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Abstract 

We describe a logical architecture and a general semantic framework for precise specification 
of so-called database federations. A database federation provides for tight coupling of a 
collection of heterogeneous component databases into a global integrated system. Our 
approach to database federation integrates in a uniform and systematic manner the underlying 
database schemas of the component legacy systems to a separate, newly defined integrated 
database schema. This integrated database is completely virtual, and will constitute the actual 
federated database. That is, queries posed against the federated system will be posed against 
this virtual integrated database; these global queries will then be mapped by the mediator to 
actual local queries against the existing (legacy) component databases. Our approach is based 
upon the UML/OCL data model. UML is the de facto standard language for analysis and 
design in object-oriented frameworks, and is being employed more and more for analysis and 
design of Information systems, in particular information systems based on databases and their 
applications. Database specifications often involve specifications of constraints, and the 
Object Constraint Language (OCL) - as part of UML - can aid in the unambiguous modelling 
of database constraints. One of the central notions in database modelling and in constraint 
specifications is the notion of a database view; a database view closely corresponds to the 
notion of derived class in UML. We will employ OCL and the notion of derived class as a 
means to treat (inter-)database constraints and database views in a federated context. We will 
also offer a transaction model for a simple set of updates in database federations. The paper 
will demonstrate that our particular mediating system integrates component schemas without 
loss of constraint information. Furthermore, we will discuss a mapping of database 
specifications in terms of UML/OCL to the relational model. 
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1. Introduction 

Modern information systems are often distributed in nature. Data and services are 

often spread over different component systems wishing to cooperate in an integrated 

setting. Cooperation of component systems in one integrated information system is 

becoming more and more important since information is often spread over different 

databases in one organization (or even spread over different organizations). Such 

information systems involving integration of cooperating component systems are 

called federated information systems; if the component systems are all databases then 

we speak of a federated database system (FDB). In current applications, there is more 

and more a tendency not to develop stand-alone, monolithic database systems; rather, 

the tendency is to employ existing (legacy) components by letting them work together 

in a single integrated environment. This tendency to build integrated, cooperating 

systems is often encountered in applications found in EAI (Enterprise Application 

Integration), which typically involve several, usually autonomous, component (data 

and service repositories) systems, with the desire to query and update information on 

a global, integrated level. In this paper we will address the situation where the 

component systems are so-called legacy systems; i.e. systems that are given 

beforehand and which are to interoperate in an integrated single framework in which 

the legacy systems are to maintain as much as possible their respective autonomy. 

A major obstacle in designing interoperability of legacy systems is the heterogeneous 

nature of the legacy components involved.  This heterogeneity is caused by the design 

autonomy of their owners in developing such systems. Legacy systems were typically 

designed to support local requirements, under constraints imposed by local rules, and 

often without taking into account any future cooperation with other systems. To 

address the problem of interoperability the term mediation has been defined [Wie95]. 

A database federation can be seen as a special kind of mediation, where all of the data 

sources are (legacy) databases, and the mediator offers a mapping to a (virtual) 
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DBMS-like interface. This interface offers the application the possibility to approach 

the federation via this integrated virtual database, which offers the user the illusion 

that he is interacting with an actual homogeneous, monolithic database. The mediator 

then maps queries against this virtual integrated database on to actual component 

databases. In our paper we will consider a  tightly-coupled approach  to database 

mediation, in which a global integrated schema of the federation is maintained, which 

can be accessed by a global query language. We base our notion of querying on the  

“Closed World Assumption” (CWA, [Rei84]), where the integrated database is to hold  

-in some manner-  the “union” of the data in the underlying component databases. 

Central theme in our approach is that the integrated database on the federated level is 

completely virtual. The user of the federated system is offered the illusion that he is 

working with a monolithic homogeneous database system, while in fact this system 

basically resembles an interface, mapping interactions on the federated level to 

actions on the existing local database components. More precisely, the federated 

database will consist of an integrated database view on top of the existing legacy 

database components. For an overview of work on the virtual approach to database 

federation, we refer to [Hull97]. 

We concentrate on  problems concerning integration of component legacy schemas on 

the level of the mediator. Schema integration requires the definition of relationships 

between schema elements of component systems. Detection and definition of such 

relationships can be heavily complicated by so-called semantic heterogeneity 

[DKM93,GSC96, Ver97]. Semantic heterogeneity refers to disagreement about the 

meaning, interpretation, or intended use of related data. It has been widely agreed 

upon that schema integration cannot be fully automated [ShL90], as this would 

require full knowledge of the semantics of the component schema elements. In order 

to tackle the problem of integrating semantic heterogeneity, we employ the 

UML/OCL data model. UML/OCL offers a high-level specification language and is 
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equipped with a unique combination of  high expressiveness with a large degree of 

precision. UML is the de facto standard language for analysis and design in object-

oriented frameworks, and is being employed more and more for analysis and design 

of Information systems, in particular information systems based on databases and 

their applications. Database specifications often involve specifications of constraints, 

and the Object Constraint Language (OCL) - as part of UML - can aid in the 

unambiguous modelling of database constraints. One of the central notions in 

database modelling and in constraint specifications is the notion of a database view, 

where a database view closely corresponds to the notion of derived class in UML. We 

will employ OCL and the notion of derived class as a means to treat database 

constraints and database views in a federated context. In [Bal02] it is demonstrated 

that the notion of derived class can be given a formal basis in OCL, and that derived 

classes in OCL have the expressive power of the relational algebra. Hence, OCL has 

the explicit power to emulate basic features of the relational query language SQL. 

The paper will demonstrate that our particular mediating system integrates component 

schemas without loss of constraint information; i.e., no loss of constraint information 

available at the component level may take place as result of integrating on the level of 

the virtual federated database. We will treat integration conflicts in a tightly-coupled 

environment, and show how to solve them by introducing a so-called integration 

isomorphism. This isomorphism will support the Closed World Assumption for 

database federations by correctly mapping a collection legacy databases to a virtual 

integrated database. Key to establishing this integration isomorphism, is the 

construction of a so-called homogenizing function; the homogenizing function (cf. 

[BB01]) maps schemas of component databases to the schema of the integrated 

database.  
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The only assumption that we make in this paper is that all legacy component 

databases have schemas that  –somehow-  are able to be (re-)modelled in terms of the 

UML/OCL language. This is a modest assumption, since most commercially 

available database systems (hierarchical, network, or relational) have schemas that are 

easily expressible in terms of the UML/OCL data model. 

Our paper demonstrates how to specify and evaluate queries on the global level of the 

virtual integrated database, and how these queries decompose into local queries on the 

component databases. We also consider database updates in a federated context, and 

offer the basics of a transaction model for a simple set of updates in tightly-coupled 

database federations. 

The paper includes a section on implementation issues. Following the approach 

offered in [Bal02] we have in principle a mapping of queries posed against a 

federated database (specified in terms of derived classes in UML/OCL) to SQL-code, 

thus providing the link to actual database implementations. Our paper also contains a 

discussion on federated database architectures, in which we demonstrate that 

federated database architectures can very much stay in line with the traditional three-

level architecture for monolithic databases. Our paper ends with a discussion on 

methodology and heuristics for federated database design. 

 

2. UML/OCL as a specification language for databases 

Information systems, and in particular information systems based on databases and 

their applications, rely heavily on sound principles of analysis and design. This paper 

focuses on particular principles of analysis and design related to database 

applications. Following [BP98], we can state that object-oriented (OO) modelling can 

prove to be very beneficiary in (relational) database applications.  A database is a 

permanent, self-descriptive repository of data stored in files. A database is self-

descriptive in the sense that it not only contains the data, but also a description of the 
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data structure, or schema. In databases, the data usually change rapidly, while the 

schema stays relatively static. A database management system (DBMS) consists of 

software managing access to the data. DBMSs provide generic functionality for a 

broad range of applications; one of the foremost features of a DBMS is the 

availability of a query language offering an interactive means for reading and writing 

data from the database. A relational database has data represented as tables, and a 

relational DBMS manages access to tables of data and associated structures in a 

highly effective and efficient manner. (Relational databases use SQL as a data 

manipulation language, and tables are called relations in SQL.) Relational database 

applications can benefit substantially from OO modelling. The OO paradigm provides 

a uniform framework for both the design of database code and programming code. 

