

 University of Groningen

Visualizing RDF(S)-based Information
Telea, Alexandru; Frasincar, Flavius; Houben, Geert-Jan

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A., Frasincar, F., & Houben, G-J. (2003). Visualizing RDF(S)-based Information. In EPRINTS-
BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/67844024-b531-4c0a-bbc8-8ba1c4e96deb

Visualisation of RDF(S)-based Information

Alexandru Telea, Flavius Frasincar, and Geert-Jan Houben
Eindhoven University of Technology

PO Box 513, NL-5600 MB Eindhoven, the Netherlands
�alext, flaviusf, houben�@win.tue.nl

Abstract

As Resource Description Framework (RDF) reaches ma-
turity, there is an increasing need for tools that support
it. A common and natural representation for RDF data
is a directed labeled graph. Although there are tools to
edit and/or browse RDF graph representations, we found
their architecture rigid and not easily amenable to pro-
ducing effective visual representations, especially for large
RDF graphs. We discuss here how GViz, a general pur-
pose graph visualisation tool, allows the easy construction
and fine-tuning of various visual exploratory scenarios for
RDF data. GViz’s extended ability of customizing the visu-
alisation’s icons showed to be very useful in the context of
RDF graph structures visualisation. Among the presented
applications, we mention customizable selections, schema-
instance comparison, instances comparison, and schemas
comparison (schema evolution). GViz proved to be able not
only to visualize large RDF data models, but also to be very
flexible in designing scenario-specific queries to support the
exploration process.

1. Introduction

Resource Description Framework (RDF) is the web
metadata language. It is used to describe information about
web resources. The semantics associated with this infor-
mation enables web applications interoperability. An RDF
model that describes some web resources is also called an
RDF instance. An RDFS schema can be used to define ap-
plication specific vocabularies. This schema can be associ-
ated with an RDF instance in order to validate the instance.
Both RDF instance and RDFS schema are RDF models.

As RDF reaches maturity, there is an increasing need of
tools that allow users to understand, i.e. browse and mod-
ify, RDF data. Two such tool types exist: textual and vi-
sual. Examples of textual RDF browsing tools are Protege-
2000 [4], OntoEdit, and OntoMat. However versatile, ex-
perience proved that analysis of moderately voluminous re-

lational (graph) data is not effective in text based environ-
ments [1]. Therefore, in this paper we shall mainly focus
on visual browsing tools. Examples of such tools special-
ized for RDF browsing are IsaViz [5], FRODO RDFSViz,
and OntoViz (visualisation plug-in for Protege-2000). In
the following, we will discuss two of the above mentioned
tools: Protege 2000 and IsaViz.

Protege-2000 [4] is a textual browsing/editor tool for
knowledge models. It enables modeling at conceptual level
such that the user doesn’t need to be concerned with the
syntax of the final output. One knowledge representation
format supported by Protege-2000 is RDF(S). Protege 2000
uses the RDF API from Simple RDF Parser and Compiler
(SiRPAC) for reading RDF models. For comparison pur-
poses, we chose to represent the same newspaper example,
the default Protege-2000 project, in several browsing tools.
Figure 1 depicts the newspaper RDFS schema in Protege-
2000 (without the visualisation plug-in). It is obvious that
such text-based representations fail in conveying structural
insight in anything but relatively small and simple RDF(S)
datasets. A solution to this problem is the usage of a plug-in
(i.e. OntoViz) that adds visualisation capabilities to the tool.

Figure 1. Newspaper schema in Protege

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

IsaViz [5] is a visual browsing tool for RDF models.
IsaViz uses the RDF API of Jena for reading RDF mod-
els and AT&T’s GraphViz package [3] for the graph lay-
out. Some of the features that IsaViz supports are text-based
search, copy and paste, model editing, editing of the visual
shapes used for nodes and arcs, textual property browser,
and graph/radar views (radar views open a new window
a graph overview depicting the current selection region).
IsaViz is a state of the art tool for browsing RDF models.

Figure 2. Newspaper schema in IsaViz

Nevertheless, it has a rigid architecture which makes it dif-
ficult to add application and/or scenario dependent opera-
tions, i.e. other operations than the default ones supported
by the tool. Figure 2 depicts the newspaper RDFS schema
in IsaViz.

2. GViz

GViz [6] is a general purpose visual environment for
browsing and editing graph-based data. Since RDF is es-
sentially an attributed graph, one can use GViz to visu-
alize RDF models. GViz’s chief advantage compared to
most other graph visualisation tools is that it is easily cus-
tomizable. In the past, GViz was customized with specific
query and visualisation operations for reverse engineering
data visualisation [6]. Our experience was that this extensi-
bility property with application-dependent operations is es-
sential for producing effective data visualisations. Figure 3
presents the newspaper RDFS schema in GViz. Compared
with Figure 2, the IsaViz representation of the same model,
the data structure is now easier to grasp. For the explanation
of the used colors, see Sec. 2.3.

