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3 Method II: The energy-momentum map

In this chapter we apply the energy–momentum map reduction method to
the same class of systems as in Chap. 2, namely two degree-of-freedom
systems with optional symmetry, near equilibrium and close to resonance.
We calculate the tangent space and nondegeneracy conditions for the 1:2,
1:3 and 1:4 resonances starting from a Birkhoff normalized Hamiltonian.
The case of the spring-pendulum close to 1:2 resonance is treated in more
detail. We arrive at a polynomial model which is different from the one
found in Chap. 2, and which has an additional saddle–node bifurcation.

3.1 Introduction

Several methods for analyzing Hamiltonian systems around resonance are avail-
able. One is the planar reduction method [BCKV95, BCKV93] of the previous
chapter, but many more are available, see e.g. [Arn93a, GMSD95, SV85, Sch74]
and references there. This chapter uses a method introduced in [Dui84, Sch74].
Just as the planar reduction method of Chap. 2, it uses the Birkhoff procedure
followed by symmetric reduction. The singularity theory used subsequently is
different, however, and uses left-right transformations to normalize a certain
map from phase space to R2, the energy–momentum map. The remainder of the
approach is again similar to that of Chap. 2: From a normal form of the map we
compute bifurcation curves, and by explicitly computing the singularity theory
transformations these are pulled back to original coordinates and parameters.

The algorithms we use to compute the reparametrizations (and the bifur-
cation curves) are closely related to those used in the previous chapter. Both
Kas and Schlessinger’s algorithm and the division algorithm have their counter-
parts in the present setting. With the planar reduction method of the previous
chapter, the tangent space is an ideal, leading to a division algorithm that could
be borrowed from Gröbner basis theory with little modification. The energy–
momentum map method leads to a more complicated tangent space. These com-
plications surface again in the division algorithm. In fact the complications were
such that modifying the previous approach in an ad-hoc manner turned out to
be infeasible. Instead we used a structured approach that brought, amongst oth-
ers, Gröbner bases and standard bases for both tangent spaces into a common
framework. Within this framework it was possible to derive the required division
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46 3.1. Introduction

algorithm systematically. These results are described in Chaps. 6 and 7, and are
applied in this chapter.

We now give an overview of the energy–momentum map method. For a
general outline of this (and other) reduction methods, see the introduction to
Chap. 2; here we shall be brief. After the Birkhoff procedure and truncation
(or, modulo a flat perturbation), the system acquires an S1 symmetry, with
associated conserved quantity H2. We then construct the energy–momentum
map E, mapping phase space to R2. Its first component is the Hamiltonian,
and the second component is the conserved quantity H2. This map encodes
information about the dynamics of Birkhoff-normalized system: Its fibers are
invariant manifolds of the system, with singular points corresponding to peri-
odic orbits. Both the fibers and singular points of E are smoothly deformed
under the group of near-identity left-right transformations (B,A), with group
operation (B′, A′) ∗ (B,A) = (B′ ◦B,A ◦A′), and action

E �→ B ◦E ◦A.
Since after the Birkhoff procedure the system has a (formal) circle symmetry,
the map E has this symmetry too. It is necessary to do the singularity theory
inside the space of symmetric mappings, since the orbit of E under left-right
transformations has infinite codimension in the general space. Hence, we must
also restrict to right-transformations A that commute with the symmetry. In-
stead of doing this explicitly, we reduce the symmetry by using circle-symmetric
coordinates. For a 2 degree-of-freedom system, we thus can reduce from a circle-
invariant map on R4, to a map on R3 that respects a certain algebraic relation
between the variables.

Just as in the planar reduction method, dynamical conjugacy is lost with ar-
bitrary (circle-equivariant but non-symplectic) right-transformations. However,
if the system has 2 degrees of freedom, it lives on a 4-dimensional phase space,
and nondegenerate fibers of E are 2-dimensional circle-invariant manifolds. After
symmetry reduction we get 1-dimensional dynamically invariant manifolds, i.e.,
orbits of the reduced system. A universal deformation of E (i.e., a transversal
section to its orbit under left-right transformations) can be related to a such
a system that is equivalent, i.e., conjugate modulo a time-reparametrization, to
the reduced Birkhoff-normalized system, again, just as in the planar reduction
method.

In contrast to that method, it is not easy to de-reduce to the full system
after normalization, because the fibers H2 = constant are not preserved by the
normalizing transformations (even though, after [Dui84], the transformations we
use preserve E’s second component). The present method therefore seems less
suited for studying the flat perturbations; see [BCKV95, BCKV93] for more
remarks. Our current goal remains to pull back bifurcation curves. Although
the larger class of allowed transformations necessitates an extra calculation to
obtain the H2-level at the bifurcation point, this turns out to be straightforward
in this case.

A summary of this chapter was published as [Lun99b].
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3.2 Description of the method

This section describes the general energy–momentum map method in detail. It
follows [Dui84] to great extent. To avoid cluttering the formulas, the system’s
dependence on parameters and coefficients is suppressed in this section. From
Sect. 3.4 onwards this dependence will be explicitly taken into account again.

3.2.1 Birkhoff normalization

The first step is Birkhoff normalization. Assume the Hamiltonian H has van-
ishing linear part. Then, after truncation (or modulo a flat perturbation) the
Birkhoff-normalized Hamiltonian Hn is S1-symmetric, and assumes the form

Hn = H0
2 + f0(ρ1, ρ2, ψ, χ),(3.1)

where we expressed the normalized Hamiltonian in the invariants

ρ1 = z1z̄1, ρ2 = z2z̄2, ψ =
1
2
(zp1 z̄

|q|
2 + z̄p1z

|q|
2 ), χ =

1
2i

(zp1 z̄
|q|
2 − z̄p1z

|q|
2 ),

and H0
2 = iρ1 + iωρ2, with ω = p

q , is an integral of motion. Note that Hn,
and thus also f0, depend on several parameters. In the case of the 1 : 2 and
1 : −2 resonances, a second symplectic normalization removes the dependence
on χ. This is a consequence of the unique normal form for Hamiltonians for these
resonances; see [SvdM92].

Proposition 3.1. Suppose p : q = 1 : ±2 and the coefficients of ψ and χ in Hn

do not both vanish. Then there exists a symplectic coordinate transformation
that brings the Hamiltonian (3.1) in the form

(3.2) HN = H0
2 + f1(ρ1, ρ2, ψ).

For a proof, see Sect. 4.3.2. In [Dui84] the dependence on χ is removed by a non-
symplectic transformation. The present method leads to a shorter calculation,
since we can calculate with Hamiltonians instead of vector fields. A preliminary
calculation suggested that this approach cannot be used for higher resonances.

