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A REACTIVE PORT-HAMILTONIAN CIRCUIT
DESCRIPTION AND ITS CONTROL IMPLICATIONS

Dimitri Jeltsema * Jacquelien M.A. Scherpen *
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Delft University of Technology, Mekelweg 2, 2628 CD, The
Netherlands
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du Moulon, 91192 Gif-sur-Yvette, France

Abstract: This paper first addresses the question when a given (possibly nonlinear) RGLC
circuit can be rewritten as a port-Hamiltonian (PH) system—with state variables the in-
ductor currents and capacitor voltages instead of the fluxes and charges, respectively. The
question has an affirmative answer for a class of circuits that fulfills a certain regularity
condition. This class includes circuits where all dynamic elements are linear, and the
associated resistors and conductors are passive—though possibly nonlinear. Interestingly,
the resulting Hamiltonian function is related with the circuits instantaneous reactive power
associated with the inductors and capacitors. This novel circuit representation, called a re-
active port-Hamiltonian description, naturally suggests a new set of non—standard passive
outputs, which are shown to be useful for the design of reactive power compensation
schemes. A Van der Pol oscillator circuit is used to illustrate the developments throughout
the paper. Copyright (©) 2004 IFAC.

Keywords: Passivity, Stabilization, Nonlinear Systems, RGLC circuits, Hamiltonian

Systems, Brayton- Moser Circuits, Van der Pol oscillator.

1. PRELIMINARIES

In the early sixties, J.K. Moser (Moser, 1960) devel-
oped a mathematical analysis to study the stability of
circuits containing tunnel diodes.! His method was
based on a certain ‘potential function’, which was four
years later generalized and coined ‘mixed-potential’
by the same author, together with his colleague R.K.
Brayton, in (Brayton and Moser, 1964). Basically,
their theory is based on the observation that the dif-
ferential equations describing the behavior of a large
class of nonlinear RGLC circuits can be written in the
form

Q(x)x = V,P(x). (1
Here x = col(iz,vc), where ip = col(i,,...,ir;) rep-
resents the currents through the ¢ inductors (L), and

1 1t should be mentioned that related ideas where already contained
in a paper by Stohr in the early fifties (see (Marten ez al., 1992) for
some historical remarks).
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vc = col(vey,...,vc,) the voltages across the p ca-
pacitors (C), respectively. The notation V,P(x) de-
notes the gradient of the scalar function P : RO —
R, i.e., V, = d/dx. This function—called the mixed-
potential—captures all the necessary information about
the topological structure (circuit graph), and the char-
acteristics of the resistive elements contained in the
circuit. The function P(x) = P(ir,vc) has the units of
power and is constructed as

P(ir,ve) =A(iL) = B(ve) +N(i,ve), — (2)

where A : R — R and B : RP — R are the current
potential (content) related with the current-controlled
resistors (R) and voltage sources, and the voltage po-
tential (co-content) related with the voltage-controlled
resistors (i.e., conductors, G) and current sources,
respectively. More specifically, the content and co-
content are defined by the integrals

iL A o o/ ve a / /
b Or(iy, )iy, b i6(ve)dve,



where ¥ (iz) and ig(vc) are the characteristic func-
tions of the resistors and conductors, respectively.

The function N : R — R is determined by the inter-
connection of the inductors and capacitors: N(ir,,vc) =
Z;‘:l 2£=1 yjkiLj v¢,» where yji represents the intercon-
nection between iy, ; and v¢,. Furthermore, the matrix
Q(x) = Q(ir,vc) contains the incremental values of
the inductors and capacitors, i.e.,

—L(i) O ‘|
0 Clw)]|

In the remaining of the paper we will restrict to linear
passive inductors and capacitors, in this case L and C
are constant positive definite matrices.

