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Abstract

We consider modification of the recourse data, consisting of the second-stage parameters and
the underlying distribution, as an approximation technique for solving two-stage recourse prob-
lems. This approach is applied to several specific classes of recourse problems; in each case,
the resulting recourse problem is much easier to solve.

Modification of recourse data is shown to be the common principle behind the approximations
which were introduced in previous publications.
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1. Introduction

Consider the two-stage recourse model with random right-hand side

min
x

cx + Q(x)

s.t. x ∈ X := {x ∈ R
n1+ : Ax = b},

with recourse function Q,

Q(x) := Eω [v(ω − T x)] , x ∈ R
n1,

and second-stage value function v,

v(s) := min
y

qy

s.t. Wy = s, s ∈ R
m.

y ∈ Y

The distribution of the random right-hand side parameter ω ∈ R
m is assumed to be

known; we will denote its cumulative distribution function (cdf) by F , and its proba-
bility density function (pdf) by f (if it exists). The set Y ⊂ R

n specifies simple bounds
and/or integrality restrictions on the second-stage variables y. The vectors and matrices
c, A, b, T , q, and W , have conformable dimensions.

Obviously, all characteristic difficulties of such a recourse model are captured by the
recourse function Q. Depending on the recourse structure, represented by the triple
(q,W, Y ), and the distribution of ω given by its cdf F , the function Q may or may
not have nice mathematical properties and be relatively easy or very difficult to eval-
uate. For example, if Y specifies integrality restrictions on (some of) the second-stage
variables, the function Q is in general non-convex; it is precisely the convexity which
underlies all efficient algorithms for solving recourse models with continuous variables.

All essential information about a recourse model can therefore be summarized by the
tuple (q,W, Y, F ), which we will call the recourse data.

If a given recourse problem is difficult to solve, a natural approach is to construct an
approximating problem by modifying the recourse data,

(q,W, Y, F ) −→ (
q̄, W̄ , Ȳ , F̄

)
,

such that

min
x∈X

cx + Q̄(x),

where Q̄ is specified by the recourse data (q̄,W̄ , Ȳ , F̄ ), is relatively easy to solve.
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A well-known example of this approach applies to continuous recourse models with
continuously distributed right-hand side vector ω. To avoid the very difficult evaluation
of Q, which amounts to evaluating an m-dimensional integral in this case, discrete
approximations of the distribution of ω can be constructed. For example, the given
instance with (q,W, R

n
+, F ) may be replaced by (q,W, R

n
+, Fl) and/or (q,W, R

n
+, Fu),

where Fl and Fu are discrete distribution functions, yielding lower and upper bounds
of the function Q, respectively. See e.g. the text book [1] for details.

In combination with an algorithm for solving the approximating problem, modification
of the recourse data constitutes an algorithm for solving the original recourse problem.
In this paper we review the application of this conceptual algorithm to three model
types, namely simple integer recourse, complete integer recourse, and multiple simple
(integer) recourse. As we will see, in all cases the modification of the problem data
involves both the distribution of ω as well as the recourse structure (q,W, Y ). In par-
ticular, for all three integer recourse model types, the resulting approximation proves
to be a continuous recourse problem.

2. Simple integer recourse

The simple integer recourse model, introduced in [11], is characterized by the value
function

v(s) := min
y

q+y+ + q−y−

s.t. y+ ≥ s

y− ≥ −s , s ∈ R
m.

y = (y+, y−) ∈ Z
2m
+

Like its continuous recourse counterpart, distinguished by the recourse structure([
q+, q−]

, [Im,−Im] , R
2m
+

)
(1)

where Im is the m-dimensional identity matrix, this value function is separable in s.
Assuming that q+ ≥ 0 and q− ≥ 0,

v(s) =
m∑

i=1

vi(si), s ∈ R
m,

with

vi(si) = q+
i �si�+ + q−

i �si	−,
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where �t�+ := max{0, �t�} and �t	− := max{0,−�t	}, t ∈ R. Consequently, the
simple integer recourse function Q is separable in the tender variables z := T x ∈ R

m,
allowing to restrict the discussion to the one-dimensional case. Thus, for the time being
we assume that s and z are scalar variables, and the one-dimensional recourse function
Q is

Q(z) = q+
Eω

[�ω − z�+] + q−
Eω

[�ω − z	−]
, z ∈ R, (2)

where ω is a scalar random variable now.

