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Abstract: Due to its complexity, the dynamics of matrix converters are usually neglected in controller
design. However, increasing demands on reduced harmonic generation and higher bandwidths makes it
necessary to study large-signal dynamics. A unified methodology that considers matrix converters, includ-
ing input and output filters, as gradient systems is presented.

1 Motivation

Matrix converters are complex hybrid devices, which are becoming ubiquitous in many large scale indus-
trial energy conversion applications. In the last decade, considerable research effort has been devoted to
the modelling, analysis and control of matrix converters, see for instance [1, 3, 4, 8, 11, 12, 14] or [13]
for some recent results. Due to their high complexity, the dynamic behavior is typically neglected at the
controller design stage and usually only the (quasi-)static behavior is concerned. However, since the in-
creasing demands on harmonic generation and EMI (ElectroMagnetic Interference) requirements, a matrix
converter is usually preceded by an input filter and connected to the load via an output filter.

From practical applications it is well-known that the inclusion of filters can cause undesirable phe-
nomena, like oscillations and power reflections during start-up and transient conditions. These filters also
seriously restrict the achievable bandwidth of the overall system. Another problem is the phase shift,
caused by the input filter, between the input currents and voltages, which varies with the load and with the
magnitude of the input voltages. To overcome the aforementioned stability problems and to achieve unity
power factor operation, it is necessary to incorporate the dynamics of the filters in the control schemes.
Therefore a thorough understanding of the available matrix converter topologies as a system is required
and one must be able to analyze behavior like stability and transient response.

The objective of this paper is to present a unified method to model the dynamics of a large family of
matrix converters including passive filter elements, like capacitors, inductors and (non-ideal) transformers.
This model can then be used to analyze the dynamical behavior and to design feedback controllers. The
key observation here is that the semiconductor power switching devices (SPSD’s) of the matrix converter
circuit can be thought of as a conductive circuit withα + β external ports, whereα represents the number
of input terminals andβ the number of output terminals, to which an arbitrary number of (multi-port)
inductors and/or capacitors is attached, see Figure 1.

In this paper we will show that the circuit of Figure 1 establishes agradientsystem, or more specifically,
a Brayton-Mosercircuit [2, 10], and, if it is well-controlled, forms a prototype of a high-efficient non-
oscillatory circuit with a dissipative characteristic. This is naturally formalized by requiring the existence
of a potential function that is decreasing along the trajectories of the currents and voltages in the circuit if
no external energy is supplied. Consequently, the form of the equations describing the circuit is basically
as follows [2]:

ż = Q−1(z)
∂P

∂z
(z, Φ), (1)
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Figure 1: General structure of aα× β matrix converter with passive filter elements

wherez represents the capacitor voltages and inductor currents, respectively,Φ represents the input and
output phase (port) currents and voltages whileQ(z) contains the values of the (possibly nonlinear) filter
inductors and capacitors. The scalar functionP (z, Φ) is called themixed-potentialfunction of the circuit
and consist of the power related to the characteristics of the conductances (SPSD’s) and the power flows at
input and output terminals. One of the main advantages is that in this way we have a compact representation
of the circuit dynamics, while complicated functional relations of the SPSD’s can be easily included in the
definition of the conductances.

Due to the switching characteristics, the dynamics of a matrix converter are highly nonlinear. In general,
the question of the stability of an equilibrium solution can be studied by two methods. One is the standard
method of investigating the structure of the variational equations by linearizing the dynamics of equation
(1). In this paper we present nonlinear Lyapunov-like stability criteria to ensure stability of the converter
in the presence of input and output filters using the functionsQ(z) andP (z, Φ). A major advantage of
the proposed method is that the dynamics do not have to be linearized to investigate stability. Besides the
fact that the proposed method yieldslarge-signalresults, cumbersome calculations to obtain the linearized
models are avoided.

