

 University of Groningen

Object-oriented modeling and design of database federations
Balsters, H.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Balsters, H. (2003). Object-oriented modeling and design of database federations. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/162bb7a6-777d-4f90-aa92-716d33a4f1d7

 1

Object-Oriented Modeling and Design of Database Federations

H. Balsters

University of Groningen
Faculty of Management and Organization

P.O. Box 800
9700 AV Groningen, The Netherlands

h.balsters@bdk.rug.nl

SOM theme A Primary processes within firms

Abstract

We describe a logical architecture and a general semantic framework for precise specification
of so-called database federations. A database federation provides for tight coupling of a
collection of heterogeneous component databases into a global integrated system. Our
approach to database federation integrates in a uniform and systematic manner the underlying
database schemas of the component legacy systems to a separate, newly defined integrated
database schema. This integrated database is completely virtual, and will constitute the actual
federated database. That is, queries posed against the federated system will be posed against
this virtual integrated database; these global queries will then be mapped by the mediator to
actual local queries against the existing (legacy) component databases. Our approach is based
upon the UML/OCL data model. UML is the de facto standard language for analysis and
design in object-oriented frameworks, and is being employed more and more for analysis and
design of Information systems, in particular information systems based on databases and their
applications. Database specifications often involve specifications of constraints, and the
Object Constraint Language (OCL) - as part of UML - can aid in the unambiguous modelling
of database constraints. One of the central notions in database modelling and in constraint
specifications is the notion of a database view; a database view closely corresponds to the
notion of derived class in UML. We will employ OCL and the notion of derived class as a
means to treat (inter-)database constraints and database views in a federated context. We will
also offer a transaction model for a simple set of updates in database federations. The paper
will demonstrate that our particular mediating system integrates component schemas without
loss of constraint information. Furthermore, we will discuss a mapping of database
specifications in terms of UML/OCL to the relational model.

 2

1. Introduction

Modern information systems are often distributed in nature. Data and services are

often spread over different component systems wishing to cooperate in an integrated

setting. Cooperation of component systems in one integrated information system is

becoming more and more important since information is often spread over different

databases in one organization (or even spread over different organizations). Such

information systems involving integration of cooperating component systems are

called federated information systems; if the component systems are all databases then

we speak of a federated database system (FDB). In current applications, there is more

and more a tendency not to develop stand-alone, monolithic database systems; rather,

the tendency is to employ existing (legacy) components by letting them work together

in a single integrated environment. This tendency to build integrated, cooperating

systems is often encountered in applications found in EAI (Enterprise Application

Integration), which typically involve several, usually autonomous, component (data

and service repositories) systems, with the desire to query and update information on

a global, integrated level. In this paper we will address the situation where the

component systems are so-called legacy systems; i.e. systems that are given

beforehand and which are to interoperate in an integrated single framework in which

the legacy systems are to maintain as much as possible their respective autonomy.

A major obstacle in designing interoperability of legacy systems is the heterogeneous

nature of the legacy components involved. This heterogeneity is caused by the design

autonomy of their owners in developing such systems. Legacy systems were typically

designed to support local requirements, under constraints imposed by local rules, and

often without taking into account any future cooperation with other systems. To

address the problem of interoperability the term mediation has been defined [Wie95].

A database federation can be seen as a special kind of mediation, where all of the data

sources are (legacy) databases, and the mediator offers a mapping to a (virtual)

 3

DBMS-like interface. This interface offers the application the possibility to approach

the federation via this integrated virtual database, which offers the user the illusion

that he is interacting with an actual homogeneous, monolithic database. The mediator

then maps queries against this virtual integrated database on to actual component

databases. In our paper we will consider a tightly-coupled approach to database

mediation, in which a global integrated schema of the federation is maintained, which

can be accessed by a global query language. We base our notion of querying on the

“Closed World Assumption” (CWA, [Rei84]), where the integrated database is to hold

-in some manner- the “union” of the data in the underlying component databases.

Central theme in our approach is that the integrated database on the federated level is

completely virtual. The user of the federated system is offered the illusion that he is

working with a monolithic homogeneous database system, while in fact this system

basically resembles an interface, mapping interactions on the federated level to

actions on the existing local database components. More precisely, the federated

database will consist of an integrated database view on top of the existing legacy

database components. For an overview of work on the virtual approach to database

federation, we refer to [Hull97].

We concentrate on problems concerning integration of component legacy schemas on

the level of the mediator. Schema integration requires the definition of relationships

between schema elements of component systems. Detection and definition of such

relationships can be heavily complicated by so-called semantic heterogeneity

[DKM93,GSC96, Ver97]. Semantic heterogeneity refers to disagreement about the

meaning, interpretation, or intended use of related data. It has been widely agreed

upon that schema integration cannot be fully automated [ShL90], as this would

require full knowledge of the semantics of the component schema elements. In order

to tackle the problem of integrating semantic heterogeneity, we employ the

UML/OCL data model. UML/OCL offers a high-level specification language and is

 4

equipped with a unique combination of high expressiveness with a large degree of

precision. UML is the de facto standard language for analysis and design in object-

oriented frameworks, and is being employed more and more for analysis and design

of Information systems, in particular information systems based on databases and

their applications. Database specifications often involve specifications of constraints,

and the Object Constraint Language (OCL) - as part of UML - can aid in the

unambiguous modelling of database constraints. One of the central notions in

database modelling and in constraint specifications is the notion of a database view,

where a database view closely corresponds to the notion of derived class in UML. We

will employ OCL and the notion of derived class as a means to treat database

constraints and database views in a federated context. In [Bal02] it is demonstrated

that the notion of derived class can be given a formal basis in OCL, and that derived

classes in OCL have the expressive power of the relational algebra. Hence, OCL has

the explicit power to emulate basic features of the relational query language SQL.

The paper will demonstrate that our particular mediating system integrates component

schemas without loss of constraint information; i.e., no loss of constraint information

available at the component level may take place as result of integrating on the level of

the virtual federated database. We will treat integration conflicts in a tightly-coupled

environment, and show how to solve them by introducing a so-called integration

isomorphism. This isomorphism will support the Closed World Assumption for

database federations by correctly mapping a collection legacy databases to a virtual

integrated database. Key to establishing this integration isomorphism, is the

construction of a so-called homogenizing function; the homogenizing function (cf.

[BB01]) maps schemas of component databases to the schema of the integrated

database.

 5

The only assumption that we make in this paper is that all legacy component

databases have schemas that –somehow- are able to be (re-)modelled in terms of the

UML/OCL language. This is a modest assumption, since most commercially

available database systems (hierarchical, network, or relational) have schemas that are

easily expressible in terms of the UML/OCL data model.

Our paper demonstrates how to specify and evaluate queries on the global level of the

virtual integrated database, and how these queries decompose into local queries on the

component databases. We also consider database updates in a federated context, and

offer the basics of a transaction model for a simple set of updates in tightly-coupled

database federations.

The paper includes a section on implementation issues. Following the approach

offered in [Bal02] we have in principle a mapping of queries posed against a

federated database (specified in terms of derived classes in UML/OCL) to SQL-code,

thus providing the link to actual database implementations. Our paper also contains a

discussion on federated database architectures, in which we demonstrate that

federated database architectures can very much stay in line with the traditional three-

level architecture for monolithic databases. Our paper ends with a discussion on

methodology and heuristics for federated database design.

2. UML/OCL as a specification language for databases

Information systems, and in particular information systems based on databases and

their applications, rely heavily on sound principles of analysis and design. This paper

focuses on particular principles of analysis and design related to database

applications. Following [BP98], we can state that object-oriented (OO) modelling can

prove to be very beneficiary in (relational) database applications. A database is a

permanent, self-descriptive repository of data stored in files. A database is self-

descriptive in the sense that it not only contains the data, but also a description of the

 6

data structure, or schema. In databases, the data usually change rapidly, while the

schema stays relatively static. A database management system (DBMS) consists of

software managing access to the data. DBMSs provide generic functionality for a

broad range of applications; one of the foremost features of a DBMS is the

availability of a query language offering an interactive means for reading and writing

data from the database. A relational database has data represented as tables, and a

relational DBMS manages access to tables of data and associated structures in a

highly effective and efficient manner. (Relational databases use SQL as a data

manipulation language, and tables are called relations in SQL.) Relational database

applications can benefit substantially from OO modelling. The OO paradigm provides

a uniform framework for both the design of database code and programming code.

