the case of a normal-internal resonance 〈k, ω〉 + �α = 0, the truncation f is always
structurally stable in the universe of D�-equivariant Hamiltonian functions as well, and our
analysis carries over to the reversible case.

4. Reconstruction of the integrable dynamics

The integrable system N(I,Q, P ;α, ε) is given by (13) and defined on the �-fold covering
space of T

n×R
n×R

2; from it, we have obtained the slow one degree of freedom ‘backbone’ (14)
by reducing out the free T

n-translation action. Hence, reconstructing the dynamics of N on
the covering space simply consists in attaching a quasi-periodic n-torus to every point of the
reduced system F on the reduced phase space R

2.
For � = 1 this immediately yields the dynamics ofN (as the base is equal to the covering in

this case). In the periodic case n = 1 the centre-saddle bifurcation of relative equilibria in the
‘backbone’ system corresponds to a similar bifurcation of periodic solutions in the full system
(cf [12, 13, 66]). In the quasi-periodic case (n � 2), the centre-saddle bifurcation of relative
equilibria corresponds to an (integrable) quasi-periodic centre-saddle bifurcation (cf [52]).
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For � � 2 we have to take into account the action (15) of the deck group Z�. The (relative)
equilibria of the planar system determined by F give rise to quasi-periodic invariant n-tori of
the reconstructed integrable system N on the covering space. These tori have a Diophantine
frequency vector ω; in the next section the perturbation analysis of these tori is carried out on
the covering space.

The rest of this section is devoted to the description of the structure of the reconstructed
flow on the base of the covering in the case � � 2. The key observation to this is the following:
tori in the cover which are mapped into each other by the action of the deck group project down
to a single torus in the base. Since we are still focusing on a fixed resonance (5)—recall that
only then are the normal form and its integrable part N meaningful—this structure strongly
resembles that obtained in the case of periodic forcing.

For � = 2, consider first the periodic case n = 1. The equilibrium of the backbone
system located at the origin of R

2 gives rise to a periodic orbit of period T = 2π/ω in the base
and of period 2T in the covering. The two equilibria generated by the Hamiltonian pitchfork
bifurcation of the backbone system correspond in the covering to two periodic orbits of period
2T generated in a periodic Hamiltonian pitchfork bifurcation. These are mapped onto each
other by the action of the deck group, and they project to one and the same periodic orbit of
period 2T in the base space, which is generated in a Hamiltonian ‘period doubling’ (also called
‘flip’ or ‘frequency halving’) bifurcation (cf [27, 41, 66]).

Completely analogously, we obtain in the quasi-periodic case n � 2 two quasi-periodic
n-tori in the covering which are generated in a quasi-periodic pitchfork bifurcation. These
project down to a single n-torus in the base space, which is generated in a quasi-periodic
Hamiltonian period doubling bifurcation. We recall that the response solution, while passing
through the gap defined by (5), undergoes two such bifurcations: one at the beginning when it
turns from elliptic to hyperbolic, and one at the end when it turns back again from hyperbolic
to elliptic.

For � = 3, consider again the periodic case first. The equilibrium at the origin of R
2

gives rise to a periodic solution with period T = 2π/ω in the base and 3T in the covering. In
a centre-saddle bifurcation away from the origin, two times three equilibria are born. These
give rise to two times three period 3T periodic solutions in the covering, which project down
to two period 3T periodic solutions in the base, one elliptic, one hyperbolic. The hyperbolic
orbit subsequently undergoes a periodic transcritical bifurcation involving the central periodic
orbit.

In the quasi-periodic case two times three invariant n-tori are born in an integrable quasi-
periodic centre-saddle bifurcation. These correspond in the base to two quasi-periodic response
solutions, one elliptic, one hyperbolic, with in each case one of the frequencies divided by three
(for a well-chosen basis of frequencies). While the amplitude of the elliptic tori is continually
growing, the hyperbolic tori first passes through a kind of transcritical bifurcation involving
the central ω-quasi-periodic response solution.

5. Quasi-periodic stability and exponentially small gaps

We briefly summarize what has happened so far. In section 2, we started out with a
Hamiltonian H defined on T

n × R
n × R

2 = {θ, I, (x, y)}, of the form

H = 〈ω, I 〉 + α
x2 + y2

2
+ h̃(x, y;α) + εG(θ, x, y;α, ε),

with (x, y) near (0, 0) and for α close to a resonant normal frequency α0. This means that α0

satisfies a relation 〈k, ω〉 + �α0 = 0 for k ∈ Z
n\{0} and � �= 0. We recall that ω ∈ R

n is a
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fixed, Diophantine frequency vector. By consecutive normal form transformations and a lift
to an �-fold covering space, the Hamiltonian has been rewritten as

H = N + R = 〈ω̂�, I 〉 + F + R,

with ω̂� = ((1/�)ω̂1, ω̂2, . . . , ω̂n), where F is independent of θ and where R is of arbitrary
high order in (x, y, α − α0, ε).

Then, in section 3 the one degree of freedom ‘backbone’ HamiltoniansF were analysed by
first truncating to lowest ‘significant’ order, performing a bifurcation analysis on the truncated
part—denoted by f—and finally remarking that, since all bifurcating families obtained are
structurally stable, they are equivalent to the full backbone system F as well (see section 3.4).
As said before, up to this point there is no difference between the cases of periodic and quasi-
periodic forcing.

Hence we may consider the behaviour of F , and consequently of the integrable
reconstruction N , as known. What remains to do is to analyse the full system H , or in
other words, the impact of the quasi-periodic non-integrable terms R. Equilibria of the one
degree of freedom system F are invariant quasi-periodic n-tori for N , and their persistence
(under the small perturbation R), as well as the persistence of their bifurcations, will be shown
by KAM-theory in this section.

It turns out that the ‘periodic’ scenarios obtained in section 3 are complicated by quasi-
periodic resonance phenomena, leading to a dense collection of resonance gaps in the elliptic
branches of figures 5–8. This means that the smooth branches (continua) in the bifurcation
diagrams of the periodic case are replaced by Cantor sets in the quasi-periodic case.

At this point the regularity of the Hamiltonian H becomes an issue. Until now all
considerations apply in the world of Cs-systems for s ∈ N ∪ {∞} sufficiently large. However,
in the real analytic setting we can get more information: the size of the resonance gaps is of
exponentially small order in ε. To obtain this result we first prove exponentially small estimates
on R by Neishtadt–Nekhoroshev techniques, which are then fed into the KAM part.