2 Modelling Procedure

Consider the general basic topology of the matrix converter circuit depicted in Figure 2. The SPSD’s in the
circuit are represented by (possibly nonlinear) two-state controllable conductancesGj,k = Gj,k(·).1 We
assume that the power flow can be conducted in both directions and that the state transition can, though
smoothly, take place in an arbitrary time instant, i.e., the SPSD’s can be smoothly switched ON and OFF
arbitrarily fast. The state-transition of the SPSD’s can be described as follows:

Gj,k =

{
G1

j,k (high), i.e., switch is ON

G0
j,k (low), i.e., switch is OFF.

(2)

2.1 Switching Surface

From a circuit theoretic point of view, the matrix matrix converter may be considered as an(α+β)-portG-
circuit2. In general, there existα+β relations between the2(α+β) port variables,iγ = col(iγ1 , . . . , iγγ ) ∈
Jγ and vγ = col(vγ1 , . . . , vγγ ) ∈ Vγ with γ ∈ {α, β}, such thatα + β of them can be considered
independent. Geometrically speaking, this means that that in the2(α + β)-dimensional spaceS = Jα ×
Jβ × Vα × Vβ we have an(α + β)-dimensional subspaceS′ ⊂ S, referred to as theswitching surface,
which is characteristic for the external behavior at the ports. If the voltages are prescribed (e.g. the ports
are terminated by voltage sources), the relations betweeniγ andvγ are determined by [2]

iγ =
∂F ∗

∂vγ
(vα, vβ), (3)

1By Gj,k(·) we denote thatGj,k depends on yet to be defined variables ‘·’(via control). For example:Gj,k = Gj,k(t).
2The magnitude of theα + β voltages are defined with respect the an arbitrary reference voltage and form(α + β) ports relative

to this reference.
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Figure 2: Basic topology of anα× β matrix converter. The SPSD’s are modelled as two-state controllable
conductancesGj,k.

where thevoltage potentialF ∗(vα, vβ) : Vα × Vβ → R is a scalar function, describing the switching
surfaceS′. In case the conductances do not depend onvα and/orvβ , this function is a quadratic form given
by F ∗(vα, vβ) = 1

2v>α Gααvα + 1
2v>β Gββvβ + v>α Gαβvβ , in whichGαα andGββ are diagonal matrices of

the form

Gαα =
β∑

j=1




G1,j 0 · · · 0
0 G2,j · · · 0
...

...
. . .

...
0 0 · · · Gα,j


 andGββ =

α∑

k=1




Gk,1 0 · · · 0
0 Gk,2 · · · 0
...

...
. . .

...
0 0 · · · Gk,β


 ,

respectively, whileGαβ = G>βα is a matrix of the form

Gαβ =




G1,1 G1,2 · · · G1,β

G2,1 G2,2 · · · G2,β

...
...

. . .
...

Gα,1 Gα,2 · · · Gα,β


 .

Similarly, if the current are prescribed (e.g. the ports are terminated by current sources), we have that

vγ =
∂F

∂iγ
(iα, iβ), (4)

where the current potentialF (iα, iβ) is again a scalar function, defined byF + F ∗ = i>α vα + i>β vβ . The
latter equality represents nothing else than a generalized∆−Y (or Legendre) transformation. Hence, (3)
and (4) describe the same surfaceS′ and they can be considered as transformations which are inverse to
each other. Indeed, in case the switching surface is described using the current potential, it is easily checked
that the conductances in Figure 2 act as resistancesRj,k = G−1

j,k. Notice thatF + F ∗ is precisely the total
power dissipated in the SPSD’s, while in the linear caseF ∗ = F equals half the dissipated power, see also
Figure 3. According to the definitions introduced in [10], we may regard the matrix converter behavior
described by (3) or (4) as a memoryless (static)gradientsystem.