Database and their applications can thus be developed in one and the same conceptual

framework. In fact, one can say that integrating relational databases into object-

oriented applications is state of the art in software development practice. OO data

models offer high-level modelling primitives leading to clear and concise

specifications of database schemas. A high-level description of a database schema in

terms of an OO data model can easily be mapped to a relational database schema

employed by a conventional relational DBMS [BP98]. Hence, the analysis and design

stage of a (relational) database can be separated in a clear and meaningful fashion.

The most important OO modeling language is UML, being the de facto standard for

OO analysis and design of information systems [OMG99]. Recently, researchers have

investigated possibilities of UML as a modeling language for (relational) databases.

[BP98] describes in length how this process can take place, concentrating on schema

specification techniques. [DH99, DHL01] investigate further possibilities by

employing OCL (the Object Constraint Language [WK99]) for specifying constraints

and business rules within the context of relational databases. The idea is that OCL

provides expressiveness in terms of relatively abstract set definitions that should

 7

prove to be sufficient to capture the general notion of (relational) database view. This

idea of employing abstract object-oriented set definitions to captures views and

constraints has also been pursued on the full level of object-oriented databases, be it

not in the context of UML/OCL language, but rather in the context of an experimental

OODB user language in combination with an underlying theoretical semantics

[BBZ93, BV92]. In the more specific context of relational databases and OCL,

[DH99] offer a framework for representing constraints within the relational data

model. Some researchers take a very general approach investigating possibilities of

UML/OCL; e.g., [AB01] treat OCL as a general query language for UML data

models, and [EP00] use OCL as a general language for business modeling. Current

research, however, has not yet shown an effective way to deal with an important

aspect of (relational) database modeling, namely modeling of so-called database

views. A (database) view is a derived table (or derived relation, in SQL), meaning

that a view does not exist as a physical relation; rather a view is defined by an

expression much like a query [GUW02]. Views, in turn, can be queried as if they

existed physically, and in some cases, we can even modify view content. That is, a

user is offered the impression that a view is some base relation inside the database,

but in fact it is a derived (or virtual) relation defined in terms of the actual base

relations constituting the database. View definitions are an important asset in database

applications, because users are usually only interested in a part of the database, and

not in the complete underlying corporate database. Hence, it is important that users

have access to that part of the database considered relevant for their category of

database applications. Our application area for views is focused on Federated

Databases, where legacy databases are to interoperate by employing a so-called

mediating system. This mediating system can be considered as an integration of a set

of certain database views defined on the component legacy database systems.

 8

Database views and query languages are strongly related, since views basically are no

more than named queries. [GR97] is one of the first papers to investigate the

possibilities of a general query language for UML; further investigations can be found

in [AB01] and [MC99]. [AB01] have attempted to demonstrate that OCL can offer

the basis for a general query language for UML data models by showing how to

represent Cartesian products and projections in OCL, thus paving the way to the

claim that OCL has the same expressive power as the so-called relational algebra

[D00, GUW02]. By demonstrating such a result, one could also claim to have a basis

for representing views within OCL. In [Bal02] it is demonstrated that the

expressiveness of OCL actually includes that of the relational algebra. This is done

by showing how to offer the notion of derived class a formal basis within the

framework of UML/OCL, and subsequently using this notion of derived class to

represent the notions of Cartesian product and (relational) join. This result establishes

that OCL includes the expressiveness of the relational algebra, without resorting to

language extensions of OCL. Once it is established that OCL includes the

expressiveness of the relational algebra, then we also have provided a basis for

representing the general notion of (relational) database view.

A derived class is a device for denoting a virtual class, defined in terms of already

existing (base) classes (and possibly other derived classes). Views can be queried

independently, with a semantics explained entirely in terms of queries on base

classes. [Bal02] also offers a mapping to SQL-code [D00, GUW02], providing

implementation support for our approach.

3. Basic principles: Databases and views in UML/OCL

Databases are basically a set of related tables. Tables in UML are represented by

classes. Classes have attributes and corresponding domain values, while we can also

have complex-valued attributes (i.e. non-first normal form) in UML by allowing for

 9

enumerated sets as domains for attributes, and to employ UML-style relations to

represent directly references to other objects in tables without residing to foreign-key

constructs (to indirectly enforce this kind of modelling facility). Views, as derived

tables, can also be represented in UML, which we will describe below.

Let’s consider the case that we have a class called Emp1 with attributes nm1 and

sal1, indicating the name and salary of an employee object belonging to class Emp1

Now consider the case where we want to add a class, say Emp2, which is defined as

a class whose objects are completely derivable from objects coming from class

Emp1. The calculation is performed in the following manner. Assume that the

attributes of Emp2 are nm2 and sal2 respectively (indicating name and salary

attributes for Emp2 objects), and assume that for each object e1:Emp1 we can obtain

an object e2:Emp2 by stipulating that e2.nm2=e1.nm1 and e2.sal2=(2 * e1.sal1).

By definition the total set of instances of Emp2 is the set obtained from the total set

of instances from Emp1 by applying the calculation rules as described above. Hence,

class Emp2 is a view of class Emp1, in accordance with the concept of a view as

known from the relational database literature. In UML terminology [BP98], we can

say that Emp2 is a derived class, since it is completely derivable from other already

existing class elements in the model description containing model type Emp1.

We will now show how to faithfully describe Emp2 as a derived class in UML/OCL

in such a way that it satisfies the requirements of a (relational) view. First of all, we

must satisfy the requirement that the set of instance of class Emp2 is the result of a

calculation applied to the set of instances of class Emp1. The basic idea is that we

 Emp1

nm1: String
sal1: Integer

 10

introduce a class called Database that has associations to classes Emp1 and Emp2.

A database object will reflect the actual state of the database, and the system class

Database will only consist out of one object in any of its states. Hence the variable

self in the context of the class Database will always denote the actual state of the

database that we are considering. In the context of this database class we can then

define the calculation obtaining the set of instances of Emp2 by taking the set of

instances of Emp1 as input.

 * *

Note that we have used a prefix-qualification by adding a slash to Emp2 indicating

that Emp2 is a derived class definition [BP98]. Moreover, we have added an

operation, called convertToEmp2, meant to coerce an arbitrary Emp1-object to an

Emp2-object. This operation can be defined by the following OCL-specification

context Emp1::convertToEmp2(): Emp2

post: self.convertToEmp2.nm2 = self.nm1 and

 self.convertToEmp2.sal2 = (2*self.sal1)

 Database

 Emp1

nm1:String
sal1: Integer

convertToEmp2(): Emp2

 /Emp2

nm2:String
sal2: Integer

 11

We now have all the ingredients necessary to specify the relation coupling the derived

class Emp2 to the original class Emp1. This is done by including an invariant

specification in the class Database telling us how to calculate the set of instances of

Emp2 from the set of instances of Emp1

context Database inv:

self.Emp2 = self.Emp1→ collect(e:Emp1 | e.convertToEmp2) and

Emp1.allInstances = self.Emp1 and

Emp2.allInstances = self.Emp2

In this way we explicitly specify Emp2 as the result of a calculation performed on

Emp1, and we also stipulate that the only Emp1- and Emp2-objects in the database

are those obtained from the links starting from the database-object self.

Discussion: How not to represent views

A reader might have the idea that there is an alternative (and rather simple) way to

define database views in UML/OCL employing constraints, and without having to

introduce the notion of derived class. We wish to discuss this topic here, because it

deals with somewhat widespread misconception of what a database view actually is.

Consider our example of Emp2 as a database view derived from the base class Emp1.

One might be inclined to think that Emp2 could also be defined indirectly by

employing suitable constraints. For example, one could introduce Emp2 as an extra

model type (hence not as a derived class), and then stipulate the following two

constraints

context Emp2 inv:

Emp1.allInstances →

exists(e1 | e1.nm1 = self.nm2 and 2*e1.sal1 = self.sal2)

 12

context Emp1 inv:

Emp2.allInstances →

exists(e2 | e2.nm2 = self.nm1 and e2.sal2 = 2*self.sal1)

This way the content of class Emp2 -seemingly- is defined as the desired content of

class Emp1, with appropriately changed values for the name and salary components.