Remark 3.2. (Comparison with Proposition 2.2) Note that we arrived at
(3.2) without assuming a time-reversal symmetry on H. This may be contrasted
to the result of Proposition 2.2, where this assumption was needed. However,
the current result only holds for the 1 : 2 resonance, whereas Proposition 2.2 is
more general.

3.2.2 Circle-equivariant vector fields

In this section we calculate generators for the module of vector fields equivariant
under the H0

2 -circle action, under which the system is invariant after Birkhoff
normalization. We pick the main line of the argument up again in Sect. 3.2.3.
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From now on, we work in the ring of formal power series in the fundamental
invariants, R = R[[ρ1, ρ2, ψ, χ]], instead of R[[z1, z̄1, z2, z̄2]]. There is one relation
between the variables, namely

(3.3) ψ2 + χ2 − ρp1ρ
q
2 = 0.

For the 1 : ±2 resonance cases, we can restrict to R[[ρ1, ρ2, ψ]] right away, and
use the relation ψ2 − ρp1ρ

q
2 = 0. We first deal with the general case.

Arbitrary resonances A circle-equivariant vector field in the variables z1, z̄1,
z2, z̄2 corresponds to a vector field in ρ1, ρ2, ψ, χ-space that leaves the relation
(3.3) invariant. Such a vector field can always be written as

α = f1
∂

∂ρ1
+ f2

∂

∂ρ2
+ f3

∂

∂ψ
+ f4

∂

∂χ
.

The derivative of ψ2 + χ2 − ρp1ρ
q
2 in the direction of α is

−pf1ρp−1
1 ρq2 − qf2ρ

p
1ρ
q−1
2 + 2f3ψ + 2f4χ.

Requiring this to be an element of
〈
ψ2 + χ2 − ρp1ρ

q
2

〉
R

leads to conditions on the
fi and the exponents p, q, in turn leading to the following generators vi of the
R-module of equivariant vector fields:

f1 f2 f3 f4
v1 2ρ1 pψ pχ
v2 2ρ2 qψ qχ
v3 χ −ψ
v4 2ψ pρp−1

1 ρq2
v5 2χ pρp−1

1 ρq2
v6 2ψ qρp1ρ

q−1
2

v7 2χ qρp1ρ
q−1
2

These generators are independent over R, in the sense that there is no relation
vi =

∑
j �=i fjvj with fj ∈ R, for any i. Below we shall need the derivative of H2

along an arbitrary circle-invariant vector field α. So let α be

α = v1v1 + · · ·+ v7v7,

where vi ∈ R, then the derivative of H2 with respect to α is

(3.4) αH2 = α(qρ1+pρ2) = 2qv1ρ1+2pv2ρ2+2(qv4+pv6)ψ+2(qv5+pv7)χ.

Note that we wrote, for convenience, H2 = qρ1 + pρ2, which differs from the
quadratic part of HN in (3.2) by a factor i/q; since we are interested in the
location of critical points, this difference is immaterial.
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The resonances 1 : ±2 An arbitrary vector field now takes the form α =
f1

∂
∂ρ1

+ f2
∂
∂ρ2

+ f3
∂
∂ψ , and the condition that the derivative of the relation

ψ2−ρp1ρq2 along α, which is −pf1ρp−1
1 ρq2−qf2ρp1ρq−1

2 +2f3ψ, is an element of the
ideal generated by the relation, yields the following generators of the module of
equivariant vector fields:

f1 f2 f3
v1 2ρ1 pψ
v2 2ρ2 qψ

v4 2ψ pρp−1
1 ρq2

v6 2ψ qρp1ρ
q−1
2

The numbering of the generators is chosen to stress the relation with the previous
case. An arbitrary circle-equivariant vector field, and the derivative of H2 along
it, now take the form

α = v1v1 + v2v2 + v4v4 + v6v6,

αH2 = 2qv1ρ1 + 2pv2ρ2 + 2(qv4 + pv6)ψ.(3.5)

3.2.3 The energy–momentum map

We now introduce the main object of interest, the energy–momentum map:

E : R4 → R2 : (ρ1, ρ2, ψ, χ) �→ (Hn, H0
2 ).

Here Hn is the Hamiltonian in Birkhoff normal form, depending on the param-
eters, and H0

2 is the quadratic part of Hn when the parameters vanish (see also
Chap. 4, remark 4.5). Note that the relation ψ2 + χ2 − ρp1ρ

q
2 = 0 is supposed

to hold, so that it suffices to define E on the variety of points satisfying the
relation, but we do not make this explicit in the notation.

The fibers of E are invariant under the flow of Hn. They are smoothly de-
formed by left-right transformations (A,B), where A : R4 → R4 are circle-
equivariant near-identity diffeomorphisms on R4, and B : R2 → R2 are arbitrary
planar near-identity diffeomorphisms, with action

(A,B) : E �→ B ◦E ◦A.
In the context of unfoldings, the left-right transformation (A,B) depends on
parameters, and is the identity mapping at the origin in parameter space. The
set of invertible left-right transformations forms a group, with the obvious com-
position as group operation. To find a universal deformation of E, we look at
the tangent space, at E, to the orbit of E under the action of the group. This
tangent space is

TE = {(αH + β1(H,H2),αH2 + β2(H,H2))},
where α runs over the circle-equivariant vector fields, and βi are arbitrary func-
tions of 2 variables, see Sect. 5.4.
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The set TE is a subset of R ⊕ R, the space of maps from Rn to R2 (recall
that R = R[[ρ1, ρ2, ψ, χ]]). It is possible to reduce TE to a subset of R in the
following way. Consider the map T going from the tangent space of the group of
left-right transformations at the identity element, to R⊕R, defined by

T : (α, β1, β2) �→ (αH + β1(H,H2),αH2 + β2(H,H2)).

We have ImT = TE. From (3.4) it follows that the image of the second compo-
nent of T , denoted by T2, maps surjectively into R. Therefore, since T is a linear
map, the codimension of TE in R⊕R is the codimension in R of the image of T1,
restricted to the kernel of T2. In other words, to compute the codimension of TE,
we may restrict to left-right transformations that do not alter the second com-
ponent of E, and look at how those transformations change its first component.
If the codimension of T1(kerT2) ⊆ R is finite, and t1, . . . , td are complementing
elements, then the elements (t1, 0), . . . , (td, 0) span a complement of TE. By the
results of Chap. 5, this immediately gives a universal deformation of E, say F ,
namely F : R4 ⊕ Rd → R2 : (x, u) �→ E + u1 · (t1, 0) + · · · + ud · (td, 0) We shall
denote the space T1(kerT2) by T rE, the reduced tangent space to E. This reduced
tangent space takes the following form:

(3.6) T rE := {αH + β1(H,H2)|αH2 + β2(H,H2) = 0},
where α runs over the circle invariant vector fields, and βi over the arbitrary
functions in two variables. From (3.4) it follows that αH2 vanishes at the origin,
hence β2 can be written as β2(x, y) = xγ1(x, y) + yγ2(x, y). Also from (3.4) it
follows that for every function f vanishing at the origin, there exists a vector
fields α with αH2 = f . In particular, let α1 and α2 be defined by

α1H2 = H,

α2H2 = H2.