Except for the rounding operations in (2), this is the same formula as the well-known
expression for the one-dimensional continuous simple recourse function. Below, this
similarity will be exploited to construct an approximation by modification of the re-
course data: the resulting problem will be of continuous simple recourse type.

As shown in [11], the simple integer recourse function Q is in general non-convex and
even discontinuous in case ω follows a discrete distribution. The following structural
result was derived in [8] (under some technical conditions which are not restrictive in
practice).

Theorem 2.1 The simple integer recourse function Q defined in (2) is convex on R

if and only if ω is a continuous random variable whose pdf f satisfies

f (s) = G(s + 1) − G(s), s ∈ R,

where G is an arbitrary cdf with finite mean value.

In particular, the following special case follows from Theorem 2.1 with G the cdf of a
discrete distribution on α + Z, for arbitrary fixed α ∈ [0, 1).

Corollary 2.1 Let the pdf f of the random variable ω be piecewise constant on
every interval [α + k, α + k + 1), k ∈ Z, for some fixed α ∈ [0, 1). Then the function
Q is convex on R.

Corollary 2.1 underlies a class of convex approximations of the simple integer recourse
function Q. See [7] for further details.

Definition 2.1 Let ω be a random variable with cdf F . Then, for every fixed α ∈
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[0, 1), the random variable ωα with piecewise constant pdf

fα(s) := F(�s�α) − F(�s�α − 1), s ∈ R, (3)

where �t�α := �t − α� + α, t ∈ R, is the round up of t with respect to α + Z, is called
an α-approximation of ω. Analogously, the convex function Qα , defined as

Qα(z) = q+
Eω

[�ωα − z�+] + q−
Eω

[�ωα − z	−]
, z ∈ R,

is called an α-approximation of Q.

For technical reasons, the analysis in [7] is restricted to the case that ω is continuously
distributed. Then the following uniform error bound on the approximation of Q by Qα

holds.

Theorem 2.2 Assume that ω is continuously distributed with a pdf f which is of
bounded variation. Then, for α ∈ [0, 1),

‖Q − Qα‖∞ ≤ q+ + q−

4
|�|f,

where |�|f is the total variation of f .

Since |�|f tends to be small if the variance of the continuous distribution of ω is not
too small, α-approximations provide good convex approximations of Q in practice. For
discrete distributions no such performance guarantee exists, but α-approximations may
perform well in practice. See also the remarks at the end of this section.

So far, we have seen that a particular transformation of the distribution yields a convex
approximation, but the approximating problem is still of the simple integer recourse
type. The following result, obtained in [5], allows a further modification of the recourse
data.

Theorem 2.3 Let ϕ(s), s ∈ R, be a finite non-linear convex function, and let ϕ

have asymptotes with slopes −a1 as s → −∞ and a2 as s → ∞. Then ϕ is a one-
dimensional continuous simple recourse function, given by

ϕ(s) = a1Eξ

[
(ξ − s)+] + a2Eξ

[
(ξ − s)−] + C, s ∈ R,

where C is a known constant and ξ is a random variable with cdf

�(t) = ϕ′+(t) + a1

a1 + a2
, t ∈ R,
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with ϕ′+ the right derivative of the function ϕ.

Application of Theorem 2.3 to any α-approximation of Q yields the following equiva-
lent representation as a continuous simple recourse function.

Corollary 2.2 Choose α ∈ [0, 1). Then the α-approximation Qα satisfies

Qα(z) = q+
Eξα

[
(ξα − z)+] + q−

Eξα

[
(ξα − z)−] + q+q−

q+ + q− , z ∈ R,

where ξα is a discrete random variable with cdf

�α(t) = q+F(�t�α − 1) + q−F(�t�α)

q+ + q− , t ∈ R.

The distribution of ξα follows from the formula for the right derivative of Q as derived
in [11], which for the function Qα reads

(Qα)
′
+ (z) = −q+

∞∑
k=0

fα(z + k) + q−
∞∑

k=0

fα(z − k)

= q+ (
F(�z�α − 1) − 1

) + q−F(�z�α), z ∈ R,

where the second expression follows by substitution of (3).

Returning to the full-dimensional model, we conclude the following. Let WSIR denote
the recourse matrix of the simple integer recourse problem.