The thing that is wrong with this approach is that this does not constitute a view

definition. This approach rather defines two autonomous base classes that are

constrained by one another, and it does not reflect the desired result that Emp2 is a

virtual class with content that is derived from class Emp1 by calculation. That is, the

desired situation is the one where Emp1 can freely change its contents (due to updates

performed by users of the database), irrespective of the content of Emp2; the content

of the virtual class Emp2 should then be deducible on demand and at any given

moment by performing a suitable calculation on the content of Emp1. This reflects

the situation that a view is basically no more than a named query result.

Defining views through constraint definitions is a mistake that is not unusually made

in data-modeling practice. This mistake, though understandable, leads to a faulty

conception of what a view should constitute. A view should constitute a virtual class,

completely derivable in terms of existing base classes in the model, at any given

moment and on demand. For this reason, we employ the concept of derived class to

represent view definitions in UML/OCL.

4. Component frames
We can also consider a complete collection of databases by looking at so-called

component frames, where each (labelled) component is an autonomous database

system (typically encountered in legacy environments)

 13

 L1 Ln

As an example consider a component frame consisting of two separate component

database systems: the CRM-database (DB1) and the Sales-database (DB2):

 * *

 acc-manager *

 CF

 DBn

DB1

 Pers

prsno: Integer
name: String
sal: Integer -- in $
part:enum{1,2,3,4,5}
street: String
hnr: String
zip: Zip
city: String
telint: Integer

 DB1

 C1ient

clno: Integer
clname: String
addr: String
zipcity: String
cntrcd: String

 Zip

num: Integer
letcom: String

 14

Most of the features of DB1 speak for themselves. We offer a short explanation of

some of the less self-explanatory aspects below

- Pers is the class of employees responsible for management of client

resources

- part indicates that employees are allowed to work part time

- hnr indicates house number

- telint indicates internal telephone number

- cntrcd indicates the code of the country the client lives in

- acc-manager indicates the employee (account manager) that is responsible

for some client’s account

- letcom indicates a letter combination

We furthermore assume that database DB1 has the following constraints

context Pers inv:

Pers.allInstances --> isUnique (p: Pers | p.prsno)

sal <= 1500

telint >= 1000 and telint <= 9999

context C1ient inv:

C1ient.allInstances --> isUnique (c: C1ient | c.clno)

cntrcd.size <= 5

 15

context Zip inv:

num >= 1000 and num <= 9999

letcom.size = 2

The second database is the so-called Sales-database DB2

 *
 *

 ord-manager *

Most of the features of DB2 also speak for themselves. We offer a short explanation

of some of the less self-explanatory aspects below

- Emp is the class of employees responsible for management of client orders

- func indicates that an employee has a certain function within the

organization

- ord-manager indicates the employee (account manager) that is responsible

for some client’s order

 DB2

 Emp

eno: Integer
name: String
sal: Integer -- in �
bonus: Integer -- in �
func: String
addr: String
zip: String
city: String
cntrcd: String
tel: String

 Client

ordno: Integer
clno: Integer
clnm: String

 16

We assume that this second database has the following constraints:

context Emp inv:

Emp.allInstances --> isUnique (p: Emp | p.eno)

sal >= 1000

bonus >= 0

tel.size <= 16

context Client inv:

Client.allInstances --> isUnique (c: Client | c.ordno)

Client.allInstances --> forall(c: Client | c.ord-manager.func =

“Sales”)

cntrcd.size <= 5

The class names Client (in DB1) and Client (in DB2) happen to be homonyms;

i.e. the classes have the same names, but also have different meaning. The first Client

class refers to a set of clients in a CRM-database. The second class Client refers to a

set of client orders, which are maintained in a Sales-database. In order to get rid of

confusion, we will perform an first act of schema cleaning, by renaming the second

Client class to the class Order. We can now place the two databases DB1 and DB2

without confusion into one component frame EX-CF as seen below

 17

 CRM Sales

 * * * *

 acc-manager ord-manager
 * *

The two databases DB1 and DB2 are –in the case of this example- related, in the

sense that an order-object residing in class Order in DB2 is associated to a certain

client-object in the class C1ient in DB1. On the component frame level, we can

define an auxiliary function mapping a order object in class Order to a client object

in class C1ient. We do this by assuming an operation in the class Order, called

linkToC1ient

with the following post conditions

context Order::linkToC1ient(): Client

post: self.linkToClient.clno = self.clno

 EX-CF

DB1 DB2

 Pers C1ient Emp Order

 Order

 (…)

linkToC1ient: Client

 18

Since the attribute clno has unique values, the link from Order to C1ient is properly

defined. (We assume that there always exists a corresponding clno-value in the class

Client for each clno-value in the class Order. This is an example of a so-called inter-

database constraint (also: component-frame constraint). We refer to section 11 for

more details on this category of constraints.

5. Semantic heterogeneity; the integrated database DBINT

The problems we are facing when trying to integrate the data found in legacy

component frames are well-known and are extensively documented (cf. [ShL90]). We

will focus on one of the large categories of integration problems coined as semantic

heterogeneity (cf. [Ver97]). Semantic heterogeneity deals with differences in intended

meaning of the various database components. Integration of the source database

schemas into one encompassing schema can be a tricky business due to

1. renaming (homonyms and synonyms)

2. data conversion (different data types for related attributes)

3. default values (adding default values for new attributes)

4. missing attributes (adding new attributes in order to discriminate between

certain class objects)

5. subclassing (creation of a common superclass and subsequent accompanying

subclasses)

We will offer a general treatment of problems as well as solutions arising in the

integration process, by using these above-mentioned five categories of potential

conflict situations. We will offer an illustration of problem analysis and

accompanying solutions in the context of our example databases.

 19

1. Renaming

By homonyms we mean that certain names may –at first sight- look the same (same

syntax), but actually have a different meaning (different semantics). Synonyms, on

the contrary, refer to certain names that are different in the sense that they have a

different syntax, but that the actually mean the same (same semantics). Homonyms

and synonyms occur extremely often in integration processes. In general, we will

adopt the following solution to resolve these naming conflicts: different semantics

call for different names, and equal semantics (intended meaning) call for equal

names. That is, in the case of two homonyms, we will map the homonyms to two

different names. This solution method in the integration process is coined hom. An

example of two homonyms are the two class names Client (in DB1) and Client (in

DB2) in our component frame. We have applied hom by creating a class name

Order, and subsequently mapping Client (in DB2) to Order, hence distinguishing

between class name Client (in DB1) -which remains unchanged- and class name

Client (in DB2) -which gets a new name Order.

Synonyms are treated analogously, by mapping two different names to one common

name; this solution method in the integration process is coined syn. An example of

applying syn to two synonyms in our database are the attribute names prsno and

eno in the classes Pers and Emp, respectively. Integration of these two classes is

rather complicated due to the fact that there is only a partial overlap between the two.

In a later section we will explain in full how this integration takes place. But in any

case, (partial) integration of these two classes into a common class, say PERS, will

entail that the attributes prsno and eno are mapped to some common attribute, say

pno, having the same semantics, namely that this attribute be a key attribute for the

set of class instances of PERS. (In our actual integration of the two classes Pers and

Emp, we will construct a common superclass called PERS, and two accompanying

 20

subclasses CRM and SLS, indicating that this superclass PERS reflects the common

structure of the related objects residing in the old classes Pers and Emp, while CRM

and SLS respectively refer to the discriminating aspects of these related objects. The

attribute pno will then be offered a place in this common superclass PERS.)

2. Data conversion

In the integration process, one often encounters the situation where two attributes

have the same meaning, but that their domain values are differently represented. For

example, the two attributes sal in the Pers and the Emp calss of databases DB1 and

DB2, respectively, both indicate the salary of an employee, but in the first case the

salary is represented in the currency dollars ($), while in the latter case the currency is

given in euros (���������	
� ��
����� ��� �����
��� ��
� �	�����
���
�� ���������

value (e.g. $, invoking a function convert����). Another situation is that a

combination of attributes has the same meaning as some attribute (or combination

thereof) somewhere else in the model. For example, the attribute combination of

street and hnr (in Pers) partially has the same meaning as addr in Emp (both

indicating address values), but the domain values are differently formatted. What we

then do is offer some function converting the values of of street and hnr (in

Pers) to a value of addr in Emp (cf. section 8, for more details). Applying a

conversion function to map to some common value in the integration process, is

indicated by conv.