Then, writing β2(H,H2) = Hγ1(H,H2) + H2γ2(H,H2), the reduced tangent
space can be written as

T rE = {αH + β1(H,H2)|
(
α + γ1(H,H2)α1 + γ2(H,H2)α2

)
H2 = 0},

and with a change of variables α′ = α + γ1α1 + γ2α2 it becomes

T rE = {α′H + f1γ1(H,H2) + f2γ2(H,H2) + β1(H,H2)|α′H2 = 0},
where we wrote

fi = −αiH.

Writing this differently, we arrive at the following:

Proposition 3.3. The codimension of TE is equal to the codimension of T rE :=
T1(kerT2) ⊆ R. This set can be written in the form

(3.7) T rE = J + {1, f1, f2}R[[H,H2]],

where fi are as defined above, and J is the ideal

J = {αH|αH2 = 0}.
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Generators of J From (3.4) it follows that the set of equivariant vector fields
α that leave H2 fixed is generated, as an R-module, by

v3, pρ2v1 − qρ1v2, pv4 − qv6, pv5 − qv7,

ψv1 − ρ1v4, χv1 − ρ1v5, ψv2 − ρ2v6, χv2 − ρ2v7, χv4 − ψv6.

The last five generators are actually multiples of v3, taking the relation into
account. The first four, acting on H, yield the following generators of J :

h0 := ψ2 + χ2 − ρp1ρ
q
2,

h1 := χ
∂H

∂ψ
− ψ

∂H

∂χ
,(3.8)

h2 := 2ρ1ρ2

(
p
∂H

∂ρ1
− q

∂H

∂ρ2

)
+
(
p2ρ2 − q2ρ1

)(
χ
∂H

∂χ
+ ψ

∂H

∂ψ

)
,

h3 := 2ψ
(
p
∂H

∂ρ1
− q

∂H

∂ρ2

)
+
(
p2ρp−1

1 ρq2 − q2ρp1ρ
q−1
2

) ∂H
∂ψ

,

h4 := 2χ
(
p
∂H

∂ρ1
− q

∂H

∂ρ2

)
+
(
p2ρp−1

1 ρq2 − q2ρp1ρ
q−1
2

) ∂H
∂χ

.

Note that we added the relation h0, so that we can work in the free ring R =
R[[ρ1, ρ2, ψ, χ]].

Generators of J in the 1 : ±2-resonance case Sect. 3.2.3 is valid for the
1 : ±2 resonance case, up to the computation of generators of J . We give the
details for that case here. Referring to (3.5), we find the following generators of
the R-module of vector fields that leave H2 invariant:

pρ2V1 − qρ1V2, pV4 − qV6, ψV1 − ρ1V4

(where p = 1, q = ±2). The last generator is zero modulo the relation ψ2−ρp1ρq2 =
0. The other two generators, acting on H, together with the relation, yield the
following generators of J :

h0 := ψ2 − ρp1ρ
q
2,(3.9)

h1 := 2ρ1ρ2

(
p
∂H

∂ρ1
− q

∂H

∂ρ2

)
+ (p2ρ2 − q2ρ1)ψ

∂H

∂ψ
,

h2 := 2ψ
(
p
∂H

∂ρ1
− q

∂H

∂ρ2

)
+ (p2ρp−1

1 ρq2 − q2ρp1ρ
q−1
2 )

∂H

∂ψ
.

3.2.4 Removing the χ-dependence

At this point we introduce a nondegeneracy condition, namely that ∂H
∂φ and

∂H
∂ψ do not both vanish at the origin. (We would have needed this condition for
other reasons later on anyway.) Under this condition it is possible to reduce the
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dimension of the phase space by 1. This simplifies the computations. Again, see
[Dui84].
Note that the module generated by V4, pρ2V2 − qρ1V3, pV5 − qV7 and pV6 − qV8
is invariant under rotations in the ψ, χ-plane. This is obvious from the defini-
tion of the module, since H2 is invariant under such rotations – indeed, H2 is
independent of ψ and χ.

By a rotation in the ψ, χ plane, we can arrange that ∂H
∂χ (0) = 0. Now assume

that in this situation, ∂H
∂ψ (0) = d �= 0. By a further coordinate transformation,

H can be made not to depend on χ at all, in the following way. Let

H = h0 +
∑

1<k<n

f̃k(ψ) +
∑
k≥n

fk(ψ, χ),

where n ≥ 2, h0 ∈ R[[ρ1, ρ2, ψ]], f̃k is homogeneous of degree k in ψ, and fk is
homogeneous of total degree k in ψ and χ, both with coefficients in R[[ρ1, ρ2]].
Write

fn = f̃n + χgn,

with f̃n not depending on χ, and let α be the vector field

α = −gn
d

(
χ
∂

∂ψ
− ψ

∂

∂χ

)
.

It has time-1 flow

α1(ψ, χ) =
(
ψ − gn

d
χ+O(|ψ, χ|2n), χ+

gn
d
ψ +O(|ψ, χ|2n)

)
.

Since ∂h0
∂ψ (0) = d and ∂h0

∂χ (0) = 0, we have h0 ◦ α1 = h0 − χgn + O(|ψ, χ|n+1),
and therefore

H ◦ α1 = h0 +
∑

1<k<n

f̃k(ψ) + f̃n(ψ) +
∑

k≥n+1

fk(ψ, χ).

Continuing in this way, all dependence in H of χ is removed, without changing
the form of (3.8).

From now on we write R for the ring R[[ρ1, ρ2, ψ]], and we add the relation
ψ2 − ρp1ρ

q
2 to the generators of the ideal J so that J is generated by

h0 = ψ2 − ρp1ρ
q
2,

h1 = 2ρ1ρ2

(
p
∂H

∂ρ1
− q

∂H

∂ρ2

)
+
(
p2ρ2 − q2ρ1

)
ψ
∂H

∂ψ
,

h2 = 2ψ
(
p
∂H

∂ρ1
− q

∂H

∂ρ2

)
+
(
p2ρp−1

1 ρq2 − q2ρp1ρ
q−1
2

) ∂H
∂ψ

.

Note that these expressions are exactly equal to (3.9) of the 1 : ±2-resonance
case, where the removal of χ was done differently (namely, by a symplectic
transformation).
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3.3 Application to several resonances

In this section we compute standard bases for the left-right tangent space of
Hamiltonians around several resonances. As a result, we get independent confir-
mation of the calculations in [Dui84], and explicit non-degeneracy conditions.

