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IMPROVEMENT OF RECOGNITION ACCURACY USING
2-STAGE CLASSIFCATION

KR. IANAKIEV and V. GOVINDARAJU
CEDAR, Department of Computer Science
UB Commons, Suite 202
Ambherst, NY 14228, USA
E-mail: {ianakiev,govind} cedar.buffalo.edu

Typical digit recognizers classify an unknown digit pattern by computing its dis-
tance from the cluster centers in a feature space. The K-Nearest Neighbor (KNN)
Rule assigns the unknown pattern to the class belonging to the majority of its K
neighbors. These and other traditional methods adopt a uniform rule irrespective
of the “difficulty” of the unknown pattern. In this paper, we propose a method-
ology which uses a multiple classification scheme. The classification rules of each
stage are dependent on the “difficulty” of the unknown sample. Samples “far”
from the center which tend to fall on the boundaries of classes are error-prone and
hence “difficult”. An “overlapping zone” is defined in the feature space to identify
such difficult samples. We have tested this methodology on a large set (30,398)
of handwritten digit images. The method described in this paper has improved
the performance of the GSC digit recognizer’. Our method successfully reduces its
error rate from 2.85% to 1.96%, i.e by 0.89%, which is more than 30% of the initial
error. We have tested our method on other available classifiers and have obtained
similar results.

1 Introduction

Pattern classification consists of assigning a class label to a set of unclassified
patterns. Formally, given the pattern z (taken from the space of all unknown
patterns X), a set of ¢ class labels (w;...w.) and a set of labeled prototypes,
the classifier assigns a label to x such that there is a minimum probability
of misclassification. A typical digit recognizer returns scores corresponding
to each class. The scores reflect the degree to which the unknown pattern
z represents the prototype(s) of the class. The scores can be represented
by the vector ®(z), where ®(z) = [¢o(z), d1(x),...,9(z)]T. Each ¢;(x)
corresponds to class w;. ¢; : X — [0,1] is a function that maps each unknown
pattern to a real number between 0 and 1. A classifier typically computes the
distance of x from the centers of each of the prototype classes in the feature
space using some distance metric. The classes are then ranked in increasing
order of the distances. In Figure 1, x is “closest” to the center of the class ws
with a distance of s5. The 2" and 37? classes are wg and wy at distances sg and
so respectively. It is to be noted tl]l%% usually ¢;(z) is inversely proportional
to s;.
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It is possible that the test pattern z falls within the boundary of one class
but its distance is closest to the center of a neighboring class. Since z, in the
example, falls close to the boundary of classes ws-wp and ws-wg there is more
than an average chance of misclassification of z.

Figure 1 illustrates the class boundaries among digit prototypes in a hypo-
thetical feature space. We will assume for the purpose of this discussion that
the classes are linearly separable. Samples that are “close” to the centroid of
the classes are “stronger” representatives of the class while samples close to the
boundaries are poorer representatives and at the same time prone to confusion
with the neighboring classes. So, it is natural for one to consider another level
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Figure 1: Feature space of a typical digit recognizer. Samples that are close to the center of a
class are strong representatives of the class and are usually correctly classified. Samples that are
away from the center (close to the boundaries of classes) are weaker representatives and are prone
to misclassification. The circle is essentially the sphere of the neighborhood of z. Typically, the
confidence ¢;(z) is inversely proportional to the distance (s;) of  from the centroid of cluster

on top of the classifier in order to deal with the patterns that are more prone
to misclassification. Using the KNN rulé! ¢ is one way to address the problem
stated above. Instead of simply relying on the distance of a sample from cluster
centers, one labels z as the majority class in the set of its k nearest neighbors
in feature space.

KNN has the advantage of not respecting fixed boundaries between classes.
In the example of Figure 1, the KNN classifier would label z as ‘5’ with a score
of 3 = 0.5, as four of the samples in the K-neighborhood (k=6) are labeled w;
by the recognizer (some erroneously).

