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Chapter 2

Factoring Polynomials using
Drinfeld Modules

2.1 Introduction

In this chapter we construct an algorithm to factor polynomials in Fq[X] using Drinfeld
modules. The main idea of the algorithm is similar to the idea behind H.W. Lenstra’s
elliptic curve method (ECM) to factor some integer n ∈ N; cf. [38]. We analyse the
complexity of the algorithm that we propose, and we compare the algorithm to the
well-known Cantor-Zassenhaus algorithm. This chapter is accepted for publication in
Mathematics of Computation.

Let q be a power of some prime p. Throughout this chapter we will denote A = Fq[X].
Let N ∈ A be a polynomial. As is well-known, it is easy to factor N as N =

∏
iNi where

each Ni is a product of irreducible polynomials of degree i. Therefore, we will assume
that N =

∏k
i=1 Pi where each Pi is an irreducible polynomial with deg(Pi) = d > 1 for

all i. Moreover, we will assume that the polynomials Pi are distinct.
The basic idea behind the algorithm that we propose in this chapter is the following. A
Drinfeld module ϕ defined over the ring A/NA equips A/NA with an A-module structure
which is distinct from the natural A-module structure of A/NA. For any b ∈ A/NA we
write ϕa(b) for the multiplication of a ∈ A with b using the A-module structure defined
by ϕ.
As A/NA is finite, there exists a polynomial N ′ ∈ A with minimal degree such that
ϕN ′(b) = 0 for every b ∈ A/NA. If not all irreducible factors of N ′ have the same degree,
then we can find a proper factorization of N ′ into polynomials N ′i such that the irreducible
factors of N ′i have degree i. For any i for which N ′i 6= 1, the element ϕN ′i(1) gives rise to
a zero-divisor in A/NA and thus to a factor of N .

2.2 Drinfeld modules

Let B be an A-algebra coming from an Fq-linear ring homomorphism γ : A −→ B. We
first introduce Drinfeld modules over B.

(1) Let B{τ} be the free B-module generated by the elements τn. So its elements are
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finite sums
∑

i biτ
i with bi ∈ B. We can consider B{τ} as a skew-polynomial ring

by equipping it with the multiplication which is given by the multiplication in B
and the rule

bτ i.cτ j = bcq
i

τ i+j.

(2) Every element
∑

i ciτ
i ∈ B{τ} induces an Fq-linear endomorphism B −→ B given

by b 7→
∑

i ciτ
i(b) =

∑
i cib

qi . This gives a ring homomorphism

B{τ} −→ EndFq(B).

(3) We define a homomorphism on B{τ} as follows.

∂0 : B{τ} −→ B by
∑

bnτ
n 7→ b0.

(4) Let ϕ : A −→ EndFq(Ga,B) = B{τ} be a ring homomorphism; ϕ is called a Drinfeld-
module if

(i) ∂0 ◦ ϕ = γ;

(ii) there is an element a ∈ A with ϕ(a) 6= γ(a).

So ϕ is Fq-linear.

Following the usual convention, we will write ϕa instead of ϕ(a) for a ∈ A. The ring
homomorphism ϕ is determined by ϕX =

∑r
i=0 biτ

i. By property (4)(i) we have b0 =
γ(X).
If br is not nilpotent in B, then we call r ≥ 0 the rank of ϕ. Without loss of generality
we may assume that br is not nilpotent; cf. [41].

Remark 2.2.1. Note that this is not the usual definition of the rank of a Drinfeld module.
Usually the rank is defined as a locally constant function on B, i.e., the rank is constant
on each connected component of B. Our definition of rank is equals the maximum of the
usual ranks on the connected components of B.

Canonically, B is an A-module via γ. Using (2) and (4), it follows that ϕ induces another
A-module structure on B.

2.2.1 Drinfeld modules acting on A/NA

From now on, we let B = A/NA. In this section we describe the linear operators on B
induced by B{τ} and, in particular, by a Drinfeld module ϕ. Let

Bj := A/PjA.

Hence B ' ⊕kj=1Bj. Let

γ : A −→ B givenby X 7→ X mod N.

Let ϕ : A −→ B{τ} be a Drinfeld module of rank r, and denote ϕX =
∑r

i=0 biτ
i. By

definition b0 = X mod N . Moreover, we will assume that br ∈ B∗. Note that if br 6∈ B∗
and br 6= 0, then we have found a proper divisor of N , namely gcd(N, br).

Clearly, the map τ leaves each Bj invariant. We note three consequences of this.
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(1) ϕ induces an A-module structure on each Bj, hence there is an isomorphism of
A-modules B ' ⊕kj=1Bj, where the A-module structure is given by ϕ.

(2) τ d is the identity on B. Namely, Bj ' Fqd , so τ d is the identity on each Bj, hence
also on B.

