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ON THE BOUNDEDNESS OF HAMILTONIAN OPERATORS

TOMAS YA. AZIZOV, AAD DIJKSMA, AND IRINA V. GRIDNEVA

(Communicated by Joseph A. Ball)

Abstract. We show that a non-negative Hamiltonian operator whose domain

contains a maximal uniformly positive subspace is bounded.

Introduction

Let {G, ( · , · )} be a Hilbert space and consider the orthogonal direct sum

H = G ⊕ G,(1)

which is a Hilbert space whose inner product we also denote by ( · , · ). A bounded
operator A on H is called a Hamiltonian operator if with respect to the decompo-
sition (1) it has the 2× 2 block matrix representation

A =
[
A B
C −A∗

]
,

where B and C are self-adjoint operators on G. If additionally B and C are both
non-negative, then A is called a non-negative Hamiltonian operator. In the space
H we consider the block matrices

J =
[

0 I
I 0

]
, J =

[
0 iI
−iI 0

]
and introduce two Krein spaces (for the definition see (i) below) KJ := {H, [ · , · ]J}
and KJ := {H, [ · , · ]J} whose indefinite inner products are defined by

[ · , · ]J = (J · , · ), [ · , · ]J = (J · , · ),
respectively. Evidently, the bounded operator A on the Hilbert space H = G ⊕ G
is Hamiltonian if and only if iA is self-adjoint in the Krein space KJ, and A is a
non-negative Hamiltonian operator if it is a Hamiltonian operator such that iA is
dissipative (for the definition see (ii) below) in the Krein space KJ . The extension
of these definitions to the case of an unbounded operator A is now evident: A
closed densely defined operator A on H = G ⊕G will be called Hamiltonian if iA is
self-adjoint in the Krein space KJ and A will be called a non-negative Hamiltonian
operator if it is Hamiltonian and iA is dissipative in the Krein space KJ . The aim
of this note is to give conditions which imply the boundedness of Hamiltonian op-
erators. The main results in this paper, Theorems 5 and 6, show that non-negative
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Hamiltonian operators are bounded if they satisfy the condition (L) in one of the
two Krein spaces KJ and KJ.

To formulate property (L) and to prove the theorems, we use results from the
theory of operators on Krein spaces; see, for example, [AI], [DR]. In the following
paragraphs we briefly recall (i) the definition of a Krein space and some of its
properties, (ii) the definition of a (maximal, uniformly) dissipative operator on a
Krein space, and (iii) the condition (L). This will also make clear the notation we
use in the sequel.

(i) A Krein space {K, [ · , · ]} is a linear space K over the complex numbers C
equipped with an indefinite inner product [ · , · ] such that K admits a decomposition

K = K+ ⊕K−,(2)

in which the summands {K+, [ · , · ]} and {K−,−[ · , · ]} equipped with the indicated
inner products are Hilbert spaces and [K+,K−] = {0}. Note that the inner product
is non-degenerate in the sense that if for some x ∈ K it holds that [x,K] = {0},
then x = 0. The decomposition (2) is called a fundamental decomposition. It gives
rise to a Hilbert space inner product, namely

(x, y) := [x+, y+]− [x−, y−], x = x+ + x−, y = y+ + y−, x±, y± ∈ K±.
The corresponding Hilbert space norm ‖ · ‖ depends on the fundamental decompo-
sition, but any two such decompositions give rise to equivalent norms. Topological
notions such as convergence, closure, and boundedness are always considered with
respect to any one of these norms. A closed linear manifold in a Krein space K
will be called a subspace. By L(K) we denote the set of bounded operators on K.
The identity operator will be designated by I; it should be clear from the context
on which space it acts. The adjoint A∗ of a bounded or densely defined operator
A on a Krein space K and the orthogonal complement M⊥ of a subspace M of
K are defined with respect to the indefinite inner product on K in the same way
as if defined on a Hilbert space. A subspace M is called regular in {K, [ · , · ]} if
{M, [ · , · ]} is a Krein space.

If {K, [·, ·]} is a Krein space and (2) holds, there is a bounded operator J on K,
called the fundamental symmetry corresponding to (2), such that [ · , · ] = (J · , · )
and it is easy to see that J is both self-adjoint and unitary with respect to ( · , · )
as well as with respect to [ · , · ]. Moreover, the operators

P+ =
1
2

(I + J), P− =
1
2

(I − J)

are self-adjoint projections in K onto K+ and K−, respectively. It is natural to con-
struct a Krein space from a Hilbert space {H, (·, ·)} and a bounded self-adjoint op-
erator W , say, on H by introducing the indefinite scalar product [ · , · ]W = (W · , · ).
The space {H, [ · , · ]W} is called a W -space. This construction is too general to
generate a Krein space: A W -space is a Krein space if and only if W is bound-
edly invertible. If this condition holds, then a fundamental decomposition of the
space is provided by the spectral subspaces of W related to the intervals (0,∞) and
(−∞, 0). From the definition of a Krein space it follows that each Krein space is a
J-space with respect to some fundamental decomposition.