Since potentially, a test patterfl‘%n fall anywhere in a feature space, we



can precompute the class that will be assigned to each point in the feature
space. If the KNN rule is used, the boundaries between classes will have a
complex shape. Further, the boundaries of classes will change based on the
size of the neighborhood k.

A typical binary feature vector of size 512 requires a feature space of size
2512 A table that specifies a class for each point in the feature space will need
to be 2512 as well. Hence, while the idea is attractive for speed reasons, the
tradeoff with space storage is unacceptable.

Using Bayes rule!® is another way to deal with the problem, especially in
cases when a large database is available. This method is very attractive in
view of recent empirical evaluations showing high accuracy?® 1°.

2 Our Approach

We describe a method that is based on the following two ideas which appeal
to common sensé’:

(i) When the correctness of a classifier on a pattern z is in question, it is best
to consider the performance of the same classifier on the patterns which are
“similar” to x.

(ii) A classifier is usually accurate when the test pattern z falls close to the
center of its class in feature space and prone to error when it falls near a class
boundary.

KNN addresses the first observation quite adequately by evaluating the
neighbors of a test pattern z. It is expected that in any small neighborhood
all samples are approximately at the same distance from any cluster center
and hence are all quite “similar”. While, KNN does not oppose the second
observation, we have described how it does not lend itself amenably to space
storage efficiency when using a look-up table.

We propose the following two-pronged approach. For the case where a
sample falls in “close” proximity of a cluster center (of a class to which it will
be assigned), use the traditional method of distances to assign the class and
compute its confidence score. For the case where the distances from several
cluster centers are all approximately the same, we will adopt a modification of
the KNN rule. Such an approach addresses both the observations made above,
and at the same time does not cause prohibitive computational issues. Since
we expect only a small portion of the feature space to be near the boundaries
between classes, the size of the look][ﬁ§table will be reasonable.



2.1 “Owverlapping Area” OR “Fuzzy Area”

Assuming that s; is the maximum possible score corresponding to the class
wi, © = 0,...,9, the “class center” of class wy4 is defined by all prototypes

3 1
y, such that ¢a(y) > 254 and ¢g(y) < 1058 for all other classes wg. The

“overlapping” area is defined as the part of the space of all patterns X, that

. SA+ s
contains patterns y € X, such that |¢4(y) — éB(y)| < %, where classes

w4 and wp are the top two choices for pattern y. Let us note that in some
cases as in the example of Figure 2, the “overlapping” area can be narrowed
even further.

2.2  Novelty

For most digit recognizers the correct class choice for an unknown pattern is
almost always among the two classes with highest scores. This is to say that
the top two choice corectness rate is almost 100%. Based on this observation
the goal of our methodology is to overturn some of the results of the recognizer
in order to promote the correct class with the second highest score to become
the top choice of the recognizer. In this way the top choice correct rate will be
very close to the original top two choices correct rate.

2.3 GSC

Although we have tested our method with other classifiers, we will discuss our
experiments with the Gradient Structural Concavity (GSC) recognizer”. GSC
uses 512 symbolic multi-resolutional features, which measure the image char-
acteristics at local, intermediate, and large scales. The 192 Gradient features
measure edge curvature in a neighborhood of a pixel and provide information
about stroke shape on a small scale. The 192 intermediate Structural features
measure short stroke types which span several pixels and give useful informa-
tion about stroke trajectories. The 128 Concavity features are used to detect
stroke relationships at long distances which can span across the image. Fea-
tures at all the 3 levels, G, S, and C are combined in a 512 binary feature
vector and a weighted k-nearest neighbor algorithm is used for classification.

2.4 Methodology

Let us say the top two classes are w4 and wp when presented with a test
pattern x. A common practice ! is to compute | ¢pa(z) — ¢p(z) |. If
| pa(z) — ¢p(z) | < 7 (where 1585 a pre-determined threshold, 7 = 0.1



for GSC), then the confusion between the two classes is deemed to be too high
to return a “confident” top choice.