5.1. Exponentially small estimates of the remainder

From now on we restrict to the case where H is real analytic. Notice that any normal form
of finite order can also be obtained by a real analytic transformation. Our starting point is the
formal normal form as obtained by theorem 2.1 of section 2:

H ◦ �−1(θ, J,X, Y ;α, ε) = N(θ, J,X, Y ;α, ε) + R(θ,X, Y ;α, ε).
We shall pursue a slightly different strategy than in the first sections, performing first scalings,
and only afterwards normal form transformations. Recall from section 3 that scalings (18),
(22) and (25) were applied, which depended on �. Application of these scalings before carrying
out the van der Pol transformation yields a Hamiltonian Hsc = µ−2H of the form

Hsc = 〈ω, Isc〉 + α0
x2

sc + y2
sc

2
+ µ2Fsc + µL−2Rsc. (30)

Here Isc = µ−2I ; moreover L can be chosen as large as desired, and Rsc is uniformly bounded
in a neighbourhood of (q, p) = (0, 0). Note that the symplectic 2-form dθ∧dIsc+dxsc∧dysc =
µ2(dθ ∧ dI + dx ∧ dy).

The following result considerably sharpens the bound that can be obtained on Rsc, by
exploiting the fact that the original Hamiltonian (4) is real analytic. Its proof can be found in
appendix A.2.
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Notation. To formulate the result, complex neighbourhoods D(ρ, r) of the n-dimensional
tori (xsc, ysc) = (0, 0) are introduced, of the form

D(ρ, r) = {(θ, xsc, ysc) ∈ C
n × C × C : |Im θj | < ρ for all j, |xsc|2 + |ysc|2 < r2}.

The supremum norm of any function f defined on D(ρ, r) is denoted by ‖f ‖D(ρ,r) = ‖f ‖D.
The (constant) frequency vector ω ∈ R

n is assumed to be Diophantine, that is, there
are γ > 0, τ > n − 1 such that for all k′ ∈ Z

n\{0}:
|〈k′, ω〉| � γ |k′|−τ .

Recall that α0 is a normal frequency that satisfies the normal resonance relation (5), and that the
integrable part of a resonant normal form is a trigonometric polynomial in θ and a polynomial
in its other variables, containing only terms in the kernel of the Lie operator defined by (11).

Theorem 5.1 (normal form with exponentially small remainder). Consider the Hamilto-
nian Hsc as given by equation (30). Let ρ, r > 0 be such that the remainder Rsc is analytic
on D = D(ρ, r) and ‖Rsc‖D < ∞.

Then there is a µ0 > 0 such that for any 0 � µ < µ0, there is a real analytic canonical
transformation

�(θ, Isc, xsc, ysc;µ) = (�, J,Q, P ),

such that the following statements hold.

(i) If D∗ = D(ρ/2, re−ρ/2), then

�(D∗) ⊂ D and �−1(D∗) ⊂ D.

(ii) There is some constant c > 0 not depending on Rsc such that

‖� − id‖D∗ , ‖�−1 − id‖D∗ � cµL−4‖Rsc‖D.

where L is as in equation (30). That is, � is (Cω, c̃µL−4)-close to the identity with
c̃ = c · ‖Rsc‖D .

(iii) In the new coordinates (�, J,Q, P ), the Hamiltonian takes the form

H̃ (�, J,Q, P ;α,µ) = 〈ω, J 〉 + α0
Q2 + P 2

2
+ µ2F̃ + µL−2R̃,

where F̃ (�,Q,P ;α,µ) is in resonant normal form,

‖Fsc − F̃‖D∗ � c µL−4‖Rsc‖D

and R̃(�,Q,P ;α,µ) satisfies

‖R̃‖D∗ � exp

(
− c

µ2/(τ+2)

)
‖Rsc‖D. (31)

Remark 5.1.

(i) If Hsc depends real analytically on additional parameters λ, and Rsc is uniformly bounded
on some domain with respect to λ, then � is also real analytic with respect to these
parameters, and the final bounds hold uniformly in λ as well.

(ii) Assume thatHsc depends analytically onµ. From the proof of theorem 5.1, only piecewise
analytic dependence of � with respect to µ can be inferred (see for instance [22, 23, 71]).
Alternatively, the same method of proof yields that if µ1 is taken small enough, then �

can be shown to be analytic in µ for 0 � µ � µ1, but the exponentially small estimate
holds in this case with µ1 in the exponent.
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5.2. Persistence of quasi-periodic response tori

We arrive at the analysis of the persistence of the quasi-periodic response tori, which is one
of the main goals of this paper. In the previous subsection, coordinates have been found such
that for the remainder term R̃ in the Hamiltonian

H̃ = 〈ω, J 〉 + α0
Q2 + P 2

2
+ µ2F̃ + µL−2R̃,

an exponentially small bound is obtained. By applying the van der Pol transformation, a system
of the form

H = 〈ω̂�, I 〉 + µ2F + µL−2R (32)

is obtained, where F(q, p; δ, µ) = f (q, p; δ) + O(µ) is independent of θ ; recall that α =
α0 + µ2δ in the cases � = 1 and � = 2; the other cases are treated similarly (see section 2 for
the relationship between ω and ω̂�). Note that we dropped the tildes on H and R.

Recall that in equation (32), the term R is the only non-integrable term in H , which
can (and will) be viewed as a small non-integrable perturbation of the integrable Hamiltonian
H0 = 〈ω̂�, I 〉 + µ2F .

Note that H0 has been investigated in section 3. Depending on the kind of resonance,
that is, depending on � in 〈k, ω〉 + �α0 = 0, parametrized families of elliptic and hyperbolic
n-tori have been found, as well as single parabolic n-tori for certain distinguished values of
the parameter δ.

In this subsection, the persistence of these response n-tori is investigated under the
perturbation µL−2R, taking into account the quantitative information on the smallness of
the remainder R obtained in the previous section.

Hyperbolic tori. This is the simplest case. If the variable I is viewed as a parameter,
the phase space of the system is T

m × R
2, and hyperbolic equilibria of F correspond to

normally hyperbolic invariant n-tori. These persist because of normal hyperbolicity, compare
with [35,49,54,78]. Note that the parallel (quasi-periodic) flow on the tori persists trivially in
the context of this paper.

In particular, let τ(δ) ∈ R
2 parametrize a normally hyperbolic family of equilibria of F ,

and let λ(δ) ∈ R be the associated positive Floquet exponent—in this case, this exponent is
the positive eigenvalue of the corresponding equilibrium of F . Moreover, assume that the
Hamiltonian H is analytic in δ on a strip of width σ around some compact interval A ⊂ R in
the complex plane.

Theorem 5.2 (persistence of hyperbolic tori). Let A = [δ1, δ2] be an interval such that the
Floquet exponent λ(δ) is bounded away from zero on A. Then there is a µ1 > 0 such that
for 0 � µ < µ1, there are constants c > 0 and

ν = exp

(
− c

µ2/(τ+2)

)
and maps (δ, θ) �→ τ̃δ(θ) ∈ R

2, δ �→ λ̃(δ) ∈ R such that the following hold.

