

 University of Groningen

Texture mapping in a distributed environment
Nicolae, Goga; Racovita, Zoea; Telea, Alexandru

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Nicolae, G., Racovita, Z., & Telea, A. (2003). Texture mapping in a distributed environment. In EPRINTS-
BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/ed4c269a-1bd9-4523-bf05-ccf97a4047d1

Texture mapping in a distributed environment

Goga Nicolae�, Zoea Racovita�, Alexandru Telea�
�Computer Science Department,

Eindhoven University of Technology,
the Netherlands,

�Computer Science Department,
Politehnica University,

Romania,
goga@win.tue.nl, zoe.racovita@siemens.com, alext@win.tue.nl

Abstract

This paper presents a tool for texture mapping in a dis-
tributed environment. A parallelization method based on
the master-slave model is described. The purpose of this
work is to lower the image generation time in the complex
3D scenes synthesis process. The experimental results con-
cerning the speedup of texture mapping algorithm are also
presented.

1 Introduction

Computer-generated images can achieve a high degree
of realism with texture mapping. This technique is used
to make the images of three-dimensional objects more in-
teresting and apparently more complex. With texture map-
ping, the effect of ”shiny plastic” of the object surface is
diminished and the material properties may be exhibit.

There are many methods used to provide a textural im-
pression. Among these, three major methods are very pop-
ular and they are: (1) General texture mapping that consists
of ”painting” a picture onto a smooth surface; the texture
becomes part of the object database. (2) Bump mapping
techniques, also known as normal perturbation, adds the
appearance of roughness to the surface. The method ap-
parently alters the geometry of the surface by perturbing
the normal vector used in the light calculation. (3) View-
dependent mapping techniques show whereby an associated
environment is reflected in the object. The pattern seen by
the viewer depends on the viewing direction. These tech-
niques can be regarded as approximations to ray-tracing
method.

In this paper we address only the case of general tex-
ture mapping. The texture, a pre-defined image in a specific
domain, is mapped onto a 3D object. Each point on the ob-
ject has to be associated with an element in texture space.
In general this involves finding two (u, v) values in texture
domain from a three-dimensional coordinate.

One of the major problems for the texture mapping is
that because of the complexity of the computations the
generation of the image is slow. One way to solve this
problem is to divide the computations among more proces-
sors/machines and to execute them in paralel. The curent
paper presents the tool MapIm which maps diferent images
on diferent 3D-surfaces. The serial module and the paralel
modules are presented together with the comparison of their
performances. MapIm is designed such that it can be sim-
ply extended through the introduction of new object types
for 3D surfaces.

This paper is organised as fellows. Section 1 presents a
general theory of texture mapping. Section 3 describes the
tool MapIm. Section 4 describes the experimental results of
the comparison. Section 5 gives the conclusions.

2 Texture Mapping

This technique corresponds to the transformation from
one coordinate system, texture space, to another space, 3D-
object space. If both spaces are represented parametrically,
the texture mapping is straightforward, since a paramet-
ric patch, by definition, already possesses u,v-values over
its surface. In the polygonal representation, which is the
standard object representation in rendering techniques, each
vertex of the polygon is associated with a texture map co-
ordinate (u,v). All the possibilities of texture mapping are
summarised in figure 1.

1

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

Most of the work is concerned with mapping directly
from 2D-texture space to scene space and an inverse map-
ping is commonly employed. The screen space is uniformly
sampled and the inverse image of a pixel in texture space
is formed. The corresponding quadrilateral in the texture
space is sampled and filtered and a texture value returns
to the pixel. When the projection of the surface in screen
space is small, a large number of texels will map into a sin-
gle pixel. Accurate mapping produces, in general, a curvi-
linear quadrilateral. In this case, it is important to address
the aliasing problem correctly. Different anti-aliasing tech-
niques have been proposed by [2].

w w w
(x , y , z) (x ,y)

T(u,v,w)

T(u,v)

T(u)

s s

Figure 1. Texture mapping transformations

[1] proposed a practical mapping technique that does not
impose any constraints on the shape of the objects. The
method consists of finding two mappings:

� Mapping from 2D-texture space to a simple interme-
diate 3D surface, as sphere or cylinder.

T’(x ,y ,z)
 i i i

S−mapping
T(u ,v)

� Mapping from the intermediate 3D surface to the ob-
ject surface.