O(ir,vc) = l (3)

2. A REACTIVE PORT-HAMILTONIAN
DESCRIPTION

The proposition below forms the basis for the main
results of this paper. Basically, we show that, under
some physically interpretable conditions, the Brayton-
Moser model (1) can be rewritten as a port-Hamiltonian
system with dissipation.> There are at least two mo-
tivations for rewriting (1) in a port-Hamiltonian form.
First, in the resulting port-Hamiltonian description the
state variables are the inductor currents and capacitor
voltages instead of their fluxes and charges. For con-
trol applications, where the usual measured quantities
are voltages and currents, this constitutes a clear prac-
tical advantage. Also, as will be shown later on, the
new model naturally suggests a new set of passive port
variables, fundamentally different from the ones iden-
tified with the classical model (Van der Schaft, 2000),
where the associated storage function is not energy but
a reactive power-like function.

2.1 The New Model

Let us define?
0

Vi A(iL)
Vi.B(vc)
0 v

!

where v is a matrix with elements yj; as defined in
Section 1—the matrix J coincides with the usual struc-
ture matrix for conventional port-Hamiltonian systems
in (Van der Schaft, 2000). On the other hand, if the
resistors and conductors are passive with twice dif-
ferentiable characteristic functions, D(x) > 0, and we

D(x) =

] ; “

&)

and

2 For an excellent treatment of port-Hamiltonian systems, the in-
terested reader is referred to (Van der Schaft, 2000).
3 We denote the Hessian of a scalar function by V2 = 92 /9x>.
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will show below that this matrix can be interpreted as
some nonlinear version of the usual dissipation matrix.
The main assumption throughout the paper is that J —
D(x) is regular for all x (see Remark 1).

Proposition 1. Consider the Brayton-Moser equations
(1) with linear passive inductors and capacitors. As-
sume that J — D(x) is regular. Then, the Brayton-
Moser equations (1) can be transformed into an au-
tonomous port-Hamiltonian system

X = [J(x) = D(x)]V.P(x), (©6)

J() =1

7 { V-pE)] " - [J—D(x)]‘T},

which represents the ‘structure’ matrix, satisfying the
skew—symmetry property J(x) = —J 7 (x), and

A-p@] 4 -pe) ")

D(x) = ——
DT (x).

4

The Hamiltonian for the circuit P : R°*P — R is given
by

P(x) = VI P(x)MV,P(x), ©)

where M is a symmetric and positive-definite matrix
L 0

of the form
-1
M= .
0 C

Furthermore, if the resistors and conductors are pas-
sive with twice differentiable characteristic functions
[)(x) > 0, hence (6) defines an autonomous port-
Hamiltonian system with dissipation.

Proof. The key observation here is that the dynamics
of (1) can alternatively be written as

O(x)x =V, P(x), ®)
where Q(x) is defined by
O(x) =2ViP(x)MQ, ©

and P(x) is of the form (7). From (1) and (8) it is
obvious that to establish this claim it suffices to proof
that Q(x)Q 'V P(x) = V.P(x). The latter equality
can be verified by noting that the gradient of P(x)
satisfies V,P(x) = 2V2P(x)MV,.P(x).

Furthermore, since the Hessian of P(x) equals

V2 A(i
VP = | " (ic) 2y 1
YT —V‘,CB(VC)
and
Vo -1 0
o o1 |

itis easily verified using (9) that O(x) = 2[J — D(x)].



Under the assumption of regularity of J — D(x), we
can invert this matrix an define

J09)—D(x) = %[J—D(x)] - (10)

Then, we use the fact that every square matrix can be
decomposed into a symmetric and a skew-symmetric
part as done in the proposition.

For passive resistors and conductors D(x) > 0, and
thus D(x) > 0. Hence, the system (6) is dissipative.
This concludes the proof. <

The following remarks are in order:

Remark 1. We notice that the only condition needed
for the derivation of (6) is that J(x) — D(x), or equiv-
alently J — D(x), is full-rank. This full-rank condi-
tion does not seem restrictive in physical applications.
On one hand, it will be verified if all inductors and
capacitors are leaky, which is the case for real-life
inductors that always possess some resistance. On the
other hand, if J(x) — D(x) is rank deficient then the
circuit has equilibria at points which are not extrema
of (7), and consequently of the original mixed po-
tential (2). See e.g. (Ortega et al., 2002; Jeltsema et
al., 2003a) for a similar discussion in the conventional
port-Hamiltonian framework.