(i) The map λ̃ is analytic on Aσ/2 = {δ ∈ C : d(δ,A) < σ/2}, and

sup
Aσ/2

|λ̃(δ) − λ(δ)| < ν.

(ii) The map τ̃ is analytic for δ taking values in Aσ/2, and for θ taking values in T ,
where T = {|Im θj | < 3ρ/8} is a complex neighbourhood of the real n-torus T

n.
Moreover,

sup
δ∈Aσ/2,θ∈T

|τ̃δ(θ) − τδ| < ν.
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(iii) For any δ ∈ A, the torus T̃δ , given as

T̃δ = {(θ, I, q, p) : (q, p) = τ̃δ(θ)},
is invariant under the flow of H .

(iv) The flow on T̃δ is quasi-periodic with frequency vector ω̂� and (positive) Floquet
exponent λ̃(δ).

Elliptic tori. This is the case of the persistence of lower dimensional elliptic tori, treated in
(for instance) [20,39,57,75]. Assume that δ �→ τδ parametrizes a family of elliptic integrable
n-tori Tδ , as found in one of the cases of section 3, by

Tδ = {(θ, I, q, p) : (q, p) = τδ(θ)}.
The Floquet exponent λ(δ) of Tδ is purely imaginary in this case: therefore, introduce the
normal frequency �(δ) of Tδ by setting �(δ) = |Im(λ(δ))| > 0.

Note that in the present situation the internal frequency ω is assumed constant. Therefore,
the normally elliptic n-tori persist on a Cantor set that is defined exclusively by the normal
resonances. Modulo these simplifications, the following theorem follows from the results
of [20, 39, 57, 75] (see appendix A.3 for details). To formulate the result, the set �(ν) is
introduced by

�(ν) = {� ∈ R : |〈k′, ω̂�〉 + �′�| � ν|k′|−τ for all k′ ∈ Z
n\{0}, 0 < |�′| � 2}.

Also, introduce the Cs norm ‖f ‖s,A = max|β|�s supx∈A |Dβf (x)|.
Theorem 5.3 (persistence of elliptic tori). Fix an interval A = [δ1, δ2] such that �(δ) is
bounded away from 0 on A. Then there is a µ1 > 0 such that for 0 � µ < µ1, there are
constants c > 0, cs > 0 for every integer s ∈ N,

ν = exp

(
− c

µ2/(τ+2)

)
,

and maps (δ, θ) �→ τ̃δ(θ) ∈ R
2, δ �→ �̃(δ) ∈ R such that the following hold.

(i) The map �̃ is smooth. Denote by Ac the inverse image A ∩ �̃−1 (�(ν)). On Ac, �̃
is C∞-close to �, and

‖�̃ − �‖s,Ac
< csν.

(ii) For any δ ∈ Ac, the map θ �→ τ̃δ(θ) is analytic on T , where T is the following complex
neighbourhood of the real n-torus T = {θ ∈ C

n : |Im θj | < 3ρ/8 for all j}. Moreover,
τ̃δ(θ) depends Whitney-smoothly on δ, and

sup
θ∈T

‖τ̃δ(θ) − τδ‖s,Ac
< cs ν.

(iii) For any δ ∈ Ac, the torus T̃δ , given as

T̃δ = {(θ, I, q, p) : (q, p) = τ̃δ(θ)},
is invariant under the flow of H .

(iv) The flow on T̃δ is quasi-periodic with internal frequency vector ω̂� and normal
frequency �̃(δ).

Remark 5.2. Since the gaps in the Cantor set Ac are of order ν as ν ↓ 0, it follows that all
gap-widths tend to 0 as ε → 0.
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Parabolic tori. There are two occurrences of parabolic tori in the investigations of the one
degree of freedom backbone system in section 3, arising from centre-saddle bifurcations, and
from Hamiltonian pitchfork bifurcations in a Z2-symmetric context. We restrict our attention
to the former case. This has been treated in [15, 52], the results of which are paraphrased in
the following (see appendix A.3 for further details).

If in the integrable system there is a centre-saddle bifurcation parameter δ∗, then for δ = δ∗,
there exists τ∗ ∈ R

2 such that

T∗ = {(θ, q, p) : (q, p) = τ∗},
is an invariant normally parabolic torus. Introducing an auxiliary parameter η ∈ R, from the
fact that δ∗ is a centre-saddle bifurcation it follows that there is a map η �→ (δ(η), τη) ∈ R×R

2,
parametrizing a family of invariant integrable tori

Tη = {(θ, I, q, p) : (q, p) = τη}
in the integrable system, where δ = δ(η). This parametrization has the property that for η = 0:

δ(0) = δ∗, δ′(0) = 0, δ′′(0) �= 0,

and τ0 = τ∗. Moreover, the parametrization can be chosen in such a way that for η < 0, the
tori Tη are normally hyperbolic, while for η > 0, they are normally elliptic.

Let the Floquet exponent of the invariant torus Tη be denoted by λ(η), and, for η > 0,
the normal frequency of Tη by �(η) = iλ(η). For definiteness, it is assumed that λ(η) > 0
if η < 0, and �(η) > 0 if η > 0 (cf figure 9).

Theorem 5.4 (persistence of quasi-periodic centre-saddle bifurcation). For η0 > 0 small
enough, there is a µ1 > 0 such that for 0 � µ < µ1, there are constants c > 0, cs > 0
for s ∈ N,

ν = exp

(
− c

µ2/(τ+2)

)
,

(a) (b)

Figure 9. (a) Bifurcation diagram of the centre-saddle bifurcation where δ is the bifurcation
parameter and η is some well-chosen auxiliary variable. (b) Phase portraits before, at and after the
bifurcation.
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and maps (η, θ) �→ τ̃η(θ) ∈ R
2, η �→ δ̃(η) ∈ C, η �→ λ̃(η) ∈ C defined on ]−η0, η0[ , such

that the following hold.

(i) The map λ̃ is smooth for η �= 0, and as η → 0, |λ̃(η)| ∼ O(|η|1/2). Denote by Ac ⊂ [0, η0[
the set

Ac = [0, η0[ ∩ �̃−1(�(ν)).

On Ac, δ̃ and �̃ are C∞-close to δ and �, respectively, and

‖δ̃ − δ‖s,Ac
, ‖�̃ − �‖s,Ac

< csν,

for every s � 0.
(ii) For any η ∈ Ac, the map θ �→ τ̃η(θ) is analytic on

T =
{
θ ∈ C

n : |Im θj | < 3ρ

8
for all j

}
.

