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Abstract

In this short paper we propose a de0nition of 'atness for systems not necessarily given in input/state/output representation.
A �at system is a system for which there exists a mapping such that the manifest system behavior is equal to the image of this
mapping, and such that the latent variable appearing in this image representation can be written as a function of the manifest
variable and its derivatives up to some order. For linear di5erential systems, �atness is equivalent to controllability. We
will generalize the main theorem of Levine and Nguyen (Systems Control Lett. 48 (2003) 69) to general linear di5erential
systems.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In recent papers [1–3], di5erentially �at systems
have been studied, and their relevance in control prob-
lems has been outlined. In particular, in [3], linear �at
systems represented in terms of polynomial matrices
have been considered, and for a particular class of
such systems �at outputs have been characterized in
terms of their so-called de0ning matrices. The aim of
this short paper is to explain how the notion of �atness
0ts naturally into a behavioral perspective to systems.
In fact, �at systems are systems whose system behav-
ior admit an image representation in which the latent
variable is observable from the manifest system vari-
able. In this short paper we will generalize the main
theorem of [3] to general linear di5erential systems.
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2. Flat systems

In this section we will brie�y review the notion
of di5erentially �at system as was introduced in
[1–3]. In the sequel, C∞(R;Rn) will denote the space
of in0nitely often di5erentiable functions from R to
Rn. Let f :Rn × Rm→Rn be a given function, and
consider the system

d
dt
x(t) = f(x(t); u(t))

with x(t)∈Rn being the state and u(t)∈Rm the input.
This system is called di-erentially 'at, or just 'at, if
there exists a set of independent variables (to be called
a 'at output of the system) such that both the system
variables x and u are functions of this �at output and
a 0nite number of its successive derivatives. To be
precise, if there exist nonnegative integers p and q,
and functions 
 :R(p+1)m→Rn, � :R(p+1)m→Rm, and
h :Rn × R(q+1)m→Rm such that the following two
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conditions hold:

1. (x; u)∈C∞(R;Rn × Rm) satis0es the di5erential
equation (d=dt)x=f(x; u) if and only if there exists
a function y∈C∞(R;Rm) such that

x = 
(y; y(1); y(2); : : : ; y(p));

u= �(y; y(1); y(2); : : : ; y(p));

2. for all y∈C∞(R;Rm) we have: x = 
(y; y(1);
y(2); : : : ; y(p)) and u = �(y; y(1); y(2); : : : ; y(p))
implies y = h(x; u; u(1); : : : ; u(q)).

In e5ect, �atness of the system (d=dt)x=f(x; u) means
that the space of solutions (x; u) of the di5erential
equation can be represented as the image of some
mapping C∞(R;Rm)→C∞(R;Rn)× C∞(R;Rm),

y �→
(

(y; y(1); y(2); : : : ; y(p))

�(y; y(1); y(2); : : : ; y(p))

)
=

(
x

u

)
:

In addition, to any given (x; u) corresponds a unique
y, which can be obtained as y = h(x; u; u(1); : : : ; u(q)).
In [3], any such y is called a 'at output of the sys-
tem. Note that, by de0nition, the number of �at output
components is equal to m, the number of input com-
ponents of the system.
It was shown in [2] that the linear state-space system

(d=dt)x = Ax + Bu (with x(t)∈Rn and u(t)∈Rm) is
�at if and only if the pair (A; B) is controllable.
In [3] linear systems of the form A(d=dt)x = Bu

were considered, with A(�) a given real polynomial
matrix, B a given real constant matrix, and x(t)∈Rn,
u(t)∈Rm. Such system was called linearly 'at if it is
�at, and if the functions 
, � and h can be chosen to be
linear. Hence, the system A(d=dt)x=Bu is linearly �at
if and only if there exist real polynomial matricesP(�),
Q(�) and L(�), respectively, of dimensions n×m, m×
m and m× (n+m), such that (x; u)∈C∞(R;Rn×Rm)
satis0es the di5erential equation A(d=dt)x=Bu if and
only if there exists a function y∈C∞(R;Rm) such that

(
x

u

)
=



P
(

d
dt

)

Q
(

d
dt

)

y;

and such that for all y∈C∞(R;Rm) we have: x =
P(d=dt)y and u= Q(d=dt)y implies y = L(d=dt)( xu).