2.2 Inclusion of Passive Filter Elements

In the previous subsection we have shown that the behavior of anα × β matrix converter topology can
be considered as a static gradient system exposingα + β free ports. In a practical situation the matrix
converter is usually preceded by passive filter elements, like inductors, capacitors and resistors, to meet
the demands on harmonic generation and EMI (ElectroMagnetic Interference) requirements. As already
argued in Section 1, under certain conditions on the (filter) element values, a gradient system forms a
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Figure 3: Examples of conductance curves of the SPSD’s: (a) smooth nonlinear characteristic, (b) linear
characteristic. The total dissipated power in both cases is equal toF + F ∗(= vi), while in the linear case,
F = F ∗(= 1

2vi).

prototype of a non-oscillatory dissipative system and its structure can be advantageously used to investigate
qualitative properties, like stability and transient behavior. For that reason we are interested to extend the
ideas outlined in the previous subsection to arrive at a gradient system description of a matrix converter
including arbitrary filter structures.

A very nice example of a particular class of (dynamical) gradient systems are electrical circuits that
can be described by the Brayton-Moser equations [2]. The basic idea is to consider a R(G)LC circuit as
a resistive (resp. conductive) circuit with an arbitrary number of free ports to which either a capacitor or
an inductor is attached. In the following subsection it is our interest to translate this idea to the matrix
converter described by either (3) or (4). The inclusion of filter elements then simply follow by terminating
the free ports by either capacitors or inductors. The same holds for the inclusion of voltage (resp. current)
sources.

First, we will consider a matrix converter having its ports terminated by capacitors and current sources
only. Secondly, its dual is presented (i.e., the matrix converter including inductors and voltage sources
only). Finally, the two separate models are combined to obtain a description of a matrix converter with
general input and output filters.

2.2.1 Current-Mode Operation

Suppose that the ‘α-side’ of the matrix converter is terminated byα (possibly nonlinear) capacitors, cap-
tured by theα × α matrix Cα, and that the ‘β-side’ is terminated by independent current sourcesIβ . The
resulting circuit topology is depicted in left-hand scheme of Figure 4. Consequently, the corresponding
voltages associated with the capacitors are then given byvα. The resulting converter can then be con-
sidered as a multi-phasecurrent source inverter[3]. Furthermore, the equation describing the dynamical
behavior of the converter using the voltage potential functionF ∗ are determined by

Cα(vα)
dvα

dt
= −∂F ∗

∂vα
(vα, vβ) + Iα, (5)

whereIα represents the auxiliary currents, which we will use later on to interconnect the circuit with
passive elements and sources. Notice that the ‘β-side’ port voltagesvβ can be written in terms of the
current sourcesiβ = Iβ andvα asvβ = v̂β(vα, Iβ) = G−1

ββIβ − G−1
ββGβαvα, which yields after some

simple calculations thatF ∗(vα, vβ)|vβ=v̂β(vα,Iβ) = F ∗(vα, Iβ), with

F ∗(vα, Iβ) = 1
2v>α

[
Gαα −G>βαG−1

ββGβα

]
vα︸ ︷︷ ︸

F∗d (vα)

+ v>α GαβG−1
ββIβ︸ ︷︷ ︸

F∗e (vα,Iβ)

.

The latter function constitutes the characteristic of the circuit defined on the switching surfaceS′. Further-
more, if we split the voltage potential in two parts, a dissipative partF ∗d (vα) and an externally supplied
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Figure 4: Matrix converter with passive filter elements: (left) current-mode topology; (right) voltage-mode
topology.

partF ∗e (vα, Iβ), we may rewrite (5) as

Cα(vα)
dvα

dt
= − ∂

∂vα
[F ∗d (vα) + F ∗e (vα, Iβ)] + Iα

= −∂F ∗d
∂vα

(vα)−GαβG−1
ββIβ + Iα.

(6)

The key motivation of equating the converter’s dynamic behavior in the form (6) is that, after pre-
multiplication with v̇>α , we can advantageously use the fact that the resulting equation yieldsḞ ∗d (vα) =
v̇>α [Iα−GαβG−1

ββIβ ]− v̇>α Cα(vα)v̇α, which constitutes the (reactive) power-balance of the circuit. Hence,
if Cα(vα) ≥ 0 then (6) obviously satisfies the inequality

Ḟ ∗d (vα) ≤
(

dvα

dt

)> [
Iα −GαβG−1

ββIβ

]
. (7)

Following some recent ideas [2] and [6], we may conclude that if alsoF ∗d (vα) ≥ 0, the converter defines a
passive system with supply ratev̇>α [Iα −GαβG−1

ββIβ ] and storage (Lyapunov) functionF ∗d (vα). The latter
case suggests that every trajectory of (6) tends to (one of) the periodical equilibrium orbitsvα = v?