Moreover, it depends Whitney-smoothly on η, and

sup
θ∈T

‖τ̃η(θ) − τη‖s < csν,

for every s � 0.
(iii) For any η ∈ ]−η0, 0] ∪ Ac, the torus T̃η, given as

T̃η = {(θ, I, q, p) : (q, p) = τ̃η(θ)},
is invariant under the flow of H(θ, I, q, p; δ̃(η), ε). Moreover, if η < 0, the invariant
torus is normally hyperbolic, while for η ∈ Ac, it is normally elliptic. For η = 0 the
invariant torus T0 is normally parabolic.

(iv) All invariant tori have quasi-periodic flow with frequency vector ω̂�.

Remark 5.3.

(i) As before, since the gaps in the Cantor set Ac are of order ν as ν ↓ 0, it follows that all
gap-widths tend to 0 as ε → 0.

(ii) By the scalings (18), (22), (25), the gap-widths also tend to 0 as δ ↓ δCS.

Base space. For the near-integrable system H , theorems 5.2–5.4 prove the persistence of
hyperbolic, elliptic and parabolic response tori on the covering space for certain (large)
parameter sets. These response tori correspond to response tori in the base space in exactly the
same way as tori of the integrable system N on the cover correspond to tori in the base: the
central torus in the cover is mapped � times over the central torus in the base, while tori in
the cover that are mapped onto each other by the action of the deck group are mapped onto a
single torus in the base (see section 4).

5.3. Conclusions

Let us see how the ‘periodic’ response diagrams in section 3 have to be modified for the quasi-
periodic case in the light of theorems 5.2–5.4. From theorems 5.2 and 5.4, it follows that
each hyperbolic branch of the periodic diagram persists in the quasi-periodic diagrams up to
bifurcation points. Theorems 5.3 and 5.4 indicate that each (continuous) elliptic branch of a
periodic diagram should be replaced by a Whitney-smooth image of Cantor subsets of such an
elliptic branch.

Concerning the gap-widths in these Cantor sets we observe the following. In the world
of C∞-systems, the only conclusion would be that the gap-widths decrease more rapidly than
any polynomial as ε ↓ 0; they vanish with infinite flatness for ε = 0 (see for instance [19,25]).
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For analytic systems, the gaps become exponentially small as ε ↓ 0. For the figures of the
introduction, this phenomenon is the reason why only very few gaps can be distinguished at
the given level of accuracy.

It is quite common in numerical simulations that only a few of the KAM gaps are visible
(the numerical simulations in this paper form a good example of that). One of the goals of this
paper is to explain this fact.

The analysis of the backbone systems in section 3 shows that the width of the KAM gaps is
proportional to some fractional power of the generic coefficientA, which in turn is proportional
to the kth Fourier coefficientGk in the Fourier expansion of the forcingG(θ, x, y). For smooth
systems, these coefficients decrease polynomially as |k| increases; for real analytic systems,
the order of decrease is exponential, implying very small gaps for high values of |k|.

Moreover, as we have seen in this section, the size of the gaps is proportional to the size
of the remainder. In general for Cs systems one obtains s-flat remainders, that is, remainders
that are smaller than a homogeneous polynomial of degree s. For s = ∞, the remainder
is smaller than any power, [25]. However, in the present real-analytic case, we have shown
that by an optimal choice of the normalizing order, the remainder can be made exponentially
small, which gives a second reason for the smallness of the gaps. For more details on these
techniques, see [22, 23, 58–61, 68, 73].

Notice that by normalizing to an exponentially small remainder, we move into the world
of systems that are only piecewise analytic in the perturbation parameter ε. We refer to [22]
for a treatment of this; see remark 5.1 how to circumvent this issue.

The strategy of this paper can be repeated any finite number of times at all of the gaps
described in this section. Our result is that there is bifurcation of secondary (and higher order)
elliptic and hyperbolic branches at each resonance.

Finally notice that we have simplified our analysis by keeping the internal frequency
vectorω constant. As we have mentioned, we conjecture that for the more general perturbations
εG(θ, I, x, y) the analysis of this paper, suitably modified, would lead to similar results with
Cantor sets also in the ω-direction of the parameter space. There is a vast literature on this
subject; we only mention [8, 9, 14, 15, 19, 20, 52, 61, 70, 75, 84].

Remark 5.4. In [8, 9], in a dissipative analogue, methods from [35, 54, 78] are exploited to
find normally hyperbolic tori close to quasi-periodic ones (also see [19] for further reference).
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Appendix

Appendix A.1. Formal normal form theorem

In this section the formal normal form theorem 2.1 is proved, that gives the transformation of

H = 〈ω, I 〉 + α
x2 + y2

2
+ h̃(x, y;α) + εG(θ, x, y;α, ε) (33)
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into normal form. Although this is a very well-known result (see [1,5,10,65,81]), we include
its proof for completeness’ sake and for further use of the notation. The theorem reads as
follows.

Theorem 2.1. Consider the Hamiltonian (33) for α0 satisfying 〈k, ω〉+�α0 = 0. GivenL ∈ N,
for sufficiently small ε there exists a real analytic and canonical change of variables �(·;α, ε)

� : T
n × R

n × R
2 −→ T

n × R
n × R

2

(θ, I, x, y) �→ (θ, J,X, Y )

close to the identity at (x, y, α, ε) = (0, 0, α0, 0), such that the following holds. The
Hamiltonian (33) is transformed into normal form

H ◦ �−1(θ, J,X, Y ;α, ε) = N(θ, J,X, Y ;α, ε) + R(θ,X, Y ;α, ε).
The integrable part N of the normal form reads

N = 〈ω, J 〉 + α0
X2 + Y 2

2
+ (α − α0)

X2 + Y 2

2
+ c

(
X2 + Y 2

2

)2

+ aε
X2 + Y 2

2
+ AεRe((X − iY )�ei(〈k,θ〉−ψ0))

+
∑

κ,m,j1,j2

Fκ,m,j1,j2(α − α0)
j1εj2(X2 + Y 2)m Re((X − iY )κ�ei(κ〈k,θ〉−ψκ,m,j1 ,j2 )), (34)

with κ � 0, j1 + j2 + 2m + κ� � L, and ψ0,m,j1,j2 = 0, where the sum does not contain the
terms that are explicitly displayed; the remainder R of the normal form satisfies the estimate

R(θ,X, Y ;α, ε) ≡ OL(X, Y, α − α0, ε).

Proof. The argument is completely standard. Starting from (33), subsequent coordinate
transformations of the form �W are applied to the system, where �W is the time one map of
a Hamiltonian vector field XW with Hamilton function W .

We call a function f of order O(n) if f = O(Xβ1Yβ2(α − α0)
β3εβ4), with

∑
i βi = n.