3. Default values

Sometimes an attribute in one class is not mentioned in another class, but it could be

added there by offering some suitable default value for all objects inside the first

class. As an example, consider the attribute part in the class Pers (in DB1): it could

also be added to the class Emp (in DB2) by stipulating that the default value for all

 21

objects in Emp will be 5 (indicating full-time employment). Applying this principle

of adding a default value in the integration process, is indicated by def.

4. Missing attributes

The integration of two classes often calls for the introduction of some additional

attribute, necessary for discriminating between objects originally coming from these

two classes. This will sometimes be necessary to be able to resolve seemingly

conflicting constraints. As an example, consider the classes Pers (in DB1) and Emp

(in DB2). Class Pers has as a constraint that salaries are less than 1500 (in $), while

class Emp has as a constraint that salaries are at least 1000 (in ���� ��
�
� �	�

constraints seemingly conflict with each other, obstructing integration of the Pers and

the Emp class to a common class, say PERS. However, by adding a discriminating

attribute dep indicating whether the object comes from the CRM or from the SLS

department, one can differentiate between two kinds of employees and state the

constraint on the integrated level in a suitable manner (cf. section 6 for more details

regarding this solution). Applying the principle of adding a discriminating attribute to

differentiate between two kinds of objects inside a common class in the integration

process, will be indicated by diff.

5. Subclassing

The situation of a missing attribute, mostly goes hand in hand with the introduction of

appropriate subclasses. For example, introduction of the discriminating attribute dep

(as described above), entails introduction of two subclasses, say CRM and SLS of the

common superclass PERS, by listing the attributes, operations and constraints that are

specific to CRM- or SLS-objects inside these two newly introduced subclasses.

Applying the principle of adding new subclasses in the integration process, is

indicated by sub.

 22

6. The integrated database DBINT

We now offer our construction of a virtual database, represented in terms of a derived

class in UML/OCL. (For an at length treatment of derived classes in UML/OCL we,

again, refer to [Bal02].) The database we describe below, intends to capture the

integrated meaning of the features found in the component frame described earlier.

We will do so by applying the principles of semantic integration described in the

previous section. Consider the following specification of a (virtual) database

 *
 *

 *

 *

 ord-manager

 acc-manager

/EX-DBINT

 /PERS

pno: Integer
pname: String
sal: Integer - - in $
part: enum{1,2,3,4,5}
addr: String
zip: String
city: String
cntrcd: String
tel: String
dep:{“CRM”, “Sales”}

 /CLNT

clno: Integer
clname: String
addr: String
zipcity: String
cntrcd: String

 /SLS

bonus: Integer - - in $
func: String

 /CRM

 /ORD

ordno: Integer

 23

This database has the following constraints:

context PERS inv:

PERS.allInstances -->

forall(p1, p2: PERS | (p1.dep=p2.dep and p1.pno=p2.pno)

implies

 p1=p2)

PERS.allInstances -->

forall(p:PERS | p.sal > 1500 implies p.oclIsTypeOf(SLS))

sal >= 1000.convert����

tel.size <= 16

cntrcd.size <= 5

context SLS inv:

bonus >= 0

context CLNT inv:

Clnt.allInstances --> isUnique (c: CLNT | c.clno)

cntrcd.size <= 5

context ORD inv:

Order.allInstances --> isUnique (o: ORD | o.ordno)

 24

We shall now carefully analyze the specification of this (integrated) database EX-

DBINT, and see if it captures the intended meaning of integrating the classes in the

component frame EX-CF and resolves potential integration conflicts.

Analysis:

Conflict 1: Classes Emp and Pers in EX-CF partially overlap, but Emp has no

attribute part yet, and one still needs to discriminate between the two kinds of class

objects (due to specific constraints pertaining to the classes Emp and Pers). Our

solution in DBINT is based on applying syn + def + diff + sub (map to common

class name (PERS); add a default value (to the attribute part); add an extra

discriminating attribute (dep); introduce suitable subclasses (CRM and SLS)).

Conflict 2: Attributes prsno and eno intend to have the same meaning (a key

constraint, entailing uniquely identifying values for employees, both for Emp- and

Pers- objects). Our solution in DBINT is therefore based on applying syn + diff

(map to common attribute name (pno); introduce extra discriminating attribute (dep))

and enforce uniqueness of the value combination of the attributes pno and dep.

Conflict 3: The initial classes Client (in DB1) and Client (in DB2) have different

meanings. Our solution is based on applying hom (map to different class names).

This conflict was already taken care during the stage of determining how to best

include both of the Client classes in the component frame EX-CF, where we decided

to map the class name Client in DB2 to the class name Order. Hence, this conflict was

resolved in a stage prior to the stage of specifying DBINT.

Conflict 4: Attributes sal (in Pers) and sal (in Emp) partially have the same

meaning (salaries), but the currency values are different. Our solution is therefore

based on applying conv (convert to a common value).

Conflict 5: The attribute combination of street and hnr (in Pers) partially has

the same meaning as addr in Emp (both indicating address values), but the domain

 25

values are differently formatted. Our solution is therefore based on applying syn +

conv (map to common attribute name and convert to common value).

Conflict 6: Attributes telint (internal telephone number) and tel (general

telephone number) partially have the same meaning, but the domain values are

differently formatted. Our solution is therefore based on applying syn + conv (map

to common attribute name and convert to common value).

Resolution of these conflicts is the first step in the actual integration of the classes

found in the component frame EX-CF. We are now faced with the subsequent

problem to explicitly link the component frame to the integrated (and virtual)

database EX-DBINT. We will do so by invoking a so-called mediator class.

7. Integrating by mediation

We adopt the so-called tightly-coupled approach in integration of a collection of

legacy databases into a database federation. This means that we strive at creating a

global integrated schema of the federation, which can be queried by a global query

language. Tightly-coupled approaches are applicable in relatively stable situations

where some form of central data management is involved, such as corporate

databases. (For a discussion on so-called loosely-coupled versus tightly-coupled

systems, we refer the reader to [ShL90].)

Our strategy to integrate a collection of legacy databases –given in some component

frame CF- into an integrated database DBINT is based on two principles, being

(1) the tightly-coupled approach to database integration

(2) conformance to the Closed World Assumption of Database Integration (

CWA-INT)

 26

The principle of CWA-INT can informally be described as follows:

An integrated database DBINT is intended to hold exactly the “union” of the
data in the source databases in CF

Requirement CWA-INT is a direct extension of the traditional Closed World

Assumption (CWA) found in the database literature. This assumption (CWA) reads as

follows: the only possible instances of a relation are those implied by the database

([Rei84]). In this sense, a database is considered to be complete. Extending CWA to

the context of database integration, is first discussed in [Hull97], leading to the

assumption that we have coined as CWA-INT. This (informal) requirement has to be

further investigated for consequences when applied to querying and to updating an

integrated database. In more mathematical terms, we will demand that the universe of

discourse of component frame CF and the universe of discourse of the integrated

database DBINT are, in a mathematical sense, isomorphic; only in this way will we

not lose any information when transforming the legacy components to the integrated

database. (Actually, an endomorphic embedding from the universe of discourse of

component frame CF and the universe of discourse of the integrated database

DBINT will do.) Using conventions taken from OCL, we can describe the universe

of discourse of UML model specifications ([WK98]). We will demonstrate, in terms

of constraints described in OCL, that the universe of discourse of our example

component frame EX-CF and the universe of discourse of the example integrated

database EX-DBINT are indeed isomorphic. We refer to section 13 for a description

of a general heuristics for realizing such an isomorphism from a component frame to

the virtual integrated database. We shall coin this isomorphism as the so-called

integration isomorphism.

 27

In this section we will describe a UML model containing a class, called the mediator,

explicitly relating the component frame EX-CF and the virtual integrated database

EX-DBINT. We will do so, by systematically exploiting various conversion

functions, linking objects in the component frame EX-CF to objects in the integrated

database EX-DBINT. Constructing these links is done in a very deliberate fashion,

with the aim to establish an integration isomorphism between EX-CF and EX-

DBINT.

Consider the following model construction, introducing an explicit class Mediator,

connecting CF and DBINT

 DBINT

 CF

 *

 *
 * *

 ord-manager

 acc-manager

* * * *
 acc-manager ord-manager
 * *

 Mediator

EX-CF

DB1 DB2

Pers C1ient Emp

/EX-DBINT

 /PERS

 /CRM

 /SLS

/ORD /CLNT

Order

 28

The mediator has the task to correctly link the component frame EX-CF to the

(virtual) database EX-DBINT. This is not a trivial task and involves a precise

mapping of component elements to the virtual database. The mapping also has to take

into account various constraint conditions which rule inside EX-CF. We do this by

introducing suitable conversion operations inside the classes.