A subspaceM of a Krein space {K, [ · , · ]} is called non-negative if [x, x] ≥ 0 for
all x ∈ M, positive if [x, x] > 0 for all x ∈ M \ {0}, and uniformly positive if with
respect to the norm ‖ · ‖ associated with one of the fundamental decompositions and
for some ε > 0 it holds that [x, x] ≥ ε‖x‖ for all x ∈ M. Non-positive, negative, and
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uniformly negative subspaces are defined similarly. A subspaceM is called (semi-)
definite if M is (non-)positive or (non-)negative and it is called neutral if [x, x] = 0
for all x ∈ M. M is called maximal with respect to any of these properties if it
has this property and is not properly contained in a subspace having this property
also.

(ii) Let {K, [ · , · ]} be a Krein space. A closed densely defined operator A is called
dissipative if Im [Ax, x] ≥ 0 for all x ∈ domA. If with respect to the norm ‖ · ‖
associated with one of the fundamental decompositions and for some ε > 0 it holds
that Im [Ax, x] ≥ ε‖x‖2 for all x ∈ domA, then A is called a uniformly dissipative
operator. It is a maximal (uniformly) dissipative operator if it is (uniformly) dissi-
pative and admits no non-trivial (uniformly) dissipative extensions. In the sequel
we shall use a lemma from Shkalikov [S] which describes some spectral properties of
maximal uniformly dissipative operators on a Krein space which have the property
(L); see Lemma 1 in the next section.

(iii) Following [AI, Definition 3.1.5], we say that a densely defined operator A on
a Krein space K satisfies the condition (L) and write A ∈ (L), if domA contains a
maximal uniformly positive subspace. Evidently, this maximal uniformly positive
subspace contained in domA is the K+ in some fundamental decomposition of
K. The condition (L) was introduced by Langer in [L1], [L2], in theorems on the
existence of invariant subspaces for self-adjoint operators in a Krein space. This
condition is very natural in certain problems from mechanics. Indeed, we recall
(see, for example, [KL]) that many of these can be reduced to problems for an
operator pencil of the form

L(λ) = λ2 + λB + C(3)

in which B is a maximal dissipative operator and C is a bounded positive self-
adjoint operator on a Hilbert space F . If we introduce K = F ⊕ F and consider it
as a J-space with

J =
[
I 0
0 −I

]
,

then the operator

C =
[

0 C1/2

−C1/2 −B

]
is maximal dissipative, satisfies the condition (L) and describes the spectral prop-
erties of the pencil (3). If B is unbounded, then so is C. The condition (L) is also
used in, for example, the paper [LT] on boundary eigenvalue problems with bound-
ary conditions which depend rationally on the eigenvalue. Finally, we mention that
the condition (L) appears in a boundedness criterion for densely defined expansive
operators on a Krein space of Shmul′yan [Shm]; it is a generalization of an earlier
result of Brodskii [B]. For a recent treatment of Shmul′yan’s theorem, see [DR].

Section 1 contains four preliminary results including Shkalikov’s Lemma men-
tioned in (ii) above. In Sections 2 and 3 we prove the main results of this paper,
Theorems 5 and 6. In Section 4 we give two examples of Hamiltonian operators
which are unbounded. In Example 7 the operator is non-negative but does not have
property (L). In Example 8 the operator has property (L) but is not non-negative.

In the sequel we denote by σ(A) and ρ(A) the spectrum and the resolvent set
of the operator A, respectively, by R the set of real numbers, and by C± the open
upper/lower half plane in the set of complex numbers C. We use ∗ to denote the
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adjoint of an operator relative to the inner products defined on the spaces on which
the operator acts and the complex conjugate of a complex number. If σ ⊂ C, then
σ∗ = {λ∗|λ ∈ σ}.

In [AKK] the problem is considered under what conditions a continuous function
A : [0, 1] → L(H) whose values are bounded non-negative Hamiltonian operators
admits a spectral diagonalization. This means there exist an orthogonal decompo-
sition H = Hr ⊕H` and a continuous, bounded and boundedly invertible operator
function V : [0, 1] → L(H) such that for each t ∈ [0, 1], Hr and H` are invari-
ant under B(t) := V (t)−1A(t)V (t), σ(B(t)|Hr ) belongs to the open right half and
σ(B(t)|H`) belongs to the open left half of the complex plane. We plan to ex-
tend this theory to functions whose values are closed densely defined non-negative
Hamiltonian operators.