Remark 2. 1t is interesting to point out that, in con-
trast to conventional port-Hamiltonian systems, the
(independent) external voltage and current sources are
captured in both P(x) and Q(x), and therefore do not
appear as external (port-)signals in the equation like
in (Van der Schaft, 2000). For that reason, (6) may
be considered as an autonomous Hamiltonian system.
However, if a circuit is driven by one or more time-
dependent sources, the resulting Hamiltonian descrip-
tion is extended as

X =0 (x,1)V,P(x,1). (1)

This will be illustrated in Example 1.

In the following subsection we will provide a physical
interpretation of the new Hamiltonian (7).

2.2 Total Instantaneous Reactive Power

To justify the title above, we make the following ob-
servation. The new Hamiltonian (7) can, by substitu-
tion of (1), be written in the form

PU) =V () T (1) +E0) S o),
where vy, and ic represent the voltages across the
inductors and the currents through the capacitors,
respectively. If, for simplicity, we restrict the dis-
cussion to a linear and time-invariant (LTI) RGLC
circuit driven by a single sinusoidal voltage source
vs(t) = viicos(mr), we know from e.g., (Desoer and

(12)
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Kuh, 1969), that the total supplied (average) power is
defined by
1 (7,

ps=1 [ istsde, (13
where the quantity is(7)vs(r) equals the total supplied
instantaneous power ps(t), with is(¢) = is cos(or £ 0),
and ¢ the displacement angle between the port signals
is(t) and vg(¢). Using basic trigonometric identities,
(13) can be rewritten in term of the RMS-values* of
the supplied voltage and current as pg = IsUscos ¢.
If the displacement angle ¢ # 0, one can decompose
Is into two components: a real component s, and a
imaginary component /g, as I§ = Igr + Igi , where Is, =
Iscos¢ and I, = Issin ¢, respectively. Hence, (13) can
alternatively be written as pg = I5,.Us.

A very important quantity in the study of electric
circuits is the total supplied (average) reactive power.
This quantity, denoted by g, is classically defined
as the product of the imaginary current component
Is, and Us, i.e., g5 := I Us, or equivalently, gg :=
IsUssin¢. Interestingly, it is easily proved that in
a similar fashion as (13), we may relate to gg an
alternative definition involving time-derivatives of the
port variables is(¢) or vs(z), i.e.,

_ 1T
4527[) gs(t)dt,

where ¢s(7) is either represented by

1, dvg 1 dig

als(f)z(l’), or — EVS(Z’)Z(I’).

(14)

This fact establishes the relationship between the av-
erage behavior of the port variables is(¢),vs(¢) and the
classical reactive power.

The above discussion suggests that we can give to
gs(t) an interpretation of supplied instantaneous re-
active power. Hence, regarding (12), the quantities
vl dip/dt and ildvc/dt can also be considered as
some generalized powers related to the energy storing
elements in the circuit. Moreover, as illustrated in the
simple example below, we relate (12) with the total
instantaneous reactive power.

Example 1. Consider the LTI RC circuit shown in Fig.
1. The circuit is driven by a time-varying voltage
source vs(t). The dynamics can be described in the
form (1) as follows. Since there are no inductors
and no current-controlled resistors, we have that the

* For any periodic signal u(t) the RMS (root-mean-square) value is
defined as
1 /T

U:=¢/=
T Jo

u?(t)dt.

For a purely sinusoidal signal, i.e., u(t) = éicos(wr), the RMS value
is simply given by U = ii/+/2.



Vs

Fig. 1. A simple voltage-driven linear RC circuit.

content A(i) = 0 and N(ir,vc) = 0. However, the
circuit’s co-content is defined by

B(VC7t)

where G| = 1/R; and G = 1/R; + 1/R;. Thus, for this
circuit we have that P(v¢,7) = —B(vc,t), which yields
for the dynamics that

Cvec = VVCP(Vc,t) = G]VS(l‘) —Gvc.