α as
t →∞.

2.2.2 Voltage-Mode Operation

Along the same lines as Subsection 2.2.1, we will consider the case that the ‘β-side’ of the matrix converter
is terminated byβ (possibly nonlinear) inductors, captured by theβ×β matrixLβ , and that the ‘α-side’ is
terminated by independent voltage sourcesVα. The resulting converter, depicted in the right-hand scheme
of Figure 4, can now be considered as a multi-phasevoltage source inverter[3] and its dynamic behavior
is described by the equation

−Lβ(iβ)
diβ
dt

=
∂Fd

∂iβ
(iβ) + G−1

ββGβαVα − Vβ , (8)

whereVβ represents the auxiliary voltages, while the dissipative part of the current potential is given by
Fd(iβ) = 1

2 i>β G−1
ββ iβ . Notice that (8) precisely presents the dual of (6). Hence, in a similar fashion as in

Subsection 2.2.1, ifLβ(iβ) ≥ 0 then (8) satisfies (compare with (7))

Ḟd(iβ) ≤
(

diβ
dt

)> [
Vβ −G−1

ββGβαVα

]
(9)

which, under the condition thatFd(iβ) ≥ 0, suggests that every trajectory of (8) tends to (one of) the
periodical equilibrium orbitsiβ = i?β ast →∞. We are now ready to present the complete Brayton-Moser
model of the matrix converter with arbitrary input and output filter circuits.
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2.3 The Complete Model

Consider again that the ‘α-side’ of the matrix converter is terminated byα capacitors, captured by the
α × α matrix Cα, and that the ‘β-side’ is terminated byβ inductors, captured by theβ × β matrix Lβ .
The corresponding voltages associated with the capacitors are given byvα, while the corresponding current
associated with the inductors areiβ . Hence, if we takevα andiβ as the independent variables, then, by
using the relations (6) and (8), the equations describing the dynamical behavior of the converter should
read as

Cα(vα)
dvα

dt
= −∂F ∗d

∂vα
(vα) + GαβG−1

ββ iβ + Iα (10)

−Lβ(iβ)
diβ
dt

=
∂Fd

∂iβ
(iβ) + G−1

ββGβαvα − Vβ , (11)

where againIα andVβ represent the auxiliary currents and voltages, respectively. Notice that the inter-
connection of the two basic topologies (6) and (8) is realized by the termsGαβG−1

ββ iβ andG−1
ββGβαvα,

respectively. Next, we are interested in writing the latter equations in a similar form as (1), using a single
potential function. To do this, we proceed as follows. First, recall that bothF ∗d (vα) andFd(iβ) represent
a measure for the power dissipated in the SPSD’s, which in case of linear SPSD’s both represent half the
dissipated power. Secondly, it is recognized that the (workless) power due to the interconnection of (6)
and (8) is given byv>α GαβG−1

ββ iβ . This immediately suggests that if we combine the latter properties and
define a functionP : S′ → R of the form

P (vα, iβ) = Fd(iβ)− F ∗d (vα) + i>β G−1
ββGβαvα, (12)

equations (10) and (11) can be written as

Cα(vα)
dvα

dt
=

∂P

∂vα
(vα, iβ) + Iα and − Lα(iβ)

diβ
dt

=
∂P

∂iβ
(vα, iβ)− Vβ . (13)

The functionP (vα, iβ) represents themixed-potentialfunction describing the total characteristic of the
circuit [2]. For ease of notation, (13) can be written in the following compact matrix form

ż = Q−1(z)
∂P

∂z
(z)−Q−1(z)Φ. (14)

Here we have definedz = col(zα, zβ), with zα = vα andzβ = iβ , Q(z) = diag(Cα(vα),−Lβ(iβ)),
while Φ = col(−Iα, Vβ) again represent the external ports of the circuit. Equation (14) is slightly different
from (1) in the sense that we excluded the external sources from the mixed-potential function. This in
order to be able to draw similar conclusions based on the (reactive) power-balance as in Subsection 2.2.1
and 2.2.2. Notice that the power at the external ports equalsΦ>z and thatP (z) has the units of power.