Theorem 2.4 The simple integer recourse problem with recourse data( [
q+, q−]

,WSIR, Z
2m
+ , F

)
can be approximated by the continuous simple recourse problem with recourse data( [

q+, q−]
, [Im,−Im] , R

2m
+ ,�α

)
,

where α ∈ [0, 1)m is arbitrary but fixed, and the one-dimensional marginal distribu-
tions of �α follow from those of F as specified in Corollary 2.2.

The optimal value of the latter recourse problem needs to be corrected by a known
constant.
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Together with any algorithm for solving continuous simple recourse problems with
discretely distributed right-hand side vector, this modification of the recourse data pro-
vides an algorithm for approximately solving simple integer recourse problems. There
exist several very efficient special purpose algorithms for continuous simple recourse
models, see e.g. [12] or [1].

We conclude the discussion on simple integer recourse models with a short remark on
the case with discrete distributions. As shown in [6], there exists a fully polynomial
algorithm for constructing the convex hull (pointwise largest convex minorant) of the
recourse function Q in this case, for which Theorem 2.3 yields the equivalent continu-
ous simple recourse formulation; also in this case the resulting distribution is discrete.
Thus, analogous to the case with continuous distributions, modification of the recourse
data is the main ingredient of an approximation algorithm for simple integer recourse
models with discretely distributed right-hand side vector.

3. Complete integer recourse

Next we consider the complete integer recourse model, which has second-stage value
function

v(s) := min
y

qy

s.t. Wy ≥ s , s ∈ R
m,

y ∈ Z
n
+

where the recourse matrix W is such that v(s) < +∞ for all s ∈ R
m. Note that we use

inequalities here to avoid almost sure infeasibility; of course, using slack variables the
problem may be stated with equality constraints as in the introduction.

Following the exposition in [15], we will show that also for this general model type
convex approximations can be obtained by modification of the recourse data. Again,
the approximating recourse problem obtained in this way has continuous second-stage
variables and a discretely distributed right-hand side vector.

Throughout, we assume that the recourse is sufficiently expensive so that v is finite
on R

m. Since we also assume that Eω [|ωi|] < ∞, i = 1, . . . , m, it follows that the
complete integer recourse function Q(x) = Eω [v(ω − T x)] is finite for all x ∈ R

n1 .
Finally, we assume that all elements of the recourse matrix W are integral (or rational,
so that integrality may be obtained by scaling).
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We start out by making the additional assumption that the matrix W is totally uni-
modular (TU). As we will see, this allows to construct the convex hull of the recourse
function Q. At the end of this section, we discuss the corresponding results for the
general case.

Using that W is a TU matrix, and, moreover, that the right-hand side s ∈ R
m can be

replaced by �s� since Wy is integral for any y ∈ Z
n, it follows from strong LP duality

that

v(s) = max
λ

λ�s�
s.t. λW ≤ q, λ ∈ R

m
+.

(4)

Since v is finite, this dual feasible set is a nonempty bounded polyhedron, so that

v(s) = max
k=1,...,K

λk�s�, s ∈ R
m,

where the nonnegative vectors λk, k = 1, . . . , K, denote the finitely many extreme
points of this set.

Thus we see that v is the pointwise maximum of finitely many round up functions
λk�s�, s ∈ R

m. It turns out that expected round up functions, defined for arbitrary fixed
λ ∈ R

m
+ as

R(z) := λEω [�ω − z�] , z ∈ R
m,

provide the key to constructing the convex hull of the recourse function Q. As before,
z can be interpreted as a vector of tender variables.

Consider the case that m = 1 and λ = 1. Then by straightforward computation we find
that

R(z) = Eω

[�ω − z�+] − Eω

[�ω − (z − 1)	−]
, z ∈ R,

at least if ω is continuously distributed. The obvious similarity to the one-dimensional
simple integer recourse function (2) correctly suggests that this function R is convex
if ω satisfies the assumptions of Corollary 2.1. Indeed, the analogous result can be
shown for the general m-dimensional expected round up function, allowing to define
α-approximations of this function, similar to the simple integer recourse case.