1. Preliminaries

Here we give four lemmas, which will play a role in our proofs of the main results,
Theorems 5 and 6 below. The first one is due to Shkalikov [S].

Lemma 1. Let A be a maximal uniformly dissipative operator in a Krein space K
and assume A ∈ (L). Then

(i) ρ(A) contains a strip parallel to R with R in its interior, in particular R ⊂
ρ(A),

(ii) σ+(A) := σ(A) ∩ C+ is a bounded set, and
(iii) the subspace L+ := P+(A)K is maximal uniformly positive in K, L+ ⊂

domA, and AL+ ⊂ L+, where P+(A) is the Riesz projection for A related to
σ+(A).

Recall that the Riesz projection is defined by the integral

P+(A) =
1

2πi

∫
Γ+(σ+(A))

(λ−A)−1dλ,

where Γ+(σ+(A)) is a positively oriented contour in C around σ+(A) with σ(A) \
σ+(A) in its exterior.

Lemma 2. Let K1 and K2 be two Krein spaces with dimK1 = dimK2. For j = 1, 2,
let Lj and Mj be neutral subspaces in Kj such that

Kj = Lj +Mj .(4)

Then there is a unitary operator V : K1 → K2 such that V L1 = L2 and VM1 =
M2.

Proof. Denote the indefinite inner product on Kj by [ · , · ]j, j = 1, 2. Note that (4)
is a direct sum, that is, Lj ∩Mj = {0}. Indeed, if x ∈ Lj ∩Mj , then, because Lj
and Mj are neutral,

[x,Kj ]j = [x,Lj ]j + [x,Mj ]j = {0}
and Kj being non-degenerate, this implies x = 0. For j = 1, 2, we consider in Kj
any Hilbert space inner product ( · , · )j such that Lj is orthogonal to Mj . By a
theorem of S. Banach this inner product then is equivalent to the inner products
generated by the fundamental decompositions on Kj . Therefore there is a self-
adjoint operator Wj such that [ · , · ]j = (Wj · , · )j . The matrix representation of Wj



ON THE BOUNDEDNESS OF HAMILTONIAN OPERATORS 567

with respect to the decomposition (4) takes the form

Wj =
[

0 Sj
S∗j 0

]
,

where Sj :Mj → Lj is a bounded and boundedly invertible operator. The fact that
(4) is a direct sum and the equality dimK1 = dimK2 imply dimL1 = dimL2 =
dimM1 = dimM2, and hence there exists a bounded and boundedly invertible
operator V21 : L1 → L2. Now the block operator

V =
[
V21 0
0 S−1

2 (V ∗21)−1S1

]
(5)

has the desired properties.

Lemma 3. Let A be a maximal dissipative operator in a Krein space. If A ∈ (L),
then also A∗ ∈ (L).

Proof. Denote the Krein space by {K, [ · , · ]}. Without loss of generality we can
assume that the fundamental decomposition (2) holds with K+ ⊂ domA. Norms
will be computed with respect to this decomposition. The orthogonal projections
onto K± will be denoted by P±. We consider the spaces K± as Hilbert spaces
equipped with the inner products ±[ · , · ]. Let

A =
[
A11 A12

A21 A22

]
be the block matrix representation of A with respect to the decomposition (2). As
A is closed, the two block columns are closed operators. Because K+ ⊂ domA
and on account of the closed graph theorem, A11 on K+ and A21 : K+ → K−
are bounded everywhere defined operators. The operators A12 and A22 have the
same domain and are densely defined, but A12 may or may not be closed. By [AI,
Theorem 2.2.9 and Corollary 2.2.12]:

(α) The operator −A22 is a closed densely defined maximal dissipative operator
in the Hilbert space K− and hence C+ ⊂ ρ(A22).

(β) For λ ∈ ρ(A22), the operator A12(A22 − λ)−1 : K− → K+ is a bounded
everywhere defined operator.

We give different, more direct, proofs. To see (α), consider the equality

A

[
I 0
0 −I

]
= B +

[
0 A∗21

A21 0

]
, B :=

[
A11 −A12 −A∗21

0 −A22

]
.

In the Hilbert space H̃ := {K+, [ · , · ]} ⊕ {K−,−[ · , · ]} the operator on the left of
the equality sign is maximal dissipative and the second summand on the right is
self-adjoint and bounded, and this implies that B is maximal dissipative in H̃ also.
Thus ran(B + iI) = H̃, and therefore ran(−A22 + iI) = K−. This equality and the
fact that −A22 = −P−AP− is dissipative in the Hilbert space K− imply (α).