(3) τ keeps each Bj invariant, hence the operators induced by ω ∈ B{τ} keep each Bj

invariant.

Lemma 2.2.2. The map B{τ} −→ EndFq(B) has as kernel the two-sided ideal (τ d − 1)
and its image is isomorphic to∏

j

EndFq(Bj) ' B{τ}/(τ d − 1).

Furthermore, EndFq(Bj) 'Md(Fq), where Md(Fq) denotes the ring of d×d matrices with
coefficients in Fq.

Proof. Because Bj ' Fqd , we have by general Galois theory that

EndFq(Bj) = ⊕ρ∈Gal(F
qd
/Fq)Bjρ = ⊕d−1

i=0Bjσ
i

where σ generates Gal(Fqd/Fq). This shows that the map

Bj{τ} −→ EndFq(Bj)

given by τ 7→ σ is surjective. By dimension considerations we see that

Bj{τ}/(τ d − 1) ' EndFq(Bj).

As rings

B{τ}/(τ d − 1) '
k∏
j=1

Bj{τ}/(τ d − 1).

Proposition 2.2.3. Every element in B{τ}/(τ d − 1) can be represented by ϕX ∈ B{τ}
where ϕ is a Drinfeld module of rank at most d+ 1.

Proof. Any element in B{τ}/(τ d−1) can be represented by some ω =
∑d−1

i=0 aiτ
i ∈ B{τ}.

Put

b0 = X mod N, bd = a0 − b0, and bi = ai

for i = 2, . . . , d − 1. If bd = 0, then we put b1 = a1 and bd+1 = 0. Otherwise we put
b1 = a1− 1 and bd+1 = 1. Let ϕ be the Drinfeld module given by ϕX =

∑d+1
i=0 biτ

i, then ϕ
is a Drinfeld module of rank at most d+ 1, and ϕX represents by construction the same
element in EndFq(B) as ω.
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2.3 The algorithm

In this section we describe the algorithm and illustrate it with an example. Let ϕ be a
Drinfeld module of rank at most d+ 1, then ϕX defines an Fq-linear operator on B. Let
f ∈ A be the characteristic polynomial of this linear operator. Consequently,

ϕf = f(ϕX) ≡ 0 mod (τ d − 1).

By Lemma 2.2.2 it follows that ϕX also induces an Fq-linear operator on each Bj, hence

gives rise to characteristic polynomials fj ∈ A, with f =
∏k

j=1 fj.
In this way we associate to each polynomial Pi a polynomial fi of the same degree d, but
fi may very well be reducible. Let gd be the product of all fi’s which are irreducible, and
let gr be the product of the other fi’s. Then we have f = gdgr. These elements gd and gr
can easily be computed. If the factorization f = gdgr is not trivial, then it gives rise to
a proper divisor of N :

Proposition 2.3.1. If 1 6= gd 6= f , then for all b ∈ B∗ the element gcd(ϕgd(b), N) is a
proper divisor of N .

Proof. Because gd 6= 1 there is an i such that ϕgd(b) = 0 mod Pi. In fact this is exactly
the case for all i with fi | gd. If fi does not divide gd, then let a ∈ A be the polynomial
of minimal degree such that ϕa(b) = 0 mod Pi, then a | fi, hence gcd(a, gd) = 1 and thus
ϕgd(b) 6= 0 mod Pi. This shows that ϕgd(b) is a zero divisor.

If d = 1, then the fi are all of degree 1, so for all choices of ϕ we have gd = f . So
our algorithm will not give anything interesting in this case. One can also see this in a
different way. If d = 1, then τ acts as the identity, hence ϕh acts as multiplication with
γ(h) = h mod N for all h ∈ A, i.e., ϕ induces the same A-module structure on B as γ.
The next case is d = 2. We will illustrate the suggested algorithm in an example for this
case.

Example 2.3.2. Suppose d = 2, p > 2. We choose ϕX = X + cτ with c ∈ F∗q. We take

N =
∏k

i=1 Pi such that Pi = X2 + aiX + bi ∈ Fq[X]. Then on Bi = A/PiA we have

ϕX(1) = X + c, ϕX(X) = X2 + cXq = −aiX − bi − c(X + ai).

Hence on the basis {1, X} of Bi the matrix of ϕX is given by(
c −cai − bi
1 −ai − c

)
.

The characteristic polynomial of ϕX on Bi is fi = λ2 + aiλ+ bi− c2. If we fix Pi, for how
many c’s is fi = Pi − c2 still irreducible? The discriminant of fi is

a2
i − 4(bi − c2) = D + 4c2.

Here D is the discriminant of Pi. Hence fi is reducible iff D + 4c2 is a square in Fq.
Now applying Theorem 5.48 in [39] to the polynomial g(X) = 4X2 +D and noting that
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g(0) = D 6∈ (F∗q)
2 gives that the fraction of c’s in F∗q such that D + 4c2 is a square in Fq

equals
1
2
· q+1
q−1

if −1 is not a square in Fq;
1
2

if −1 is a square in Fq.