It is assumed that the Hamiltonian is in Birkhoff normal form, so that it can
be written as a function of the fundamental circle invariants, which for the p : q
resonance are

ρ1 = z1z̄1, ρ2 = z2z̄2, ψ =
1
2
(zp1 z̄

|q|
2 + z̄p1z

|q|
2 ), χ =

1
2i

(zp1 z̄
|q|
2 − z̄p1z

|q|
2 ).

We further assume that the dependence on χ is removed. Using the relation
ψ2 − ρp1ρ

q
2 = 0 the variable ψ can be made to appear to first order at most. The

coefficients associated to the lowest-order terms are given names as follows:

(3.10)
H = d1ρ1 + d2ρ2 + d3ψ + d4ρ

2
1 + d5ρ1ρ2 + d6ψρ1 + d7ρ

2
2 + d8ψρ2 + d9ψ

2 +
d10ρ

3
1 + d11ρ

2
1ρ2 + d12ψρ

2
1 + d13ρ1ρ

2
2 + d14ψρ1ρ2 + d15ψ

2ρ1 + d16ρ
3
2 +

d17ψρ
2
2 + d18ψ

2ρ2 + d19ψ
3 + d20ρ

4
1 + d21ρ

3
1ρ2 + d22ψρ

3
1 + d23ρ

2
1ρ

2
2 +

d24ψρ
2
1ρ2 + d25ρ1v23 + d26ψρ1ρ

2
2 + d27ρ

4
2 + d28ψρ

3
2.

The reduced tangent space is of the form

T rE = 〈h0, . . . , hk〉 + {f0, . . . , fl}R[[g1, . . . , gm]].

Once the basis ({hi}, {fi}, {fi}) is extended to a standard basis, the codimen-
sion and deformation directions can be deduced from the leading monomials of
the generators: The deformation directions are the monomials not in the basis,
and the codimension is their number. The coefficients of the generator’s lead-
ing monomials should be nonzero, as otherwise the codimension increases. This
leads to the nondegeneracy conditions.

It often happens that a certain leading monomial can be reached through
several reduction paths. The associated coefficient may be different for each path.
Therefore we tried all different paths, to make sure no spurious nondegeneracy
conditions were included.

Remark 3.4. (Rigorous codimensions) This is a computational study, and
the codimensions obtained below are not rigorous, since we truncate at a certain
degree. They are a rigorous lower bound, however. All this is rather academic,
since the codimensions below are established, by different means, in [Dui84]. A
related remark is that the set of nondegeneracy conditions obtained may not be
complete. Since a full (non-truncated) standard basis will contain infinitely many
elements, as is easily seen, there may in principle be infinitely many (polynomial)
nondegeneracy conditions. Indeed, in some cases we find more of such conditions
than appear in [Dui84].
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Fig. 3.1 Standard basis of LR-tangent space for the 1 : 2 resonance.

3.3.1 The 1:2 resonance

We use the expressions (3.9) for the generators of J , truncated at order 9 in the
zi variables. We use a grading of the monomials with deg(ρ1) = deg(ρ2) = 2,
deg(ψ) = 3, and the ordering satisfies ψ2 < ρ3

1 < ρ3
2. The computation of the

standard basis then yields the following leading monomials:

LM({hi}) = {ψρ1, ρ1ρ2, ψ
2},

LM({gi}) = {ρ1, ψ},
LM({fi}) = {1, ρ1, ρ

2
2, ρ

3
2, ρ

4
2, ψρ2, ψρ

2
2}.

This standard basis is depicted graphically in Fig. 3.1. Monomials are represented
by lattice points in N3. Since one of the ideal generators has leading monomial
ψ2, the interesting things happen in the ψ0 and ψ1 slices. The monomials in
the ideal are those in the grey rectangles. Fat dots denote fi-generators, and the
medium-sized dots correspond to monomials obtained by multiplying an fi and
an element of the algebra. The diagonal line, finally, shows where we truncated.
From the figure, it is seen that the codimension is 1, and that the deformation
term that makes the Energy–Momentum map versal, is ρ2. This is called the
detuning term.

The requirement that, for each basis element, the coefficients of the leading
monomials do not vanish, leads to the following nondegeneracy conditions:

d3 �= 0,(3.11)
8d2

3 − 2d4 + d5 + 4d7 �= 0.

A normal form for the Hamiltonian behind this tangent space is a simple func-
tion (a polynomial, for example) with few parameters, but which nevertheless
captures all bifurcations. A sufficient condition for this is to include all terms
whose parameters appear in the nondegeneracy conditions; perturbations in the
other terms will not change the type of the singularity. This condition is gen-
erally not necessary. However, for our purposes it is useful to be able to choose
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Fig. 3.2 Standard basis of LR-tangent space for the 1 : 3 resonance.

parameters such that the normalizing transformation is the identity in leading
order. It turns out that e.g.

(3.12) H =
1
2
ρ1 +
(

1
4

+ µ1

)
ρ2 + d3ψ + d5ρ1ρ2

is a suitable normal form. Here d3 and d5 are (fixed) parameters, and µ1 is the
detuning parameter.

3.3.2 The 1:3 resonance

For this resonance, the reduced tangent space was calculated up to order 8 in the
zi variables. The variable ψ has degree 4, so that it appears at most to second
degree. We use a monomial ordering satisfying ψ < ρ2

2 < ρ2
1. With this ordering

the leading monomials of the standard basis are

LM({hi}) = {ψρ1, ψ
2, ψρ2, ρ

3
1ρ2},

LM({gi}) = {ρ1, ψ},
LM({fi}) = {1, ρ1, ρ

2
1ρ2, ρ

2
1ρ

2
2, ρ1ρ

3
2, ρ1ρ

2
2, ρ

4
2, ρ

3
2}.