Assume that H has been normalized with respect to (11) up to order n − 1, that is:

Hn(�, J,X, Y ;α, ε) = H ◦ �n−1 = H ◦ �Wn−1 ◦ · · · ◦ �W3

= 〈ω, J 〉 +
n−1∑
j=2

gj + hn + rn+1,

where h2 = α0((X
2 + Y 2)/2), and, more generally, where gj (X, Y ;α − α0, ε) is a

homogeneous polynomial of order j in its variables already in (resonant) normal form,
hn = O(n), and rn+1 = O(n + 1).

The Hamilton function W = Wn of the next normalizing transformation is taken as a
homogeneous polynomial of order n in the variables (X, Y, α − α0, ε). We have

Hn ◦ �W = Hn + {H,W } + O(n + 1)

= 〈ω, J 〉 +
n−1∑
j=2

gj + {H2,W } + hn + O(n + 1),

where H2 = 〈ω, J 〉 + h2, and where {H,W } denotes the Poisson bracket of H and W . We
will solve the homological equation

{H2,W } + hn = gn,

such that the contribution gn of hn to the normal form has as few terms as possible.
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The action of H2 on W is given as

{H2,W } = −ω
∂W

∂�
+ α0X

∂W

∂Y
− α0Y

∂W

∂X
.

This action diagonalizes in suitable complex coordinates Z = X + iY ; introduce the
derivative ∂/∂Z = 1

2 (∂/∂X − i∂/∂Y ). Then {H2,W } reads

{H2,W } = −ω
∂W

∂�
+ iα0Z

∂W

∂Z
− iα0Z̄

∂W

∂Z̄
.

Hence the Lie operator adH2(W) = {H2,W } is semi-simple, and its kernel can be chosen as
complement to its image. Split correspondingly hn = bn + gn, with bn in the image and gn in
the kernel of adH2 . A complex diagonalizing basis of adH2 is given by vs,M = ei〈s,θ〉ZM1Z̄M2 ,
and adH2(vs,M) = 0 if s = κk and M2 = m+κ�, M1 = m, for some integer κ with m+κ� � 0
for m � 0. Consequently, gn consists of a sum of monomials of the kind

Re(ei(〈κs,θ〉+ψκ,m,j1 ,j2 )|Z|2mZ̄κ�)(α − α0)
j1εj2

= (X2 + Y 2)m(α − α0)
j1εj2 Re((X − iY )κ�ei〈κs,θ〉),

where 2m + κ� + j1 + j2 = n and κ � 0. The equation adH2(W) = bn is then solved as in the
next section of this appendix, yielding an analytic function W .

The normal form given in the theorem is then obtained by performing L of these
normalizing steps. This finishes the proof of the normal form theorem. �

Appendix A.2. Normal form with exponentially small remainder

Here, theorem 5.1 of section 5 concerning the quantitative estimates of the normal form is
proved. The following notation is recalled from section 5, since it will be needed in the proof
below.

By D(ρ, r), complex neighbourhoods of the n-dimensional tori (xsc, ysc) = (0, 0) are
denoted, where

D(ρ, r) = {(θ, xsc, ysc) ∈ C
n × C × C : |Im θj | < ρ for all j, |xsc|2 + |ysc|2 < r2}.

For a function f : D(ρ, r) → C
n, the supremum norm is denoted by ‖f ‖ = ‖f ‖D(ρ,r).

Let Hsc be a Hamiltonian given by

Hsc = 〈ω, Isc〉 + α0
x2

sc + y2
sc

2
+ µ2Fsc + µL−2Rsc. (35)

It is assumed that Hsc can be extended analytically to D(ρ, r), and that the frequency
vector ω ∈ R

n is Diophantine: there are γ > 0, τ > n − 1 such that for all k′ ∈ Z
n\{0}:

|〈k′, ω〉| � γ |k′|−τ .

The normal frequency α0 satisfies a normal resonance relation 〈k, ω〉 + �α0 = 0.

Theorem 5.1. Consider the Hamiltonian Hsc as given by equation (35). Let ρ, r > 0 be such
that the remainder Rsc is analytic on D = D(ρ, r), and ‖Rsc‖D < ∞.

Then there is a µ0 > 0 such that for any 0 � µ < µ0, there is a real analytic canonical
transformation

�(θ, I, xsc, ysc;µ) = (�, J,Q, P ),

such that the following statements hold.

(i) If D∗ = D(ρ/2, re−ρ/2), then

�(D∗) ⊂ D and �−1(D∗) ⊂ D.
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(ii) There is some constant c > 0 not depending on Rsc such that

‖� − id‖D∗ , ‖�−1 − id‖D∗ � cµL−4‖Rsc‖D.

That is, � is (Cω, cµL−4)-close to the identity.
(iii) In the new coordinates (�, J,Q, P ), the Hamiltonian takes the form

H(�, J,Q,P ;α,µ) = 〈ω, J 〉 + α0
Q2 + P 2

2
+ µ2F̃ + µL−2R̃,

where F̃ (�,Q,P ;α,µ) is in resonant normal form,

‖Fsc − F̃‖D2 � c µL−4‖Rsc‖D

and R̃(�,Q,P ;α,µ) satisfies

‖R̃‖D2 � exp

(
− c

µ2/(τ+2)

)
‖Rsc‖D. (36)

Proof. This proof can be seen as an expansion of the proof of the formal normal form, given
in section A.1. As in that proof, a (finite) series {Hj } of different Hamiltonians is constructed
iteratively, all of the form:

Hj = 〈ω, I 〉 + α0
x2 + y2

2
+ µ2F j + µL−2Rj . (37)

For j = 0, we have that H 0 = Hsc etc. Moreover, for all k′ ∈ Z
n\{0}:

|〈k′, ω〉| � γ |k′|−τ .

The functions Hj , F j and Rj are analytic and bounded on the domain Dj = D(ρj , rj ).
Moreover, it is assumed that Fj consists only of resonance terms, while Rj contains only
non-resonant terms. In order to improve readability of the following discussion, for the next
couple of paragraphs µ2F j and µL−2Rj are replaced by F j and Rj .

Since our main concern will be with a single iteration step, the superscript j will be
dropped in the following, and j + 1 will be replaced by + (so-called +-notation). Also, in
the analysis of the iteration step, a host of different constants appear in the estimates, which
do not depend on the index j of the step, nor on the ‘stepsize’ δ, which will be introduced
below. These constants will collectively be denoted by a dot following an inequality sign. For
instance, a < · (x + y) will be taken to mean a < c(x + y), where c is some constant not
depending on j or δ.