= %GV% — G1VCV5(t),

According to Proposition 1, the circuit dynamics can
equivalently be expressed as

Ve = Qilvl’cﬁ(VCat)v
with Q = —2G, and p(VC,l‘) =c! (leS(t) — GVC)z.

It is clear that P(t) = ic(t)vc(t). Now consider its
time-derivative, i.e.,

b(r) =

_2GR2(1)+ 2% (Givs(1) — Gve(t)) is (1).

For this simple example we can actually compute an
explicit solution for P(t). Indeed, the latter equation
can be expressed in terms of () as

G .
—22P(1)+2
2P+

< G?
P(r) = —P(t)vs(1).
C
Consider then the case when vg(r) = E cos(wr), then
the solution of the differential equation above is easily
obtained as
0’G3CE?
(GZ + (,02C2)2

x [®Ccos(wr) — Gsin(ar)] R £,

P(r) =

where &, are exponentially decaying terms due to the
initial conditions.

As expected, the average value of P coincides—up to
a factor @—with the classical average reactive power
associated with the capacitor, in the sense that

1 rT .
7 [ P =oac.
T Jo

(compare with (14)) as computed for instance in Ex-
ample 11.7 of (Carlo and Lin, 2001). Fig. 2 demon-
strates the reactive power flow for some particular val-
ues of the circuit components. The classical average
reactive power gc associated with the capacitor is ob-
tained by averaging the product Ic,Uc with a running
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window over one cycle of the fundamental frequency

Instantaneous Reactive Power [VAr]

v
time [sec]

B
°
2
8
°
8
°
g
°
&

Fig. 2. Reactive power flow for the circuit of Exam-
ple 1, with E =1V, ® = 100x rad/sec., R; = 1Q,
R, = 100Q, and C = 100uF: P(¢)/® (dashed),
and the classical reactive power gc (solid).

From the discussion above we see that the Hamilto-
nian function (12), and thus (7), is related to the the
total instantaneous reactive power in the circuit, pro-
viding some justification to the following definition.

Definition 1. A system of the form (6), together with
(7), is called a reactive port-Hamiltonian system. Fur-
thermore, if the resistors and conductors are passive,
it is called a reactive port-Hamiltonian system with
dissipation.

In the remaining sections we illustrate the usefulness
of (6) by highlighting some theoretical properties and
potential implications for control.

3. APPLICATION 1: TOWARDS A REGULATION
PROCEDURE OF INSTANTANEOUS REACTIVE
POWER

So far, we have introduced a new port-Hamiltonian
equation set that admits the interpretation of a reactive
power-like description (recall that the original port-
Hamiltonian equations, as defined in (Van der Schaft,
2000), have the interpretation of an energy description
since the Hamiltonian function equals the total stored
energy). In the proposition below we generalize the
ideas illustrated in Example 1, and derive a simple
expression for the time evolution of the total instan-
taneous power—that highlights the role of dissipation
and suggests a procedure to regulate it with the in-
clusion of regulated voltage and/or current sources.
For ease of presentation we will assume first that the
external sources, which are contained in A(iz) and/or
B(vc), are constant.



Proposition 2. Consider a RGLC circuit described by
(6). Assume that the voltage sources and/or current
sources are constant. Then, along the trajectories of
the circuit we have that the rate of change of the
reactive Hamiltonian satisfies
N di]" di
Py = 2| 5| Vi) | %]

dVC T ) a'VC
-2 [W:| V‘,CB(VC) [W .

In particular, if the resistors and conductors contained
in the circuit are passive, we have that P(x(¢)) < 0.

5)

Proof. Since the external sources are constant by
assumption, equation (15) follows directly by pre-
multiplying (6) by " Q(x), i.e.,

Q)i =iV, P(x),

where we notice that x” V,P(x) = P(x(t)). If the resis-
tors and conductors are passive, A(ir) > 0 and B(v¢) >
0, hence, the symmetric part of Q(x) is negative semi-
definite. <

Notice that the previous observations remain valid if
we include current-dependent voltage sources, with
characteristic function vg, = ¥s, (i), in series with the
inductors and/or voltage-dependent current sources,
with characteristic function is, = is,(vc), in parallel
with the capacitors. Indeed, the expressions (12) and
(15) remain valid if we replace A(ir) and B(vc) with
the new content and co-content functions