In the following, a short description of GViz is given.

2.1. Data model

The data model we use is the RDF graph representa-
tion. Nodes are RDF resources/literals and edges are RDF

Figure 3. Newspaper schema in GViz

properties. The type attribute associated to a node speci-
fies if a node is an AResource (anonymous resource), an
NResource (a named resource is resource with a URI), or
a Literal. Both nodes and edges have a value property
that gives the associated RDF label. Note that the value
for named resources and properties is a URI. The value
of an anonymous resource has no related semantics. The
value of literals is given by their associated string. As
GViz’s data model is an arbitrary attributed graph, the above
data are directly accommodated by the tool.

2.2. Operation model

GViz’s operation model comprises three main opera-
tions: selection, graph editing, and mapping. Selection op-
erations specify a set of nodes and edges from the original
graph. Queries and filters are thus naturally implemented as
selections. Editing operations modify the graph data (struc-
ture and/or attributes). Node/edge deletion or construction,
graph metric computations, and graph layouts are thus im-
plemented as editing operations that modify various parts
of the data model. Using the observer pattern, all system
components that depend on the changed data are automati-
cally updated. The mapping operations map graph data to
visual objects. Implementing different mapping operations
corresponds to customizing the way the graphs are drawn.
GViz’s architecture focuses on allowing users to easily de-
fine their specific operations. One such operation is the
graph comparison, a useful feature if we consider e.g. an-
alyzing the differences between two (RDF-based) mobile
phone profiles or the evolution of the profile schema.

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

2.3. Visualisation

In contrast to most graph visualisation tools we are aware
of, GViz decouples the mapping from the graph layout op-
eration. Graph layouts are attribute-editing operations that
compute 2D or 3D positional attributes for nodes/edges.
GViz uses different layouts among which we mention:
spring embedder, directed (tree), 3D stacked layout, and the
nested layout. More information about the last two layouts
can be found in [6]. Furthermore, the visual appearance of
nodes and edges in GViz is entirely customizable. Users
can easily define the shape, color, size, and other graphi-
cal attributes of the node and edge ‘icons’ as function of
their attributes. GViz’s approach to customization is to al-
low users to provide callbacks, written in the Tcl scripting
language, for most of its internal operations, mapping in-
cluded. In all our scenarios, customizing the node or edge
drawing amounted to writing an 8 to 20 lines Tcl callback
that used the node and/or edge attributes to customize its
drawing.

In the rest of this paper, all examples will be based on
User Agent Profile (UAProf) [7], a CC/PP [2] vocabulary
for describing mobile phone capabilities. CC/PP vocabular-
ies are RDFS representations for modeling device capabili-
ties and user preferences.

Figure 4 presents the GViz graph representation of the
UAProf schema. Graph nodes are depicted by rectangles
and RDF graph edges are represented by fading lines. The
lines are fading to the origin (subject) node so that the edge
direction effect is created. We found that representing di-
rectional information in this way is more effective than the
classical arrow-drawing, as the latter produces too much vi-
sual clutter for highly connected graphs. The node icons’
colors convey the nodes’ types: yellow for literals and green
for resources. Three separate colors are used for edges: blue
for edges with value rdf:type, red for edges with value
rdfs:subClassOf, and white for edges with different
value than rdf:type and rdfs:subClassOf. Note
that, due to their loose coupling with other nodes, liter-
als are positioned at the drawing’s periphery. The spring
embedder layout naturally positions the most referenced
nodes at the center: rdfs:Class and rdf:Property.
As these nodes were selected with the mouse by the user,
they are displayed in red by GViz instead of green. We
also chose to represent nodes that have an edge with value
rdf:Property with orange instead of green. As a
consequence the only nodes that remained green are the
Component node, its subclasses (describing the hardware
and software platforms, the wap, push, and network charac-
teristics, and the browser user agent), and rdf:Bag. Pro-
ducing the above visualisation took about 20 minutes and
amounted to writing three Tcl callbacks of less than 40 lines
in total.

This visualisation allows one to easily distinguish the
Component node and its subclasses, forming a “star with
red rays”, and the rdf:Property and its instances, form-
ing a “star with blue rays”. As a RDFS schema basically
defines a set of properties to be used in the instance, a big
cloud of orange nodes (property nodes) is present in the Fig-
ure. Figure 4 enabled the users of our tool to see that the
depicted UAProf schema (from 10th of July 2002) uses a
wrong rdfs prefix in rdfs:Property instead of rdf,
a fact which was not discovered before this visualisation
was done.