3. Flat system behaviors

In this section we will extend the notion of �at-
ness to more general systems, not necessarily in in-
put/state/output representation.
Let q, r and s be given nonnegative integers, let

f :R(s+1)q→Rr be a given function, and consider the
higher order nonlinear di5erential equation in the un-
known w∈C∞(R;Rq):

f(w(t); w(1)(t); : : : ; w(s)(t)) = 0: (3.1)

The subset B ⊆ C∞(R;Rq) of all solutions to the
di5erential equation (3.1) is called the behavior of
the di5erential system represented by the di5erential
equation (3.1), w is called the manifest variable of
the system. The system behavior B will be called
�at if there exist nonnegative integers k, l, p, and
functions g :R(k+1)l→Rq and h :R(p+1)q→Rl such
that the following two conditions hold:

1. B= {w∈C∞(R;Rq) | there exists ‘∈C∞(R;Rl)
such that w = g(‘; ‘(1); : : : ; ‘(k))},

2. for all ‘∈C∞(R;Rl) we have: w = g(‘; ‘(1); : : : ;
‘(k)) implies ‘ = h(w; w(1); : : : ; w(p)).

In other words, the system behavior B represented
by (3.1) is called �at if B can be represented as
the image of some map C∞(R;Rl)→C∞(R;Rq),
‘ �→ g(‘; ‘(1); : : : ; ‘(k)), with the property that ‘
can be recovered from the given manifest vari-
able trajectory w by ‘ = h(w; w(1); : : : ; w(p)). In the
terminology of the behavioral approach, the vari-
able ‘ in the above is called a latent variable,
and the representation w = g(‘; ‘(1); : : : ; ‘(k)) is
called an image representation of B. The image
representation is observable in the sense that the
latent variable trajectory ‘ is uniquely determined
by the manifest variable trajectory w through
‘ = h(w; w(1); : : : ; w(p)). Note that, in contrast to the
de0nition of �atness in [3], in our de0nition the num-
ber of components of the 'at latent variable ‘ is not
required to be equal to the number of inputs of the
system.
Clearly, by taking w=(x; u), we see that �atness of

the system (d=dt)x = f(x; u) in the sense [3] implies
�atness in the sense of our de0nition.
We will now turn attention to linear di5erential

systems. A linear di5erential system is a system in
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which the function f is linear. In that case the repre-
senting di5erential equation is of the form R0w(t) +
R1w(1)(t) + · · · + Rsw(s)(t) = 0 for given real r × q
matrices Ri. After introducing a real r× q polynomial
matrix R(�) := R0 +R1�+ · · ·+Rs�s, this di5erential
equation can be written as

R
(

d
dt

)
w = 0: (3.2)

The subspace B ⊆ C∞(R;Rq) of all solutions to (3.2)
is called the behavior of the linear di5erential system
represented by R(d=dt)w=0. The system behavior B
will be called linearly �at if there exists a nonnegative
integer l and real polynomial matrices M (�) and L(�)
of sizes q × l and l × q, respectively, such that the
following two conditions hold:

(1) B={w∈C∞(R;Rq) | there exists ‘∈C∞(R;Rl)
such that w =M (d=dt)‘},

(2) for all ‘∈C∞(R;Rl) we have: w = M (d=dt)‘
implies ‘ = L(d=dt)w.

If (1) and (2) above hold, then ‘=L(d=dt)w is called
a linear 'at latent variable for B. Clearly, if the linear
di5erential system A(d=dt)x = Bu studied in [3] is
linearly �at in the sense of [3] then it is �at in the
sense of our de0nition.