T’(x ,y ,z)
 i i i

T(x, y, z)
O−mapping

These combined operations distort the texture pattern
onto the object in a natural way. Various methods were pro-
posed for the two mapping functions. The O-mapping bases
on the intersection of a vector with one of the two surfaces.
Thus, the vector may be a reflected view ray, surface normal
at ��� �� �� or surface normal at ���� ��� ���.

3 The Texture Mapping Method in a Dis-
tributed Environment

MapIm implements an algorithm which uses the inverse
texture mapping method. The 2D texture is mapped onto
simple 3D objects as sphere, cylinder and cone trunk. For
these objects we have chosen the polygonal representation.
The polygons, defined only by their vertices, are param-
eterised so that a mapping can be derived for all interior
points. The average texel value in a quadrilateral corre-
sponding to a pixel is computed in order to obtain the pixel
colour.

The mapping functions are:

� Sphere:

�� � �cos���sin���� � � �sin���sin����

� � �cos����

with � � � � � and � � � � ��

��� 	� � �
� � �

�

�
�
� �
�
� ��

�
�

with � � arctg� �
�
� and � � arccos���

� Cylinder:

�� � �cos���� � � �sin���� � �
��

with � � � � �� and � � � � �

��� 	� � �
�

��
�
�

�

with ��
- the cylinder’s radius and height

� Cone trunk:

�� � ��� � � �cos���� � � �sin����

with � � � � �� and �� �
��� � � � �

��� 	� � �
arctg� �

�
�

��
�
��
��

�

with � � ��
���

; �� �
 - the radii and height

where � � �, 	 � �
The parallel modules of the algorithm uses the master-

slave model and is based on the data partitioning method.
The master-process assigns tasks to the slave-processes.
Each task processes a number of � image polygons. The
task size, �, assigned by the master-process to a slave-
process depends on the size of the graphical database and
the connected machines in network. The task distribution
scheme is static and thus, no additional work is required to
perform this operation. The graphical database generated
by each process consists of the polygonal representation of
elementary objects: sphere, cylinder and cone trunk. The
texture image, represented as a bitmap, is copied locally
on all connected machines. The master-process tells to a
slave-process what is the portion of each object that it will
process. All the processes contribute to the generated im-
age of a 3D object, but only the master-process write in the
memory buffer in order to display the image.

Performance tests were achieved using three implemen-
tation of the texture mapping algorithm: the serial module
and two parallel modules. The serial module is summarised
as follows:

2

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

For all polygons of the scene execute
{
Determine the polygon projection in the
screen space

For all pixel of the projected polygon
execute
{

Apply inverse transformation from
screen space to object 3D space

Apply inverse transformation from
object 3D space to texture space

Assign pixel colour the average of
the appropriate texels in the
texture space

} }

In the parallel implementation each process, including
the master, executes the same computations as in serial
module, but on different data set. The two parallel modules
that were implemented are quite similar. They differ in the
method used by the slave-processes for sending messages to
the master. In the first case the slave-process sends a single
message to the master, when it finishes its job. The mes-
sage contains the pixel colours, for all assigned polygons.
In the second parallel module, the slave sends a message af-
ter each processed polygon. The messages are short and the
communication overhead is small in comparison with the
computing time. In both cases the message length depends
on the number of pixels which are covered by polygons in
screen space.

The programming method we used is the OOP tech-
nique. The class structure is represented in figure 2:

Frame Class 3DSurface Class

TextureSurface Class

Sphere Class ConeTrunk Class Cylinder Class

Figure 2. The class structure of the application

The Frame class contains the methods concerning the di-
rect and inverse transformations from the projection plane
into screen space. The 3DSurface class is an abstract class
with the methods for representing the 3D surfaces in Carte-
sian and spherical coordinates. The TexturedSurface class
is also an abstract class, derived from the Frame class and
the 3DSurface class. It adds the displaying methods using
the texture space. The derived classes from TexturedSurface
class, Sphere class, Cylinder class and ConeTrunk class de-
fines the three types of object that were mapped. Using this

class structure we can easily extend the tool by introducing
new object types.

4 Experimental Results

The measurements were performed on two machines,
which are connected in network. Their characteristics are
presented in the table 1.