In our approach we consider two classes at a time, namely classes w4 and
wp. A sample is considered as “easy” if | pa(z) — ¢p(z) | >> 7. Clearly, the
recognizer is confident about the identity of x as either w4 or wp, depending
on whichever is greater of the two. A sample x in the feature space falls in the
“difficult” or the “overlapping” zone when | ¢p4(z) — ép(z) | < 7. Using the
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Figure 2: This is a confidence space of two classes 0’ and '6’. The red dots represent the Os
and the blue dots represent the 6s. The GSC digit recognizer gives a confidence in the range
of [0,0.6]. The truly “good” quality samples of '0’ receive a score of 0.6 and the probability of
misclassification is small as noted from the very few blue dots mingled with red dots at these
confidence levels (¢o & 0.6 and ¢ = 0.0). The reverse is also true. Maximum misclassifications
occur when ¢g = 0.3 and ¢ ~ 0.3. This qualifies as the fuzzy area. These are the samples that
we wish to reclassify.

confidence functions ¢4 : X — [0,0.6] and ¢p : X — [0,0.6], we define a map
Pap: Xap — R, such that @4 p(z) = (da(z),dB(z)), where X4 p is the
set, of all patterns y, for which w4 and wp are the top two classes according to
the classifier. Using ® 4 p any pattern from X4 p is mapped onto a point of
the square [0,0.6]%, and the intersection of the “overlapping” area and X4 g is
projected onto an area in that square, we would like to call “fuzzy”. Figure 2
shows the example of two classes a;lo5an we with 7is 0.1 (A =0 & B = 6).



It is to be noted that when [¢p4(x) >> ¢p(z)] OR [¢pB(x) >> ¢a(x)] then
the misclassifications of such patterns are rare. It is also interesting to note
how the misclassifications increase as one approaches the fuzzy area from both
extremes.

Another interesting insight we gain from Figure 2 is the way the samples
align in confidence space. When ¢g(x) € [0.4 ... 0.6] AND ¢o(z) € [0.0 ...
0.1] the samples in confidence space are all strongly leaning towards being a wg
(digit ‘6’) by aligning parallel to the x-axis. Similarly, when ¢o(z) € [0.4 ...
0.6] AND ¢g(x) € [0.0 ... 0.1] the samples in confidence space are all strongly
leaning towards being a wq (digit ‘0°) by aligning parallel to the y-axis. When
¢o(z) €0.2... 0.3] AND ¢g(z) € [0.2 ... 0.3] the samples in confidence space
represent the fuzzy area (the area of interest). Their scatter pattern aligns at
about 45°.

It is also clear from the way scores are computed that a sample xz cannot
receive simultaneously a very high or a very low score for both the classes. This
actually helps us to narrow the fuzzy area. Hence all patterns must fall in the
diagonal area of the space spanning from point (0.0,0.6) to point (0.6,0.0) at an
angle of 135°. Although, when we talk of cluster centers, we are refering to the
confidence space, the notion of a cluster does hold meaning in the confidence
space as well as can be seen in Figure 2. The cluster center for the class wg
would be in the vicinity of point (0.6,0.0) and the cluster center for wy would
in the vicinity of point (0.0,0.6).

There are 7 clusters shown in Figure 2. One of the clusters is ambiguous
about its class identity. This is the fuzzy area. The 6 other clusters either favor
the class wo (each cluster representing a different style of writing, perhaps) or
the class wg. The “goodness” or quality of the clusters improves as they move
away from the fuzzy area.