Definition 3.1 Let ω ∈ R
m be a random vector with arbitrary continuous or discrete

distribution, and choose α = (α1, . . . , αm) ∈ [0, 1)m. Define the α-approximation ωα
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as the random vector with joint pdf fα that is constant on every hypercube

Ck
α :=

m∏
i=1

(αi + ki − 1, αi + ki], k ∈ Z
m,

and such that Pr{ωα ∈ Ck
α} = Pr{ω ∈ Ck

α}, k ∈ Z
m.

Analogously, the convex function Rα defined as

Rα(z) := λEωα [�ωα − z�] , z ∈ R
m,

is called an α-approximation of R.

Writing, for z ∈ R
m,

Rα(z) =
m∑

i=1

λiEωα [�(ωα)i − zi�]

=
m∑

i=1

λi

(
Eωα

[�(ωα)i − zi�+] − Eωα

[�(ωα)i − (zi − 1)	−])
,

and applying Corollary 2.2 to each of the individual terms, we obtain the following
equivalent representation of Rα.

Lemma 3.1 For an arbitrary but fixed α ∈ [0, 1)m, let ωα be an α-approximation of
the random vector ω. Then

Rα(z) = λEξα

[
ξα − z

] = λ (µα − z) , z ∈ R
m,

where ξα = �ω�α = �ω − α� + α is a discrete random vector with mean value µα and
support in α + Z

m, with

Pr{ξα = α + k} = Pr{ω ∈ Ck
α}, k ∈ Z

m.

Hence, the function Rα is affine with gradient −λ.

It is not difficult to see that Rα(z) = R(z) for all z ∈ α + Z
m, and that Rα is neither a

lower bound nor an upper bound for R in general. However, observing that R(z + k) =
R(z) − λk, k ∈ Z

m, for every z, we see that R(z) + λz is a periodic function, which
repeats itself on every set Ck

α. Hence, defining

α� ∈ argmin
{
R(z) + λz : z ∈ [0, 1)m

}
, (5)
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the affine function Rα� is a lower bound for R, which is sharp at every z ∈ α� + Z
m. It

follows that Rα� is the convex hull of R. As shown in [15], this optimal shift parameter
α� can be computed in almost all practically relevant cases.

Now we are ready to state the main results of this section, namely on convex approxi-
mations of the recourse function Q and the corresponding modifications of the recourse
data. Although no explicit reference is made to results for the function R above, they
are stated in terms of optimal α-approximations and the equivalent representations as
introduced for the latter function. The formal proofs (see [15]) which are omitted here,
do rely extensively on the above results.

Theorem 3.1 Consider the integer recourse expected value function Q, defined as

Q(x) = Eω

[
min

y
qy : Wy ≥ ω − T x, y ∈ Z

n
+

]
, x ∈ R

n1, (6)

and the continuous recourse expected value function Qα� , defined as

Qα�(x) = Eξα�

[
min

y
qy : Wy ≥ ξα� − T x, y ∈ R

n
+

]
, x ∈ R

n1 , (7)

with α� and ξα�

as defined in (5) and Lemma 3.1.

Under the assumptions stated above, in particular that W is totally unimodular, the
function Qα� is the convex hull of Q if the matrix T is of full row rank. If rank T < m,
then Qα� is a lower bound for Q.

The condition on the row rank of the matrix T follows from the results in [4].

Next we drop the assumption that W is a TU matrix (but still assume that it is integral).
In this case (4) holds only with inequality, so that Qα� still provides a lower bound for
the recourse function Q, but it will not be equal to the convex hull. However, in the
sense of Theorem 3.2 below, Qα� is a strictly better convex approximation than QLP

which is obtained using the LP relaxation of the second-stage problem,

QLP(x) := Eω

[
min

y

{
qy : Wy ≥ ω − T x, y ∈ R

n
+
}]

, x ∈ R
n1 . (8)

Theorem 3.2 Consider the functions Qα� and QLP, defined by (7) and (8) respec-
tively, which both are convex lower bounds for the integer recourse expected value
function Q, defined by (6).

(a) Qα� ≥ QLP.
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(b) Assume

(i) q ≥ 0, so that 0 is a trivial lower bound for v and Q;

(ii) there exists a subset L of Z
m such that the distribution of ω with support 	

satisfies 	 ⊂ ⋃
l∈L {ω : ω ≤ α� + l} and Pr{ω < α� + l

∣∣ ω ∈ Cl
α� } > 0

for all l ∈ L.