As mentioned earlier, integration of the source database schemas into one

encompassing schema can be a tricky business due to the following issues:

1. renaming

2. data conversion

3. default values

4. missing attributes

5. subclassing

We will illustrate that our construction of DBINT (intended to resolve the above-

mentioned issues), will actually support CWA-INT. Key to the solution that we offer,

is the introduction of a so-called homogenizing function which will actually provide

for the linking of all relevant features in the component frame to features in the

integrated database. This homogenizing function will provide the basis for the

integration isomorphism between CF and DBINT that we are looking for.

8. Introducing the homogenizing function

In this section we will describe how to add a method, called Hom, to the top-level

EX-CF class resulting in an element (database state) of the integrated database EX-

DBINT. Hom is the so-called homogenizing function, suitably mapping features of

EX-CF to the integrated database EX-DBINT.

 29

context EX-CF::Hom():EX-DBINT

post: self.Hom.CLNT.allInstances =

 (self.CRM.Client.allInstances --> collect(c: Client |

 c.convertToClnt))

 --> asSet

Here we have assumed the existence of a conversion function convertToClnt

within the class Client:

with the following post conditions

context Client::convertToCLNT(): CLNT

post: Client.attributes -->

 forall (d: String | self.convertToCLNT.d = self.d)

 and

 (self.ConvertToCLNT.acc-manager =

 self.acc-manager.convertToCRM)

 EX-CF

(…)

Hom(): EX-DBINT

 Client

 (…)

convertToCLNT:CLNT

 30

We have now furthermore assumed the existence of a conversion function

convertToCRM residing within the Pers-class resulting in an object from the class

CRM in the DBINT-database

This conversion function has the following post conditions

context Pers::convertToCRM(): CRM

post: self.convertToCRM.pno = self.prsn and

 self.convertToCRM.pname = self.name and

 self.convertToCRM.sal = self.sal and

 self.convertToCRM.part = self.part and

 self.convertToCRM.addr = (self.street).(“ ”).

 concat(self.hnr) and

 self.convertToCRM.zip = (self.zip.num).(“ ”).

 concat(self.zip.let) and

 self.convertToCRM.city = self.city and

 self.convertToCRM.tel = (“31-50-363-”).(“ ”).

 concat(self.telint) and

 self.convertToCRM.cntrc = “NL” and

 self.convertToCRM.dep = “CRM”

Notice that the function convertToCRM is injective!

 Pers

 (…)

convertToCRM:CRM

 31

Analogously, we can define a function converting the objects in the Emp-class to

corresponding objects in the SLS-class of DBINT, by assuming the existence of a

conversion function convertToSLS within the class Emp:

with the following (rather trivial) post conditions

context Emp::convertToSLS(): SLS

post: self.convertToSLS.pno = self.eno and

 self.convertToSLS.pname = self.name and

 self.convertToSLS.sal = self.sal.convert��������

 self.convertToSLS.part = self.part and

 self.convertToSLS.addr = self.addr and

 self.convertToSLS.zip = self.zip and

 self.convertToSLS.city = self.city and

 self.convertToSLS.tel = self.tel and

 self.convertToSLS.cntrc = self.cntrc and

 self.convertToSLS.dep = “SLS” and

 self.convertToSLS.bonus = self.bonus and

 self.convertToSLS.func = self.func

A bit more difficult is the definition of a function converting the objects in the Order-
class to corresponding objects in the ORD-class of DBINT. We do this by assuming
the existence of a conversion function convertToORD within the class Order:

 Emp

 (…)

convertToSLS:SLS

 32

with the following post conditions

context Order::convertToORD(): ORD

post: (self.ConvertToORD.ordno = self.ordno) and

 (self.convertToORD.ord-manager =

 (self.ord-manager).convertToSLS) and

 self.convertToORD.CLNT =

 (self.linkToC1).convertToClnt

where the previously defined operation linkToC1 provides the link to the unique

Client-object associated to a given Order-object.

We now have a complete set of conversion functions mapping objects in the

component frame CF to objects in DBINT. The homogenizing function Hom

defined in the class EX-CF can now be given its full definition as offered below:

 Order

 (…)

convertToORD: ORD

 EX-CF

(…)

Hom(): EX-DBINT

 33

context EX-CF::Hom():EX-DBINT

post: (self.Hom).CLNT.allInstances =

 (self.CRM.C1ient.allInstances -> collect(c: C1ient |

 c.convertToCLNT))

 -> asSet) and

 (self.Hom).SLS.allInstances =

 (self.Sales.Emp.allInstances -> collect(p: Emp |

 p.convertToSLS))

 -> asSet) and

 (self.Hom).CRM.allInstances =

 (self.CRM.Pers.allInstances -> collect(p: Pers |

 p.convertToCRM))

 -> asSet) and

 (self.Hom).ORD.allInstances =

 (self.Sales.Order.allInstances -> collect(o: Order |

 o.convertToORD))

 -> asSet)

With this set of mappings we can define the missing link providing the mapping of

objects inside the component frame CF to objects inside the virtual database

DBINT. We do this by adding appropriate constraints to the mediator class.

context Mediator inv:

self.DBINT.CRM.allInstances = (self.CF.Hom).CRM.allInstances

and

self.DBINT.SLS.allInstances = (self.CF.Hom).SLS.allInstances

and

self.DBINT.Clnt.allInstances = (self.CF.Hom).Clnt.allInstances

and

 34

self.DBINT.Order.allInstances =

(self.CF.Hom).Order.allInstances

It is now easily verified that the combination of the definition of the homogenizing

function together with the constraints offered in the Mediator class, indeed results in

an integration isomorphism linking the component frame EX-CF to the integrated

database EX-DBINT.

9. Querying the virtual integrated database through the mediator

Consider the following example query posed against the integrated database EX-

DBINT

“Give the combined list of all clients and CRM-employees”

Following [Bal02], a query in UML is specified in terms of a view definition, where a

view is conceived as a derived class. We define the following derived class, called

/Query-1:

Furthermore, we postulate a function convertCToQ1 in the CLNT class, and also a

function convertCRMToQ1 in the CRM class

 /Query-1

type : String
name: String
addr : String
zipcity: String
cntrcd: String

 CLNT

 (…)

convertCToQ1: Query-1

 35

context CLNT::convertCToQ1(): Query-1

post: self.convertCToQ1.type = `CL’ and

 self.convertCToQ1.name = self.clname and

 self.convertCToQ1.addr = self.addr and

 self.convertCToQ1.zipcity = self.zipcity and

 self.convertCToQ1.cntrcd = self.cntrcd

context CRM::convertCRMToQ1(): Query-1

post: self.convertCRMToQ1.type = `CRM’ and

 self.convertCRMToQ1.name = self.pname and

 self.convertCRMToQ1.addr = self.addr and

 self.convertCRMToQ1.zipcity = (self.zip).(“ ”).

 concat(self.city) and

 self.convertCRMToQ1.cntrcd = self.cntrcd

We then add appropriate constraints to EX-DBINT

context EX-DBINT inv:

Query-1.allInstances =

((CLNT.allInstances --> collect(c : CLNT | c.convertCToQ1))

.Union(CRM.allInstances --> collect(p : CRM |

p.convertCRMToQ1)))

--> asSet

 CRM

 (…)

convertCRMToQ1: Query-1

 36

By now expanding the definition of CLNT and CRM, we obtain the definition of

this query in terms of the original database components found in the component frame

EX-CF, but then in terms of the homogenizing function Hom within the context of

the mediator class (hence , the self referred to in the OCL specification below, is

the self in the context of the class Mediator)

self.DBINT.Query-1.allInstances =

(((self.CF.Hom).CLNT.allInstances -->

 collect(c : self.DBINT.CLNT | c.convertCToQ1))

 .Union((self.CF.Hom).CRM.allInstances -->

 collect(p : self.DBINT.CRM | p.convertCRMToQ1))) --> asSet

By expanding the definitions of (self.CF.Hom).CLNT.allInstances and

(self.CF.Hom).CRM.allInstances one level deeper, we obtain the definition

of this query in terms of the original components

(self.CF.Hom).CLNT.allInstances =

 (self.CF.CRM.Client.allInstances ->

 collect(c: self.CF.C1ient| c.convertToClnt)) -> asSet

and

(self.CF.Hom).CRM.allInstances =

 (self.CRM.Pers.allInstances ->

 collect(p: self.CF.Pers| p.convertToCRM) -> asSet

Hence, the query is now expressed completely in terms of the original database

components found in the component frame EX-CF!