As before, then, the new Hamiltonian H + is obtained from the given Hamiltonian H by
a variable transformation �W , which is the time-one map of the Hamiltonian vector field XW

associated with a function W . This function is determined by the homological equation

{H2,W } + R = 0 (38)

and the requirement that W itself contains no resonant terms. Note that in this context H2 =
〈ω, I 〉 + α0(x

2 + y2)/2. Introducing complex coordinates z = x + iy as above, the function W
can be expanded in a Taylor–Fourier series:

W(θ, z, z̄) =
∑
k′∈Zn

∑
|β|�0

Wk′β ei〈k′,θ〉zβ1 z̄β2 ,

where the notation W(θ, z, z̄) indicates that W(θ, z,w) is an analytic function in all its
variables. Note that β = (β1, β2) is a multi-index. Also R is expanded in a Taylor–Fourier
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series, with coefficients Rk′β . By equating coefficients of ei〈k′,ω〉zβ1 z̄β2 in the homological
equation (38), the following formal expression for W is derived:

W =
∑
k′∈Zn

∑
|β|�0

Rk′β

i(〈k′, ω〉 − α0(β1 − β2))
ei〈k′,θ〉zβ1 z̄β2 .

Convergence. The formal expression obtained for W will be shown to converge uniformly on
some domain Dδ = D(ρ− δ, re−δ), where the ‘stepsize’ δ will be determined below. For this,
note first that from the Cauchy inequalities it follows that

|Rk′β | � ‖R‖De−ρ|k′|r−|β|.

This implies, together with the Diophantine inequalities, the following estimate for W :

‖W‖Dδ
< · ‖R‖D

γ δτ
.

Remark A.1. We here used the optimal estimates of Rüssmann [77], obtained by fine tuning
the Diophantine non-resonance estimates.

Estimates. Let XW be the Hamiltonian vector field associated with W , and let �s
W denote its

time-s map. The new Hamiltonian H + can be written as

H + = H + {H,W } +
∫ 1

0
(1 − s){{H,W },W } ◦ �s

W ds. (39)

This expression is defined on any domain D∗ which is mapped by �s
W , for all s, into Dδ . In

order to find a suitable D∗, note that

‖XW‖D2δ = ‖gradW‖D2δ < · ‖W‖Dδ

δ
� c

‖R‖D

γ δτ+1
.

Since ‖�s
W − id‖D2δ � ‖XW‖D2δ for all s ∈ [0, 1], the domain D2δ will be mapped into Dδ , if

‖R‖D � c−1γ δτ+2. (40)

Note that the constant c does neither depend on j , nor on δ. This inequality is verified below,
after the constant δ is determined.

To obtain expressions for F + and R+, equation (37) is substituted into (39). Using the
homological equation (38), this yields for H +

H + = H2 + F + R + {H2,W } + {F,W } + {R,W } + S

= H2 + F + {F,W } + {R,W } + S. (41)

Note that the integral in (39) is indicated by S.
By applying Cauchy’s estimate to all derivatives in the Poisson brackets, successively the

following estimates are obtained:

‖{F,W }‖D2δ < · ‖F‖Dδ

δ

‖W‖Dδ

δ
< · ‖R‖D

γ δτ+2
, (42)

‖{R,W }‖D2δ < · ‖R‖Dδ

δ

‖W‖Dδ

δ
< · ‖R‖2

D
γ δτ+2

, (43)

‖S‖D3δ � ‖{{H,W },W }‖D2δ < · ‖H‖Dδ
‖W‖2

Dδ

δ4
< · ‖R‖2

D
γ δτ+4

. (44)

Here it has been used that F (and consequently H ) can be bounded by a constant that is
independent of j or δ, a fact which will be verified below.
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Incorporation of the perturbation parameter. At this point, the parameter µ is incorporated
again, and the functions F , R and W are replaced by µ2F , µL−2R and µL−2W . Hence,
from (41), we obtain for F + and R+ from:

µ2F + + µL−2R+ = µ2F + µL{F,W } + µ2L−4{R,W } + µ2L−4S,

where F + consists only of resonant terms and R+ only of non-resonant ones. Choosing ρ+ =
ρ − 3δ and r+ = re−3δ , the domain D+ equals D3δ . Using estimates (42)–(44) obtained above,
the following are obtained:

‖R+‖D+ � C

γ
‖R‖D

(
µ2

δτ+2
+
µL−2

δτ+4

)
,

‖F + − F‖D+ � CµL−4

γ
‖R‖D

(
µ2

δτ+2
+

µL

δτ+4

)
,

where C does not depend on the iteration index j .

Exponentially small estimates. The constant δ is now determined by setting

Cµ2

γ δτ+2
= 1

2e
, that is δ =

(
2Ceµ2

γ

)1/(τ+2)

.

Then it follows that for µ sufficiently small,

‖R+‖D+ � e−1‖R‖D, ‖F − F +‖D+ � cµL−4‖R‖D .

Note that as a consequence of this ‖F j‖Dj
� (e/(e − 1))‖R0‖D0 , a fact that was used in the

estimates above. Also, the estimate (40) holds for µ small enough, since then

γ

c
δτ+2 � c̃µ2,

and µL−2‖R‖D is smaller than c̃µ2 for µ small enough (recall that the factor µL−2 is absent
from (40) by convention).

As a single iteration step decreases the width of a domain by 3δ in the Im θ -direction, the
total number of steps j∗ should be such that j∗ · 3δ < ρ0/2, yielding:

j∗ =
[ρ0

2
δ−1

]
=

[
c

µ2/τ+2

]
.

The remainder term Rj∗ can now be estimated by

‖Rj∗‖Dj∗ � e−j∗‖R0‖D0 ,

which yields the exponentially small estimate.
Finally, the transformation � of the theorem is given by the concatenation of the �Gj :

� = �W 1 ◦ · · · ◦ �Wj∗ .

The statements of the theorem now follow easily. �

Appendix A.3. Background Hamiltonian KAM theory

In this subsection, it is shown in detail how theorems 5.2–5.4 are derived from [19, 20, 52].
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Appendix A.3.1. Persistence of lower dimensional tori. To derive theorems 5.2 and 5.3, we
present a reformulation of theorem 2.6 of [19]. We refer the reader to the bibliographies
of [19, 20] for more background.

Let UN(a) denote an (arbitrary) neighbourhood of the point a in R
N ; let θ ∈ T

n =
R
n/2πZ

n, I ∈ I ⊂ R
n, and let (q, p) ∈ R

2m. Finally, let µ ∈ P ⊂ R
s . We assume the sets I

and P to be given open domains, not necessarily small neighbourhoods of the origin.
Consider a real analytic family X = Xµ(θ, I, q, p) of integrable vector fields on

T ∗(Tn × R
m) = T

n × R
n × R

2m which are Hamiltonian with respect to the symplectic
form dθ ∧ dI + dq ∧ dp. The corresponding family of Hamilton functions is given by

Hµ(θ, I, q, p) = F(I, µ) + 1
2 〈(q, p),K(I, µ)(q, p)〉, (45)

where F : I ×P → R and K : I ×P → gl(2m,R); the linear map K(I, µ) is symmetric for
all values of I and µ.