To prove (β) we note that ρ(A11)∩ρ(−A22)∩ρ(B) 6= ∅. For λ0 in this intersection,
the resolvent of B can be written as

(B − λ0)−1 =
[

(A11 − λ0)−1 (A11 − λ0)−1(A12 +A∗21)(−A22 − λ0)−1

0 (−A22 − λ0)−1

]
.

Since the block operator is bounded, the operator in the upper right corner is also
bounded. Subtracting the bounded operator (A11 − λ0)−1A∗21(−A22 − λ0)−1 from
this operator, we are left with the bounded operator (A11−λ0)−1A12(−A22−λ0)−1.
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As A11 − λ0 is bijective, we conclude that for µ0 = −λ0 ∈ ρ(A22), the operator
A12(A22 − µ0)−1 is bounded. The resolvent identity

(A22 − λ)−1 = (A22 − µ0)−1 + (λ − µ0)(A22 − µ0)−1(A22 − λ)−1, λ ∈ ρ(A22),

now readily implies (β).
By [AI, Theorem 2.2.9], if Imλ0 > 2‖AP+‖, then λ0 ∈ ρ(A). According to (α),

then also λ0 ∈ ρ(A22). In the proof of [AI, Theorem 3.1.13] it is shown that there
exists a λ0 with Imλ0 > 2‖AP+‖ such that

‖A12(A22 − λ0)−1‖ < 1.(6)

For this choice of λ0, the operator A− λ0 admits the representation

A− λ0 =
[
A11 − λ0 A12(A22 − λ0)−1

A21 I

]
×
[
I 0
0 A22 − λ0

]
and then (A− λ0)∗ takes the form

(A− λ0)∗ =
[
I 0
0 (A22 − λ0)∗

]
×
[

(A11 − λ0)∗ −A∗21

−(A12(A22 − λ0)−1)∗ I

]
.

From the appearance of the operators in the second row of the second matrix and
the identity operator in the first matrix on the right-hand side of the last equality
we conclude that the subspace

M :=
{
x =

[
x+

(A12(A22 − λ0)−1)∗x+

]
| x+ ∈ K+

}
is contained in domA∗. It remains to note that because of (6), M is maximal
uniformly positive in K.

Lemma 4. Let A = A∗ be a self-adjoint operator in a Krein space K. Assume
σ(A) ∩ R = ∅ and σ+(A) = σ(A) ∩ C+ is a bounded set. Let P+(A) be the Riesz
projection related to σ+(A). Then P+(A)K is a maximal neutral subspace if and
only if A is bounded.

Since the spectrum of a self-adjoint operator on a Krein space is symmetric with
respect to the real axis, the assumptions of the lemma imply that σ(A) is a bounded
set. In a Hilbert space this implies that A is bounded. A proof uses that a self-
adjoint operator on a Hilbert space has a non-empty spectrum. (Indeed, if Pσ is
the Riesz projection related to σ(A), then A|kerPσ is a self-adjoint operator with an
empty spectrum which implies kerPσ = {0}, that is, Pσ = I. From the inclusion
ranPσ ⊂ domA it then follows that A is everywhere defined and hence bounded.)
Let T be a Volterra operator on a Hilbert space G with σ(T ) = σc(T ) = {0}. Then
the operator

A =
[
T−1 0

0 T−∗

]
is self-adjoint in the Krein space KJ , defined in the beginning of the introduction,
has an empty spectrum, but it is unbounded. This example clarifies why maximality
is needed in the lemma.

Proof. Assume A is bounded. Then the assumption σ+(A) = σ(A) ∩ C+ is a
bounded set automatically holds; it is assumed in order to define the Riesz pro-
jection P+(A). But now also σ−(A) = σ(A) ∩ C− is a bounded set and hence
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the Riesz projection P−(A) related to σ−(A) is well defined. Since σ(A) ∩ R = ∅,
P+(A) + P−(A) = I, that is,

K = P+(A)K + (I − P+(A))K, direct sum.

On account of [AI, Corollary 2.3.11], P+(A)K and (I − P+(A))K are neutral sub-
spaces of K, and, by [AI, Proposition 1.1.25 ], P+(A)K is a maximal neutral sub-
space.