A graphical representation of this standard basis is given in figure 3.2. Now the
codimension is 3, with corresponding deformation directions ρ2, ρ1ρ2 and ρ2

2.
The nondegeneracy conditions for this resonance are somewhat complicated, so
we introduce the following abbreviations:

a = 1
2 (d10 + d11) c = d4 − d5 − 3d7 e = 1

2 (d6 + d8)
b = 1

2 (d10 − d11) d = 2d4 − 3d5 f = −2d6 − 3d8

In terms of these quantities, the nondegeneracy conditions are the following:
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Fig. 3.3 Standard basis of LR-tangent space for the 1 : 4 resonance.

d3 �= 0,
d4 + 3d5 − 27d7 �= 0,
c �= 0,
d �= 0,
36(9c+ 2d)d4

3 + 216d(12c2 + 3cd+ 2d2)d2
3 + 16d2(9c3 − 6c2d− 3cd2 + 2d3) �= 0,

216bd3
3 − 54ded2

3 + 4(6bc2 + acd− 19bcd+ 8bd2 − 3cdd13)d3+
8(d− c)d(6ce− de+ cf) �= 0,

5832bd5
3 − 1458ded4

3 + 27(168bc2 + 10acd− 228bcd+ 64bd2 − 21cdd13)d3
3

−108d(12c2e− 25cde+ 4d2e− c2f − 2cdf)d2
3

+4(216bc4 + 36ac3d− 612bc3d− 38ac2d2 + 580bc2d2 + 10acd3 − 228bcd3+
+32bd4 − 108c3dd13 + 99c2d2d13 − 21cd3d13)d3

−16(3c− 2d)(2c− d)(3c− d)d(6ce− de+ cf) �= 0.

A normal form for this singularity is for example

H =
1
2
ρ1+
(

1
6

+ µ1

)
ρ2+d3ψ+d4ρ

2
1+(d5+µ2)ρ1ρ2+(d7+µ3)ρ2

2+d10ρ
3
1+d13ρ1ρ

2
2.

3.3.3 The 1:4 resonance

For this resonance we again chose the obvious grading, deg(ρ1) = deg(ρ2) =
2 and deg(ψ) = 5, and the monomial order defined by ψ2 < ρ5

2 < ρ5
2. The

truncation degree was set at 11, resulting in the following standard basis:

LM({hi}) = {ρ2
1ρ2, ψρ1, ψ

2},
LM({gi}) = {ρ1, ρ1ρ2},
LM({fi}) = {1, ρ1, ρ1ρ

2
2, ρ1ρ

3
2, ρ1ρ

4
2, ρ

5
2ρ

4
2, ψρ

2
2, ψρ2, ρ

3
2, ψ}.

The codimension is 2, with deformation terms ρ2 and ρ2
2. The nondegeneracy

conditions are the following:
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d3 �= 0, .
d4 − 2d5 �= 0,
3d4 − 8d5 − 16d7 �= 0,
d4 − 16d7 �= 0,
d5 − 8d7 �= 0,
d4 − 4d5 + 16d7 �= 0,
5d2

4 + 32d2
5 − 128d5d7 + 256d2

7 + 32d4d7 − 24d4d5 �= 0.

A normal form is for example

H =
1
2
ρ1 +
(

1
8

+ µ1

)
ρ2 + d3ψ + d4ρ

2
1 + d5ρ1ρ2 + (d7 + µ2)ρ2

2.

3.4 Spring-pendulum in 1:2 resonance

In this section we shall analyze the spring-pendulum system in the 1 : 2 reso-
nance, by exhibiting a polynomial model of the Energy–Momentum map, and
computing the reparametrizations that connect the model to the original system.
The bifurcation analysis of the model leads to a bifurcation diagram, together
with a ‘catalog’ of possible dynamics as depicted in phase diagrams. Using the
explicit reparametrization the bifurcation curves are pulled back to the space of
the spring pendulum’s original parameters, giving full information as to which
subset of the full set of possible dynamics actually occurs, and where bifurcations
take place in terms of the original parameters.

This section’s analogue for the planar reduction case is section 2.3, but this
section is organized slightly differently. We start with a bifurcation analysis of the
polynomial normal form, and we give pictures of the bifurcation and phase space
diagrams. This is followed by the computation of the explicit reparametrizations,
of which we only give the results. These are then used to pull back the bifurcation
curves to the original parameter space.

3.4.1 Bifurcation analysis of the 1:2-resonant normal form

In Sect. 2.3 we encountered a third-order polynomial normal form, with a rather
simple bifurcation structure. The normal form for this case is less simple, involv-
ing degree-four terms, which complicates the computations. The normal form
for the 1 : 2-resonant system is:

(3.13) Eµ = (Hµ, H2) = (H2 + µρ2 + aψ + bρ1ρ2, H2) ,

see Sect. 3.3.1. Here we wrote H2 for the quadratic part 1
2ρ1+ 1

4ρ2 as usual; a and
b are fixed coefficients, and µ is the deformation parameter; see (3.10), (3.12). In
Hamiltonian polar coordinates zi = rie

2πiφ1 , the fundamental invariants become
ρi = r2i and ψ = r1r

2
2 cos(φ1 − 2φ2). These variables are used in the sequel.
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We restrict to the flow-invariant level sets 2H2 = λ, for small λ, which cor-
responds to small-energy deviations from the elliptic equilibrium. The function
Hµ restricted to such level sets has critical points precisely where Eµ has criti-
cal points, namely where grad(H2) is parallel to grad(Hµ). A short calculation
shows that a necessary condition1 for this is sin(φ1 − 2φ2) = 0. It is now con-
venient to introduce ε := cos(φ1 − 2φ2), so that ε = ±1. Now grad(H2) and
grad(Hµ) are vectors in R2 � (r1, r2), and such vectors are parallel if their outer
product vanishes. The resulting curve of critical points is

(3.14) r2
(−2µr1 − 2aεr21 − 2br31 +

( 1
2aε+ br1

)
r22
)

= 0.

This implies that r2 = 0 is always a critical point; it corresponds to the ‘short
periodic orbit’ that always exists.

Equation (3.14), with the solution r2 = 0 divided out, can be solved for
r22. Obviously, critical points (dis)appear when the solution r22 of (3.14) passes
through 0. This leads to a bifurcation curve in the µ, λ-plane implicitly given by

(3.15) (µ+ 2bλ)2 − 2a2λ = 0. (pitchfork bifurcation)

The parabolic equation (3.15) has solutions for nonnegative λ only. Since the
critical points emanate from r2 = 0 which itself is a critical point throughout
the bifurcation, this is a pitchfork bifurcation. The bifurcation occurs at the
point

(3.16) (r1, r2, ψ, χ) =
(∣∣∣∣1aµ+

b

a3µ
2 +

2b2

a5 µ
3
∣∣∣∣ , 0, 0, 0)+O(µ4).

Other bifurcations occur when the curve of critical points (3.14) in the r1, r2-
plane become tangent to level curves of H2. When this happens, a small change
in the level λ will (generically) create or destroy two critical points. One of these
will be a saddle, the other a center or a node, so that this is a saddle–node
bifurcation. The tangency condition is that grad(H2) and the gradient of the
left-hand-side of (3.14) be parallel, and using the outer product once more we
get the bifurcation equation

(3.17) r2
(
2µ+ 6aεr1 + 10br21 − br22

)
= 0.