4. Controllable behaviors and image
representations

We will now quickly review the notions of con-
trollability and observable image representations in a
behavioral framework. Let R(�) be a real r × q poly-
nomial matrix and consider the linear di5erential sys-
tem behavior B represented by R(d=dt)w = 0. B is
called controllable if for any two trajectories w1 and
w2 in B there exists T¿ 0 and a trajectory w in B
such that w(t) =w1(t) for t ¡ 0 and w(t) =w2(t) for
t¿T . It is well known, see for example [5], that B
is controllable if and only if the following condition
on the polynomial matrix R(�) holds:

rank(R(")) = rank(R) for all "∈C:
In other words, if for any complex number ", the rank
of the complex matrix R(") is equal to the rank of the
polynomial matrix R(�).

Whereas a linear di5erential system behavior is
de;ned as the space of solutions B of a di5erential
equation of the form R(d=dt) = 0, it can have other
representations as well. One of these is the image
representation. Let M (�) be a real polynomial matrix
with q rows and, say, l columns. If

B= {w∈C∞(R;Rq) | there exists ‘∈C∞(R;Rl)

such that w =M (d=dt)‘};
then we call w = M (d=dt)‘ an image representation
of the system behavior B. The image representation
is called an observable image representation if from
w =M (d=dt)‘1 =M (d=dt)‘2 it follows that ‘1 = ‘2,
in other words, if any w in the behavior is the image
of exactly one latent variable trajectory ‘.
Not all linear di5erential systems behaviors admit

an image representation. In fact, the linear di5erential
system behavior B admits an image representation if
and only if it is controllable. In that case it also admits
an observable image representation. Furthermore, ob-
servability of an image representation w=M (d=dt)‘,
with ‘ taking its values in Rl, can be tested in terms
of the q× l polynomial matrix M (�): the image rep-
resentation w=M (d=dt)‘ is observable if and only if

rank(M (")) = l for all "∈C:
Another result that we will use is the following. Sup-
pose M1(�) and M2(�) are q × l polynomial matri-
ces. Then w = M1(d=dt)‘ and w = M2(d=dt)‘′ are
observable image representations of the same linear
di5erential behavior B if and only if there exists a
unimodular l × l polynomial matrix W (�) such that
M1(�) =M2(�)W (�).
A detailed discussion of these standard result in the

behavioral theory to linear systems can be found in
[5], or in [7].
We now brie�y recall the concept of input cardi-

nality of a linear di5erential system. Given a linear
di5erential system behavior B with manifest variable
w, the condition w∈B leaves some of the compo-
nents of w free, in the sense that these components
can be chosen to be arbitrary functions in C∞(R;R).
The number of these free components is equal to the
number of inputs of the behavior B, and is denoted by
m(B), called the input cardinality of B. This number
can be computed in terms of the polynomial matri-
ces R(�) in any kernel representation R(d=dt)w = 0,
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and in terms of the polynomial matrix M (�) in any
image representation w =M (d=dt)‘ of B. In fact,

m(B) = q− rank(R) = rank(M):

In particular, the input cardinality of B is equal to the
number of latent variable components in any observ-
able image representation of B.
Finally, we state the following useful well-known

result. Suppose B1 and B2 are controllable linear dif-
ferential systems such that B1 ⊆ B2. Then m(B1) =
m(B2) (equality of the input cardinalities) implies that
B1 = B2, see [7].

5. Flat system behaviors and observable image
representations

In this section we will formulate and prove our main
result, which generalizes [3, Theorem 1].

Theorem 5.1. Let R(�) be a real r × q polynomial
matrix, and let B be the linear di-erential system
represented by R(d=dt)w = 0. Then the following
statements are equivalent:

1. B is a linearly 'at system,
2. B is controllable,
3. B admits an image representation,
4. B admits an observable image representation.