We now prove the “only if” part. Let σ = σ+(A) ∪ σ+(A)∗ and let Pσ =
Pσ(A) be the Riesz projection for A related to σ. Since A is self-adjoint, PσK is
a regular A-invariant subspace, (I − Pσ)K has the same properties, and K admits
the decomposition (see [AI, Corollary 2.3.12 ])

K = PσK [+] (I − Pσ)K,

where the summands are mutually orthogonal relative to the indefinite inner prod-
uct [ · , · ] on K. Since P+(A)K is a maximal neutral subspace and hence max-
imal non-positive or maximal non-negative in K, its orthogonal complement is
maximal non-negative or maximal non-positive, respectively. From the inclusion
P+(A)K ⊂ PσK we have that this orthogonal complement contains the regular
subspace (I − Pσ)K, which is therefore a uniformly definite subspace. This im-
plies that A|(I−Pσ)K is a self-adjoint operator in a Hilbert space and consequently,
σ(A|(I−Pσ)K) ∩ R 6= ∅, which, if (I − Pσ)K 6= {0}, contradicts the assumption
σ(A) ∩ R = ∅. Thus we have (I − Pσ)K = {0} and hence A = A|PσK is a bounded
operator.

2. The property (L) in KJ
Our first main theorem is as follows.

Theorem 5. Let A be a non-negative Hamiltonian operator on the Hilbert space
H = G ⊕ G. If A ∈ (L) in KJ , then A is bounded.

Proof. Instead of A we consider the operator A1 := iA + iaJ with a > 0 and note
that A is bounded if and only if A1 is bounded. Since A is a Hamiltonian and iJ
is self-adjoint in KJ, A1 is self-adjoint in KJ. Claim: A1 is a maximal uniformly
dissipative operator in KJ . Indeed, we have

Im (JA1x, x) = Im [iAx, x]J + Im ia(x, x) ≥ a(x, x), x ∈ H.

Hence JA1 is a uniformly dissipative operator in the Hilbert space H and therefore
λ = 0 is a point of regular type of JA1 (see [AI, p. 92]) and, since J is unitary,
also of A1. Because self-adjoint operators in Krein spaces, such as A1 in KJ, have
no real residual spectrum (see [L1] or [AI, Theorem 2.1.16]), 0 ∈ ρ(A1). Hence
0 ∈ ρ(JA1) and this inclusion is a (necessary and) sufficient condition for JA1

to be a maximal uniformly dissipative operator in H. Therefore A1 is a maximal
uniformly dissipative operator in KJ . This completes the proof of the claim.

From the claim, the fact that A1 ∈ (L) in KJ , and Lemma 1, it follows that
A1 has only non-real spectrum, σ+(A1) := σ(A1) ∩ C+ is a bounded set, and
L+ := P+(A1)H is an A1-invariant subspace which is maximal uniformly positive
in KJ .

There are two ways to proceed with the proof. We think that both are useful
and interesting and therefore we present them both.
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I: We use Lemma 3 and follow some of the arguments in [AKK]. Consider the
operator−A∗1 where the adjoint is taken in KJ . From the claim and [AI, Proposition
2.2.7, Proposition 2.2.32] it follows that −A∗1 is also maximal uniformly dissipative
in KJ . Since A ∈ (L), we have A1 ∈ (L), and hence, according to Lemma 3,
also −A∗1 ∈ (L). Thus we may apply Lemma 1 to −A∗1 and we conclude that
σ+(−A∗1) := σ(−A∗1) ∩ C+ is a bounded set and M+ := P+(−A∗1)H is an (−A∗1)-
invariant maximal uniformly positive subspace in KJ . From σ+(−A∗1) = −σ+(A1)∗

it follows that

P+(−A∗1) =
1

2πi

∫
λ∈Γ+(σ+(−A∗1))

(λ+ A∗1)−1dλ =
1

2πi

∫
µ∈Γ+(σ+(A1))

(−µ∗ + A∗1)−1dµ∗

=

 1
2πi

∫
µ∈Γ+(σ+(A1))

(µ− A1)−1dµ


∗

= P+(A1)∗.

Hence M+ = P+(A1)∗H. Its orthogonal complement L− in KJ equals

L− = kerP+(A1) = (I − P+(A1))H

and is an A1-invariant maximal uniformly negative subspace. Moreover, σ(A1|L−) ⊂
C−. Since σ(A1|L+) ⊂ C+ and A1 is self-adjoint in KJ, both L+ and L− are neutral
subspaces of KJ (see [AI, Corollary 2.3.11]) and

H = L+ + L−.(7)

We can complete the proof in two directions:
Ia: From (7) and [AI, Proposition 1.1.25] it follows that L+ and L− are in fact

maximal neutral subspaces of KJ. Because L+ = P+(A1)H and A1 is self-adjoint
in KJ, by Lemma 4 we have that A1 is bounded.