2.5 Algorithm

1. Identify the two classes returned as the top two choices by a digit recog-
nizer (say, wa and wg) on pattern z.

2. Ifthe quantity | ¢pa(z) — ép(z) | > 71
then accept the top choice as correct
else proceed to evaluate if the second choice should be promoted to the
top by using a lookup table based on the modified KNN as described in
the next section. 158



2.6 Analysis

Figure 3 shows samples of images that will be confidently recognized as a ‘0’ or
‘6’ in the top choice by a traditional recognizer (such as the GSC recognizer’)
and needs no adjustment to the classification. Figure 4 shows samples of images
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Figure 3: A sampling of “good” quality Os and 6s. These are samples that receive ¢9 = 0.6 and
¢6 ~ 0.0 OR ¢o ~ 0.0 and ¢6 ~ 0.6

that will be confidently misclassified as a ‘6’ in the top choice by a traditional
recognizer (such as the GSC) and cannot be readily rectified. Figure 5 shows
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Figure 4: A sampling of “poor” quality Os and 6s. These are samples that receive ¢ ~ 0.0 and
$6 ~ 0.6 OR ¢ ~ 0.6 and ¢g = 0.0

samples of images that will be confusing to tell apart as a ‘0’ or ‘6’ by a
traditional digit recognizer such as GSC. These are the cases which we wish to

re-classify using our methodology. These are the samples that fall in the fuzzy
area of the confidence space shown in Figure 2. Figure 6 shows the new class
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Figure 5: A sampling of “difficult” quality Os and 6s. These are samples that receive ¢ ~ 0.3
and ¢o ~ 0.3 (Figure 2.)

boundary after re-classification based on the modified KNN for the samples in
the fuzzy area (Figure 2). A straié}ig classification based on the value ¢;(x)



being greater or less than a threshold (7) would draw the class boundary as
a straight line right through the middle of the fuzzy area at a 45° angle as
shown. The modified KNN as will be described in the next section generates
a complex boundary which does not eliminate all the classification errors, in
some cases it even creates additional errors in the process of correcting some
errors, nevertheless the method makes an overall improvement.

Figure 6: Re-defining the class boundary between Os and 6s in the fuzzy area of Figure 2

3 KNN Modification

Let us start this section by repeating the assumption that the scores for each
class, returned by the recognizer, are real numbers in interval [0,0.6]. Let U
be a “blind” set of digit patterns. We will assume that all classes are equally
represented in U. Let V be a subset of U that contains all patterns in U that
are classified correctly by the classifier. We will use the set V' to simulate the
fuzzy boundaries between classes. V' is partitioned into a disjoint union of
subsets Vp, Vi1,...,Vy, where each subset V; contains those digit patterns in V,
that represent class w;. The score, associated with class w; is the highest in
the confidence vector returned by the classifier, i.e

Vi={zeV: ¢j(1:569 ¢i(x) for all j#i}.



Let z is an unknown pattern and w4 and wp are the top two class cho ices
according to the classifier. Let W = [0,0.6]> be the squares in R* with ver-
tices in points (0,0), (0,0.6), (0.6,0.6) and (0.6,0), i.e W is the projection of

the set X4 p of all patterns, for which w4 and wp are the top two classes
choices according to the classifier, in R by the map ®4 p. Using lines paral-

lel to axises, we devide W into n? disjoined parallelograms(squares). Let us
enumerate these sets by By, B, ..., Bar, where M = n2.

For every y € W, there exists a unique neighborhood B, among By, Bs, ..., By,

containing y. Let us define the functions

paly) = |{z € Va : ®4,5(z) € By}|

and
¢B(y) = |{z € VB : @a,(z) € By}.
Let W)
( paly .
—————if pa(y) + pB(Yy) #0
+
naly) = ¢ ea(y) +¢B(Y)
0.5 otherwise
and )
( ey .
if pay) +¢B(y) #0
+
UB(y) = @A(y) <PB(Z/)
{ 0.5 otherwise

Now, we are in a position to define the new confidences corresponding to the
different classes. Let 7 be the threshold that determines the overlapping area.
We can define the new confidences as follows:

na(®a,p(x)) if  is in the overlapping area

¢ale) = { dax) otherwise
for class wa

nB(P4,5(x)) if z is in the overlapping area

&iw) = {¢B (z) otherwise
for class wp

ti(z) = 0 if  is in the overlapping area
) ¢y(x) otherwise

for all other classes. We say that the unknown pattern z belongs to the class
wi, if &(x) < &(x) for all j # d.