Database and their applications can thus be developed in one and the same conceptual 

framework. In fact, one can say that integrating relational databases into object-

oriented applications is state of the art in software development practice. OO data 

models offer high-level modelling primitives leading to clear and concise 

specifications of database schemas. A high-level description of a database schema in 

terms of an OO data model can easily be mapped to a relational database schema 

employed by a conventional relational DBMS [BP98]. Hence, the analysis and design 

stage of a (relational) database can be separated in a clear and meaningful fashion. 

The most important OO modeling language is UML, being the de facto standard for 

OO analysis and design of information systems [OMG99]. Recently, researchers have 

investigated possibilities of UML as a modeling language for (relational) databases. 

[BP98] describes in length how this process can take place, concentrating on schema 

specification techniques. [DH99, DHL01]  investigate further possibilities by 

employing OCL (the Object Constraint Language [WK99]) for specifying constraints 

and business rules within the context of relational databases. The idea is that OCL 

provides expressiveness in terms of relatively abstract set definitions that should 
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prove to be sufficient to capture the general notion of (relational) database view. This 

idea of employing abstract object-oriented set definitions to captures views and 

constraints has also been pursued on the full level of object-oriented databases, be it 

not in the context of UML/OCL language, but rather in the context of an experimental 

OODB user language in combination with an underlying theoretical semantics 

[BBZ93, BV92]. In the more specific context of relational databases and OCL, 

[DH99] offer a framework for representing constraints within the relational data 

model. Some researchers take a very general approach investigating possibilities of 

UML/OCL; e.g., [AB01] treat OCL as a general query language for UML data 

models, and [EP00] use OCL as a general language for business modeling. Current 

research, however, has not yet shown an effective way to deal with an important 

aspect of (relational) database modeling, namely modeling of so-called database 

views. A (database) view is a derived table (or derived relation, in SQL), meaning 

that a view does not exist as a physical relation; rather a view is defined by an 

expression much like a query [GUW02]. Views, in turn, can be queried as if they 

existed physically, and in some cases, we can even modify view content. That is, a 

user is offered the impression that a view is some base relation inside the database, 

but in fact it is a derived (or virtual) relation defined in terms of the actual base 

relations constituting the database. View definitions are an important asset in database 

applications, because users are usually only interested in a part of the database, and 

not in the complete underlying corporate database. Hence, it is important that users 

have access to that part of the database considered relevant for their category of 

database applications. Our application area for views is focused on Federated 

Databases, where legacy databases are to interoperate by employing a so-called 

mediating system. This mediating system can be considered as an integration of a set 

of certain database views defined on the component legacy database systems.  
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Database views and query languages are strongly related, since views basically are no 

more than named queries. [GR97] is one of the first papers to investigate the 

possibilities of a general query language for UML; further investigations can be found 

in [AB01] and [MC99]. [AB01] have attempted to demonstrate that OCL can offer 

the basis for a general query language for UML data models by showing how to 

represent Cartesian products and projections in OCL, thus paving the way to the 

claim that OCL has the same expressive power as the so-called relational algebra 

[D00, GUW02]. By demonstrating such a result, one could also claim to have a basis 

for representing views within OCL. In [Bal02] it is demonstrated  that the 

expressiveness of OCL actually  includes that of the relational algebra. This is done 

by showing how to offer the notion of derived class a formal basis within the 

framework of UML/OCL, and subsequently using this notion of derived class to 

represent the notions of Cartesian product and (relational) join. This result establishes 

that OCL includes the expressiveness of the relational algebra, without resorting to 

language extensions of OCL. Once it is established that OCL includes the 

expressiveness of the relational algebra, then we also have provided a basis for 

representing the general notion of (relational) database view. 

A derived class is a device for denoting a virtual class, defined in terms of already 

existing (base) classes (and possibly other derived classes). Views can be queried 

independently, with a semantics explained entirely in terms of queries on base 

classes.  [Bal02] also offers a  mapping to SQL-code [D00, GUW02], providing 

implementation support for our approach.  

 

3. Basic principles: Databases and views in UML/OCL 

Databases are basically a set of related tables. Tables in UML are represented by 

classes. Classes have attributes and corresponding domain values, while we can also 

have complex-valued attributes (i.e. non-first normal form) in UML by allowing for 
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enumerated sets as domains for attributes, and to employ UML-style relations to 

represent directly references to other objects in tables without residing to foreign-key 

constructs (to indirectly enforce this kind of modelling facility). Views, as derived 

tables, can also be represented in UML, which we will describe below. 

Let’s consider the case that we have a class called Emp1 with attributes  nm1  and  

sal1, indicating the name and salary of an employee object belonging to class  Emp1 

 

 

 

 

 

Now consider the case where we want to add a class, say  Emp2, which is defined as 

a class whose objects are completely derivable from objects coming from class  

Emp1. The calculation is performed in the following manner. Assume that the 

attributes of  Emp2  are nm2  and  sal2  respectively (indicating name and salary 

attributes for Emp2 objects), and assume that for each object  e1:Emp1  we can obtain 

an object  e2:Emp2  by stipulating that e2.nm2=e1.nm1  and  e2.sal2=(2 * e1.sal1). 

By definition the total set of instances of  Emp2  is the set obtained from the total set 

of instances from Emp1 by applying the calculation rules as described above. Hence, 

class  Emp2  is a view of class  Emp1, in accordance with the concept of a view as 

known from the relational database literature. In UML terminology [BP98], we can 

say that Emp2  is a derived class, since it is completely derivable from other already 

existing class elements in the model description containing model type Emp1.  

We will now show how to faithfully describe Emp2 as a derived class in UML/OCL 

in such a way that it satisfies the requirements of a (relational) view. First of all, we 

must satisfy the requirement that the set of instance of class Emp2 is the result of a 

calculation applied to the set of instances of class Emp1. The basic idea is that we 

          Emp1 
 
nm1: String 
sal1:  Integer 
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introduce a class called  Database that has associations to classes  Emp1  and  Emp2. 

A database object will reflect the actual state of the database, and the system class  

Database will only consist out of one object in any of its states. Hence the variable  

self  in the context of the class  Database  will always denote the actual state of the 

database that we are considering. In the context of this database class we can then 

define the calculation obtaining the set of instances of  Emp2  by taking the set of 

instances of  Emp1  as input. 

 
 
                                                           
 
 
                           
                          *                                                                                                          *                                      
 
                                                                                                                                              
                                                     
  
 

 

 

Note that we have used a prefix-qualification by adding a slash to  Emp2  indicating 

that Emp2  is a derived class definition [BP98].  Moreover, we have added an 

operation, called   convertToEmp2, meant to coerce an arbitrary  Emp1-object to an  

Emp2-object. This operation can be defined by the following OCL-specification 

 

context   Emp1::convertToEmp2( ): Emp2 

post:     self.convertToEmp2.nm2 = self.nm1  and 

          self.convertToEmp2.sal2 = (2*self.sal1) 

 

      Database 

                 Emp1 
 
nm1:String 
sal1: Integer 
 
convertToEmp2( ): Emp2 

           /Emp2 
 
nm2:String 
sal2: Integer 
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We now have all the ingredients necessary to specify the relation coupling the derived 

class Emp2 to the original class  Emp1. This is done by including an invariant 

specification in the class  Database  telling us how to calculate the set of instances of  

Emp2  from the set of instances of Emp1 

 

context  Database  inv: 

self.Emp2 = self.Emp1→ collect(e:Emp1 | e.convertToEmp2) and 

Emp1.allInstances = self.Emp1  and 

Emp2.allInstances = self.Emp2 

 

In this way we explicitly specify Emp2 as the result of a calculation performed on 

Emp1, and we also stipulate that the only Emp1- and Emp2-objects in the database 

are those obtained from the links starting from the database-object  self.  

 

Discussion: How  not  to represent views 

A reader might have the idea that there is an alternative (and rather simple) way to 

define database views in UML/OCL employing constraints, and without having to 

introduce the notion of derived class. We wish to discuss this topic here, because it 

deals with somewhat widespread misconception of what a database view actually is. 

Consider our example of Emp2 as a database view derived from the base class Emp1. 

One might be inclined to think that Emp2 could also be defined indirectly by 

employing suitable constraints. For example, one could introduce Emp2 as an extra 

model type (hence not as a derived class), and then stipulate the following two 

constraints 

 

context  Emp2  inv: 

Emp1.allInstances →  

exists(e1 | e1.nm1 = self.nm2 and 2*e1.sal1 = self.sal2) 
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context  Emp1  inv: 

Emp2.allInstances →  

exists(e2 | e2.nm2 = self.nm1 and e2.sal2 = 2*self.sal1) 

 

This way the content of class Emp2  -seemingly-  is defined as the desired content of 

class Emp1, with appropriately changed values for the name and salary components. 