This shows that for relatively large q one may expect that fi is irreducible with a prob-
ability of 1

2
. Hence the probability that applying this computation once gives rise to a

decomposition of N is approximately 1 − 1
2

k − 1
2

k ≥ 1
2
, because k ≥ 2. There is one

drawback, which is due to the fact that we chose ϕX in such a special way. E.g., when
N = P1P2 and a2

1 − 4b1 = a2
2 − 4b2, then there is no c for which the described algorithm

will give a decomposition. In a general setting, i.e., where ϕX = c0X + c1τ, ci ∈ B, this
problem disappears as we will see in Section 2.4.

The algorithm which appears from the previous considerations is the following:

Algorithm 2.3.3.

Let N ∈ A be a product of monic irreducible polynomials Pi which have all degree d > 1.

(1) Choose some Drinfeld-module, given by ϕX . We regard ϕX as a linear operator.
Therefore, it is given by a d-tuple a = (a0, . . . , ad−1) with ai ∈ B. Represent ϕX as
a matrix by computing ϕX(1), . . . , ϕX(Xn−1).

(2) Compute the characteristic polynomial f of ϕX .

(3) Compute gd, the product of all the irreducible polynomials of degree d in f , by: For
l = 1 upto d− 1, f ← f/gcd(Xql −X, f).

(4) Finally, compute gcd(gd(ϕX)(1), N).

(5) This either gives a factor of N or one starts again with step 1.

Remark 2.3.4. Note that in step 1. one should not choose the Drinfeld module ϕ of
the form ϕX = X +

∑
i<∞ biτ

di ∈ B{τ}, because this Drinfeld module induces the
same A-action on B as γ does. These Drinfeld modules correspond exactly to d-tuples
(a0, 0, . . . , 0). The other d-tuples correspond to Drinfeld modules which give an A-action
on B different from the one induced by γ.
By Lemma 2.2.2 we see that there exists an M ∈ EndFq B such that we have for its
characteristic polynomial f = gdgr with gd and gr are both non-constant. In this algo-
rithm we consider all Drinfeld modules upto rank d + 1, hence by Proposition 2.2.3 and
Proposition 2.3.1 it will factor N .
Note that there seems no reason to consider only Drinfeld modules up to a rank smaller
than d + 1. E.g., the final remark of Example 2.3.2 shows that considering only rank 1
Drinfeld modules when d = 2 is not enough to factor N .

Remark 2.3.5. In this chapter we consider Algorithm 2.3.3, without looking at fancy
ways of implementing it. One may expect that the complexity of the algorithm will
improve if one takes implementation details into account and changes the algorithm
accordingly. In the following section, we will compute the complexity of the algorithm,
assuming that in steps 1. up to 5. classical methods are being used.
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2.4 Complexity analysis

In this section we give a complexity analysis of the algorithm described in 2.3.3. In the
first part we compute with which probability the algorithm decomposes N in one step;
cf. Proposition 2.4.3. The second part computes the number of multiplications needed
in one step; cf. Proposition 2.4.4.

Lemma 2.4.1. The number of matrices in Md(Fq) with a given characteristic polynomial

g ∈ Fq[X] which is irreducible, monic and of degree d is
∏d−1

i=1 (qd − qi).

Proof. This is a special case of Theorem 2 in [47].

Proposition 2.4.2. Let d > 1. Let δ = 1
q−1

and denote with α the fraction of operators

in Md(Fq) which have an irreducible characteristic polynomial. Then for q ≥ 5

1

d
> α >

1

d
(1− δ)(1− 2δ).

If q � d, then α is approximately 1
d
.

Proof. Let xd = #{monic irreducible polynomials of degree d in Fq[X]}. According
to Lemma 2.4.1 there are (qd − q) · · · (qd − qd−1) matrices with the same irreducible

characteristic polynomial of degree d, hence a fraction α = xd(qd−q)···(qd−qd−1)

qd2
= 1

qd
xdβ

with β = (1 − q1−d) · · · (1 − q−1) < 1 of all matrices has an irreducible characteristic
polynomial.
The well-known estimate 1

d
qd > xd >

1
d
qd(1− q

q−1
q
−1
2
d) ≥ (1− δ), where the latter is true

when d ≥ 2, implies that 1
d
> α > 1

d
β(1− δ).

Now we estimate β. If |x| < 1, then | log(1 + x)| ≤ 1
1−|x| |x|. Because 1 + δ = 1

1− 1
q

, this

estimate implies | log(1 − q−i)| ≤ (1 + δ)q−i for i = 1, . . . , d − 1 and thus | log(β)| ≤
(1 + δ) q

−1−q−d
1−q−1 ≤ (1 + δ)δ.