Table 1. The Network Architecture

Host Name Workstation Process
DISCO SUN AXIL 320 Master
HP1 HP Model 715/33 Slave

� Screen: HP A2088A

� Communication: at the socket level, TCP/IP protocol.

� Message length: 10KB approximately for the first
parallel module and 500 bytes for the second paral-
lel module.

Technical conditions impose to have only two processes
that work on two machines. The message type makes the
difference between the parallel modules. In the first paral-
lel module, the pixel colours of all assigned polygons are
assembled in one message, which is transmitted at a time.
The second parallel module transmits one message for every
processed polygon. One byte is used to represent the colour
of a pixel. Theoretically better performances are obtained
when sending one big message at a time than many small
messages at different moments of time. Although the first
method seams to be faster than the second one, the exper-
imental results proved the contrary. These results may be
explained through the different speeds of the two connected
machines that have the same task size. It is rather difficult to
compare an execution time obtained in a heterogeneous en-
vironment. O correct estimation involves varying task size
as machine speed.

For all of the three modules we performed five measure-
ments of the execution time and the obtained values are
presented in table 2. The image contains three objects: a
sphere, a cylinder and a cone trunk (figure3).

Table 2. Execution Time

Serial Parallel I Parallel II
5.704 s 4.638 s 4.471 s
5.800 s 4.942 s 4.668 s
5.549 s 5.561 s 4.603 s
5.597 s 5.776 s 4.317 s
5.902 s 4.560 s 4.466 s

3

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

Making the average of these measurements we obtained
the following values of execution time for:

� serial module: Ts � �����

� 1st parallel module: Tp
�

� �����, Speedup
�

�
Ts

Tp
�

�
����

����
� ����

� 2nd parallel module: Tp
�
� �����, Speedup

�
�

Ts
Tp

�

�
����

����
� ����

Measurements of the execution time were performed
varying the image resolution. The objects were defined so
that they cover approximately an image region of the same
size. This involves the same amount of computation in or-
der to determine the pixel colours. The experimental results
we obtained are presented in table 3.

Table 3. Execution Time For Different Image
Resolutions

R Cy Sp Co T
50 x 50 0.1970 0.2000 0.1781 0.5752
100 x 100 0.3340 0.3127 0.3573 1.0041
150 x 150 0.5736 0.6042 0.4142 1.5921
200 x 200 0.8922 1.3809 0.6521 2.9252
250 x 250 1.1832 1.5845 1.1031 3.8709
300 x 300 2.4083 2.6335 1.4391 6.4810

50 100 150 200 250 300

6.5

0.5

2
1.5
1

2.5
3
3.5
4
4.5
5
5.5
6

Figure 3. Execution time vs. resolution

In the table above by R we mean Resolution, by Cy the
Cylinder mapping execution time, by Sp the Sphere map-
ping execution time, by Co the Cone trunk mapping execu-
tion time, and by T the total execution time. All times are
given in seconds.

We obtained an asymptotic curve of the execution time
when the image resolution increases (figure 3). The mea-
surements were performed separately for any object in or-
der to highlight the influence of number of pixels covered
by the object’s projection.

5 Conclusions

The purpose of this work is to present a tool for texture
mapping and to study how the performances enhance for a
texture-mapping algorithm in a distributed environment. To
have a comparison between the serial module and a paral-
lel one, we have adopted a simple scheme of parallelization
based on the master-slave model. The tool was developed
so that it can be simply extended through introduction of
the new object types by adding new classes derived from
the generic TexturedSurface class.

In the parallel module an extra time is necessary to com-
municate between the master and the slave process. These
extra requirements are not negligible, but we gain benefit
through parallel processing. Tests were also performed in
order to investigate the influence of the image resolution
concerning the execution time.

Theoretically better performances are obtained when
sending one big message at a time than many small mes-
sages at different moments of time. Although the first
method seams to be faster than the second one, the exper-
imental results proved the contrary. These results may be
explained through the different speeds of the two connected
machines that have the same task size. It is rather difficult to
compare an execution time obtained in a heterogeneous en-
vironment. O correct estimation involves varying task size
as machine speed.

References

[1] E. Bier and K. Sloan. Two-part texture mapping. IEEE Com-
puter Graphics and Applications, pages 40–53, 1986.

[2] P. Heckbert. Survey of texture mapping. IEEE Computer
Graphics and Applications, pages 56–67, 1986.

4

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