The thing that is wrong with this approach is that this does not constitute a view 

definition. This approach rather defines two autonomous base classes that are 

constrained by one another, and it does not reflect the desired result that Emp2 is a 

virtual class with content that is derived from class Emp1 by calculation. That is, the 

desired situation is the one where Emp1 can freely change its contents (due to updates 

performed by users of the database), irrespective of the content of Emp2; the content 

of the virtual class Emp2 should then be deducible on demand and at any given 

moment by performing a suitable calculation on the content of Emp1. This reflects 

the situation that a view is basically no more than a named query result. 

Defining views through constraint definitions is a mistake that is not unusually made 

in data-modeling practice. This mistake, though understandable, leads to a faulty 

conception of what a view should constitute. A view should constitute a virtual class, 

completely derivable in terms of existing base classes in the model, at any given 

moment and on demand. For this reason, we employ the concept of derived class to 

represent view definitions in UML/OCL. 

 

4. Component frames 
We can also consider a complete collection of databases by looking at so-called 

component  frames, where each (labelled) component is an autonomous database 

system (typically encountered in legacy environments) 
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                                   L1                                                                        Ln 
 
 
 
 
 
 
As an example consider a component frame consisting of  two separate component 

database systems: the CRM-database (DB1) and the Sales-database (DB2): 

 
 
 
 
 
 
                 *                                                                                         * 
 
 
                                                   acc-manager               * 
 
 
 
 
 
 
 
 
 

 
   CF 

 
 DBn  

DB1 

                Pers 
 
prsno: Integer 
name: String 
sal: Integer  -- in $ 
part:enum{1,2,3,4,5} 
street: String 
hnr: String 
zip: Zip 
city: String 
telint: Integer 
 

 
  DB1 

        C1ient 
 
clno: Integer 
clname: String 
addr: String 
zipcity: String 
cntrcd: String 

        Zip 
 
num: Integer 
letcom: String 
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Most of the features of DB1 speak for themselves. We offer a short explanation of 

some of the less self-explanatory aspects below 

 

- Pers  is the class of employees responsible for management of client 

resources 

- part indicates that employees are allowed to work part time 

- hnr  indicates house number 

- telint  indicates internal telephone number 

- cntrcd  indicates the code of the country the client lives in 

- acc-manager  indicates the employee (account manager) that is responsible 

for some client’s account 

- letcom  indicates a letter combination 

 
 
We furthermore assume that database DB1 has the following constraints 
 
 
context Pers inv: 

Pers.allInstances --> isUnique (p: Pers | p.prsno) 

sal <= 1500 

telint >= 1000  and  telint <= 9999 

 

context C1ient inv: 

C1ient.allInstances --> isUnique (c: C1ient | c.clno) 

cntrcd.size <= 5 
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context Zip inv: 

num >= 1000  and  num <= 9999 

letcom.size = 2 

 
The second database is the so-called Sales-database DB2 
 
 
 
 
 
 
 
                       * 
                                                                                                   * 
                                                                                                   
 
 
                                                     ord-manager         * 
 
 
 
 

 

 

 

Most of the features of DB2 also speak for themselves. We offer a short explanation 

of some of the less self-explanatory aspects below 

 

- Emp  is the class of employees responsible for management of client orders 

- func indicates that an employee has a certain function within the 

organization 

- ord-manager  indicates the employee (account manager) that is responsible 

for some client’s order 

 
    DB2 

              Emp 
 
eno: Integer 
name: String 
sal: Integer  --  in � 
bonus: Integer -- in � 
func: String 
addr: String 
zip: String 
city: String 
cntrcd: String 
tel: String 

        Client 
 
ordno: Integer 
clno: Integer 
clnm: String 
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We assume that this second database has the following constraints: 
 
 
context Emp inv: 

Emp.allInstances --> isUnique (p: Emp | p.eno) 

sal >= 1000 

bonus >= 0 

tel.size <= 16 

 

context Client inv: 

Client.allInstances --> isUnique (c: Client | c.ordno) 

Client.allInstances --> forall(c: Client | c.ord-manager.func = 

“Sales”)  

cntrcd.size <= 5 

 

The class  names  Client (in DB1) and Client (in DB2) happen to be  homonyms; 

i.e. the classes have the same names, but also have different meaning. The first Client 

class refers to a set of clients in a CRM-database. The second class Client refers to a 

set of client orders, which are maintained in a Sales-database. In order to get rid of 

confusion, we will perform an first act of  schema cleaning, by renaming the second 

Client class to the class Order. We can now place the two databases DB1 and DB2 

without confusion into one component frame EX-CF as seen below 
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                                  CRM                                                          Sales                                              
 
 
 
 
                    *                                          *                      *                                 * 
 
                                  
                                 acc-manager                                              ord-manager                   
                                                    *                                                          * 
 
 
The two databases DB1 and DB2 are –in the case of this example-  related, in the 

sense that an order-object residing in class  Order  in DB2  is associated to a certain 

client-object in the class  C1ient  in DB1. On the component frame level, we can 

define an auxiliary function mapping a order object in class  Order  to a client object 

in class  C1ient. We do this by assuming an operation in the class  Order, called  

linkToC1ient 

 
 
 
 
 
 
 
 
 
with the following post conditions 
 
 
context   Order::linkToC1ient( ): Client 

post:     self.linkToClient.clno = self.clno 

 

 
 EX-CF 

DB1 DB2 

 Pers C1ient Emp Order 

            Order 
 
            ( … ) 
 
 
linkToC1ient: Client 
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Since the attribute clno has unique values, the link from Order to C1ient is properly 

defined. (We assume that there always exists a corresponding clno-value in the class 

Client for each clno-value in the class Order. This is an example of a so-called inter-

database constraint (also: component-frame constraint).  We refer to section 11 for 

more details on this category of constraints. 

 
 
5. Semantic heterogeneity; the integrated database DBINT 

The problems we are facing when trying to integrate the data found in legacy 

component frames are well-known and are extensively documented (cf. [ShL90]). We 

will focus on one of the large categories of integration problems coined as semantic 

heterogeneity (cf. [Ver97]). Semantic heterogeneity deals with differences in intended 

meaning of the various database components. Integration of the source database 

schemas into one encompassing schema can be a tricky business due to  

 

1. renaming (homonyms and synonyms) 

2. data conversion (different data types for related attributes) 

3. default values (adding default values for new attributes) 

4. missing attributes (adding new attributes in order to discriminate between 

certain class objects) 

5. subclassing (creation of a common superclass and subsequent accompanying 

subclasses) 

 

We will offer a general treatment of problems as well as solutions arising in the 

integration process, by using these above-mentioned five categories of potential 

conflict situations. We will offer an illustration of problem analysis and 

accompanying solutions in the context of our example databases. 
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1. Renaming 

By homonyms we mean that certain names may –at first sight- look the same (same 

syntax), but actually have a different meaning (different semantics). Synonyms, on 

the contrary, refer to certain names that are different in the sense that they have a 

different syntax, but that the actually mean the same (same semantics). Homonyms 

and synonyms occur extremely often in integration processes. In general, we will 

adopt the following solution to resolve these naming conflicts: different semantics 

call for different names, and equal semantics (intended meaning) call for equal 

names. That is, in the case of two homonyms, we will map the  homonyms to two 

different names. This solution method in the integration process is coined  hom. An 

example of two homonyms are the two class names Client (in DB1) and Client (in 

DB2) in our component frame. We have applied  hom  by creating a class name  

Order,  and subsequently  mapping Client (in DB2) to Order, hence distinguishing 

between class name Client (in DB1) -which remains unchanged-  and class name 

Client (in DB2) -which gets a new name  Order. 

Synonyms are treated analogously, by mapping two different names to one common 

name; this solution method in the integration process is coined  syn. An example of 

applying  syn  to two synonyms in our database are the attribute names  prsno  and  

eno  in the classes Pers and Emp, respectively. Integration of these two classes is 

rather complicated due to the fact that there is only a partial overlap between the two. 