In practical applications, the input capacitors are usually preceded by additional passive filter elements,
whereas the output inductors are connected to additional passive filter elements followed by the load. From
a topological point of view, inclusion of additional elements can be viewed as a standard interconnection.
To see this, letu = col(uα, uβ) andy = col(yα, yβ) represent the input and output signals of the additional
input filter (connected to the ‘α-side’ of the converter) and output filter (connected to the ‘β-side’ of the
converter) sub-circuits, respectively. Furthermore, denote the additional mixed-potential byPfil(z̃), where
z̃ = col(z̃α, z̃β) denotes the (arbitrary number of) independent state variables of the additional filter sub-
circuits, i.e., the voltages across the additional filter capacitors and the currents through the additional filter
inductors. The interconnection of the matrix converter circuit described by (14) with the additional filter
sub-circuits is accomplished as shown in Figure 5.

Let the dynamics of the filter sub-circuits be represented by another gradient system description given
by

˙̃z = Q−1
fil (z̃)

∂Pfil

∂z̃
(z̃)−Q−1

fil (z̃)u, (15)

then the additional filter circuits are interconnected with the converter via the external ports, i.e.,Φ =
−y + Φe, with Φe the (optional) external signals of the converter andy = A>z̃, with A a matrix of
appropriate dimensions selecting the port variables to be interconnected. Furthermore,u = Az + Φ̃e as
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can be seen from Figure 5, with̃Φe representing the external signals (voltage and/or current sources) of the
filters. The complete dynamics of the interconnected system take the form

[
ż

˙̃z

]
=

[
Q−1(z) 0

0 Q−1
fil (z̃)

]

︸ ︷︷ ︸
Q−1

tot(z,z̃)




∂Ptot

∂z
(z, z̃)

∂Ptot

∂z̃
(z, z̃)


−

[
Q−1(z) 0

0 Q−1
fil (z̃)

][
Φe

Φ̃e

]
,

or in sort notation, witĥz = col(z, z̃) andΦ̂e = col(Φe, Φ̃e), read as

˙̂z = Q−1
tot(ẑ)

∂Ptot

∂ẑ
(ẑ)−Q−1

tot(ẑ)Φ̂e, (16)

The latter system is again a Brayton-Moser system having a characteristicPtot(ẑ) = Ptot(z, z̃) = P (z) +
Pfil(z̃) − z̃>Az. Notice that ifΦ̂e = 0, the power at the ports equals−z̃>Az = Φ>z which implies that
the interconnection is power preserving. Let us next consider an example to demonstrate the proposed
modelling procedure.

3 Example: 3× 3 Matrix Converter

Consider the three-by-three phase matrix converter shown in Figure 6. The converter is driven by 3 sinu-
soidal voltage sourcesVek

, k = 1, 2, 3. The input filter is a simple LC filter (formed byLαk
andCαk

)
with switchable damping resistorsµRαk

, whereµ takes values in the discrete set{0, 1} (switch is OFF or
ON, respectively). The converter’s load is formed by three RL circuits (formed byLβk

andRβk
). Since

α = β = 3, the matricesGβα, Gββ andGαα are given by

Gβα =




G1,1 G2,1 G3,1

G1,2 G2,2 G3,2

G1,3 G2,3 G3,3


 , Gββ =




G1,1 + G2,1 + G3,1 0 0

0 G1,2 + G2,2 + G3,2 0

0 0 G1,3 + G2,3 + G3,3


 ,

and

Gαα =




G1,1 + G1,2 + G1,3 0 0

0 G2,1 + G2,2 + G2,3 0

0 0 G3,1 + G3,2 + G3,3


 ,

respectively. Furthermore, the voltage and current vectors are defined byzα = col(vα1 , vα2 , vα3), zβ =
col(iβ1 , iβ2 , iβ3), z̃α = col(̃iα1 , ĩα2 , ĩα3) andΦ̃α

e = col(Ve1 , Ve2 , Ve3), while z̃β = 0, Φ̃β
e = 0 andΦe = 0.