Ib: From Lemma 2 with K1 = K2 = KJ, L1 = G ⊕{0},M1 = {0}⊕G, L2 = L+

and M2 = L−, it follows that there exists a unitary operator V on KJ such that
V L1 = L2 and VM1 =M2. The unitarity of V implies that B := −iV −1A1V is a
Hamiltonian operator. Since the summands in (7) are A1-invariant, B is a diagonal
operator with respect to the decomposition (1). If we take V as in (5), then with
respect to this decomposition B has the representation

B = −i
[
V −1

21 A1|L+V21 0
0 −(V −1

21 A1|L+V21)∗

]
.

Now observe that A1|L+ is a bounded operator (as L+ is a Riesz subspace of A1),
hence the two non-zero entries in the representation are bounded. This implies the
boundedness of B, or equivalently, the boundedness of A1.

II: We use Lemma 4 directly. It suffices to show that L+ is a maximal J-neutral
subspace. For then A1 satisfies the conditions of Lemma 4 and hence it is bounded.
Let x ⊕ y ∈ L+ with x, y ∈ G. Since L+ is a uniformly positive subspace in KJ ,
there is an ε > 0 such that

2Re (y, x) ≥ ε((x, x) + (y, y)).

Hence on G there is a bounded and boundedly invertible operator K such that
iK is a uniformly dissipative operator on G and y = Kx. Since L+ is a maximal
uniformly positive subspace of KJ , domK = G and ranK = G. On the other hand,
L+ is an invariant subspace of the self-adjoint operator A1 in KJ. Hence L+ is a
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neutral subspace of KJ (see, [AI, Corollary 2.3.11]). This implies Im (Kx, x) = 0.
So,

(Kx, x) = Re (Kx, x) ≥ ε(x, x),

that is, K is a uniformly positive operator on G. Assume that L+ is not a maximal
neutral subspace in KJ and that it is properly contained in the neutral subspace
L̃+. Then L̃+ contains an element of the form v ⊕ 0 with 0 6= v ∈ G, and because
v ⊕Kv ∈ L̃+ also (iv)⊕Kv ∈ L̃+. Since L̃+ is a neutral subspace in KJ, we have
(Kv, v) = 0 and hence v = 0. This contradicts v 6= 0 and therefore L+ is a maximal
neutral subspace of KJ.

3. (L)-property in KJ

In the proof of Theorem 6 below we adapt some of the arguments Shkalikov used
in his proof of Lemma 1; see [S].

Theorem 6. Let A be a non-negative Hamiltonian operator on the Hilbert space
H = G ⊕ G. If A ∈ (L) in KJ, then A is bounded.

Proof. As in the proof of Theorem 5 we consider the operator A1 = iA + iaJ but
now with a > 1. It is maximal uniformly dissipative in KJ . We claim that for all
a > 1,

S1 := {λ = α+ iβ ∈ C | α, β ∈ R, |β| ≤ 1} ⊂ ρ(A1).(8)

Indeed, for λ = α+ iβ in the strip S1, the operator A1 − λ is uniformly dissipative
in KJ , because

Im [(A1 − λ)x, x]J = Im [A1x, x]J + a(x, x)− β(Jx, x)

≥ (a− |β|)(x, x) ≥ (a− 1)(x, x).

With A1 being maximal uniformly dissipative also A1 − λ is maximal uniformly
dissipative in KJ . Hence 0 ∈ ρ(A1 − λ) for all λ in the strip and this is equivalent
to (8).

We shall show that

σ+(A1) := σ(A1) ∩ C+ is a bounded set,(9)

P+(A1)H is a maximal neutral subspace of KJ.(10)

Since A1 is self-adjoint in KJ and (8) implies σ(A1) ∩ R = ∅, the theorem follows
from Lemma 4 and the proof is complete.

Proof of (9). Assume that the fundamental decomposition (2) for K = KJ is such
that K+ is the maximal uniformly positive subspace contained in dom A1. We
denote by J1 the corresponding fundamental symmetry. With respect to the de-
composition (2) the operators J1 and A1 have the matrix representations

J1 =
[
I 0
0 −I

]
, A1 =

[
A11 −A∗21

A21 A22

]
.
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Here the operators A11 and A21 are bounded and the first of these and A22 are
self-adjoint operators in the Hilbert spaces {K+, [ · , · ]J} and {K−,−[ · , · ]J}, re-
spectively. Hence for non-real λ’s the operator functions

G(λ) = −A∗21(A22 − λ)−1,

F (λ) = (A22 − λ)−1A21,

M(λ) = (I −G(λ)A21(A11 − λ)−1)(A11 − λ)

are well defined and their values are bounded operators, and we have the block
matrix factorization

A1 − λ =
[
I G(λ)
0 I

]
×
[
M(λ) 0

0 A22 − λ

]
×
[

I 0
F (λ) I

]
.