In a later section we will explain in full how this integration takes place. But in any 

case, (partial) integration of these two classes into a common class, say PERS, will 

entail that the attributes prsno  and  eno  are mapped to some common attribute, say  

pno, having the same semantics, namely that this attribute be a key attribute for the 

set of class instances of  PERS. (In our actual integration of the two classes  Pers  and  

Emp, we will construct a common superclass called PERS, and two accompanying 
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subclasses CRM and SLS, indicating that this superclass PERS reflects the common 

structure of the related objects residing in the old classes Pers and Emp, while CRM 

and SLS respectively refer to the discriminating aspects of these related objects. The 

attribute pno will then be offered a place in this common superclass PERS.) 

 

2. Data conversion 

In the integration process, one often encounters the situation where two attributes 

have the same meaning, but that their domain values are differently represented. For 

example, the two attributes  sal  in the Pers and the Emp calss of databases DB1 and 

DB2, respectively, both indicate the salary of an employee, but in the first case the 

salary is represented in the currency dollars ($), while in the latter case the currency is 

given in euros (���������	
� ��
����� ��� �����
��� ��
� �	�����
���
�� ���������

value (e.g. $, invoking a function convert����).  Another situation is that a 

combination of attributes has the same meaning as some attribute (or combination 

thereof) somewhere else in the model. For example, the attribute combination of  

street and hnr  (in Pers)  partially has the same meaning as addr in Emp (both 

indicating address values), but the domain values are differently formatted. What we 

then do is offer some function converting the values of  of  street and hnr  (in 

Pers) to a value of  addr in Emp (cf. section 8, for more details). Applying a 

conversion function to map to some common value in the integration process, is 

indicated by  conv.  

 

3. Default values 

Sometimes an attribute in one class is not mentioned in another class, but it could be 

added there by offering some suitable default value for all objects inside the first 

class. As an example, consider the attribute  part  in the class Pers (in DB1): it could 

also be added to the class Emp (in DB2) by stipulating that the default value for all 



 21

objects in Emp will be 5 (indicating full-time employment).  Applying this principle 

of adding a default value in the integration process, is indicated by  def. 

 

4. Missing attributes 

The integration of two classes often calls for the introduction of some additional 

attribute, necessary for discriminating between objects originally coming from these 

two classes. This will sometimes be necessary to be able to resolve seemingly 

conflicting constraints. As an example, consider the classes Pers (in DB1) and Emp 

(in DB2). Class Pers has as a constraint that salaries are less than 1500 (in $), while 

class Emp has as a constraint that salaries are at least 1000 (in ���� ��
�
� �	�

constraints seemingly conflict with each other, obstructing integration of the Pers and 

the Emp class to a common class, say PERS. However, by adding a discriminating 

attribute  dep  indicating whether the object comes from the CRM or from the SLS 

department, one can differentiate between two kinds of employees and state the 

constraint on the integrated level in a suitable manner (cf. section 6 for more details 

regarding this solution). Applying the principle of adding a discriminating attribute to 

differentiate between two kinds of objects inside a common class in the integration 

process, will be indicated by  diff.  

 

5. Subclassing 

The situation of a missing attribute, mostly goes hand in hand with the introduction of 

appropriate subclasses. For example, introduction of the discriminating attribute  dep  

(as described above), entails introduction of two subclasses, say CRM and SLS of the 

common superclass PERS, by listing the attributes, operations and constraints that are 

specific to CRM- or SLS-objects inside these two newly introduced subclasses. 

Applying the principle of adding new subclasses in the integration process, is 

indicated by  sub. 



 22

 

6. The integrated database DBINT 

We now offer our construction of a virtual database, represented in terms of a derived 

class in UML/OCL. (For an at length treatment of derived classes in UML/OCL we, 

again,  refer to [Bal02].) The database we describe below, intends to capture the 

integrated meaning of the features found in the component frame described earlier. 

We will do so by applying the principles of semantic integration described in the 

previous section. Consider the following specification of a (virtual) database 

 
 
 
                             *                                                                                                      
                                                                                        * 
                                                                                                                   
 
                                                                                                       
 
                                                                                        * 
 
                                                                                                                                * 
                                                                                                                                 
 
 
 
                                                                                            ord-manager 
 
                                                                                            
 
 
 
 
 
 
 
                                                                    acc-manager 
 

/EX-DBINT 

                /PERS 
 
pno: Integer 
pname: String 
sal: Integer   - -  in $ 
part: enum{1,2,3,4,5} 
addr: String 
zip: String 
city: String 
cntrcd: String 
tel: String 
dep:{“CRM”, “Sales”} 
 

          /CLNT 
 
clno: Integer 
clname: String 
addr: String 
zipcity: String 
cntrcd: String 

             /SLS 
 
bonus: Integer  - - in $ 
func: String 

  /CRM 

     /ORD 
 
ordno: Integer 
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This database has the following constraints: 
 
 
context PERS inv: 

PERS.allInstances -->  

forall(p1, p2: PERS | (p1.dep=p2.dep and p1.pno=p2.pno)  

implies   

                       p1=p2) 

PERS.allInstances --> 

forall(p:PERS | p.sal > 1500  implies  p.oclIsTypeOf(SLS)) 

sal >= 1000.convert���� 

tel.size <= 16 

cntrcd.size <= 5 

 

context SLS inv: 

bonus >= 0 

 

context CLNT inv: 

Clnt.allInstances --> isUnique (c: CLNT | c.clno) 

cntrcd.size <= 5 

 

context ORD inv: 

Order.allInstances --> isUnique (o: ORD | o.ordno) 
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We shall now carefully analyze the specification of this (integrated) database EX-

DBINT, and see if it captures the intended meaning of integrating the classes in the 

component frame EX-CF and resolves potential integration conflicts. 

 

Analysis: 

Conflict 1: Classes  Emp  and  Pers  in  EX-CF  partially overlap, but Emp has no 

attribute part yet, and one still needs to discriminate between the two kinds of class 

objects (due to specific constraints pertaining to the classes  Emp  and  Pers). Our 

solution in DBINT is based on applying  syn + def + diff + sub (map to common 

class name (PERS);  add a default value (to the attribute  part); add an extra 

discriminating attribute (dep); introduce suitable subclasses (CRM  and  SLS)). 

Conflict 2: Attributes  prsno  and  eno  intend to have the same meaning (a key 

constraint, entailing uniquely identifying values for employees, both for  Emp-  and  

Pers- objects). Our solution in DBINT is therefore based on applying  syn + diff  

(map to common attribute name (pno); introduce extra discriminating attribute (dep)) 

and enforce uniqueness of the value combination of the attributes pno and dep. 

Conflict 3: The initial classes Client (in DB1) and Client (in DB2) have different 

meanings. Our solution is based on applying hom (map to different class names). 

This conflict was already taken care during the stage of determining how to best 

include both of the Client classes in the component frame EX-CF, where we decided 

to map the class name Client in DB2 to the class name Order. Hence, this conflict was 

resolved in a stage prior to the stage of specifying DBINT. 

Conflict 4: Attributes  sal  (in Pers) and  sal (in Emp)  partially have the same 

meaning (salaries), but the currency values are different. Our solution is therefore 

based on applying conv (convert to a common value). 

Conflict 5: The attribute combination of  street and hnr  (in Pers)  partially has 

the same meaning as addr in Emp (both indicating address values), but the domain 
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values are differently formatted. Our solution is therefore based on applying syn + 

conv (map to common attribute name and convert to common value). 

Conflict 6: Attributes  telint  (internal telephone number) and  tel  (general 

telephone number) partially have the same meaning, but the domain values are 

differently formatted. Our solution is therefore based on applying  syn + conv (map 

to common attribute name and convert to common value). 

 

Resolution of these conflicts is the first step in the actual integration of the classes 

found in the component frame EX-CF. We are now faced with the subsequent 

problem to explicitly link the component frame to the integrated (and virtual) 

database EX-DBINT. We will do so by invoking a so-called mediator class. 

 
 

7. Integrating by mediation 

We adopt the so-called tightly-coupled approach in integration of a collection of 

legacy databases into a database federation. This means that we strive at creating a 

global integrated schema of the federation, which can be queried by a global query 

language. Tightly-coupled approaches are applicable in relatively stable situations 

where some form of central data management is involved, such as corporate 

databases. (For a discussion on so-called loosely-coupled versus tightly-coupled 

systems, we refer the reader to [ShL90].)  