Let Im be the m × m identity matrix, and set

J =
(

0 −Im

Im 0

)
.

Define ω = ∂F/∂I and � = JK . The family X = Xµ(θ, I, q, p) has then the form

X = (ω(I, µ) + O2(q, p))
∂

∂θ
+ �(I, µ)(q, p)

∂

∂(q, p)
. (46)

Assumptions. Let � ⊆ I ×P be the diffeomorphic image of a closed (n+ s)-dimensional ball.
For (I, µ) ∈ �, assume that:

(i) the infinitesimally symplectic matrix � has N1 pairs of real eigenvalues, N2 pairs
of purely imaginary ones and N3 quadruples of complex eigenvalues; we have that
N1 + N2 + 2N3 = m;

(ii) all eigenvalues of �,

±λ1, . . . ,±λN1 , ±i�1, . . . ,±i�N2 , ±α1 ± iβ1, . . . ,±αN3 ± iβN3 , (47)

are simple;
(iii) the mapping

F : (I, µ) ∈ � �→ (ω, λ,�, α, β) ∈ R
n+m (48)

is submersive (which implies that s � m).

Fix τ > n − 1 and set ωN = (�, β) ∈ R
r , where r = N2 + N3. For γ > 0, denote by �γ the

‘Cantor’ set

�γ = {(I, µ) ∈ � : |〈ω, k〉 + 〈ωN, �〉| � γ |k|−τ for all k ∈ Z
n \ {0} and all � ∈ Z

r , |�| � 2}.
(49)

Define a mapping � : � → R
n+r by �(I, µ) = (ω, ωN). Since the mapping (48) is

submersive, the set �γ is a Whitney-smooth foliation of (s − r + 1)-dimensional analytic
surfaces with boundary, where each surface is part of the pre-image under � of some point
in R

n+r satisfying the Diophantine conditions. Note also that

measuren+s(�γ )

measuren+s(�)
−→ 1 as γ ↓ 0.

For each value I = I0 the integrable system X given by the Hamiltonian H has an isotropic
invariant n-torus. To investigate the persistence of this torus at I0, we take I0 as a parameter
and introduce a local action variable Î by I = I0 + Î , to study the persistence of the torus Î = 0
in the system X = Xµ(θ, I0 + Î , q, p).
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Theorem A.1 (persistence of lower-dimensional tori [19, 20]). Let X be an integrable real
analytic family of Hamiltonian vector fields (45) on T

n × R
n × R

2m, associated with a family
of Hamiltonian functions H (46), and satisfying the conditions above. Then for any γ > 0
and any neighbourhood D of zero in the space of all C∞-mappings

φ : T
n × Un(0) × U2m(0) × I × P → R

n × R
n × R

2m × R
s , (50)

of the form

φ(θ, Î , q, p; I0, µ) = (χ(θ; I0, µ), η(θ, Î , q, p; I0, µ), ζ(θ, Î , q, p; I0, µ), ν(I0, µ)), (51)

which are affine in Î and (q, p), analytic in θ , and such that the mapping � = id + φ is
symplectic, the following holds. There exists a neighbourhood H of the family H in the space
of all analytic families of the form

H̃µ(θ, I, q, p) = F(I, µ) + 1
2 〈(q, p),K(I, µ)(q, p)〉 + R(θ, I, q, p, µ) (52)

such that for any family H̃ ∈ H there is a mapping φ ∈ D of the form (51) with the following
property. For each (I0, µ0) ∈ �γ we have

�I0,µ0(θ̄ , Ī , q̄, p̄)

= (θ̄ + χ(θ̄; I0, µ0), Ī + η(θ̄ , Ī − I0, q̄, p̄; I0, µ0), (q̄, p̄) + ζ(θ̄ , Ī − I0, q̄, p̄; I0, µ0))

(53)

and for these parameters, the vector field (�I0,µ0)
−1
∗ X̃µ0+ν(I0,µ0) has the form

ω(I0, µ0)
∂

∂θ̄
+ �(I0, µ0)(q̄, p̄)

∂

∂(q̄, p̄)
(54)

+O(|Ī − I0| + |(q̄, p̄)|) ∂
∂θ̄

+ O2(|Ī − I0| + |(q̄, p̄)|). (55)

Moreover, the mapping �I0,µ0 depends analytically on the parameters (I0, µ0) when these
vary over any of the leaves of the Whitney-smooth foliation �γ . Finally, the invariant n-torus

{�I0,µ0(θ̄ , I0, 0, 0) : θ̄ ∈ T
n} (56)

of the vector field X̃µ0+ν(I0,µ0) is isotropic.

On the spaces of real analytic functions, systems, etc, the compact-open topology on
holomorphic extensions is used. Convergence of real analytic functions in this topology is
equivalent to uniform convergence on compact sets of their holomorphic extensions.

The neighbourhood H of the integrable family H in theorem A.1 can be described as
follows. Let 0 <  � 1, and introduce complex domains

T
n + κ = {

θ ′ ∈ C
n/(2πZ)n : |θ ′ − θ | < κ for some θ ∈ T

n
}
,

� +  = {(I ′, µ′) ∈ C
n × C

s : |(I ′, µ′) − (I, µ)| <  for some (I, µ) ∈ �}.
Introduce similar complexifications of the neighbourhoods Un(0) ⊆ R

n and U2m(0) ⊆ R
2m.

Let N be the closure of the product of these complexifications and assume that the integrable
familyH allows a holomorphic extension to N .Then the neighbourhood H contains all families
(52), such that in the supremum norm on N one has

|H̃ − H |N < γν. (57)

If we take γ �  , it follows from the proof of theorem A.1 in [20] that the constant ν is
independent of γ,  and �. Moreover, the map � only gives information on the set

�′
γ = {(I, µ) ∈ �γ : dist (F(I, µ), ∂(F(�))) < γ }, (58)

where ∂(F(�)) is the boundary of the frequency–eigenvalue domain under consideration.
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Remark A.2.

(i) From theorem A.1 we conclude that the union of isotropic invariant n-tori has positive
(n + s)-dimensional Hausdorff measure for all sufficiently small perturbations X̃.

(ii) In the choice of γ > 0 in theorem A.1, a trade-off has to be faced. Decreasing γ increases
the measure of the set �γ of frequencies-eigenvalues, for which invariant tori are found.
But simultaneously the size of the allowed perturbation is decreased, as is illustrated in
equation (57). In applications of theorem A.1, the perturbation may be small for an intrinsic
reason, and the optimal choice of γ is accordingly small; for instance, in the main text of
this paper, the perturbationR is exponentially small in terms of a perturbation parameter ε.

(iii) In this paper the internal frequency vector ω is kept constant and Diophantine; all
conjugacies act as the identity in the θ -direction. We discuss the consequences of this in
the various applications.