Bifurcations occur at simultaneous solutions, in r1, r2, µ, λ, of 2H2 = λ, (3.14)
and (3.17). This solution curve can be found by computing a Gröbner basis with
respect to an elimination term order (see Sect. 6.2.1) of the ideal generated by
these three polynomials. Since only three generators are involved, we can get the
same result (with, essentially, the same computation) using resultants.2 Com-
puting the resultant of the pair 2H2−λ, (3.14) and of (3.14), (3.17) with respect
1 We exclude the degenerate case r1 = r2 = 0.
2 The resultant of two polynomials, with respect to the variable x, is their GCD with

respect to the divisibility condition xa|xb ⇔ a ≤ b, i.e., it vanishes iff the polynomials
have a common root in x.
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to r2, eliminates this variable, and reduces the system of 3 polynomial equations
to a system involving only 2. The resultant with respect to r1 subsequently re-
duces this system to the following cubic curve in the µ, λ-plane, along which the
saddle–node bifurcations occur:
(3.18)

27a4λ+ 9a2b2λ2 + 32b4λ3 − 126a2bλµ
−96b3λ2µ+ 9a2µ2 + 96b2λµ2 − 32bµ3 = 0, (saddle–node bifurcation)

where we used that ε2 = 1, and we first divided out two factors r2 corresponding
to the pitchfork bifurcation. Note that the cubic curve is independent of ε now.
Also note that the curve has quadratic contact with the line λ = 0 in µ = 0. By
expanding around 0 it turns out that the curve has no solutions λ > 0 around
(λ, µ) = (0, 0), for all values of the coefficients a, b (provided b �= 0). It has a
critical point at (µ, λ) = ( 5a2

16b ,
−a2

16b2 ).
Not all points on the cubic correspond to saddle–node bifurcations. The rea-

son is that due to the constraint 2H2 = λ = ρ1 + 1
2ρ2 = r21 + 1

2r
2
2, the solutions

for the ri may be imaginary. The ‘turning points’ on the cubic, where real so-
lutions turn into imaginary ones, is where either r21 or r22 pass through 0. From
(3.14) it follows that r1 �= 0 at critical points (provided λ �= 0). So we turn our
attention to the equation r2 = 0. The curve of pitchfork bifurcations (3.15) is
just the curve where critical points satisfy r2 = 0, hence the turning points are
intersections of the cubic (3.18) with the parabola (3.15).

To compute these intersection points we compute the resultant of the two
curves. With respect to λ this is

4096b10µ2(−a2 + 4bµ)2(153a4 − 352a2bµ+ 256b2µ2).

From this we conclude that (3.18) and (3.15) have quadratic contact at (µ, λ) =
(0, 0) and (µ, λ) = (a

2

4b ,
a2

4b2 ). The last factor is quadratic in µ, with discriminant
−32768a4b2. Provided that neither a nor b vanishes, this does not contribute
additional (real) zeros.

Since the part of the cubic connecting the turning points (µ, λ) = (0, 0) and
(a

2

4b ,
a2

4b2 ) passes through the λ < 0 region, namely through the critical point
( 5a2

16b ,
−a2

16b2 ), we conclude that saddle–node bifurcations occur only for

λ >
a2

4b2
. (condition for saddle–node bifurcation)

In order to get a useful expression for µ in terms of λ, we expand the cubic (3.18)
around the turning point. Writing Λ = λ− a2

4b2 we get

µ =
a2

4b
+

b3

3a2Λ
2 − 10b5

27a4Λ
3 +

47b7

81a6Λ
4 +O(Λ5). (saddle–node bifurcation)

We also computed the bifurcation locus, around the turning point. Writing M :=
µ − a2

4b , then saddle–node bifurcations occur for M/b ≥ 0 at points which have
the following expansion in

√
M:
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Fig. 3.4 Bifurcation curves of the normal form (3.13), for a = 1
4 and b = 1

3 . The
parabola is a curve of pitchfork bifurcations; along the singular cubic curve saddle–node
bifurcations occur. Dashed segments correspond to non-physical states of the system
(λ out of bounds, leading to imaginary values of state variables).

(3.19)

(r1, r22, ψ, χ) =

(
sign(b)

(
|a|
2b +
√

M
3b + 4M

9|a| + 40
√
bM3

27
√

3a2 + 512bM2

243|a3|
)
,

4|a|
√

M
3b3 + 32M

9b − 80
27|a|

√
M3

b + 832M2

243a2 ,

− sign(a)
(

2a2
√

M
3b5 + 28|a|M

9b2 + 8(6
√

3−5)
27

√
M3

b3 + 80(16−3
√

3)M2

243|a|b

)
,

0

)
+O(|M|5/2).

3.4.2 Pictures

The surface on which Hµ lives is the level set 2H2 = λ, which is a 3-torus
in R4. Using the S1-symmetry to divide out one dimension, we can make 2-
dimensional pictures of level sets of Hµ on this surface. There are two natural
ways of choosing coordinates, which are both singular but have their singularities
in different locations on the 3-torus. We give pictures for both sets of coordinates.

The bifurcation diagram consists of the parabola (3.15) of pitchfork bifurca-
tions, and the cubic (3.18) of saddle–node bifurcations. For a = 1/4 and b = 1/3
these curves are shown in Fig. 3.4. Note that around the origin, the bifurcation
diagram is similar to Fig. 2.5.

In Fig. 3.5 the level curves of Hµ are plotted, for fixed 2H2 = λ with λ > a2

4b2 ,
so that a saddle–node bifurcation is expected. The two sets of pictures correspond
to the Poincaré sections φ2 = 0 and φ1 = 0, corresponding to the pendulum and
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the spring having zero velocity, respectively. The fundamental invariants ρ1, ρ2, ψ
in Cartesian coordinates on either Poincaré section are

ρ1 : ρ2 : ψ :

φ2 = 0 : x2 + y2 4λ− 2(x2 + y2) 2x(2λ− x2 − y2)
φ1 = 0 : 2λ− 1

2 (x2 + y2) x2 + y2 (x2 − y2)
√

2λ− (x2 + y2)/2

Note that the short periodic orbit ρ2 = 0 corresponds to the origin in the section
φ1 = 0 (the right-hand column of pictures), whereas it corresponds to the outer
circle x2 + y2 = 2λ in the section φ2 = 0. Similarly, the origin in the left-hand
column, i.e., ρ2 = 0, corresponds to the outer circle x2 + y2 = 4λ of the other.

Besides the saddle–node and pitchfork bifurcations found in section 3.4.1,
a fourth ‘bifurcation’ is observed. It is caused by the coincidence of the level
through ρ1 = 0 and the critical value of the saddle emanating from the saddle–
node bifurcation. Since the subset ρ1 = 0 (spring not oscillating) is not an
invariant subset, this coincidence appears to be a bifurcation only because of
the choice of coordinates in the right-hand column, where ρ1 = 0 corresponds
to the outer circle. This should be contrasted to the situation in the left-hand
column, where the outer circle corresponds to ρ2 = 0 (pendulum not oscillating),
which is an invariant subset.