A iL / /
A=) - [T, a6

and

B(ve) = B(vc) —A C?S(,(V'c)dvlc, (17)

respectively. The characteristic functions ¥, (i) and
is,(vc) can be chosen by the designer. As indicated
in (15), and illustrated in the example below, these
control actions enter through the Hessians of the con-
tent and co-content functions. Henceforth, the reactive
Hamiltonian P(x) can be regulated via a suitable se-
lection of the ‘slopes’ of the characteristic functions
of the sources.

Example 2. Consider the circuit realization of a Van
der Pol oscillator circuit shown in Fig. 3. It is easily
shown that the reactive Hamiltonian reads

< 1 1 A 2

Pizve) = 2+ & (in=levo)) s (18)
while its time evolution is determined by

P(x(t)) = —2V,pic(ve)ve.

As indicated above, the total stored instantaneous re-
active power in the circuit can be ‘controlled’ adding
regulated sources. For instance, let us add a voltage-
dependent current source in parallel with the capacitor
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S S

15, () ic(vc)

Fig. 3. Circuit realization of a Van der Pol oscillator.
The nonlinear resistor is usually characterized by
a function ig(vc) = awc(v: — B), with o, B € R.

by closing the switch in Fig. 3. Let the control action
be given by is, = fgd(vc), with fgd :R — R a function
to be defined. One can easily verify that the quantities
of Proposition 2 remain unaffected, and that only the
circuit’s co-content function B(v¢) has to be changed
to

D ve 2 ! ! ve ° / /
B(ve) = A ic(ve)dve — A is,(ve)dve.
|

B(vc)
The rate of change of the total instantaneous reactive
power now becomes

P(x(1) = =2V, (To(ve) Is, (vc) ) 2.

The previous expression shows how we can modify
the total instantaneous reactive power via a suitable se-
lection of the ‘slope’ of the function fgd (vc). A similar
effect is obtained, but now modulated by the quantity
(dir/dt)?, placing a current-dependent voltage source
in series with the inductor (see e.g. Fig. 4).

4. INPUT-OUTPUT REPRESENTATION AND
PASSIVITY

For control applications it is convenient to write the
equations with the manipulated inputs appearing ex-
plicitly. For that purpose, we need to extract the con-
trollable sources from the reactive Hamiltonian. This
is easily done as follows.

4.1 Input-Output Representation

Consider the Brayton-Moser equations (1). Let the
content A(iz) (resp. co-content B(v¢)) be composed
of two parts: a resistive content function Ap (ir,) (resp.
conductive co-content function Bp(vc)) and an ‘inter-
action’ content function Ag(iy,) (resp. co-content func-
tion Bs(vc)). Consequently, the mixed-potential P(x)
can be decomposed into two parts: an ‘internal’ part
Pp(ir,vc) = Ap(ir) —Bp(vc) +N(ir,vc), and an ‘in-
teraction’ part Ps(ir,vc) = —As(i) + Bs(vc). Hence,
(1) can be written as

QOx = VXPD()C) + VXPS()C).



A similar discussion holds for the reactive Hamilto-
nian description (6), as illustrated in the following
proposition.

Proposition 3. The reactive port-Hamiltonian system
(6) admits an input-output representation of the form

X = Q0 ' (0)V,Pp(x) +&(x)u
y = g (x)ViPp(x),

where Pp(x) = V,Pp(x)MVPp(x) is the internal re-
active Hamiltonian, Q! (x) is defined in (9), and the
forcing term is given by

g)us Qilvng(x),

19)

(20)

with g(x) € R" and u € R™ representing the external
voltage and/or current sources, and y € R™ represents
the output of the system.

Proof. The proof for the ‘internal’ part (i.e., u = 0) fol-
lows along the same lines of the proof of Proposition
1, while (20) follows by construction. |

Let us illustrate the latter using our example.