Figure 4. UAProf schema visualisation

3. Applications

We consider now four types of RDF-related applications:

� customizable selections

� schema-instance comparison

� instances comparison

� schemas comparison

The last three applications are related to graph comparison.
For graph (node value) comparison, we identify the spe-
cific nodes (nodes only present in one of the models) and
the common nodes (nodes present in all models). In com-
paring graphs, it is important to distinguish between named
resources and anonymous resources because the value of
anonymous nodes has no semantics and should thus not be
used in comparison.

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

3.1. Customizable selection

Figure 5 depicts the node representing the
HardwarePlatform component, which was se-
lected with the mouse by the user. The selection process is
user-customized in the sense that the original edges that do
not have the HardwarePlatform node as subject/object
in Figure 4 are suppressed. This selection is similar to the
radar view of IsaViz with the difference that it presents
only the interesting edges (with respect to the selected
node) instead of all edges from the original graph. As
explained in Sec. 2.3, the customization is done by letting
the user specify the action GViz performs (in this case, the
selection) by means of a Tcl script. Writing the script for
our custom selection (of 18 lines of code) took less than 5
minutes for a user familiar with GViz but not with RDF.

Figure 5. Selection in UAProf schema

3.2. Schema-instance comparison

A schema-instance comparison answers questions like:
how much of the schema is instantiated in an instance?,
what subpart of the schema is used by the instance? etc. To
distinguish the resource types, we chose to represent named
resources by triangle icons, literals by circles, and anony-
mous resources (the resource standard) by rectangles. In
contrast to the visualisation described in Sec. 3.1, we now
use color for comparison purposes, as described next.

Figure 6 shows the UAProf instance of a Nokia 8310 mo-
bile phone. We use the grey color for anonymous nodes to
stress that they are not to be compared. The nodes specific
to the instance are yellow, the nodes specific to the UAProf
schema are green, and the common nodes (i.e. present in

Figure 6. UAProf instance for Nokia 8310

both schema and instance) are red. In Fig. 6, we notice that
most instance-specific nodes are the literals that character-
ize this particular Nokia phone, such as e.g. Nokia 8310,
the phone name. Specific resources for the instance are
rdf:Bag and the nodes that describe different components
(the hardware and software platforms, the wap, push, and
network characteristics, and the browser user agent). The
common nodes (depicted in red) are the types of the com-
ponents, since these appear in both instance and schema.

Figure 7. UAProf schema

Figure 7 describes the UAProf schema related to a Nokia

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

8310 phone instance. As shown also in Fig. 6, the common
nodes (red triangles) are resources representing the compo-
nent types. RDF is a semistructured language. An RDF
instance doesn’t need to instantiate all properties of an as-
sociated schema. As a consequence, we see the big cloud
of green nodes which are schema specific nodes (nodes that
are not appearing in the instance).

Finally, Figure 8 presents both the UAProf schema and
the Nokia 8310 instance combined in one graph. This fig-
ure is a combination of the previous two pictures. We no-
tice that only a small part of the schema is instantiated by
the instance (the common red part) and that this part con-
sists of component types. Again, this type of insight in the
RDF data was not attainable by the other RDF data brows-
ing tools we used.

Figure 8. UAProf schema and instance for
Nokia 8310

3.3. Instance comparison

Comparing several instances that validate the same
schema answer questions like: what properties are specific
in each instance?, what are the common properties of the
instances? etc. Note that, by properties, we mean the value
associated to a property.

Figure 9 compares the UAProf instances for four mobile
phones: the (previous) Nokia 8310, Ericsson T68, Erics-
son T39, and Mitsubishi Trium. For this visualisation, we
designed the following coloring scheme: instance-specific
nodes are grey, the nodes shared by the two Ericsson phones

are green, and the nodes common to all four phones are red.
Looking at the four pictures we notice that their structure
is roughly identical. This complies with the fact that they
all instantiate the same schema. It is interesting to observe
that all instances of a certain schema have the same structure
which differentiates them from other instances. A useful ap-
plication hereof is the visual identification of instances that
have the same (unknown) schema from an instance reposi-
tory based on their structure.