Since, the additional (filter) elements are given byµRαk
, Lαk

andRβk
, the additional mixed potential

function should readPfil(z̃) = 1
2 (Φα

e − zα)>µR−1
α (Φα

e − zα) + 1
2 (z̃β)>Rβ z̃β , where

Rα =




Rα1 0 0
0 Rα2 0
0 0 Rα3


 , Rβ =




Rβ1 0 0
0 Rβ2 0
0 0 Rβ3


 .
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The interconnection matrixA connecting the additional filter elements to the matrix converter is readily
found asA = diag(Idα, 0, 0), whereIdα denotes theα×α identity matrix. Hence, by using (12), the total
mixed-potential representing the characteristic is of the converter is given by

Ptot(z, z̃) = 1
2 (zβ)>G−1

ββzβ − 1
2 (zα)>

[
Gαα −G>βαG−1

ββGβα

]
zα + (zβ)>G−1

ββGβαzα

+ 1
2 (Φα

e − zα)>µR−1
α (Φα

e − zα) + 1
2 (z̃β)>Rβ z̃β + (z̃α)>Azα. (17)

If we for simplicity assume that the filter elements are linear and time-invariant, the matrices containing
the filter element values are

Cα =




Cα1 0 0
0 Cα2 0
0 0 Cα3


 , Lα =




Lα1 0 0
0 Lα2 0
0 0 Lα3


 , Lβ =




Lβ1 0 0
0 Lβ2 0
0 0 Lβ3


 ,

and thus the matrixQtot reads as

Qtot =




Cα 0 0
0 −Lβ 0
0 0 −Lα


 . (18)

We now have all the information necessary to find the dynamic model of the matrix converter of Figure 6.
The behavior is completely determined by the mixed-potential function found in (17). Finally, a state-space
representation of the converter dynamics is obtained by substitution of (17) and (18) into (16).

4 Overall Stability and Passivity

In applications it is necessary to guarantee to be able to switch the converter from one state to the other
in a reliable manner. For that reason, the LC filter elements are usually accompanied by passive resistors
(see the example of Section 3) to rule out the possibility that during the switching process, the converter,
and especially the input filter, may go into oscillation. The key motivation, as already briefly highlighted in
Subsection 2.2.1 and 2.2.2, is that we can use the gradient system structure to find conditions on the filter
element values of the converter which guarantee that the equilibrium set is (semi-)globally asymptotically
stable. The strength of this method is that it also holds for circuits containing certain nonlinearities, like
the switching itself, without having to linearize the dynamics first.

4.1 Stability Analysis

Due to space limitations, we will briefly discuss the application of the aforementioned analysis using the
example of Section 3. The idea makes use of LaSalle’s Invariance Theorem and Brouwer’s Fixed-Point
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Theorem, see e.g. [2], in conjunction with the gradient system form (16). Without loss of generality, we
consider the case thatΦ̂e = 0. In that case, the time-derivative of the total mixed-potentialPtot(ẑ) is given
by

Ṗtot(ẑ) = − ˙̂z>
∂Ptot

∂ẑ
(ẑ) = ˙̂z>Qtot(ẑ) ˙̂z.