This factorization implies that a non-real λ belongs to ρ(A1) if and only if 0 belongs
to ρ(M(λ)). To prove (9) it suffices to show

σ+(A1) ⊂ (C+ \ S1) ∩D,(11)

where D is the disk |λ| ≤ ‖A11‖ + ‖A21‖2. If λ ∈ C+ does not belong to the set
on the right, then either λ ∈ S1 or Imλ > 1 and |λ| > ‖A11‖+ ‖A21‖2. In the first
case, by (8), λ ∈ ρ(A1). In the second case

‖G(λ)A21(A11 − λ)−1‖ ≤ 1
Imλ

‖A21‖2
|λ| − ‖A11‖

< 1,

which implies that 0 ∈ ρ(M(λ)), that is, then also λ ∈ ρ(A1). Hence in either case
λ 6∈ σ+(A1). This proves (11) and completes the proof of (9).

Proof of (10). Denote by P+(A1) the Riesz projection relative to σ+(A1). Since
A1 is a self-adjoint operator in KJ, by [AI, Corollary 2.3.11]), L+ := P+(A1)K is
a neutral subspace in KJ. Hence there is a bounded operator K : {K+, [ · , · ]J} →
{K−,−[ · , · ]J}, called the angular operator for L+, such that with respect to the
fundamental decomposition (2) of KJ

L+ = {x = x+ +Kx+ | x+ ∈ P+L+}.

This subspace is maximal if and only if P+L+ = K+, where P+ is the orthogonal
projection in KJ onto K+. With respect to the fundamental decomposition (2) the
operator P+(A1) has the representation

P+(A1) =
[
P Q
KP KQ

]
,(12)

where P and Q are bounded operators. Consequently, for the maximality of L+ it
is sufficient to show that 0 ∈ ρ(P ) and for this to hold it suffices to prove

Re [Px+, x+]J ≥
1
2

(x+, x+) for all x+ ∈ K+.(13)

The proof makes use of an approximation argument. We consider the auxiliary

operator Bb := A1 + ibJ1 with 0 < b <
a− 1
‖J1‖

and let b ↓ 0. Here the norm is

computed in the inner product of the Hilbert space H. The proof is divided into
several steps. We shall show

(a) Bb is maximal uniformly dissipative in KJ and
(b) Bb ∈ (L) in KJ,
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so that, by Lemma 1, P+(Bb) exists, and then we show
(c) P+(Bb)→ P+(A1) as b ↓ 0 and
(d) Re [P+(Bb)x+, x+]J ≥ 1

2 (x+, x+), x+ ∈ K+,
from which, since P = P+P+(A1)P+, (13) follows.

(a) For x ∈ H,

Im [Bbx, x]J = Im [A1x, x]J + Im ib[J1x, x]J = b[J1x, x]J,(14)

and hence, since [J1 · , · ]J is a Hilbert space inner product on KJ, Bb is uniformly
dissipative in KJ. Hence λ = 0 is a point of regular type for Bb. The analog of
(14) for −B∗b = −A1 + ibJ1 also holds, hence −B∗b is also uniformly dissipative in
KJ and therefore λ = 0 is also a point of regular type for B∗b . This implies that
λ = 0 is in fact a regular point for Bb (and for B∗b ; because, if it is not a regular
point for one, it would be an eigenvalue for the other). This implies (a).

(b) This follows directly from the fact that with A ∈ (L) also A1 ∈ (L) in the
space KJ. Applying Lemma 1, we obtain

σ+(Bb) := σ(Bb) ∩ C+ is a bounded set and

P+(Bb)H is a maximal uniformly positive subspace of KJ.

(c) With respect to the decomposition (2) Bb has the matrix representation

Bb =
[
A11 + ib −A∗21

A21 A22 − ib

]
.

Hence for λ ∈ C+ with |λ| large we have

Bb − λ =
[
I Gb(λ)
0 I

]
×
[
Mb(λ) 0

0 A22 − ib− λ

]
×
[

I 0
Fb(λ) I

]
,(15)

where

Gb(λ) = −A∗21(A22 − ib− λ)−1,

Fb(λ) = (A22 − ib− λ)−1A21,

Mb(λ) = (I −Gb(λ)A21(A11 + ib− λ)−1)(A11 + ib− λ).(16)

As in the beginning of this proof but now with the help of

Im [Bbx, x]J = Im [A1x, x]J + Im ib[J1x, x]J ≥ (a− b‖J1‖)(x, x), x ∈ H,(17)

and the fact that a− b‖J1‖ > 1, it can be shown that (8) also holds for Bb, that is,
S1 ⊂ ρ(Bb). (Note: Above we showed that Bb is uniformly dissipative in KJ, but
by (17), Bb is also uniformly dissipative in KJ .) Moreover, by the same arguments
as above for A1, we find that