We also noticed that there is only one common resource
rdf:Bag, which immediately brings the question “where
are the components?” We discovered that the reason for not
having the components in the set of common nodes is that
the Ericssons and the Mitsubishi use a previous version of
the UAProf schema, which uses a different naming prefix
than the one used in the Nokia 8310. Again, this fact was
discovered only after the visualisation took place. Finally,
the specific nodes are mostly represented by literals that
characterize each mobile. Note that, being produced by the
same company in the specific family of “T” mobile phones,
the profiles of the two Ericssons are very similar (large set
of green nodes).

Figure 9. UAProf instances for four phones

3.4. Schema comparison

Comparing different versions of the same schema
(schema evolution) enables one to better track the differ-
ences among them. A visual representation of these dif-
ferences answers questions like: which schemas are very
similar to each other? which schema represents a major ar-
chitectural break compared with the previous ones? etc.

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

Let us consider three UAProf schemas from 2000, 2001,
and 2002 (the last one was already used in the previous sub-
sections). Now we design the following coloring scheme:
schema-specific nodes are grey; nodes in 2000 and 2001
but not 2002 are green; nodes in 2001 and 2002 but not
2000 are yellow; nodes present in all three schemas are red.

Figure 10 compares a UAProf version from 2000 with
the UAProf version from 2001. The large number of green
nodes show that the 2000 and 2001 schemas have a lot in
common, i.e. that the UAProf specification is only mildly
updated from 2000 to 2001.

Figure 10. UAProf comparison: 2000 and 2001

Figure 11 compares the UAProf version from 2001 with
the UAProf version from 2002. Nodes present only in 2001
and 2002 (but not in 2000) should appear in yellow. How-
ever, a surprising discovery was that there were no yellow
nodes. However, 2002 shows a lot of grey nodes (elements
not present in 2001, e.g. the push characteristics compo-
nent, the Bluetooth profile). This means that the year 2002
breaks the schema continuity present in 2000 and 2001, i.e.
it introduces many new elements. However, there are still
overall similarities for the three years (the red nodes). A
possible reasoning is e.g. that 2002 is the begin of a new
product family.

Figure 11. UAProf comparison: 2001 and 2002

4. Conclusions

In this paper, we discussed the usage of GViz, a general
purpose graph visualisation platform, for the RDF graph vi-
sual exploration. Compared to other RDF data browsing
tools, we were able to produce visualisations that answered
more complex questions about the data and give a more ef-
fective insight in the data structure. The produced visualisa-
tions easily answered queries such as: which schema parts
are present in an instance, which properties are specific to
a given instance in an instance set, and how do schemas
evolve in time. An interesting result was the discovery of
(unexpected) facts about the examined data, which were
simply not apparent during browsing with other RDF tools.

From an application design point of view, our experi-
ence with GViz was very positive. The tool’s mechanism
of providing customization of its selection, visualisation,
and query operations by user-written Tcl callback scripts
proved highly versatile and allowed us to program and fine-
tune new visualisation scenarios in minutes. This fact is
worth mentioning, as few tools (for graph visualisation in
general, and for RDF data in particular) provide such flexi-
bility, which we deem to be essential for adapting a general-
purpose tool to a specific scenario. This lack of flexibility
may be one of the main (though not often discussed) rea-
sons for which we see much less reuse of relational data
visualisation tools as compared to e.g. the more classical
scientific data visualisation tools.

We next plan to look at more RDF data exploration ap-
plications, such as RDF graph editing operations (GViz of-
fers support for graph editing). We also plan to investigate
useful metrics and filters to be applied for an RDF graph.

References

[1] S. Card, J. Mackinlay, and B. Shneiderman. Readings in In-
formation Visualization. M. Kaufmann, 1999.

[2] G. Klyne, F. Reynolds, C. Woodrow, and O. Hidetaka. Com-
posite capability/preference profiles (cc/pp): Structure and
vocabularies. W3C Working Draft 08 November 2002.

[3] S. C. North and E. Koutsofios. DOT and NEATO user’s
guide. AT&T Bell Labs Reports, 1996. http://www.
research.att.com.

[4] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Ferger-
son, and M. A. Musen. Creating semantic web contents with
protege-2000. IEEE Intelligent Systems, 16(2):60–71, 2001.

[5] E. Pietriga. Isaviz: a visual environment for browsing and
authoring rdf models. The Eleventh International World Wide
Web Conference (Developer’s day), 2002.

[6] A. Telea, A. Maccari, and C. Riva. An open toolkit for proto-
typing reverse engineering visualization. In IEEE EG VisSym
’02, pages 241–250. Eurographics, 2002.

[7] Wireless Application Protocol Forum, Ltd. Wireless applici-
ation group: User agent profile. Version 20 October 2001.

Proceedings of the Seventh International Conference on Information Visualization (IV’03)
1093-9547/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