Then the function Qα� is a strictly better convex approximation of Q than QLP,
in the sense that Q(x) > 0 implies Qα�(x) > QLP(x).

For example, condition (ii) of Theorem 3.2 is satisfied if ω follows a non-degenerated
continuous distribution.

Summarizing, we propose the following modification of the recourse data in order to
approximately solve complete integer recourse models.

Theorem 3.3 The complete integer recourse problem with recourse data(
q,W, Z

n
+, F

)
can be approximated by the continuous complete recourse problem with recourse data(

q,W, R
n
+,�α�

)
,

where α� ∈ [0, 1)m is defined by (5), and �α� is the cdf of the discrete random vector
ξα�

as defined in Lemma 3.1.

In case the recourse matrix W is TU, the resulting continuous recourse problem may be
solved to obtain an approximate solution (exact if it belongs to the interior of X) of the
original model. In the general case, the approximation will often not be good enough
for this purpose; instead, it may be used to provide a lower bound as used by several
existing algorithms for complete integer recourse problems such as integer L-shaped
[10], stochastic branch-and-bound [13], and structured enumeration [14] (see [9] for
a survey). Not only does our approach yield a better approximation in the sense of
Theorem 3.2, but because of the discrete distribution of ξα�

it is also easier to compute,
in particular if ω is continuously distributed.
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4. Multiple simple recourse

The third class of models to which we apply our recourse data modification approach
consists of multiple simple recourse models, both with continuous and integer second-
stage variables. The continuous version of this model was introduced in [3] to allow
for piecewise linear penalty costs for shortages and surpluses with respect to individual
constraints. Thus, it is a generalization of the well-known simple recourse model, which
assigns linear penalty costs to such deviations.

Using recourse data modification, we will show that continuous multiple simple re-
course (MSR) models can be restated as simple recourse (SR) models. Consequently,
continuous MSR models can be solved using the available efficient algorithms for SR
models. Exploiting the results of Section 2, similar results hold for α-approximations
of integer MSR models. For motivating examples, proofs, and further details, we refer
to [16].

Like in the simple recourse case, the value function of the MSR model is separable.
To avoid unnecessary notational burden, we restrict the detailed presentation to the
one-dimensional case.

For s ∈ R, the one-dimensional value function of the continuous MSR model is defined
as

v(s) := min
y

K∑
k=1

(
q+

k y+
k + q−

k y−
k

)

s.t.
K∑

k=1

y+
k −

K∑
k=1

y−
k = s

y+
k ≤ uk − uk−1,

y−
k ≤ lk − lk−1,

k = 1, . . . , K − 1

y = (y+, y−) ∈ R
2K
+

with u0 = l0 = 0 and

0 ≤ q+
1 ≤ . . . ≤ q+

K−1 ≤ q+
K

0 ≤ u1 ≤ . . . ≤ uK−1

0 ≤ q−
1 ≤ . . . ≤ q−

K−1 ≤ q−
K

0 ≤ l1 ≤ . . . ≤ lK−1

(9)
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It easy to see that this function v is piecewise linear, and that it is convex due to the
conditions on the cost coefficients.

For later reference, we note that the recourse matrix WMSR of the m-dimensional MSR
second-stage problem is given by

WMSR =




e1 −e1

e2 −e2
. . .

. . .

em −em


 ,

where ei is a Ki-vector of ones, i = 1, . . . , m. The feasible set of recourse actions is

YMSR =
m∏

i=1

{
(y+

i , y−
i ) ∈ R

2Ki+ : y+
ik ≤ uik − ui,k−1,

y−
ik ≤ lik − li,k−1,

k = 1, . . . , Ki − 1

}
,

and the corresponding recourse cost vector

qMSR = (
q+

11, q
+
12, . . . , q

+
mKm

, q−
11, q

−
12, . . . , q

−
mKm

)
satisfies conditions as specified in (9). The assumption that y+

i and y−
i have the same

number of components Ki , i = 1, . . . , m, is without loss of generality.

Note that for Ki = 1, i = 1, . . . , m, the MSR recourse structure reduces to the SR
recourse structure (1), confirming that the MSR model is a generalization of the SR
model.