 37

The next section concerns actual translation of UML/OCL-specifications of federated

database queries to the relational model.

10. Implementing queries on federated databases

In [BP98], a detailed account is given of how to map the basic elements of UML data

models to the relational database model (cf. chapters 13 and 14 in [BP98]). Elements

such as identity, domains, classes, associations, and inheritance are all systematically

mapped to the relational model. The mapping of OCL constraint specifications to the

relational model has been investigated in [DH99] and in [DHL01]. In [DH99] the

basics are offered of generating SQL-code from database constraints specified in

OCL. [DHL01] extends the results offered in [DH99] by investigating how more

complex constraints, such as business rules, can be handled explicitly in database

applications by means of OCL. Various strategies and experiments with a flexible

SQL code generator are discussed, and OCL constraint specifications are evaluated

by providing mappings to SQL views.

The results offered in [BP98, DH99] can be extended to databases including views

and queries by providing a mapping of derived classes in UML/OCL to the relational

database model. This has been demonstrated in [Bal02] by offering a mapping of

derived classes in UML/OCL to SQL-code. We remark here that none of these

translations from derived class in UML/OCL to SQL-views contain any real

surprises, supporting the claim that a general mapping from OCL view constructs to

SQL is a more or less straightforward matter.

A complete translation to SQL of our example integrated database EX-DBINT can

also be offered along the lines described in [Bal02]. Since this would lead to rather

elaborate SQL-code (without, however, containing any real surprises), we refrain

from actually doing so here, and we rather refer the interested reader to [Bal02] for

more details.

 38

11. Inter-database (component-frame) constraints

Additional information analysis might reveal the following two wishes regarding data

in the component frame EX-CF:

(1) Nobody is registered as working for both the CRM and Sales

department; i.e., these departments have no employees in common

(2) Client numbers in the Sales database should also be present in the

CRM database

This entails that certain constraints should be added, and in this case on the level of

the class EX-CF, since these constraints hold between two databases DB1 and DB2.

Such constraints are called inter-database constraints , or component-frame

constraints. We now offer a specification of the two inter-database constraints

mentioned above. We first offer some appropriate abbreviations (using a so-called

let-construct), and then offer the two constraint specifications.

context EX-CF inv:
let P-nrs = ((self.CRM.Pers.allInstances ->
 collect (p:Pers | p.prsno)) -> asSet)
let E-nrs = ((self.Sales.Emp.allInstances ->
 collect (e:Emp | e.eno)) -> asSet)
let C-nrs = ((self.CRM.Client.allInstances ->
 collect (c:Client | c.clno)) -> asSet)
let OC-nrs = ((self.Sales.Order.allInstances ->
 collect (o:Order | o.clno)) -> asSet)
in

(P-nrs.Intersect(E-nrs)) -> isEmpty and

 OC-nrs ->

forall(o:Integer| (C-nrs -> exists(c:Integer | o=c)))

 39

We are now, of course, also faced with the obligation to suitably introduce this inter-

database constraint in the integrated database DBINT. We have already assumed in

the construction of EX-DBINT that the second constraint (client numbers in the

Sales database should also be present in the CRM database) holds. Hence, we are left

with the sole obligation to specify then first constraint, which can be done in a

straightforward manner, as illustrated below

context EX-DBINT inv:
let X = (self.CRM.allInstances -> collect (c:CRM | c.pno))
 -> asSet
let Y = (self.SLS.allInstances -> collect (s:SLS | s.pno))
 -> asSet
in
(X.Intersect(Y)) -> isEmpty

As the examples offered above illustrate, OCL offers a powerful means to specify

inter-database constraints in a very general manner in the context of our approach.

In the next section, we discuss how to specify so-called federated updates; i.e.

updates in a federated database system. We shall show that knowledge of component-

frame constraints is essential in order to specify federated updates, and that

component-frame constraints determine just how loosely- or how tightly-coupled the

federation actually is.

12. Updates in a federated database system

Federated updates are defined as updates on a federated database system. These

updates can be placed in two large categories: an update involving just one of the

component databases in the component frame, or an update involving more than one

component database. An example in the first category of updates is the insertion of an

order-object in the Order-class inside the component Sales-database. An example

 40

of the second category of updates is the insertion of a virtual ORD-object inside the

integrated database DBINT: such a single insertion on the global level would translate

to a whole collection of (local) insertions on the component databases in the

component frame CF! In this paper, we will confine ourselves to the first, more

simple category of updates, setting out initial guidelines for specifying updates on a

federated database. Moreover, confining ourselves to the first category of updates in

which we only allow updates on component databases is well within the boundaries

of the way that federated databases are often used in practice. Federated systems are

in practice often updated solely through the component databases, with the virtual

integrated database then used as an on-line integrated global query facility.

Furthermore, we shall demonstrate that tackling this problem of strictly component-

confined updates is interesting enough in itself to deserve separate treatment.

Object insertion

Consider the case that we wish to insert an order-object in the Order-class inside the

component Sales-database of our component frame EX-CF. In order to do so, we

will assume that we -somehow- already have an Order-object (o:Order) at our

disposal, which we then wish to insert in the Order-class inside the component

Sales-database of our component frame EX-CF. By this we mean to say that we

shall abstract from any create- or new- like operator for such an Order-object,

since OCL has no syntax convention for such a create-operator. Hence, we assume

that we can invoke an insert operator of the form

insert(x:Order)

to actually perform the insertion of a concrete object o:Order in the database by

applying the insert operation by way of o.insert.

 41

The next step is to determine in which class to place such an insert-operator. One

might be tempted to place this operator in the DB2-class, since it concerns an update

of the Sales database: success of this update not only has to do with respecting local

constraints strictly pertaining to the actual Order-class, but possibly also has to do

with constraints pertaining to the Emp-class (e.g. referential integrity). This

consideration, however, has to be taken to an either further consequence, dealing with

constraints on the full global level of the component frame! Consider, for example,

the second component frame constraint mentioned in the previous section (on inter-

database constraints)

 (2) Client numbers in the Sales database should also be present in the CRM

database

This constraint entails that successful insertion of an Order-object not only has to

respect constraints in DB2, but also has to respect a constraint pertaining to the DB1-

database in the component frame. Hence, the insertion of an Order-object actually

concerns an update on the level of the component frame EX-CF.

We therefore can conclude that the insert operation is to be placed inside the class

EX-CF, as indicated below

 CRM Sales

 �ord-manager

 EX-CF

insert(x:Order)

 DB1 DB2

 Pers Client Emp Order

 42

We are now left with the task to specify the behavior of this insert-operation. We will

do so in terms of the following OCL specification

context EX-CF::insert(x:Order)

pre: not(self.Sales.Order -> includes(x))

 and

 (self.CRM.Client -> collect(c:Client| c.clno))->

 -> exists(c:Integer | c = x.clno)

post: self.Sales.Order = ((self.Sales.Order@pre) ->

 including(x))

The pre-condition of the insert operation consists of two parts; the first part tells us

that the Order-object has to be new with respect to the set of already occurring

instances in the Order-class, while the second part says (in accordance with the

component-frame constraint (2) mentioned above) that the client number of the

Order-object should also be present in some object occurrence of the set of instances

of the Client-class in the CRM database. The post-condition then consists of adding

the Order-object to the set of instances of the Order-class.

We note that when we invoke within the class EX-CF an application of the insert

operator o.insert on some concrete object o:Order, that we assume that this

Order-object already fully satisfies all constraints on the level of the database DB2!

This means that we assume that after successful creation of this object all relevant

constraint properties within the realm of the component database DB2 actually hold.

Only then will we subsequently consider this Order-object as available for other

operations (such as our insert operator).