In the rest of this theorem statement, assume that
any these equivalent conditions on B hold. Then the
number of components of any linear 'at latent vari-
able ‘ for B is equal to m(B) = q − rank(R), the
input cardinality of B.
Furthermore, polynomial matrices M (�) and L(�)

de;ning an (observable) image representation w =
M (d=dt)‘ together with a linear 'at latent variable
‘ = L(d=dt)w for B can be obtained from the poly-
nomial matrix R(�) as follows:

• put l := q− rank(R),
• for M (�) take any q × l polynomial matrix such
that R(�)M (�) = 0 and such that rank(M (")) = l
for all "∈C,

• for L(�) take any polynomial left inverse of
M (�), i.e., any l× q polynomial matrix such that
L(�)M (�) = Il×l.

Finally, for any q × l polynomial matrix M ′(�) we
have: w =M ′(d=dt)‘′ is an observable image repre-
sentation of B if and only if there exist a l× l uni-
modular polynomial matrix W (�) such that M ′(�)=
M (�)W (�). In that case, ‘′=L′(d=dt)w,with L′(�) :=
W−1(�)L(�), is the 'at latent variable corresponding
to the image representation w =M ′(d=dt)‘′.

Proof. The equivalence of statements (2)–(4) is
standard in the behavioral approach, see for exam-
ple [5]. The implication (1) ⇒ (3) follows from
the de0nition of linearly �at system. We prove
the implication (4) ⇒ (1). Let w = M (d=dt)‘ be
an observable image representation of B. Then
M (") has full column rank for all "∈C, so the
Smith form of the polynomial matrix M (�) equals
(I 0)T . Consequently M (�) has a polynomial left in-
verse, say L(�). Clearly w = M (d=dt)‘ then implies
L(d=dt)w = L(d=dt)M (d=dt)‘ = ‘. The statement
about the number of components of any �at latent
variable follows from the fact that the number of la-
tent variables in any observable image representation
of B is equal to m(B).
For completeness, we also prove the remaining

statements on the computation of M (�) and L(�).
Assume M (�) is a q× l polynomial matrix such that
R(�)M (�) = 0. De0ne

B′ := {w∈C∞(R;Rq) | there exists ‘∈C∞(R;Rl)

such that w =M (d=dt)‘}:

Then it is clear that B′ ⊆ B. Since M (") has full
column rank l for all "∈C, M (�) also has full col-
umn rank l as a polynomial matrix. Hence we have
m(B′) = l. Since this is equal to m(B), and since
both B′ and B are controllable, we in fact have
B′=B. We conclude that w=M (d=dt)‘ is indeed an
image representation of B. Since rank(M (")) = l for
all ", it is observable. Finally, as already explained
above, by taking a polynomial left inverse L(�) of
M (�) we get a linear �at latent variable ‘=L(d=dt)w
for B.
The remaining statements follow from the fact that

for any two q × l polynomial matrices M1 and M2,
de0ning observable image representations of one and
the same behavior B, there exists a unimodular matrix
W such that M1 =M2W .
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The actual computation of one suitable pair of poly-
nomial matricesM (�) and L(�), starting from the rep-
resenting polynomial matrix R(�) can be made more
concrete as follows. First note that, by controllability,
rank(R(")) = rank(R)= : r for all "∈C. Hence the
nonzero polynomials in the Smith form of R(�) are all
equal to 1, so there exist unimodular matrices U (�)
and V (�) such that

U (�)R(�)V (�) =

(
Ir×r 0

0 0

)
:

De0ne then

M (�) := V (�)

(
0

I(q−r)×(q−r)

)
;

L(�) := (0 I(q−r)×(q−r)) V−1(�):

Remark 5.2. The question arises as to what extend
the result of Theorem 5.1 can be extended to more gen-
eral classes of systems. In general, nonlinear systems,
even controllable ones, have an image representation
only in exceptional cases. Another class of systems of
interest is the class of ND-systems, i.e. systems repre-
sented by a 0nite number of linear, constant coeKcient
partial di5erential equations. It has been shown in [4]
for ND-systems that the existence of an image rep-
resentation is equivalent to controllability. However,
only in exceptional cases a controllable ND-system
admits an observable image representation. In [6],
for ND-systems the property of admitting an

observable image representation has been shown to
be equivalent to the property of recti;ability, which,
in turn, has been shown to be equivalent to strong
controllability.
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