4 Experiments

The method described in this paper successfully reduced its error rate from
2.85% to 1.96%, i.e by 0.89%, which is more than 30% from the initial error
of 2.85% (Table 1). To illustrate the significance of the improvement let us
look at a simple application. Assuming we use GSC to recognize 5 digits
in handwritten ZIP codes, taken from the US mail stream. GSC recognizes
correctly the entire ZIP code in 86.54% of the cases and the method, described
in this paper will recognize correctly the entire ZIP code in 90.58% of the cases.

The training set U has 50,000 images and the testing set has 30,398 images
created using digit samples extracted from the US mailstream.

In the experiment, we use 7 = 0.1 to determine the overlapping area.
Then the confidence space is partitioned as described in the previous sections
into squares using n = 100. Since the training is off-line, we precompute the
measures of any of the squares in the “overlapping area” and then store them
in a lookup table. Once the recognizer returns the confidence vector ®(z)
of an unknown pattern, a check is performed to see if the pattern is in the
“overlapping area”. If it is in the overlapping area, the corresponding entries
in the lookup table are used.

One way to evaluate the performance of two recognizers is to compare the
corresponding percentage correctly classified samples(Tables 1, 2). Actually,

test set GSC Fuzzy
correct % correct %
30398 29532 | 97.15 | 29807 | 98.04

Table 1: Improvements to GSC recognizer using Fuzzy boundaries

the best way to evaluate the performance of two classifiers is to compare the
their graphs on a REJECT vs ERROR scale (Figure 7). Figure 7 shows the
graph of GSC recognizer and the fuzzy method on a REJECT vs ERROR scale
in order to compare their performances. Table 3, shows some selected points
from the graphs of both recognizers (Figure 7) in order to compare the correct
rates of classifiers given the reject rate. At the end, we have performed the
similar experiment with other available recognizer and obtain similar results
(Table 4).

5 Summary

The method described is able to improve a recognition system while treating
it as a black box. Further, the onlyréSource required to enable this method is



class | test set GSC Fuzzy
correct % correct %

0 6986 6833 | 97.81 6852 | 98.08
1 6554 6496 | 99.12 | 6496 | 99.12
2 3954 3759 | 95.07 | 3845 | 97.24
3 2238 2170 | 96.96 | 2186 | 97.68
4 3191 3070 | 96.21 3123 | 97.87
) 1556 1497 | 96.21 1513 | 97.24
6 1474 1442 | 97.83 1449 | 98.30
7 1445 1391 96.26 1412 97.72
8 2049 1945 | 94.93 | 2001 97.61
9 951 929 97.69 930 97.93
Table 2: Improvements to GSC recognizer using Fuzzy approach for any of the
classes
ERROR
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Figure 7: This figure shows how the performances of GSC recognizer and the proposed fuzzy
method are compared on a REJECT vs ERROR scale. Based on the fact the graph of the first
fuzzy method is upon the graph of GSC, we can conclude that the overall performance of our
method is better the one of GSC recognizer,
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GSC Fuzzy
reject % | error % | reject % | error %
0.0000 2.85 0.0000 1.96
0.3994 2.60 0.3921 1.69
0.7924 2.31 0.8169 1.38
1.3070 2.11 1.3151 1.14
1.8134 1.93 1.8134 0.93
2.6303 1.75 2.6058 0.69

Table 3: This table shows some selected points from the graphs of both recog-
nizers on a REJECT vs ERROR scale in order to compare the correct rates of
classifiers given a reject rate and shows improvement of the fuzzy method over
GSC at those reject rates

Polynomial Fuzzy
correct % correct %
27744 | 91.27 | 28155 | 92.62
test set Gradient Fuzzy
correct % correct %
30398 28671 | 94.32 | 29039 | 95.53

Curvature Fuzzy
correct % correct %
29191 | 96.03 | 29513 | 97.09

Table 4: Improvements to others recognizer using fuzzy method

a large database of samples for retraining.
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