Returning to the one-dimensional case, the following closed form for the MSR value
function can be derived by straightforward computation.

v(s) =
K−1∑
k=0

[ (
q+

k+1 − q+
k

)
(s − uk)

+ + (
q−

k+1 − q−
k

)
(s + lk)

−
]
, s ∈ R,

where we conveniently define q+
0 = q−

0 = 0. Taking the expectation of v(ω−z), where
z denotes a tender variable as before, we find that for z ∈ R

Q(z) =
K−1∑
k=0

[ (
q+

k+1 − q+
k

)
G(z + uk) + (

q−
k+1 − q−

k

)
H(z − lk)

]
, (10)

with, for s ∈ R,

G(s) := Eω

[
(ω − s)+]

and H(s) := Eω

[
(ω − s)−]

,

is a closed form for the (one-dimensional) MSR expected value function.
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Properties of the expected surplus function G and the expected shortage function H

are well known from the analysis of SR models. In particular, for s ∈ R,

G′
+(s) := F(s) − 1 and H ′

+(s) := F(s),

where F is the cdf of the random variable ω. Moreover, assuming that ω has mean
value µ, the function G(s) has asymptotes µ − s as s → −∞ and 0 as s → ∞; H(s)

has asymptotes 0 as s → −∞ and s − µ as s → ∞. Using this information, we apply
Theorem 2.3 to obtain the following equivalent representation of the convex function
Q.

Corollary 4.1 Consider the one-dimensional MSR function Q, given in closed form
by (10). Then

Q(z) = q+
KEξ

[
(ξ − z)+] + q−

KEξ

[
(ξ − z)−] − C, z ∈ R,

where ξ is a random variable with cdf V ,

V (t) =

K−1∑
k=0

[ (
q+

k+1 − q+
k

)
F(t + uk) + (

q−
k+1 − q−

k

)
F(t − lk)

]
q+

K + q−
K

, t ∈ R,

and F is the cdf of ω. The constant C is given by

C =
q+

K

K−1∑
k=1

(
q−

k+1 − q−
k

)
lk + q−

K

K−1∑
k=1

(
q+

k+1 − q+
k

)
uk

q+
K + q−

K

.

Thus, the MSR function Q can be represented as an SR function, whose underlying
distribution is explicitly known in terms of the problem parameters. In particular, if the
random variable ω in the MSR formulation is discrete, then so is the random variable
ξ in the SR representation. In this case the distribution of ξ can be specified directly,
without reference to the distribution function of ω, see [16].

We summarize our results on continuous MSR models in the following theorem, stated
in terms of the full-dimensional problem.

Theorem 4.1 The multiple simple recourse problem with recourse data(
qMSR,WMSR, YMSR, F

)
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is equivalent to the simple recourse problem with recourse data(
[q+

SR, q−
SR], [Im,−Im], R

2m
+ , V

)
,

where q+
SR := (q+

1K1
, . . . , q+

mKm
), q−

SR := (q−
1K1

, . . . , q−
mKm

), and the one-dimensional
marginal distributions of V follow from those of F as specified in Corollary 4.1.

The optimal value of the latter problem needs to be corrected by a known constant.

The implied algorithm for solving MSR problems, consisting of this modification of
the recourse data and subsequently solving the resulting SR problem, is implemented
as Mscr2Scr 1.0 (Multiple simple continuous recourse to Simple continuous recourse,
M.H. van der Vlerk and J. Mayer, 2001) in the model management system SLP-IOR
[2]. The current version of Mscr2Scr is restricted to problems with discrete random
variables.

Finally, we consider modification of the recourse data for the MSR model with inte-
ger second-stage variables, which we will denote as multiple simple integer recourse
(MSIR) with recourse structure (qMSIR,WMSIR, YMSIR). As before, we first concentrate
on the one-dimensional case.

For s ∈ R, the one-dimensional MSIR value function is defined as

v(s) := min
y

K∑
k=1

(
q+

k y+
k + q−

k y−
k

)

s.t.
K∑

k=1

y+
k ≥ s,

K∑
k=1

y−
k ≥ −s

y+
k ≤ uk − uk−1,

y−
k ≤ lk − lk−1,

k = 1, . . . , K − 1

y = (y+, y−) ∈ Z
2K
+

with u0 = l0 = 0, integer vectors u and l, and the elements of q+, u, q−, and l satisfying
the same monotonicity assumptions (9) as in the continuous recourse setting. Observe
that if K = 1, then v equals the simple integer recourse value function.