Our strategy to integrate a collection of legacy databases –given in some component 

frame CF-  into an integrated database DBINT is based on two principles, being 

 

(1) the tightly-coupled approach to database integration 

(2) conformance to the Closed World Assumption of Database Integration ( 

CWA-INT )  
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The principle of  CWA-INT  can informally be described as follows: 

 
 
 

An integrated database  DBINT  is intended to hold exactly the “union” of the 
data in the source databases in  CF 

 
 
 
Requirement  CWA-INT  is a direct extension of the traditional Closed World 

Assumption (CWA) found in the database literature. This assumption (CWA) reads as 

follows: the only possible instances of a relation are those implied by the database 

([Rei84]). In this sense, a database is considered to be complete. Extending CWA to 

the context of database integration, is first discussed in [Hull97], leading to the 

assumption that we have coined as  CWA-INT. This (informal) requirement has to be 

further investigated for consequences when applied to querying and to updating an 

integrated database. In more mathematical terms, we will demand that the universe of 

discourse of component frame  CF  and the universe of discourse of the  integrated 

database  DBINT  are, in a mathematical sense, isomorphic; only in this way will we 

not lose any information when transforming the legacy components to the integrated 

database. (Actually, an endomorphic embedding from the universe of discourse of 

component frame  CF  and the universe of discourse of the  integrated database  

DBINT  will do.) Using conventions taken from OCL, we can describe the universe 

of discourse of UML model specifications ([WK98]). We will demonstrate, in terms 

of constraints described in OCL, that the universe of discourse of our example 

component frame  EX-CF  and the universe of discourse of the  example integrated 

database  EX-DBINT  are indeed isomorphic. We refer to section 13 for a description 

of a general heuristics for realizing such an isomorphism from a component frame to 

the virtual integrated database. We shall coin this isomorphism as the so-called 

integration isomorphism. 
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In this section we will describe a UML model containing a class, called the mediator, 

explicitly relating the component frame EX-CF and the virtual integrated database 

EX-DBINT. We will do so, by systematically exploiting various conversion 

functions, linking objects in the component frame EX-CF to objects in the integrated 

database EX-DBINT. Constructing these links is done in a very deliberate fashion, 

with the aim to establish an integration isomorphism between EX-CF and EX-

DBINT. 

Consider the following model construction, introducing an explicit class Mediator, 

connecting CF and DBINT 

 
 
 
                                                                                                                                   
                                                                                                                    DBINT 
 
                                      CF 
 
 
 
                                                                                                                                     *        
                                                                                                          
                                                                                                                              *                     
              *                                         *                  
                                                                                                                               
                                                                                                                       ord-manager 
                                                                                                                                           
                                                                                                                                         
                                                               
                                            
                                                                                                                acc-manager 
                                                                                                                
*                                  *                *                                  * 
     acc-manager                                 ord-manager 
                      *                                                 * 
 

   Mediator 

EX-CF 

DB1 DB2 

Pers C1ient Emp 

/EX-DBINT 

 /PERS 

  /CRM 

 /SLS 

/ORD /CLNT 

Order 
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The mediator has the task to correctly link the component frame EX-CF  to the 

(virtual) database  EX-DBINT. This is not a trivial task and involves a precise 

mapping of component elements to the virtual database. The mapping also has to take 

into account various constraint conditions which rule inside  EX-CF. We do this by 

introducing suitable conversion operations inside the classes. 

As mentioned earlier, integration of the source database schemas into one 

encompassing schema can be a tricky business due to the following issues: 

1. renaming  

2. data conversion 

3. default values  

4. missing attributes 

5. subclassing 

 

We will illustrate that our construction of  DBINT (intended to resolve the above-

mentioned issues), will actually support CWA-INT.  Key to the solution that we offer, 

is the introduction of a so-called  homogenizing function  which will actually provide 

for the linking of all relevant features in the component frame to features in the 

integrated database. This homogenizing function will provide the basis for the 

integration isomorphism between  CF  and  DBINT  that we are looking for.  

 
 
8. Introducing the homogenizing function 

In this section we will describe how to add a method, called Hom, to the top-level 

EX-CF class resulting in an element (database state) of the integrated database EX-

DBINT. Hom is the so-called homogenizing function, suitably mapping features of 

EX-CF  to the integrated database  EX-DBINT. 
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context   EX-CF::Hom( ):EX-DBINT 

post:     self.Hom.CLNT.allInstances =  

          (self.CRM.Client.allInstances --> collect(c: Client |  

                                            c.convertToClnt)) 

                                        --> asSet 

Here we have assumed the existence of a conversion function  convertToClnt  

within the class  Client: 

 
 
 
 
 
 
 
 
 
with the following post conditions 
 

context   Client::convertToCLNT( ): CLNT 

post:     Client.attributes -->  

          forall (d: String | self.convertToCLNT.d = self.d)  

          and 

         (self.ConvertToCLNT.acc-manager =  

          self.acc-manager.convertToCRM) 

 

           EX-CF 
 
( …) 
 
 
Hom( ): EX-DBINT 

            Client 
 
         ( … ) 
 
 
convertToCLNT:CLNT 



 30

We have now furthermore assumed the existence of a conversion function  

convertToCRM  residing within the Pers-class resulting in an object from the class  

CRM  in the DBINT-database 

 
 
 
 
 
 
 
 
 
This conversion function has the following post conditions 
 
 
context   Pers::convertToCRM( ): CRM 

post:     self.convertToCRM.pno   = self.prsn and 

          self.convertToCRM.pname = self.name and 

          self.convertToCRM.sal   = self.sal and 

          self.convertToCRM.part  = self.part and 

          self.convertToCRM.addr  = (self.street).(“ ”). 

                                    concat(self.hnr) and 

          self.convertToCRM.zip   = (self.zip.num).(“ ”).  

                                    concat(self.zip.let) and 

          self.convertToCRM.city  =  self.city  and 

          self.convertToCRM.tel   = (“31-50-363-”).(“ ”).  

                                    concat(self.telint) and 

          self.convertToCRM.cntrc = “NL” and 

          self.convertToCRM.dep   = “CRM” 

 
Notice that the function  convertToCRM is  injective! 
 

                     Pers 
 
                    ( … ) 
 
 
convertToCRM:CRM 
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Analogously, we can define a function converting the objects in the Emp-class to 

corresponding objects in the SLS-class of DBINT, by assuming the existence of a 

conversion function  convertToSLS  within the class  Emp: 

 
 
 
 
 
 
 
 
 
 
with the following (rather trivial) post conditions 
 
 
context   Emp::convertToSLS( ): SLS 

post:     self.convertToSLS.pno   = self.eno and 

          self.convertToSLS.pname = self.name and            

          self.convertToSLS.sal   = self.sal.convert�������� 

          self.convertToSLS.part  = self.part and 

          self.convertToSLS.addr  = self.addr and 

          self.convertToSLS.zip   = self.zip and 

          self.convertToSLS.city  = self.city and 

          self.convertToSLS.tel   = self.tel and 

          self.convertToSLS.cntrc = self.cntrc and 

          self.convertToSLS.dep   = “SLS” and 

          self.convertToSLS.bonus = self.bonus and 

          self.convertToSLS.func  = self.func 

 
  
A bit more difficult is the definition of a function converting the objects in the Order-
class to corresponding objects in the ORD-class of DBINT. We do this by assuming 
the existence of a conversion function  convertToORD  within the class  Order: 
 

            Emp 
 
         ( … ) 
 
 
convertToSLS:SLS 
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with the following post conditions 
 
 
context   Order::convertToORD( ): ORD 

post:     (self.ConvertToORD.ordno =  self.ordno) and 

          (self.convertToORD.ord-manager =  

          (self.ord-manager).convertToSLS)  and 

           self.convertToORD.CLNT =  

          (self.linkToC1).convertToClnt 

 

where the previously defined operation linkToC1 provides the link to the unique 

Client-object associated to a given Order-object.  