σ+(Bb) ⊂ (C+ \ S1) ∩Ds,

where Ds is the closed disk around the origin with radius s = ‖A21‖2 + ‖A11 + ib‖.
We leave the details of the proof to the reader. Hence for r > ‖A21‖2+‖A11‖+ a−1

‖J1‖ ,
the contour

Γr := [−r, r] ∪ {reiϕ | ϕ ∈ [0, π]},
which we assume to be positively oriented, encircles σ+(A1) and σ+(Bb) for all
b ∈ (0, a−1

‖J1‖ ). The other parts of the spectra of A1 and Bb are contained in the
exterior of Γr. Set

mr = max{‖(A1 − λ)−1‖ | λ ∈ Γr}.



574 TOMAS YA. AZIZOV, AAD DIJKSMA, AND IRINA V. GRIDNEVA

Then for λ ∈ Γr and sufficiently small b,

‖(Bb − λ)−1 − (A1 − λ)−1‖ ≤ bm2
r‖J1‖

1− bmr‖J1‖
.

Therefore

‖P+(Bb)− P+(A1)‖ → 0 as b ↓ 0.

This completes the proof of (c).
(d) We first observe that for Mb(λ) in (16)

lim
r→∞

reiϕMb(reiϕ)−1 = −I,(18)

uniformly in ϕ ∈ [0, π]. This follows from

reiϕMb(reiϕ)−1

= reiϕ(A11 + ib− reiϕ)−1{I +A∗21(A22 − ib− reiϕ)−1A21(A11 + ib− reiϕ)−1}−1,

and the limits, uniformly in ϕ ∈ [0, π],

lim
r→∞

reiϕ(A11 + ib− reiϕ)−1 = −I,

lim
r→∞

(I +A∗21(A22 − ib− reiϕ)−1A21(A11 + ib− reiϕ)−1) = I.

The last limit is valid because of the estimate

‖(A22 − ib− reiϕ)−1‖ ≤ 1
b
,

the boundedness of A21, and the limit, uniformly in ϕ ∈ [0, π],

lim
r→∞

(A11 + ib− reiϕ)−1 = 0.

The operator P+(Bb) can be rewritten as

P+(Bb) = − 1
2πi

r∫
−r

(Bb − α)−1dα+
1

2π

π∫
0

(I − e−iϕ

r
Bb)−1dϕ.(19)

From the property that Bb is dissipative in KJ we have

Re

− 1
2πi

r∫
−r

(Bb − α)−1dα

 = − 1
2π

Im

r∫
−r

(Bb − α)−1dα ≥ 0.(20)

We now obtain as r →∞,

Re [P+(Bb)x+, x+]J

≥ Re
1

2π

π∫
0

[(I − e−iϕ

r
Bb)−1x+, x+]J dϕ by (19) and (20)

= −Re
1

2π

π∫
0

[reiϕMb(reiϕ)−1x+, x+]J dϕ by (15)

→ 1
2

[x+, x+]J =
1
2

(x+, x+), by (18)

and this proves (d) and completes the proof of the theorem.
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4. Examples

First we give an example which shows that in the assumptions of Theorem 5 it
is essential that the operator A on the Hilbert space G ⊕ G satisfies the condition
(L).

Example 7. Let A : G → G be an unbounded self-adjoint uniformly positive op-
erator on G. Then the operator

A =
[
A 0
0 −A

]
is a non-negative Hamiltonian operator, which is unbounded.

The following example shows that in Theorem 6 it is essential that the Hamil-
tonian operator A is non-negative.

Example 8. Let A be an unbounded self-adjoint operator on G and define the
operator A by

A =
[
I −i
0 I

]
×
[

0 0
A 0

]
×
[
I −i
0 I

]
.(21)

Evidently, dom A = {x⊕ y | x, y ∈ G, x− iy ∈ domA}. Since both operators[
I −i
0 I

]
, i

[
0 0
A 0

]
are self-adjoint inKJ and the first is bounded and boundedly invertible, the operator
A is Hamiltonian. On (domA)⊕(domA) the operator A coincides with the operator[

−iA −A
A −iA

]
.

Hence A is unbounded. For x, y ∈ domA we have

Im [A(x⊕ y), x⊕ y]J = 2Re (Ax, y),

and hence the Hamiltonian operator A is not non-negative. The subspace

K+ = {ix⊕ x | x ∈ G}

is maximal uniformly positive in KJ, in fact K+ = P+H, where P+ = 1
2 (I + J).

From the definition (21) it follows that K+ ⊂ dom A, but the Hamiltonian operator
A is unbounded.
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