Example 3. Consider again the controlled Van der Pol
circuit of Example 2, but now with a regulated voltage
source vg = ¥g(iz) in series with the inductor (Fig. 4).
Since Ap(ir) = 0, the modified content (16) reads

~ iL
Alip) = —As(ir) = — /O s, (0L )dil.

In order to obtain an input-output description we set
Ps(ir) = —As (i), while pD(iL,Vc) equals (18). Con-
sequently, the controlled Van der Pol circuit in the
form (19) reads

d|i]| 1 —Vyeicve) =1 [ Vi Pplir,ve)
dt 1% 2 1 0 V\’CﬁD(iLaVC)
1
+ L u, u="7vs,(ir)

Vi Pp(ip,ve) ]

117
L
y= o
[0] V\'CPD(IL,VC)

(21
To this end, it is interesting to observe that the natural
(“reactive power conjugated”) output for the latter
reactive port-Hamiltonian system equals

y= L(iL —iG(vc)),
LC

which, by using (1), can also be written as y = v¢/L.
Hence, there is a ‘natural’ differentiation in the output.
This observation will be of key importance in the
following section.
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a

ig(ve)

Fig. 4. Van der Pol oscillator with a regulated voltage
source.

4.2 Yet Another Passivity Property

It is well-known that arbitrary interconnections of
passive resistors, inductors and capacitors define pas-
sive systems, with power port variables the external
sources as inputs and the capacitor voltages and/or
inductor currents as outputs. The related storage func-
tion equals the total stored energy (Desoer and Kuh,
1969). Based on the mixed-potential, we have identi-
fied in (Jeltsema et al., 2003b), (Ortega et al., 2003)
a class of RLC circuits for which it is possible to
‘add a differentiation’ to the port terminals preserving
passivity—with a new storage function that is directly
related to the circuit power. The class verifying these
new passivity properties is identified in terms of an
order relation between the magnetic and the electric
energy and has led to the paradigm of a new con-
trol strategy, called power-shaping control (Ortega et
al., 2003).

The following proposition reveals a new passivity
property, which is independent of the energy relations.
It yields a set of passive outputs, different from the
ones in (Jeltsema er al., 2003b), that will be shown to
be useful for control purposes in the next section.

Proposition 4. Consider the reactive port-Hamiltonian
input-output system (19). If Ap(i) and Bp(vc) are
non-negative (i.e., the resistors and conductors are
passive), then the circuit defines a passive system with
port variables (u,y), where

y=g"ViPp(x), (22)
and nonnegative storage function Pp(x).
Proof. The proof consists in showing that
t
Polx(t)] = Polx(0)] < [T (e @3)
0

First, we notice that differentiation of Pp(x) along the
trajectories of (19) yields
Pp(x) = VI By(x)0 ' (x)V,Pp(x) +uly

Under the assumption that Ap(ir) > 0 and Bp(v¢) >0,
we have that the symmetric part of Q! (x) < 0. Hence,
the proof is completed integrating (24) fromOtoz. <«

24)



Remark 3. Notice that we may interpret the inequality
(23) as a reactive power-balance inequality.

Example 4. For the controlled Van der Pol oscillator

of Fig. 4 we found in (21) that
1/ . B
Y=1c (lL - lG(VC)) =
Hence, according to (24), we have

1.
—ve.
LC

~ . ~ . 1 A . .
Pp(ip,ve) = —ZV‘,ClG(vc)v% + Zde(lL)vc.

If ir,(0) = vc(0) = 0 and V,.ig(vc) > 0, then

!

% A ve(t')vs, (t')dt'.
Hence, for all values of v for which V‘,Cfg(vc) is
non-negative, the Van der Pol circuit defines a passive
system with port variables (VS(,,VC /L) and storage
function Pp(iz,vc). On the other hand, it is clear that if
Vycig(\/c) < 0, the circuit can be rendered passive by
defining a suitable control vg, = Vs, (iz) that dominates
the term |2V, fG(vc)\%H such that (25) is satisfied for
all (ir,vc). (Compare to the method of Example 2.)