We now have a complete set of conversion functions mapping objects in the 

component frame CF to objects in DBINT. The homogenizing function  Hom  

defined in the class  EX-CF  can now be given its full definition as offered below: 

 
 
 
 
 
 
 
 
 
 
 

                Order 
 
             ( … ) 
 
 
convertToORD: ORD 

           EX-CF 
 
( …) 
 
 
Hom( ): EX-DBINT 
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context    EX-CF::Hom( ):EX-DBINT 

post:     (self.Hom).CLNT.allInstances  =  

          (self.CRM.C1ient.allInstances -> collect(c: C1ient |  

                                             c.convertToCLNT)) 

                                         -> asSet) and 

          (self.Hom).SLS.allInstances   =  

          (self.Sales.Emp.allInstances -> collect(p: Emp |  

                                            p.convertToSLS)) 

                                        -> asSet) and  

          (self.Hom).CRM.allInstances   =  

          (self.CRM.Pers.allInstances  -> collect(p: Pers |  

                                            p.convertToCRM)) 

                                        -> asSet) and 

          (self.Hom).ORD.allInstances   =  

          (self.Sales.Order.allInstances -> collect(o: Order |  

                                              o.convertToORD)) 

                                          -> asSet) 

                         
 
With this set of mappings we can define the missing link providing the mapping of 

objects inside the component frame  CF  to objects inside the virtual database  

DBINT. We do this by adding appropriate constraints to the mediator class.  

 
 
context Mediator inv: 

self.DBINT.CRM.allInstances   = (self.CF.Hom).CRM.allInstances  

and 

self.DBINT.SLS.allInstances   = (self.CF.Hom).SLS.allInstances  

and 

self.DBINT.Clnt.allInstances  = (self.CF.Hom).Clnt.allInstances  

and 
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self.DBINT.Order.allInstances = 

(self.CF.Hom).Order.allInstances  

 
It is now easily verified that the combination of the definition of the homogenizing 

function together with the constraints offered in the Mediator class, indeed results in 

an integration isomorphism linking the component frame EX-CF to the integrated 

database EX-DBINT.  

 
9. Querying the virtual integrated database through the mediator 
 
Consider the following example query posed against the integrated database  EX-

DBINT 

 

“Give the combined list of all clients and CRM-employees” 

 

Following [Bal02], a query in UML is specified in terms of a view definition, where a 

view is conceived as a derived class. We define the following derived class, called  

/Query-1: 

 
 
 
 
 
 
 
 
 
 
Furthermore, we postulate a function  convertCToQ1  in the CLNT class, and also a 

function convertCRMToQ1 in the CRM class 

 
 
 
 

           /Query-1 
 
type :     String 
name:     String 
addr :     String 
zipcity:  String 
cntrcd:   String 

                   CLNT 
 
                    ( …) 
 
 
convertCToQ1: Query-1 
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context    CLNT::convertCToQ1( ): Query-1 

post:      self.convertCToQ1.type    = `CL’  and 

           self.convertCToQ1.name    = self.clname  and 

           self.convertCToQ1.addr    = self.addr  and                 

           self.convertCToQ1.zipcity = self.zipcity  and  

           self.convertCToQ1.cntrcd  = self.cntrcd 

 
 
 
 
 
 
 
 
 
 

context    CRM::convertCRMToQ1( ): Query-1 

post:      self.convertCRMToQ1.type    = `CRM’  and 

           self.convertCRMToQ1.name    = self.pname  and 

           self.convertCRMToQ1.addr    = self.addr   and                 

           self.convertCRMToQ1.zipcity = (self.zip).(“ ”).  

                                         concat(self.city)  and  

           self.convertCRMToQ1.cntrcd  = self.cntrcd 

 

 
We then add appropriate constraints to  EX-DBINT 
 
context  EX-DBINT inv: 

Query-1.allInstances =  

((CLNT.allInstances --> collect(c : CLNT | c.convertCToQ1)) 

.Union(CRM.allInstances --> collect(p : CRM | 

p.convertCRMToQ1))) 

--> asSet 

 

                    CRM 
 
                    ( …) 
 
 
convertCRMToQ1: Query-1 
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By now expanding the definition of  CLNT  and  CRM, we obtain the definition of 

this query in terms of the original database components found in the component frame  

EX-CF, but then in terms of the homogenizing function  Hom  within the context of 

the  mediator class (hence , the  self  referred to in the OCL specification below, is 

the  self  in the context of the class Mediator) 

 
self.DBINT.Query-1.allInstances =  

(((self.CF.Hom).CLNT.allInstances  -->  

  collect(c : self.DBINT.CLNT | c.convertCToQ1)) 

  .Union((self.CF.Hom).CRM.allInstances  -->  

  collect(p : self.DBINT.CRM | p.convertCRMToQ1))) --> asSet 

 

By expanding the definitions of  (self.CF.Hom).CLNT.allInstances  and  

(self.CF.Hom).CRM.allInstances one level deeper, we obtain the definition 

of this query in terms of the original components 

 

 
(self.CF.Hom).CLNT.allInstances  = 

 (self.CF.CRM.Client.allInstances  ->  

  collect(c: self.CF.C1ient| c.convertToClnt)) -> asSet 

 

and 
 
(self.CF.Hom).CRM.allInstances =  

 (self.CRM.Pers.allInstances  ->  

  collect(p: self.CF.Pers| p.convertToCRM) -> asSet 

 

Hence, the query is now expressed completely in terms of the original database 

components found in the component frame  EX-CF!  
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The next section concerns actual translation of UML/OCL-specifications of federated 

database queries to the relational model. 

 

10. Implementing queries on federated databases  

In [BP98], a detailed account is given of how to map the basic elements of UML data 

models to the relational database model (cf. chapters 13 and 14 in [BP98]). Elements 

such as identity, domains, classes, associations, and inheritance are all systematically 

mapped to the relational model. The mapping of OCL constraint specifications to the 

relational model has been investigated in [DH99] and in [DHL01]. In [DH99] the 

basics are offered of generating SQL-code from database constraints specified in 

OCL. [DHL01] extends the results offered in [DH99] by investigating how more 

complex constraints, such as business rules, can be handled explicitly in database 

applications by means of OCL. Various strategies and experiments with a flexible 

SQL code generator are discussed, and OCL constraint specifications are evaluated 

by providing mappings to SQL views. 

The results offered in [BP98, DH99] can be extended to databases including views 

and queries by providing a mapping of derived classes in UML/OCL to the relational 

database model. This has been demonstrated in [Bal02] by offering a mapping of 

derived classes in UML/OCL to SQL-code. We remark here that none of these 

translations from derived class in UML/OCL to SQL-views contain any real 

surprises, supporting the claim that a general mapping from OCL view constructs to 

SQL is a more or less straightforward matter.  

A complete translation to SQL of our example integrated database EX-DBINT can 

also be offered along the lines described in [Bal02]. Since this would lead to rather 

elaborate SQL-code (without, however, containing any real surprises), we refrain 

from actually doing so here, and we rather refer the interested reader to [Bal02] for 

more details.  
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11. Inter-database (component-frame) constraints 

Additional information analysis might reveal the following two wishes regarding data 

in the component frame EX-CF: 

 

(1) Nobody is registered as working for both the CRM and Sales 

department; i.e., these departments have no employees in common 

(2) Client numbers in the Sales database should also be present in the 

CRM database 

 

This entails that certain constraints should be added, and in this case on the level of 

the class EX-CF, since these constraints hold between two databases DB1 and DB2. 

Such constraints are called inter-database constraints , or component-frame 

constraints. We now offer a specification of the two inter-database constraints 

mentioned above. We first offer some appropriate abbreviations (using a so-called 

let-construct), and then offer the two constraint specifications. 

 
 
context  EX-CF  inv: 
let   P-nrs  = ((self.CRM.Pers.allInstances    ->  
                collect (p:Pers | p.prsno))    -> asSet) 
let   E-nrs  = ((self.Sales.Emp.allInstances   ->  
                collect (e:Emp | e.eno))       -> asSet) 
let   C-nrs  = ((self.CRM.Client.allInstances  ->  
                collect (c:Client | c.clno))   -> asSet) 
let   OC-nrs = ((self.Sales.Order.allInstances ->  
                collect (o:Order | o.clno))    -> asSet) 
in 

(P-nrs.Intersect(E-nrs)) -> isEmpty  and 

 OC-nrs ->  

forall(o:Integer| (C-nrs -> exists(c:Integer | o=c))) 
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We are now, of course, also faced with the obligation to suitably introduce this inter-

database constraint in the integrated database DBINT. We have already assumed in 

the construction of  EX-DBINT  that the second constraint (client numbers in the 

Sales database should also be present in the CRM database) holds. Hence, we are left 

with the sole obligation to specify then first constraint, which can be done in a 

straightforward manner, as illustrated below 

 
 
context  EX-DBINT  inv: 
let   X = (self.CRM.allInstances -> collect (c:CRM | c.pno)) 
                                 -> asSet 
let   Y = (self.SLS.allInstances -> collect (s:SLS | s.pno)) 
                                 -> asSet 
in 
(X.Intersect(Y)) -> isEmpty 

 

As the examples offered above illustrate, OCL offers a powerful means to specify 

inter-database constraints in a very general manner in the context of our approach. 