Unfortunately, we are not directly able to draw similar conclusions as in Subsection 2.2.1 or 2.2.2 due to the
fact that the quadratic product˙̂z>Qtot(ẑ) ˙̂z is sign indefinite. In order to overcome this problem we need to
consider the following additional family of storage (Lyapunov) functions [2], of which its time-derivatives
are also quadratic in̂̇z,

P ∗tot(ẑ) = λPtot(ẑ) + 1
2

∂>Ptot

∂ẑ
(ẑ)M

∂Ptot

∂ẑ
(ẑ),

whereλ ∈ R is a constant andM a symmetric matrix of appropriate dimensions. It is then checked by
straightforward calculations that the time-derivative of this new storage function satisfies

Ṗ ∗tot(ẑ) = ˙̂z>Q∗
tot(ẑ) ˙̂z,

whereQ∗tot(ẑ) is a matrix defined as [9]

Q∗
tot(ẑ) =

[
λ + 1

2

∂2Ptot

∂ẑ2
(ẑ)M + 1

2

∂

∂ẑ

(
∂Ptot

∂ẑ
(ẑ)M

)]
Qtot(ẑ).

Finally, the problem of finding a storage function in the sense of LaSalle can be solved if we can find aλ
andM such that the symmetric part ofQ∗tot(ẑ) is negative semi-definite, i.e.,

Q∗tot(ẑ) + (Q∗tot)
>(ẑ) ≤ 0. (19)

In the following subsection we will apply the latter to the example discussed in Section 3 in order to find
lower bounds on the damping resistorsRα.

Remark: Notice thatP ∗tot(ẑ) andQ∗tot(ẑ) also form an appropriate pair to describe the dynamics of
the converter, i.e.,

[Q∗
tot(ẑ)]−1 ∂P ∗tot

∂ẑ
(ẑ) ≡ Q−1

tot(ẑ)
∂Ptot

∂ẑ
(ẑ) (= ˙̂z).

4.2 Input Filter Design Example

Consider again the example matrix converter discussed in Section 3. In this subsection we will show that
the stability analysis of the previous subsection can be used to determine a lower bound on the input filter
damping resistorsRα to ensure a non-oscillatory response in case of, for example, setpoint changes. For
simplicity, we will base our design on the three-to-one phase equivalent shown in Figure 7. Assume for the
moment that the switchesµ are closed, i.e.,µ = 1.

Ve1

Lα

Rα

Cα

µ

Ve2

Lβ1
Rβ1

G1,1

Ve3

reference potential

input filter output filter + load
switching

G1,3

matrix

vα

iβ1

Figure 7: Example:3× 1 phase representation of the converter of Figure 6.

In [2] several mathematical methods are proposed to find the parametersλ andM such that inequality (19)
is satisfied. For the converter under consideration, we state without proof that the inequality (19) is satisfied
if Rα satisfies the inequality

Rαk
>

√
Lαk

Cαk

, k = 1, 2, 3. (20)

It is interesting to notice that this is precisely the design criterium one obtains when using classical input
filter design methods like in [7]. Of course, the main advantage of the method shown here is that the
stability criteria also hold for circuits with nonlinear filter elements.
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5 Conclusion and Outlook

In this paper we have proposed a unified framework to model and analyze the dynamical behavior of a ma-
trix converter with input and output filters. The method uses the classical Brayton-Moser equations and can
be used to find conditions on the (possible nonlinear) filter elements in order to guarantee non-oscillatory
responses in case of, for example, setpoint changes. Besides large signal stability analysis, the framework
can also be used to design (passivity-based) controllers, e.g. [5, 9]. One of the main ideas presented in
these references is that the dynamics of the system can be modified by shaping the mixed-potential func-
tion P , i.e., shaping the (reactive) power of the system, through the available control inputs. For the matrix
converter structures considered in this paper shaping of the mixed-potential naturally involves the deter-
mination of the switching characteristics represented by the conductancesGj,k. As explained in [5], the
stability criteria based on the Brayton-Moser framework helps us to find control actions in such a way
that a non-oscillatory behavior is guaranteed., even if there are no damping resistors added to the dynamic
filter elements, like theRα’s in the example. For that, future research should be devoted on how to shape
the mixed-potential function and how to determine the characteristics of the conductancesGj,k in order to
guarantee non-oscillatory dynamical behavior for all possible mode changes.
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