Pplir(t),ve(r)] < (25)

5. APPLICATION 2: PI(D) CONTROL

Motivated by the foregoing discussion, we have the
following proposition:

Proposition 5. Consider the reactive port-Hamiltonian
input-output system (19) with passive resistors and
conductors. Assume Pp(x) admits a local minimum,
that we denote x,.° Let ¢ : R” — R™ be defined by

¢(xv§) = _KPgT(x)VxﬁD(x) _Kla(x)
& = & (\)ViPo(x),

with Kp, K; € R™*™ some positive definite symmetric
matrices. Then, the system (19) in closed-loop with
the control u = 0(x,&), has x, as an asymptotically
stable equilibrium point.

(26)

Proof. The closed-loop dynamics reads
{x = 0 (0)VaPp(x) +§(x)0(x,E)
& =& (OViPo(x) (=)

Next, we define the Lyapunov function candidate

27)

V() = Pox) + 587K,

5 Proposition 5 has close relations with Proposition 9, pp. 49 of
(Rodriguez, 2002), where a similar type of control is proposed for
conventional pre-controlled port-Hamiltonian systems.

% Note that x, is clearly an equilibrium point of the open loop
system, that is furthermore stable.
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and differentiate V (x,&) along the trajectories of (27),
ie.,

(28)

Since the symmetric part of ! (x) is negative semi-
definite by assumption and g7 (x)Kpg(x) > 0, we have
that V(x,&) < 0, for all x. Hence, we conclude that y
and & are bounded, and thus x, is still (Lyapunov) sta-
ble. The claim that the equilibrium point is asymptoti-
cally stable follows directly from LaSalle’s invariance
principle. <

At a first glance, the proposed control strategy is of
course structurally equivalent to the well-know and
widely used PI (proportional-integral) control. How-
ever, since the present construction of the control ac-
tion is achieved through some kind of shaping process
of the reactive power in the circuit, and more impor-
tantly, since it involves a completely different set of
outputs, the application of PI control in the reactive
port-Hamiltonian context seems novel. Moreover, de-
pending on the structure of the circuit, the passive
outputs may ‘naturally’ contain derivative actions on
the signals (see e.g., Example 4, where y was found
to be y = v¢/L). This means that adding an integral
term to the ‘differentiated’ output signals results in a
proportional feedback, while a proportional feedback
of a signal containing derivatives results in a differ-
entiating action. Indeed, as will be illustrated, using
our Van der Pol circuit example, the integral action
reduces to a simple proportional controller, while the
proportional part of the control reduces to a differenti-
ating (D) action.

Example 5. To motivate the use of the previously de-
veloped theory, consider again the Van der Pol oscil-
lator of Fig. 4. In applications, the characteristic func-
tion of the conductor is usually defined by ig(ve) =
owc(vZ —B), where o and B are some (constant) de-
sign parameters. It is easily observed that

if ve| > /B

non-passive if [ve| < /B ’

passive

Viel(ve) { (29)

According to (29), the circuit is only passive, with port
variables (vsd,\'»c/L), for all |ve| > \/B However,
straightforward application of Proposition 5 yields
that the circuit dynamics in closed-loop with the PI
controller (26) are given by

—L% — Kpic+ (1+K))ve

! (30)
e i Zis(ve)
dt L G\VC);



where we have defined K, = Kp/L and K; = K;/L,
respectively. Regarding the previous discussion, it is
indeed directly recognized that the P-action, i.e., the
term —Kpvc, actually represents a D-action, while the
I-action,

1
_KI// ﬁc(f’)dt/ = —K;VC,
0

reduces to a simple P-action. (Thus, the PI controller
acts as a PD controller.) Substitution of the second
equation of (30) into the first and rearranging the terms
yields
g +ve — (KpV,, i —K;
ar 0P LT VC ( P vClG(VC) [)VCa

where we have defined Kj = K /C. It is directly no-
ticed that —Kpij, represents a damping term, which
plays a similar role as if there where a real resis-
tor connected in series with the inductor. Note that
the third right-hand term, (K;J’V\,Cfg(vc) — K,’) ve, de-
stroys the reciprocal structure, and thus the port-
Hamiltonian/Brayton-Moser form of the closed-loop
system. Now, suppose that we select a voltage depend-
ing gain K] = Kj(v¢) = KpV,eic(ve), the resulting
closed-loop dynamics become

diy, "
—L— =Kpi
dr plL+Ve
dVC o
c2C — i, —igve).
o~ iL—ig(vc)