 43

Object deletion

Our next example concerns the deletion of a Client-object from the Client-

class. We will employ the syntax convention delete(x:Client) to denote an

operation performing this update on the database federation. Again, using similar

arguments as in the case of our previous operation insert(x:Order), this delete

operation can only be properly placed at the level of the full component frame. This is

due to the fact that deleting a Client-object could violate the component-frame

constraint that an Order-object (in database DB2) has to refer to an existing

Client-object (in database DB1). The delete-operation can be specified in terms of

the following OCL specification

context EX-CF::delete(x:Client)

pre: not(((self.Sales.Order --> collect(o:Order | o.clno))-

->

 asSet) --> includes(x.clno))

post: self.CRM.Client = (self.CRM.Client@pre -->

excluding(x))

The pre-condition states that an initial check is to be performed ensuring that an

Order-object does not refer to this particular Client-object to be deleted. The post-

condition states that Client-object is actually removed from the set of instances

occurring in the Client-class.

Autonomy of component databases

At this stage we wish to say something about so-called component autonomy in

database federations. In federated database literature it is often claimed that the

 44

component databases should maintain as much as possible their respective autonomy.

In practice this makes sense, because a database federation, as we have seen, is

actually no more than a database view on a component frame; i.e. the component

database remain intact and the federated database is no more than a calculation

resulting in a virtual integrated database on the global level. Updating the federated

database in actual practice could therefore be considered as updating the component

databases. The federated database could be regarded in an even more limited setting

by viewing it solely as a means for an integrated query facility on the global level,

while updates can only be performed directly on the component databases and not via

the virtual integrated database on the global level. In this limited setting, one might

wish to regard the component databases inside the component frame as autonomous,

in the sense that there are no restrictions (with the possible exception of the local

database constraints) on allowing for completely autonomous updating of the

respective components. This conception of autonomy of the component databases is,

however, not without danger. The danger lies in the fact that by allowing a database

to become a member of the federation (i.e. the database becomes a component

database in a component frame) entails that it might also become subject to certain

component-frame constraints! This means –as was the case in our example insert

operation- that an autonomous update on a local component database might violate a

component-frame constraint, thus eventually rendering it as an incorrect update.

Hence, local updates –in a federated setting- are in principle always component-frame

updates! It is for this reason that we include an additional check (specified as part of

the pre-condition in terms of OCL) on the level of component-frame constraints

before we engage in actual updating of the database federation.

In the next section, we discuss in short an architectural organization of a federated

database system based on mediation. In this architectural overview, we will discuss

 45

how to view the logical and physical aspects of a federated database system, with

emphasis on how federated architectures relate to the traditional ANSI/SPARC

architecture of a monolithic database system.

13. Architecture of a federated database system based on mediation

Traditionally, a monolithic database system is based on what is called the three-

schema architecture (also known as the ANSI/SPARC architecture), which was

proposed to separate user applications and the physical database (cf. [EN00]). In this

architecture, schemas can be defined at three levels:

1. The internal level has an internal schema, which describes the physical

storage structure of the database

2. The conceptual level has a conceptual schema, which describes the complete

database for the whole community of users. This schema abstracts from

physical storage structures, and concentrates on entities, types, relationships,

constraints, and operations

3. The external or view level includes a number of external schemas or user

views. Each external schema describes that part of the conceptual schema of

the database that is relevant to a particular group of users, and hides other

parts that are not relevant to that particular group

 46

 . . .

 Stored database

The processes of transforming requests and results between the levels are called

mappings.

This architecture has the advantage to support the so-called data-independence

property, meaning that one can change the conceptual schema without having to

change the external schema (logical data independence), and also that one can change

 External
 View

 External
 View

 Conceptual schema

 Internal schema

 47

the internal schema without having to change the conceptual schema (physical data

independence).

In our setting, we deal with a collection of component databases inside some

component frame, with the aim to integrate these component databases, with a

federated database as result. As described in section 7, integration is based on the

principle of the tightly-coupled approach in combination with the principle of the

Closed World Assumption of Database Integration (CWA-INT). In this section we

will demonstrate how to achieve an architecture for a federated database, based on

these two principles.

We will assume that each of these component databases internally abide to the three-

schema architecture as described above. We are now faced with the problem of what

the architecture of the federated database looks like. Actually, the solution is quite

straightforward. The idea is that the integrated database DBINT contains the

conceptual schema of the federation, and that user groups of the federation define

user views (with their own separate external schemas) on top of DBINT. We can

depict this architecture as follows

 . . .

 External
Fed-view-1

 External
Fed-view-k

Conceptual schema
 DBINT Mediator

Component frame
 CF

 Component
 DB-1

 Component
 DB-n

 48

where n component databases (each abiding internally to their own 3-level

architecture) are integrated (via CF and the Mediator), resulting in the database

schema of DBINT (representing the conceptual schema of the database federation),

and where subsequently a number of k external views are defined on top of the

(conceptual) schema of DBINT. If we succeed in offering a mapping constituting an

integration isomorphism from the component frame CF to the integrated database

DBINT, then we shall also have succeeded in realizing a database federation abiding

to the Closed World Assumption CWA-INT; this being our eventual goal of

integration.

In this perspective, the architecture of a federated database is basically still much

along the lines of a traditional three-level architecture (user views on top of a

conceptual schema of a federation, and the eventual internal schema realized via the

mediator as a combination of internal schemas of component databases inside a

component frame).

We call this architecture a “three-level federation architecture”, which can be

concisely depicted as follows

 49

 -- (traditional

mapping)

 --- (mapping via

Mediator)

Analogous to the original three-level architecture, this three-level federation

architecture also supports the principles of both logical- and physical data

independence. The only difference is that the mapping between the conceptual level

and internal level is defined within the context of the database federation, which now

is defined via the mediator and the component frame.

14. Heuristics: from specific examples to a general approach

This section concerns a discussion on methodology and the architectural approach, in

which we attempt to move from specific examples to a general approach in

constructing a database federation from a collection of legacy databases.

 External
Fed-view-1

 External
Fed-view-k

 Conceptual
Federated schema
 (DBINT)

Internal schema
 (CF)

 50

As described in the previous section (architecture) and section 7 (mediation as a

means to integrate), we adopt the following strategy to integrate a collection of legacy

databases (collected in a component frame) into a virtual integrated database

a. create a tightly-coupled architecture of the federated system

b. abide to the principle of the Closed World Assumption of Database

Integration (CWA-INT)

Both aspects of this strategy are realized when we adopt the “three-level federation

architecture” (as described previously) and subsequently establish an integration

isomorphism, mapping from the component frame to the virtual integrated database.

In practice, this can often be a challenging demand, but without succeeding in both

aspects, the resulting federated database will fall short due to incorrect query results

and inadequate constraint integration.

We now offer some heuristics concerning the realization of the isomorphic mapping

from component frame to integrated database. The construction of this isomorphic

mapping from the component frame to the virtual integrated database cannot –in

principle- be given in algorithmic terms. By this we aim to say that given some set of

conflicts in moving from the components to the integrated federated schema, it is

usually an illusion to state that there exists an algorithm determining how those

conflicts are resolved. On the contrary, usually the homogenizing function (Hom, in

our example) reflects, in terms of a formal specification, the mostly ad hoc nature of

resolving the conflicts at hand, reflecting the need for a business semantics to reach

an eventual solution. For example, the resolution of the conflict to establish a

common notion for the internal telephone number telint (in DB1) and the

international telephone number tel (in DB2) as given in our example component

frame, the homogenizing function Hom introduces the ad hoc string

 51

’31-50-363-’ (in order to lift the internal phone number to an international phone

number). Another example is the conflict of the currencies dollar ($ in DB1) and

euro (� in DB2): deciding which currency is to be taken on the common integrated

level is basically ad hoc, and has to be offered by the business. This entails that –in

general- the process of constructing the formal specification of the homogenizing

function Hom (and hence also the isomorphism between the component frame and the

virtual integrated database) constantly has to be guided by knowledge of relevant

business semantics. Given an arbitrary collection of legacy databases, a general

algorithmic solution to arrive at a correctly defined database federation is therefore

not feasible. But there is a general heuristics by which this process can be guided.