(a) Theorem 5.2 follows from theorem A.1 by takingN2, the number of purely imaginary
normal frequencies, equal to 0. Note thatN3 = 0 by default, since the normal direction
is only two-dimensional. In this case the resulting KAM tori form smooth families.

(b) Theorem 5.3 follows from theorem A.1 by taking N1 = N3 = 0. Therefore N2 = 1
and the Diophantine condition defines a Cantor set along the �1-axis.

Note that assumption (iii) reduces to the requirement that the map

F : δ → (λ,�)

should be submersive.

Appendix A.3.2. The quasi-periodic centre-saddle bifurcation. To prove theorem 5.4 we can
apply theorem 2.1 and corollary 2.2 of [52]. For the convenience of the reader we restate these
results below in the ‘current notation’.

In fact, the setting considered in [52] allows for more general perturbations that may also
depend on the actions I conjugate to the toral angles θ ∈ T

n; compare remark 1.1 in the
introduction. In that setting, the perturbation may change the frequency vector ω, which could
become resonant. Therefore, domains � ⊆ R

n of frequency vectors have to be considered.
For the Diophantine condition we fix τ > n − 1 and write

�γ := {ω ∈ � : |〈ω, k〉| � γ |k|−τ for all k ∈ Z
n\{0}}.

We will obtain results only for frequencies in �′
γ := {ω ∈ �γ : d(ω, ∂�) � γ }; in particular

� may be thought of as the closure of an open set. In the special ‘quasi-periodically forced’
setting of the current paper, the conjugacy � below acts as the identity in the θ -direction,
and all three sets �,�γ and �′

γ might be replaced by {ω}. Note that the shorthand notation
1/� � a, b � � means that both a and b satisfy both the lower and the upper bound.

Theorem A.2 (quasi-periodic centre-saddle bifurcation [52]). Let T
n be an n-torus, I a

neighbourhood of the origin in R
n and U2(0) a neighbourhood of the origin in R

2. Supply
T
n × I × U2(0) with the symplectic structure dθ ∧ dI + dq ∧ dp, where θ ∈ T

n, I ∈ I and
(q, p) ∈ U2(0). Consider a real analytic Hamilton function H on T

n × I × U2(0), depending
analytically on the parameters δ ∈ ]δ∗ − δ0, δ∗ + δ0[ and ω ∈ � ⊆ R

n, where � is compact
with non-empty interior. The Taylor series of H starts with the expression

〈ω, I 〉 + a(ω)p2 +
b(ω)

3
q3 − (δ − δ∗)q, (59)

the derivatives ∂H/∂q, ∂H/∂p, ∂2H/∂q2 and ∂2H/∂q∂p vanish for I = 0 = q = p = δ−δ∗.
Furthermore, H does not depend on θ . The functions a, b : � −→ R in (59) are assumed to
satisfy 1/� � a, b � � and ‖Da‖, ‖Db‖ � � for some constant � > 0.



1788 H Broer et al

Fixing τ > n−1, γ > 0 and M ∈ N, there exists a small positive constant ν, independent
of � and γ , with the following property. Given a real analytic perturbation H̃ of H with

|H̃ − H |Tn×I×U2(0)×�×]δ∗−δ0,δ∗+δ0[ < γν, (60)

there exists a C∞-diffeomorphism � on T
n × R

n × R
2 × � × R such that

(1) � is real analytic for fixed ω.
(2) � is symplectic for fixed (ω, δ).
(3) � is C∞-close to the identity.
(4) On T

n × R
n × R

2 × �′
γ × R ∩ �−1(Tn × I × U2(0) × � × ]δ∗ − δ0, δ∗ + δ0[) one can

split H̃ ◦ � = N + R into an integrable part N and higher order terms R, both of class
C∞, and real analytic for fixed ω. The 3-jet of N reads

s̃(ω, δ) + 〈ω, I 〉 + ãp2 +
b̃

3
q3 − q(δ − δ∗)

+r̃0120qp
2 + r̃0030p

3 + r̃0021p
2(δ − δ∗) + r̃0102q(δ − δ∗)2

+〈c̃, I 〉q + 〈ẽI , I 〉 +
3∑

|j |=1

∑
k+l+m=3−|j |

r̃jklmI
jqkpl(δ − δ∗)m

where all coefficients depend on ω. The θ -dependence is pushed into the higher order
terms, i.e.

∂ |j |+k+l+mR

∂I j∂qk∂pl∂δm
(θ, 0, 0, 0, ω, δ∗) = 0

for all (θ, ω) ∈ T
n × �′

γ and all j, k, l, m with |j | + k + l + m � M .

The Hamiltonian vector field X associated with H̃ has an (n + 1)-dimensional Cantor
family of invariant n-tori. In the new coordinates supplied by � the n-tori with q > 0 are
normally elliptic and those with q < 0 are normally hyperbolic. They meet in ann-dimensional
Cantor family of normally parabolic invariant n-tori parametrized by �′

γ .

Remark A.3.

(i) Theorem 5.4 follows immediately from theorem A.2. The normally hyperbolic tori form
smooth one-parameter families, whereas the normally elliptic tori are foliated over (one-
dimensional) Cantor sets. Since we fix the internal frequency vector ω, the occurring
normally parabolic tori are isolated.

(ii) In contrast to theorem A.1 the set I ⊆ R
n of actions is not a whole domain, but only

a neighbourhood of the origin—theorem A.2 is local in the actions. The main problem
in the proof of theorem A.2 is the persistence of the normally parabolic tori. Next, in a
neighbourhood of these, persistence of the normally hyperbolic and normally elliptic tori
is established by a delicate application of theorem A.1. In these cases, the parameter set �
reaches its boundary at the union of normally parabolic tori where (58) precludes a direct
application. However, the first part of theorem A.2 provides a suitably scaled system of
variables, in which an appropriate application of theorem A.1 is successful (see [52] for
more details).

(iii) Real analytic functions H̃ on T
n × I × U2(0) × ]δ∗ − δ0, δ∗ + δ0[ extend to holomorphic

functions on a complexified neighbourhood; for instance, with T
n replaced by T

n + δ0,
with I and U2(0) replaced by complex δ0-neighbourhoods of the origin and the interval
]δ∗ − δ0, δ∗ + δ0[ replaced by the complex δ0-neighbourhood {δ∗}+δ0. Then the bound (60)
specifies again a neighbourhood H of H in the compact-open topology.

(iv) The remarks after theorem A.1 concerning the smallness of the Diophantine constant γ
apply mutatis mutandis to theorem A.2 as well.
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[59] Jorba À and Simó C 1996 On quasi-periodic perturbations of elliptic equilibrium points SIAM J. Math. Anal. 27
1704–37
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