3.4.3 Inducing the system from the model

The Hamiltonian equation for the spring-pendulum system is derived in section
2.3.1. For reference we quote equation (2.7) up to order 4:

H0(x, y) :=

x2
1 + y2

1

2
+ a1

x2
2 + y2

2

2
− 4a2x2y1y2 − 8a3x

4
2 + 8a4x

2
2y

2
1 + 8a5x

2
2y

2
2 +O(|xi, yi|5).

After Birkhoff normalization around 1 : 2 resonance, the Hamiltonian can be
written in terms of the fundamental invariants ρ1, ρ2, ψ as in equation (3.10),
analogous to Hn in Sect. 2.3.2. The leading part, up to fourth order in phase
variables, of equation (3.10), is

(3.20) Hn = d1ρ1 + d2ρ2 + d3ψ + d4ρ
2
1 + d5ρ1ρ2 + d7ρ

2
2 +O(|xi, yi|5),

with coefficients depending on those of the original Hamiltonian as

d1 =
1
2
, d2 =

a1

2
, d3 = −2a2, d4 = 0,

d5 =
4(−2a2

2 + a4 + 2a1a4)
1 + 2a1

, d7 =
−2(a2

2 + (1 + 2a1)(3a3 − a5))
1 + 2a1

.

(3.21)

Generally, the Birkhoff normalized system depends on χ. However, since our
system has a time-reversibility symmetry under which χ is sent to −χ, the
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←− saddle–node −→

←− level crossing −→

←− pitchfork −→

←− pitchfork −→

Fig. 3.5 Bifurcations of the Energy–Momentum map normal form around the 1:2
resonance (large λ). The left-hand column corresponds to the section φ2 = 0 with a
return time ≈ 4π; the section φ1 = 0 (right-hand column) has a return time ≈ 2π.

normalized Hamiltonian only depends on even powers of χ. By using the relation
ψ2+χ2 = ρ1ρ

2
2, all of these terms can be removed. Hence, a second normalization

to remove terms involving χ is not necessary.
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In the new variables, the conserved quantity is λ := ρ1 + 1
2ρ2. Pulling this

back to old coordinates yields

λ =
(
x2

1 + y2
1
)
+

1
2
(
x2

2 + y2
2
)
+

8a2

1 + 2a1

(−x1x
2
2 + 2x2y1y2 + x1y

2
2
)
+O(|xi, yi|4).

(For λ up to fourth order terms, see (2.8).)

←− pitchfork −→

←− level crossing −→

←− pitchfork −→

Fig. 3.6 Bifurcations of the Energy–Momentum map normal form around the 1:2
resonance (small λ).

Birkhoff nondegeneracy conditions Depending on the order to which
Birkhoff normalization is performed, a number of nondegeneracy conditions are
encountered. From the expressions for d5 and d7 the condition a1 �= −1/2 follows



64 3.4. Spring-pendulum in 1:2 resonance

immediately. If normalization is continued up to eighth order, we should exclude
the following values for a1:

a1 �= −3
2
, a1 �= −1, a1 �= −1

2
, a1 �= −1

4
, a1 �= 0, a1 �= 1

4
, a1 �= 1, a1 �= 3

2
.

(We remark that as the normalization order is increased, more and more rational
values of a1 must be excluded. In the limit of infinite order, all rational num-
bers3, except the value 1

2 around which we normalize, should be excluded. This
is related to the non-convergence of the normalizing formal power series. Effec-
tively, this means that the higher the order to which normalization is performed,
the smaller is the allowed deviation of a1 from the resonant value.)

Energy–momentum map nondegeneracy conditions In Sect. 3.3.1 the
tangent space to an arbitrary Hamiltonian (3.20) is computed, assuming that
it is Birkhoff normalized around the 1 : 2 resonance. This tangent space has
minimal codimension (namely 1) if two nondegeneracy conditions are met. We
may pull back these to the space of original parameters, simply by substituting
the expressions for the coefficients di. This yields the following nondegeneracy
conditions:

0 �= a2,

0 �= 4(1 + 4a1)a2
2 − (1 + 2a1)(6a3 − a4 − 2a5).

Normalizing transformation From now on we suppose that the nondegen-
eracy conditions hold. We may then compute a standard basis for the left-right
tangent space of Hn. This serves as input for Kas and Schlessinger’s algorithm,
with which we can compute transformations that connect Hn to the versal un-
folding Hu obtained in Sect. 3.3.1, namely

(3.22) Hu
µ =

1
2
ρ1 +
(

1
4

+ µ

)
ρ2 + aψ + bρ1ρ2.

This model has the drawback that generically a Hamiltonian Hn cannot be
induced from it by transformations that are the identity to first order. Theoret-
ically this is no problem. An practical nuisance however is that for such models,
Kas and Schlessinger’s algorithm does not yield a finite part of the formal power
series in a finite number of steps.

It turns out that adding a second deformation direction, for instance cρ2
1,

solves this problem. For reasons of convenience, and while it does not complicate
the analysis, we chose to add two extra deformation directions, and use the model

(3.23) HU
µ =

1
2
ρ1 +
(

1
4

+ µ

)
ρ2 + aψ + bρ2

1 + cρ1ρ2 + dρ2
2.

3 modulo a scaling by a factor 2
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By following the calculation of Sect. 3.4.1 we then arrive at this equation for the
pitchfork bifurcation:

(µ+ (b− c)λ)2 − a2λ = 0,

which occurs at

(r1, r2, ψ, χ) =
(∣∣∣∣1aµ+

b− c

a3 µ2 +
2(b− c)2

a5 µ3
∣∣∣∣ , 0, 0, 0)+O(µ4).

Now we discuss the computation of the inducing transformation. Since the
unfolding HU has fewer terms than the target Hamiltonian Hn, it is more effi-
cient to compute the inverse transformation, going fromHU toHn. In particular,
the expressions for the standard basis of HU ’s tangent space are much cleaner
than Hn’s.

Let Rd � (a1, a2, . . .) be the space of parameters of the Birkhoff-normalized
system Hn. We computed functions

h(ai) : Rp → R,

A(ρ1, ρ2, ψ; ai) : R3 ⊕ Rd → R3,

B(y1, y2; ai) : R2 ⊕ Rd → R2

such that these induce the actual system Hn from the versal unfolding HU
µ :

Hn = B ◦ (HU
h(µ), H2) ◦A.