In the next section, we discuss how to specify so-called federated updates; i.e. 

updates in a federated database system. We shall show that knowledge of component-

frame constraints is essential in order to specify federated updates, and that 

component-frame constraints determine just how loosely- or how tightly-coupled the 

federation actually is. 

 

12. Updates in a federated database system 

Federated updates are defined as updates on a federated database system. These 

updates can be placed in two large categories: an update involving just one of the 

component databases in the component frame, or an update involving more than one 

component database. An example in the first category of updates is the insertion of an 

order-object in the Order-class inside the component Sales-database. An example 
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of the second category of updates is the insertion of a virtual  ORD-object inside the 

integrated database DBINT: such a single insertion on the global level would translate 

to a whole collection of (local) insertions on the component databases in the 

component frame CF! In this paper, we will confine ourselves to the first, more 

simple category of updates, setting out initial guidelines for specifying updates on a 

federated database.  Moreover, confining ourselves to the first category of updates in 

which we only allow updates on component databases is well within the boundaries 

of the way that federated databases are often used in practice. Federated systems are 

in practice often updated solely through the component databases, with the virtual 

integrated database then used as an on-line integrated global query facility. 

Furthermore, we shall demonstrate that tackling this problem of strictly component-

confined updates is interesting enough in itself to deserve separate treatment. 

 

Object insertion 

Consider the case that we wish to insert an order-object in the Order-class inside the 

component Sales-database of our component frame EX-CF.  In order to do so, we 

will assume that we  -somehow-  already have an  Order-object   (o:Order)  at our 

disposal, which we then wish to insert in the  Order-class  inside the component  

Sales-database of our component frame EX-CF. By this we mean to say that we 

shall abstract from any  create- or  new- like operator for such an Order-object, 

since OCL has no syntax convention for such a create-operator. Hence, we assume 

that we can invoke an insert operator of the form 

 

insert(x:Order) 

 

to actually perform the insertion of a concrete object  o:Order  in the database by 

applying the insert operation by way of  o.insert. 
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The next step is to determine in which class to place such an insert-operator. One 

might be tempted to place this operator in the DB2-class, since it concerns an update 

of the  Sales database: success of this update not only has to do with respecting local 

constraints strictly pertaining to the actual  Order-class, but possibly also has to do 

with constraints pertaining to the  Emp-class (e.g. referential integrity). This 

consideration, however, has to be taken to an either further consequence, dealing with 

constraints on the full global level of the component frame! Consider, for example, 

the second component frame constraint mentioned in the previous section (on inter-

database constraints) 

 

   (2)   Client numbers in the Sales database should also be present in the CRM 

database 

 

This constraint entails that successful insertion of  an  Order-object  not only has to 

respect constraints in  DB2, but also has to respect a constraint pertaining to the  DB1-

database in the component frame. Hence, the insertion of  an  Order-object actually 

concerns an update on the level of the component frame EX-CF. 

We therefore can conclude that the insert operation is to be placed inside the class 

EX-CF, as indicated below 

 

 

                    CRM                                                                          Sales 

 

 

 

                                                                                        �ord-manager 

        EX-CF 
 
insert(x:Order) 

  DB1    DB2 

  Pers  Client Emp Order 
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We are now left with the task to specify the behavior of this insert-operation. We will 

do so in terms of the following OCL specification 

 

context  EX-CF::insert(x:Order) 

pre:     not(self.Sales.Order  -> includes(x)) 

         and  

         (self.CRM.Client -> collect(c:Client| c.clno))->   

            -> exists(c:Integer | c = x.clno) 

post:    self.Sales.Order = ((self.Sales.Order@pre) ->   

                              including(x)) 

 

The pre-condition of the insert operation consists of two parts; the first part tells us 

that the Order-object has to be new with respect to the set of already occurring 

instances in the Order-class, while the second part says (in accordance with the 

component-frame constraint (2) mentioned above) that the client number of the 

Order-object should also be present in some object occurrence of the set of instances 

of the Client-class in the CRM database. The post-condition then consists of adding 

the Order-object to the set of instances of the Order-class. 

We note that when we invoke within the class EX-CF  an application of the insert 

operator  o.insert  on some concrete object  o:Order, that we assume that this 

Order-object already fully satisfies all constraints on the level of the database DB2!  

This means that we assume that after successful creation of this object all relevant 

constraint properties within the realm of the component database DB2 actually hold. 

Only then will we subsequently consider this Order-object as available for other 

operations (such as our insert operator). 
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Object deletion 

Our next example concerns the deletion of a  Client-object from the  Client-

class. We will employ the syntax convention  delete(x:Client)  to denote an 

operation performing this update on the database federation. Again, using similar 

arguments as in the case of our previous operation insert(x:Order), this delete 

operation can only be properly placed at the level of the full component frame. This is 

due to the fact that deleting a  Client-object could violate the component-frame 

constraint that an  Order-object  (in database DB2) has to refer to an existing 

Client-object (in database DB1). The delete-operation can be specified in terms of 

the following OCL specification 

 

context  EX-CF::delete(x:Client) 

pre:     not(((self.Sales.Order --> collect(o:Order | o.clno))-

->  

         asSet) --> includes(x.clno)) 

post:    self.CRM.Client = (self.CRM.Client@pre --> 

excluding(x)) 

 

The pre-condition states that an initial check is to be performed ensuring that an 

Order-object does not refer to this particular Client-object to be deleted. The post-

condition states that Client-object is actually removed from the set of  instances 

occurring in the Client-class. 

 

 

Autonomy of component databases 

At this stage we wish to say something about so-called component autonomy in 

database federations. In federated database literature it is often claimed that the 
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component databases should maintain as much as possible their respective autonomy. 

In practice this makes sense, because a database federation, as we have seen, is 

actually no more than a database view on a component frame; i.e. the component 

database remain intact and the federated database is no more than a calculation 

resulting in a virtual integrated database on the global level. Updating the federated 

database in actual practice could therefore be considered as updating the component 

databases. The federated database could be regarded in an even more limited setting 

by viewing it solely as a means for an integrated query facility on the global level, 

while updates can only be performed directly on the component databases and not via 

the virtual integrated database on the global level. In this limited setting, one might 

wish to regard the component databases inside the component frame as autonomous, 

in the sense that there are no restrictions (with the possible exception of the local 

database constraints) on allowing for completely autonomous updating of the 

respective components. This conception of autonomy of the component databases is, 

however, not without danger. The danger lies in the fact that by allowing a database 

to become a member of the federation (i.e. the database becomes a component 

database in a component frame) entails that it might also become subject to certain 

component-frame constraints! This means –as was the case in our example insert 

operation- that an autonomous update on a local component database might violate a 

component-frame constraint, thus eventually rendering it as an incorrect update. 

Hence, local updates –in a federated setting- are in principle always component-frame 

updates! It is for this reason that we include an additional check (specified as part of 

the pre-condition in terms of OCL) on the level of component-frame constraints 

before we engage in actual updating of the database federation. 

 

In the next section, we discuss in short an architectural organization of a federated 

database system based on mediation. In this architectural overview, we will discuss 
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how to view the logical and physical aspects of a federated database system, with 

emphasis on how federated architectures relate to the traditional ANSI/SPARC 

architecture of a monolithic database system. 

 

 

13. Architecture of a federated database system based on mediation 

Traditionally, a monolithic database system is based on what is called the three-

schema architecture (also known as the ANSI/SPARC architecture), which was 

proposed to separate user applications and the physical database (cf. [EN00]). In this 

architecture, schemas can be defined at three levels: 

 

1. The internal level has an internal schema, which describes the physical 

storage structure of the database 

2. The conceptual level has a conceptual schema, which describes the complete 

database for the whole community of users. This schema abstracts from 

physical storage structures, and concentrates on entities, types, relationships, 

constraints, and operations 

3. The external or view level includes a number of external schemas or user 

views. Each external schema describes that part of the conceptual schema of 

the database that is relevant to a particular group of users, and hides other 

parts that are not relevant to that particular group 
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                                                      Stored database 

 

The processes of transforming requests and results between the levels are called 

mappings.  