Evaluating (28) along the closed-loop dynamics sug-
gests that if we choose K} large enough, i.e., choose
K7 such that it dominates V‘,Cfg(vc), the circuit will
be stable for all (i, vc). Indeed, we at least need to re-
quire that K > +/L/C, which is sufficient for stability
(see (Brayton and Moser, 1964), Thm. 3, pp. 19).

6. CONCLUDING REMARKS

In this paper we have shown that, under some regular-
ity assumptions on the mixed-potential function, the
Brayton-Moser equations can be transformed into a
port-Hamiltonian system with dissipation—with state
variables inductor currents and capacitor voltages, and
with Hamiltonian a function related with the reac-
tive power of the circuit. For that reason, and with
some obvious abuse of notation, the new description
is coined a reactive port-Hamiltonian system. Further-
more, the reactive port-Hamiltonian framework natu-
rally suggests a new passivity property that—unlike
the passivity property of (Jeltsema et al., 2003b)—
does not impose any order relationships between the
electric and magnetic energies. The new passivity
property has been shown to be potentially useful for
some control application, including the challenging
and widely elusive reactive power compensation prob-
lem.

58

Although we have restricted here to the case of linear
active elements, the main ideas apply as well to the
nonlinear case. Indeed, it is easy to show that the effect
of the nonlinearities appears as some additional terms
on the diagonal of the matrix Q(x), that is

- —VI-ZLA (l L) + % Y
O(x) =2 )

— =Vi.B(vc) —x
denoted here with a ‘x’. Given that these terms have
a complicated expression we have preferred to present

here the linear case which, as shown in the paper, has
very nice and physically intuitive interpretations.

REFERENCES

Brayton, R.K. and J.K. Moser (1964). A theory
of nonlinear networks 1. Quart. Appl. Math.
12(1), 1-33.

Carlo, R. De and P. Lin (2001). Linear Circuit Analy-
sis. Oxford Press, UK.

Desoer, C. A. and E. S. Kuh (1969). Basic Circuit
Theory. McGraw—Hill, NY.

Jeltsema, D., R. Ortega and J. M. A. Scherpen
(2003a). An energy-balancing perspective of in-
terconnection and damping assignment control
of nonlinear systems. In proc. 2nd IFAC Work-
shop on Lagrangian and Hamiltonian Methods
for Nonlinear Control, Sevilla, Spain. Also to ap-
pear in Automatica.

Jeltsema, D., R. Ortega and J. M. A. Scherpen
(2003b). On passivity and power-balance in-
equalities of nonlinear RLC circuits. IEEE Trans.
Circuits & Systems Part-I Fund. Theory and
Appl. 50(9), 1174-1179.

Marten, W., L.O. Chua and W. Mathis (1992). On the
geometrical meaning of pseudo hybrid content
and mixed-potential. Arch. £ Electron. u. Ubertr.
46(4), 305-309.

Moser, J.K. (1960). Bistable systems of differential
equations with aplications to tunnel diode cir-
cuits. IBM Journal of Res. Develop. 5, 226-240.

Ortega, R., A.J. van der Schaft, B.M. Maschke
and G. Escobar (2002). Interconnection and
damping assignment passivity based control of
port-controlled Hamiltonian systems. Automat-
ica 38(4), 585-596.

Ortega, R., D. Jeltsema and J. M. A. Scherpen (2003).
Power shaping: A new paradigm for stabiliza-
tion of nonlinear RLC circuits. I[EEE Trans. Aut.
Cont. 48(10), 1762-1767.

Rodriguez, H. (2002). Interconnection and damp-
ing assignment control of Hamiltonian systems.
Ph.D. Thesis, LSS—Supelec.

Van der Schaft, A.J. (2000). £,-Gain and Passiv-
ity Techniques in Nonlinear Control. Springer-
Verlag.