Equipped with knowledge of relevant business semantics, we can proceed by

following a short step-by-step guideline (constituting a heuristics, not an algorithm)

for constructing a virtual integrated database from a collection of legacy databases, as

described below

1. Devise a tightly-coupled architecture for the federation process based on the

principles of the three-level federation architecture

2. Specify the details of the Component Frame CF (possibly with some schema

cleaning)

3. Analyze semantic heterogeneity: detect conflicts due to Renaming, Data

Conversion, Default Values, Missing Attributes, and Subclassing

4. Construct an integrated schema DBINT (applying the principles of syn, hom,

conv, def, diff, and sub)

5. Introduce a mediator class

6. Enforce CWA-INT, by constructing an integration isomorphism (via the

mediator class) between CF and DBINT based on a suitable homogenizing

function (to be defined in CF)

 52

7. The homogenizing function Hom is constructed by defining suitable

conversion functions, mapping component database schemas in CF to new

schemas in DBINT

8. Query DBINT by constructing suitable derived classes

9. Add possible inter-database constraints in CF, and map to DBINT

Of course, during the process, at some stage it will often be necessary to backtrack to

earlier stages to repair choices made in that earlier modeling step. In that sense, this

guideline is -in practice- not really step-by-step. Also, as mentioned earlier, this

guideline –though systematic- is not algorithmic in nature. Applying the principles set

out in this guideline will often demand the necessary creativity from the database

modeler, as well as sufficient knowledge of the specific business domain. Apart from

these limitations (which apply to most modeling methodologies), our guideline can

offer a powerful methodology in moving from a collection of legacy systems to a

correctly integrated database system.

Summary

We describe a logical architecture and a general semantic framework for precise

specification of so-called database federations. A database federation provides for

tight coupling of a collection of heterogeneous component databases into a global

integrated system. Our approach to database federation integrates, by means of a so-

called homogenizing function, in a uniform and systematic manner the underlying

data models of the component systems to a global data model, including constraint

specifications. Our focus has been on solving the problems caused by semantic

heterogeneity of component systems. The integration process is based on the

architectural concept of tight-coupling, and is combined with the so-called Closed

World Assumption to establish a notion of union -on the integrated level- of the data

 53

found in the component databases. We have also introduced a special category of

constraints, called inter-database (or: component-frame) constraints, which allow for

constraint specifications between the different database components within the

federation. The mediating system allows for global queries that can be decomposed in

a uniform and systematic manner into local queries on component databases. We also

offer a transaction model for a simple set of updates in database federations.

Our approach is based upon the UML/OCL data model. UML is the de facto standard

language for analysis and design in object-oriented frameworks, and is being

employed more and more for analysis and design of information systems based on

databases and their applications. The Object Constraint Language (OCL) - as part of

UML - can aid in the unambiguous modelling of database constraints. One of the

central notions in database modelling and in constraint specifications is the notion of

a database view; a database view closely corresponds to the notion of derived class in

UML. We employ OCL and the notion of derived class as a means to treat database

constraints and database views in a federated context. The paper demonstrates that

our particular mediating system integrates component schemas without loss of

constraint information. Furthermore, we offer a setting in which to describe

UML/OCL-representations of relational databases.

Acknowledgements:

I wish to thank Bert de Brock of the Faculty of Management and Organization, for

numerous discussions, corrections and valuable insights.

 54

References

[AB01] Akehurst, D.H., Bordbar, B.; On Querying UML data models with OCL;

 «UML» 2001 - The Unified Modeling Language, Modeling Languages,

 Concepts, and Tools, 4th International Conference, Toronto, Canada, 2001,

 Proceedings. Lecture Notes in Computer Science 2185, Springer, 2001

[Bal02] Balsters, H. ; Derived classes as a basis for views in UML/OCL

 data models; SOM Research Series 02A47, University of Groningen, 2002

[BB01] Balsters, H., de Brock, E.O.; Towards a general semantic framework for design

 of federated database systems ; SOM Research Series 01A26, University of

 Groningen, 2002

[BBZ93] Balsters, H., de By, R.A., Zicari, R.; Sets and constraints in an object-oriented

 data model; Proceedings Seventh European Conference on Object-Oriented

 Programming (ECOOP), Kaiserslautern, Germany, July, 1993.

[BP98] Blaha, M., Premerlani, W.; Object-oriented modeling and design for database

 applications; Prentice Hall, 1998

[BV92] Balsters, H., de Vreeze, C.C.; A semantics of object-oriented sets; Third

 International Workshop on Database Programming Languages (DBPL; eds.

 Abiteboul, Kannelakis), Morgan Kaufmann Publishers, California USA, 1992.

[CGW96] S.S. Chawathe, H. Garcia-Molina, J. Widom; A toolkit for constraint maintenance

 in heterogeneous information systems. 12th International Conference on Data

 Engineering (ICDE96); IEEE Press, 1996

[Co70] E.F. Codd; A relational model of data for large shared data bank;

 Communications of the ACM, vol. 13(6), 1970

 [DaH84] U. Dayal, H.Y. Hwang; View definition and generalization for database

 integration in a multidatabase system; IEEE Transactions on Software

 Engineering 10, 1984

[D00] Date, C.J.; An introduction to database systems; Addison Wesley, 2000

[DH99] Demuth, B., Hussmann, H.; Using UML/OCL constraints for relational

 55

 database design; «UML»'99: The Unified Modeling Language - Beyond the

 Standard, Second International Conference, Fort Collins, CO, USA, 1999,

 Proceedings. Lecture Notes in Computer Science 1723, Springer, 1999

[DHL01] Demuth, B., Hussmann, H., Loecher, S.; OCL as a spevcification language for

 business rules in database applications; «UML» 2001 - The Unified Modeling

 Language, Modeling Languages, Concepts, and Tools, 4th International

 Conference, Toronto, Canada, 2001, Proceedings. Lecture Notes in Computer

 Science 2185, Springer, 2001

[DKM93] P. Drew, R. King, D. McLeod, M. Rusinkievicz, A. Silberschatz; Report of the

 workshop on semantic heterogeneity and interoperation in multidatabase systems;

 SIGMOD RECORD 22, 1993

[EN00] R. Elmasri and S.B. Navathe; Fundamentals of database systems;

 Addison Wesley, 2000

[EP00] Eriksson, H., Penker, M.; Business modeling with UML; OMG 2000

[GR97] Gogolla, M., Richters, M.; On constraints and queries in UML; Proceedings

 UML’97 Workshop “The Unified Modeling Language – Techniques and

 Applications”, 1997

[GSC96] M. Garcia-Solica, F. Saltor, M.Castellanos; Semantic heterogeneity in

 multidatabase systems; Object-oriented multidatabase systems; Bukhres,

 Elmagarid (eds.), Prentice Hall, 1996

[GUW02] Garcia-Molina, H., Ullman, J.D., Widom, J.; Database systems; Prentice Hall,

 2002

[Hull97] Hull, R.; Managing Semantic Heterogeneity in Databases; ACM PODS’97,

 ACM Press 1997.

[Ken91] W. Kent; Solving domain mismatch and schema mismatch problems with an

 object-oriented database programming language; 7tth International Conference on

 Very Large Databases (VLDB97), 1997

[KoC95] J.L. Ko, A.L.P. Chen; A mapping strategy for querying multiple object databases

 with a global object schema; IEEE RIDE -DOM,1995

[MC99] Mandel, L., Cengarle, M.V.; On the expressive power of OCL; FM’99 –

 56

 Formal Methods, World Congress on Formal Methods in the Development of

 Computing Science; Lecture Notes in Computer Science 1708, Springer, 1999

[MeY95] W. Meng, C. Yu; Query processing in multidatabase systems; Modern database

 systems; Kim (ed.), ACM Press, 1995

[OMG99] Object Management Group; Unified Modelling Language Specification,

 version 1.3; June 1999; http://omg.org

[Rei 84] Reiter, R.; Towards a logical reconstruction of relational database theory.

 In: Brodie, M.L., Mylopoulos, J., Schmidt, J.W.; On conceptual modeling;

 Springer Verlag, 1984

[ShL90] A.P. Sheth, J.A. Larson; Federated database systems for managing distributed,

 heterogeneous and autonomous databases; ACM Computing surveys 22, 1990

[SSR94] E. Sciori, M. Siegel, A. Rosenthal; Using semantic values to facilitate

 interoperability among heterogeneous information systems; ACM Transactions

 on database systems 19, 1994

[SQL 92] ISO 9075-1992(E); Database language SQL; ISO/IEC JTC1/SC21, 1992

[Ver97] M. Vermeer; Semantic interoperability for legacy databases. Ph.D.-thesis,

 University of Twente, 1997.

[Wie95] G. Wiederhold; Value-added mediation in large-scale information systems; IFIP

 Data Semantics (DS-6), 1995

[WK99] Warmer, J.B., Kleppe, A.G.; The object constraint language; Addison Wesley,

 1999