These transformations depend on the parameters a, b, c, d of the versal model
(3.22). Several choices of these parameters yield transformations that are the
identity to first order, which is related to there being one deformation direction
too much for this purpose. The natural choice is of course

a = d3 = −2a2, b = d4 = 0, c = d5, d = d7,

see also (3.21). With this choice, the resulting transformations are

h = −1
4
(1 − 2a1)

A1(ρ1, ρ2, ψ) = ρ1 +
(

16a2
2

(1 + 2a1)2
− 8(4a3 + a4 + 4a4)

3(1 + 2a1)
− 4a6

3a2

)
ρ1ρ2 +( −192a3

2

(1 + 2a1)2
+

32a2(8a3 + 5a4 + 8a5)
3(1 + 2a1)

+
32a6

3

)
ψρ1 + h.o.t.

A2(ρ1, ρ2, ψ) = ρ2 +
( −32a2

2

(1 + 2a1)2
+

16(4a3 + a4 + 4a4)
3(1 + 2a1)

+
8a6

3a2

)
ρ1ρ2 +( −192a3

2

(1 + 2a1)2
+

32a2(8a3 + 5a4 + 8a5)
3(1 + 2a1)

+
32a6

3

)
ψρ1 + h.o.t.

A3(ρ1, ρ2, ψ) = ψ +
( −288a3

2

(1 + 2a1)2
+

16a2(8a3 + 5a4 + 8a5)
(1 + 2a1)

+ 16a6

)
ψ2 +( −8a2

2

(1 + 2a1)2
+

4(4a3 + a4 + 4a4)
3(1 + 2a1)

+
2a6

3a2

)
(4ψρ1 − ψρ2) + h.o.t.
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B1(y1, y2) = y1 +O(|y1, y2|3 + |ai|3)
B2(y1, y2) = y2 +

( −24a2
2

(1 + 2a1)2
+

4(8a3 + 5a4 + 8a5)
3(1 + 2a1)

+
4a6

3a2

)
(4y1y2 − y2

2) +

+O(|y1, y2|3 + |ai|3)

Here h.o.t. denote terms of order n or higher in the phase variables, and order 3
or higher in the parameters ai.

It remains to find the bifurcation curves, in terms of the detuning parameter
1−2a1 and the integral λ. Because the transformations above are not symplectic,
the λ-level sets of HU transformed by this coordinate transformation are not
dynamically invariant, and do not correspond to λ-level sets of Hn. Hence, to
find the bifurcation curves, we need to find the location of bifurcations in HU ,
transform it back to original variables via A−1, and compute λ at those phase
points. Since A is the identity to first order, its inverse is easy to find. The
pitchfork bifurcation in HU occurs on the line ρ2 = ψ = 0, and since A does not
involve ρ2

1 (in fact, it does not include ρ3
1 terms either) the inverse also does not

contain these terms. Hence, on line ρ2 = ψ = 0 the map A−1 is the identity to
at least third order.

Calculating λ at the point (3.4.3) and expanding in 1 − 2a1 results in the
following expression for the pitchfork bifurcation:
(3.24)

λ =
(1 − 2a1)2

64a2
2

+
(a2

2 − a4)(1 − 2a1)3

128a4
2

+
(a4

2 − 10a2
2a4 + 5a2

4)(1 − 2a1)4

1024a6
2

+ h.o.t.,

where the h.o.t. stand for O((1− 2a1)5) terms. It agrees with (2.14) found using
the planar reduction method.

For the saddle–node bifurcation it is not possible to find a similar equation.
The reason is that this bifurcation occurs at a finite distance from the origin,
and only for O(1) values of the detuning parameter 1− 2a1, see (3.19), and the
transformation A and its inverse are only valid near the origin.

Table 3.1 Comparison of bifurcation values, found numerically and analytically. Er-
ror bounds in last digit(s) of measured quantities are given

H a1 a2 a3 a4 a5 λmeasured λpredicted

.004 .47513± 1 .1 0 −.3 .2 .008025± 5 −−

.004 .48405± 5 .1 0 −.3 .2 .008000± 2 .00286± 2

.004 .5562 ± 2 .1 0 −.3 .2 .007999± 1 .060± 1

.004 .46454± 1 .1 0 −.01 .35 .008000± 4 −−

.004 .46550± 1 .1 0 −.01 .35 .008000± 3 .007988± 5

.004 .53705± 1 .1 0 −.01 .35 .007999± 1 .007991± 4

.0004 .48882± 1 .1 0 −.01 .05 .00080000± 1 .0007991± 14

.0004 .51144± 1 .1 0 −.01 .05 .00080000± 1 .0007997± 13
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Numerical Poincaré sections To validate (3.24) we numerically computed an
iso-energy Poincaré map, using the section y2 = 0 and increasing; i.e., transversal
to the long periodic orbit. We fixed the energy, and coefficients a2, a3, . . ., while
varying a1 to find the bifurcation value. The value of λ was then measured along
trajectories close to the bifurcation point.

Error bounds in a1 correspond to values that bracket the actual bifurcation
value. These bracketing values were determined by computing phase diagrams
and inspecting them visually. The error in λpredicted was obtained by propagating
the errors in a1. Error bounds in λmeasured correspond to the observed variation
in the computed value for λ along a trajectory. This error bound may be too
low, as it obviously depends on the trajectory. An alternative estimation method,
estimating the remainder in the series (2.8) for λ, seems difficult.

Another perturbing effect, which influences the error bound in λmeasured, is
the effect of chaotic dynamics, that is, the effect of the higher-order perturbation
terms that are thrown away in order to arrive at an integrable model. For the
energies considered, this effect is extremely small. However, this is a statement
of belief rather than a hard fact. It is support by the fact that the nonintegrable
effects are due to a flat perturbation, and that the chaotic regime begins to have
a ‘noticeable’ effect only for energies a factor 10 to 100 higher than we consider.

The agreement of the predicted bifurcation value of λ and its actual value
is excellent for small values of a4 and small values of the energy. For the case
a4 = −0.3, the three consecutive terms in (3.24) are of similar magnitude, which
suggests that more terms are needed for convergence, in agreement with the
large deviation of λpredicted from the observed value of λ.

Fig. 3.7 Bifurcations in the Poincaré section around the 1:2 resonance, forH = 0.004,
a2 = 0.1, a3 = 0, a4 = −0.3, a5 = 0.2, other coefficients 0, and a1 increasing from left
to right: 0.47,0.47513, 0.48, 0.48405, 0.49, 0.5562, 0.57.



68 3.4. Spring-pendulum in 1:2 resonance

a1 = 0.46

a1 = 0.47

a1 = 0.48

a1 = 0.51

a1 = 0.60

Fig. 3.8 Some large-energy Poincaré sections: H = 0.1. Chaotic regimes and subhar-
monic bifurcations are clearly visible, with the backbone of Fig. 3.7 still present.
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