This architecture has the advantage to support the so-called data-independence 

property, meaning that one can change the conceptual schema without having to 

change the external schema (logical data independence), and also that one can change 

  External  
    View 

  External 
    View 

           Conceptual schema 

             Internal schema 
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the internal schema without having to change the conceptual schema (physical data 

independence).  

In our setting, we deal with a collection of component databases inside some 

component frame, with the aim to integrate these component databases, with a 

federated database as result. As described in section 7, integration is based on the 

principle of the tightly-coupled approach in combination with the principle of the 

Closed World Assumption of Database Integration (CWA-INT). In this section we 

will demonstrate how to achieve an architecture for a federated database, based on 

these two principles. 

We will assume that each of these component databases internally abide to the three-

schema architecture as described above. We are now faced with the problem of what 

the architecture of the federated database looks like. Actually, the solution is quite 

straightforward. The idea is that the integrated database DBINT contains the 

conceptual schema of the federation, and that user groups of the federation define 

user views (with their own separate external schemas) on top of  DBINT. We can 

depict this architecture as follows 

 

                                                                                                          . . .  
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where  n  component databases (each abiding internally to their own  3-level 

architecture) are integrated (via  CF  and the  Mediator), resulting in the database 

schema of  DBINT (representing the conceptual schema of the database federation), 

and where subsequently a number of  k  external views are defined on top of the 

(conceptual) schema of DBINT. If we succeed in offering a mapping constituting an 

integration isomorphism from the component frame CF to the integrated database 

DBINT, then we shall also have succeeded in realizing a database federation abiding 

to the Closed World Assumption CWA-INT; this being our eventual goal of 

integration. 

In this perspective, the architecture of a federated database is basically still much 

along the lines of a traditional three-level architecture (user views on top of a 

conceptual schema of a federation, and the eventual internal schema realized via the 

mediator as a combination of  internal schemas of component databases inside a 

component frame).  

 

We call this architecture a  “three-level federation architecture”, which can be 

concisely depicted as follows 
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        ----------------------------------------------------------------  (traditional 

mapping) 

 

 

 

       -----------------------------------------------------------------  (mapping via 

Mediator) 

 

 

 

Analogous to the original three-level architecture, this three-level federation 

architecture also supports the principles of both logical- and physical data 

independence. The only difference is that the mapping between the conceptual level 

and internal level is defined within the context of the database federation, which now 

is defined via the mediator and the component frame. 

 

14. Heuristics:  from specific examples to a general approach 

This section concerns a discussion on methodology and the architectural approach, in 

which we attempt to move from specific examples to a general approach in 

constructing a database federation from a collection of legacy databases. 
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   External 
Fed-view-k 
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       (DBINT) 

Internal schema 
         (CF) 
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As described in the previous section (architecture) and section 7  (mediation as a 

means to integrate), we adopt the following strategy to integrate a collection of legacy 

databases (collected in a component frame) into a virtual integrated database 

 

a. create a tightly-coupled architecture of the federated system 

b. abide to the principle of the Closed World Assumption of Database 

Integration (CWA-INT) 

 

Both aspects of this strategy are realized when we adopt the  “three-level federation 

architecture” (as described previously) and subsequently establish an  integration 

isomorphism,  mapping from the component frame to the virtual integrated database. 

In practice, this can often be a challenging demand, but without succeeding in both 

aspects, the resulting federated database will fall short due to incorrect query results 

and inadequate constraint integration.  

We now offer some heuristics concerning the realization of the isomorphic mapping 

from component frame to integrated database. The construction of this isomorphic 

mapping from the component frame to the virtual integrated database cannot –in 

principle- be given in algorithmic terms. By this we aim to say that given some set of 

conflicts in moving from the components to the integrated federated schema, it is 

usually an illusion to state that there exists an algorithm determining how those 

conflicts are resolved. On the contrary, usually the homogenizing function (Hom, in 

our example) reflects, in terms of a formal specification, the mostly ad hoc nature of 

resolving the conflicts at hand, reflecting the need for a business semantics to reach 

an eventual solution. For example, the resolution of the conflict to establish a 

common notion for the internal telephone number  telint  (in DB1) and the 

international telephone number  tel  (in DB2) as given in our example component 

frame, the homogenizing  function  Hom  introduces the ad hoc string  
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’31-50-363-’ (in order to  lift the internal phone number to an international phone 

number). Another example is the conflict of the currencies dollar ( $  in DB1) and 

euro (�  in DB2): deciding which currency is to be taken on the common integrated 

level is basically ad hoc, and has to be offered by the business. This entails that –in 

general- the process of constructing the formal specification of the homogenizing 

function Hom (and hence also the isomorphism between the component frame and the 

virtual integrated database) constantly has to be guided by knowledge of relevant 

business semantics. Given an arbitrary collection of legacy databases, a general 

algorithmic solution to arrive at a correctly defined database federation is therefore 

not feasible. But there is a general heuristics by which this process can be guided. 

Equipped with knowledge of relevant business semantics, we can proceed by 

following a short step-by-step guideline (constituting a heuristics, not an algorithm) 

for constructing a virtual integrated database from a collection of legacy databases, as 

described below 

 

1. Devise a tightly-coupled architecture for the federation process based on the 

principles of the three-level federation architecture 

2. Specify the details of the Component Frame  CF (possibly with some schema 

cleaning) 

3. Analyze semantic heterogeneity: detect conflicts due to Renaming, Data 

Conversion, Default Values, Missing Attributes, and Subclassing 

4. Construct an integrated schema DBINT (applying the principles of syn, hom, 

conv, def, diff, and sub) 

5. Introduce a  mediator class 

6. Enforce CWA-INT, by constructing an  integration isomorphism  (via the 

mediator class) between  CF  and  DBINT  based on a suitable homogenizing 

function (to be defined in  CF) 
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7. The homogenizing function  Hom  is constructed by defining suitable 

conversion functions, mapping component database schemas in CF to new 

schemas in DBINT 

8. Query DBINT by constructing suitable derived classes 

9. Add possible  inter-database constraints  in CF, and map to DBINT 

 

Of course, during the process, at some stage it will often be necessary to backtrack to 

earlier stages to repair choices made in that earlier modeling step. In that sense, this 

guideline is -in practice-  not really step-by-step. Also, as mentioned earlier, this 

guideline –though systematic- is not algorithmic in nature. Applying the principles set 

out in this guideline will often demand the necessary creativity from the database 

modeler, as well as sufficient knowledge of the specific business domain. Apart from 

these limitations (which apply to most modeling methodologies), our guideline can 

offer a powerful methodology in moving from a collection of legacy systems to a 

correctly integrated database system. 

 

Summary  

We describe a logical architecture and a general semantic framework for precise 

specification of so-called database federations. A database federation provides for 

tight coupling of a collection of heterogeneous component databases into a global 

integrated system. Our approach to database federation integrates, by means of a so-

called homogenizing function, in a uniform and systematic manner the underlying 

data models of the component systems to a global data model, including constraint 

specifications. Our focus has been on solving the problems caused by semantic 

heterogeneity of component systems. The integration process is based on the 

architectural concept of tight-coupling, and is combined with the so-called Closed 

World Assumption to establish a notion of union -on the integrated level- of the data 



 53

found in the component databases. We have also introduced a special category of 

constraints, called inter-database (or: component-frame) constraints, which allow for 

constraint specifications between the different database components within the 

federation. The mediating system allows for global queries that can be decomposed in 

a uniform and systematic manner into local queries on component databases. We also 

offer a transaction model for a simple set of updates in database federations. 

Our approach is based upon the UML/OCL data model. UML is the de facto standard 

language for analysis and design in object-oriented frameworks, and is being 

employed more and more for analysis and design of information systems based on 

databases and their applications. The Object Constraint Language (OCL) - as part of 

UML - can aid in the unambiguous modelling of database constraints. One of the 

central notions in database modelling and in constraint specifications is the notion of 

a database view; a database view closely corresponds to the notion of derived class in 

UML. We employ OCL and the notion of derived class as a means to treat database 

constraints and database views in a federated context. The paper demonstrates that 

our particular mediating system integrates component schemas without loss of 

constraint information. Furthermore, we offer a setting in which to describe 

UML/OCL-representations of relational databases. 
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