Like for the continuous MSR model, it is easy to obtain a closed form expression for
the MSIR value function v. Subsequently, taking the expectation of v(ω − z) yields the
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following expression for the (one-dimensional) MSIR function Q: for z ∈ R,

Q(z) =
K−1∑
k=0

[ (
q+

k+1 − q+
k

)G(z + uk) + (
q−

k+1 − q−
k

)H(z − lk)
]
,

where q+
0 = q−

0 = 0 and

G(z) := Eω

[�ω − z�+]
and H(z) := Eω

[�ω − z	−]
.

On replacing G and H by their α-approximations for any fixed α ∈ [0, 1), see Defini-
tion 2.1, we obtain an α-approximation Qα of the MSIR function Q. For z ∈ R,

Qα(z) :=
K−1∑
k=0

[ (
q+

k+1 − q+
k

)Gα(z + uk) + (
q−

k+1 − q−
k

)Hα(z − lk)
]
. (11)

Such convex approximations Qα can be defined for any distribution of ω; however, a
non-trivial error bound only holds if the distribution is continuous. Theorem 2.3 yields
the following equivalent representation of Qα .

Corollary 4.2 For a fixed but arbitrary α ∈ [0, 1), consider the α-approxima-tion
Qα of the MSIR expected value function Q as defined in (11). Then

Qα(z) = q+
KEξα

[
(ξα − z)+] + q−

KEξα

[
(ξα − z)−] + D, z ∈ R,

where ξα is a random variable with cdf Vα: for t ∈ R,

Vα(t) =

K−1∑
k=0

[ (
q+

k+1 − q+
k

)
F(�t	α + uk) + (

q−
k+1 − q−

k

)
F(�t	α + 1 − lk)

]
q+

K + q−
K

,

where F is the cdf of ω and �t	α := �t − α	 + α is the round down of t with respect
to α + Z. That is, ξα is discretely distributed, with support contained in α + Z and
probabilities

Pr{ξα = α + j} = 1

q+
K + q−

K

K−1∑
k=0

[ (
q+

k+1 − q+
k

)
Pr{ω ∈ 	j

α + uk}

+ (
q−

k+1 − q−
k

)
Pr{ω ∈ 	j+1

α − lk}
]
, j ∈ Z,

where 	j
α := (α + j − 1, α + j ].
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The constant D is given by

D = q+
K q−

K

q+
K + q−

K

− C,

where C is the constant given in Corollary 4.1.

The implications for the full-dimensional MSIR model can be summarized as follows.

Theorem 4.2 The multiple simple integer recourse model with recourse data(
qMSIR,WMSIR, YMSIR, F

)
can be approximated by the continuous simple recourse problem with recourse data(

[q+
SR, q−

SR], [Im,−Im], R
2m
+ , Vα

)
,

where α ∈ [0, 1)m is arbitrary but fixed, and the one-dimensional marginal distribu-
tions of Vα follow from those of F as specified in Corollary 4.2.

The optimal value of the latter recourse problem needs to be corrected by a known
constant.

Thus, to approximately solve an MSIR problem, it suffices to solve an explicitly given
continuous simple recourse problem with discretely distributed right-hand side param-
eters.

5. Summary and concluding remarks

We have shown that modification of recourse data is a fruitful approach, at least for
the three classes of recourse models which we considered. Indeed, it allows integer
versions of (multiple) simple and complete recourse models to be approximated by
their continuous recourse counterparts, simply by applying a suitable transformation to
the underlying distribution of the random right-hand side parameters. In the same way,
continuous multiple simple recourse models are reduced to ordinary simple recourse
models.

This paper stresses the obvious fact that there are two components which above all
determine how hard a given recourse problem is: the recourse structure, and the char-
acteristics of the underlying distribution. For example, integrality restrictions and con-
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tinuous distributions are both complicating factors in general. However, as we have
seen, if the recourse structure and the distribution harmonize with each other, then the
corresponding recourse problem turns out to be ‘nice’ after all. Hence, the potential
power of the concept of recourse data modification is that it focuses on the interaction
of the recourse data constituents.

In future research we will investigate the use of recourse data modification for spe-
cific (integer) recourse models, also in the multistage setting. Moreover, initial results
suggest that a similar approach is suitable to obtain approximations of certain chance-
constrained problems.
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