Also |ex − 1| ≤ |x|
1−|x| , hence |β − 1| ≤ (1+δ)δ

1−(1+δ)δ
≤ 2δ, where the latter inequality is true

when δ ≤ 1
4
, i.e., q ≥ 5.

Proposition 2.4.3. Let α be as in Proposition 2.4.2. Then we may expect that after
1

1−αk−(1−α)k
choices of a Drinfeld module, Algorithm 2.3.3 gives a decomposition of N . If

q � d, this number is approximately dk

dk−(d−1)k−1
.

Proof. The algorithm gives according to Proposition 2.3.1 a decomposition when gd, the
part of the characteristic polynomial f =

∏
i fi of ϕX which consists of all fi’s which are

irreducible, is neither f nor 1. According to Proposition 2.4.2, gd = f with probability
αk, and gd = 1 with probability (1− α)k. If q � d, then α is approximately 1

d
.

Proposition 2.4.4. One step of Algorithm 2.3.3 takes n2 log(q) + dn3 multiplications in
Fq asymptotically. If q � n, then this is asymptotically n2 log(q).

Proof. We count the number of multiplications in Fq in each step of Algorithm 2.3.3;
q � d, hence α is approximately 1

d
.
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(1) To compute the matrix of ϕX one needs to compute ϕX(X i) mod N for i =
0, . . . , n−1, where ϕX =

∑d−1
i=0 aiτ

i. First we compute X iqj in the following standard
way. Computing Xq takes log(q) multiplications in B. So computing the vector
(X iq)n−1

i=0 takes log(q)+n−2 multiplications in B. If we write Xq =
∑n−1

i=0 biX
i with

bi ∈ Fq, then Xq2
=
∑n−1

i=0 biX
iq. Hence computing Xq2

will cost n2 multiplications

in Fq. Thus computing the elements Xq, . . . , Xqd−1
takes (d− 2)n2 multiplications

in Fq.

Finally, we compute ϕX(Xj) by first computing the vector (aiX
qi)d−1

i=0 . Adding the
coefficients of this vector gives ϕX(X). Computing (aiX

qiXqi) = (aiX
2qi)d−1

i=0 gives
ϕX(X2) etc. This takes (d− 1)(n− 1) multiplications in B.
One multiplication in B takes n2 multiplications in Fq, hence we see that this step
is of order O(n2 log(q) + dn3) computations in Fq.

(2) According to [7, p. 55], the Hessenberg algorithm there described will take order
O(n3) multiplications in Fq.

(3) This is just the first step of the Berlekamp algorithm. Computing Xql−X mod f is
done as in step 1., hence this will take asymptotically n2 log(q)+ ln2 multiplications
in Fq, and the gcd of 2 polynomials of degree n and n− 1 will take asymptotically
n2 multiplications in Fq. Hence this does not add anything asymptotically to step
(1).

(4) This will take deg(gd), which is d times the number of irreducible fi’s, matrix
multiplications. Given the fact that α ≈ 1

d
, we expect that deg(gd) = k. To compute

ϕXj(1) we only need to compute the first column of ϕXj , which is ϕX times the first
column of ϕXj−1 . So to compute ϕX(1), . . . , ϕXk(1) takes kn2 multiplications in Fq.
Hence to compute gd(ϕX(1)) takes kn2 + kn multiplications. Hence asymptotically
kn2 in Fq.

This sums asymptotically to n2 log(q) + dn3. Hence if q � n, this sums asymptotically
to n2 log(q).

Remark 2.4.5. Finally, we compare this method to the well-known Cantor-Zassenhaus
algorithm. As they show in their paper [5], the propability of successfully finding a factor
of N in one step of the algorithm is about 1− 21−k, where k is the number of irreducible
factors of N . And one step of their algorithm, using classical methods, is of complexity
O(dn2 + n2 log(q)).
We see that according to Proposition 2.4.3, the probability of finding a factor in one step

is for large q approximately 1 − (d−1)k+1
dk

. In case d is large compared to k, this factor
is approximately k

d
. In this case the proposed algorithm is much worse than Cantor-

Zassenhaus.
If k ≥ d, then 1 − (d−1)k+1

dk
> 1

2
and in fact tends to 1 if k is much larger than d. E.g.,

when d = 2, then we see that 1− (d−1)k+1
dk

= 1− 21−k.
The complexity of one step of the proposed Algorithm 2.3.3 is O(dn3 + n2 log(q)), which
can compete with the complexity of Cantor-Zassenhaus if dn3 is not of a higher order
than n2 log(q).
This means that for q � n and k ≥ d Algorithm 2.3.3 may be expected to be as efficient
as Cantor-Zassenhaus’s algorithm.






