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COMPUTATIONAL TOPOLOGY
Gert Vegter

INTRODUCTION

Topology studies point sets and their invariants under continuous deformations,
invariants such as the number of connected components, holes, tunnels, or cavities.
Metric properties such as the position of a point, the distance between points, or
the curvature of a surface, are irrelevant to topology. A high level description of the
main concepts and problems in topology is given in Section 32.1. Computational
topology deals with the complexity of such problems, and with the design of efficient
algorithms for their solution, in case these problems are tractable. These algorithms
can deal only with spaces and maps that have a finite representation. To this end
we consider simplicial complexes and maps (Section 32.2) and CW-complexes (Sec-
tion 32.3). Section 32.4 deals with algebraic invariants of topological spaces, which
are in general easier to compute than topological invariants. Mapping (embedding)
a topological space 1-1 into another space may reveal some of its topological prop-
erties. Several types of embeddings are considered in Section 32.5. Section 32.6
deals with the classification of immersions of a space into another space. These
maps are only locally 1-1, and hence more general than embeddings. Section 32.7
constitutes a brief introduction to Morse theory.

Many computational problems in topology are undecidable (in the sense of
complexity theory). The mathematical literature of this century contains many
(beautiful) topological algorithms, usually reducing to decision procedures, in many
cases with exponential-time complexity. The quest for efficient algorithms for topo-
logical problems has started rather recently. Most of the problems in computational
topology still await an efficient solution.

32.1 TOPOLOGICAL SPACES AND MAPS
Topology deals with the classification of spaces that are the same up to some equiva-
lence relation. We introduce these notions, and describe some classes of topological
problems.

GLOSSARY

Space: In this chapter a topological space (or space, for short) is a subset of
some Euclidean space R?, endowed with the topology of R%.

Map: A function f : X — Y from a space X to a space Y is a map if f is
continuous.

Homeomorphism: A 1-1map h: X — Y, with a continuous inverse, is called
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a homeomorphism from X to Y (or: between X and Y').

Topological equivalence: Two spaces are topologically equivalent (or homeo-
morphic) if there is a homeomorphism between them.

Embedding: A map f: X — Y is an embedding if f is a homeomorphism onto
its image. We say that X can be (topologically) embedded in Y.

Homotopy of maps: Two maps fo, f1 : X = Y are homotopic if there is a map
F:X x[0,1] = Y such that F(z,0) = fo(z) and F(z,1) = fi(z), for all z € X.

Homotopy equivalence: Two spaces X and Y are homotopy-equivalent if there
aremaps f: X =Y and g : Y — X such that gf and fg are homotopic to the
identity mappings on X and Y, respectively. Obviously topological equivalence
implies homotopy equivalence.

Topological/homotopy invariant: A map ( associating a number, or a group,
¢(X) to a space X, is a topological invariant (resp. homotopy invariant) if ¢(X;)
and ((X>) are equal, or isomorphic, for topologically equivalent (resp. homotopy-
equivalent) spaces X; and X5.

Contractibility: A space is contractible if it is homotopy-equivalent to a point.

Unit interval I: The interval [0,1] in R.

Ball: Open d-ball: BY = {(z1,---,24) € R* | 22 + --- 2% < 1}. Closed d-ball: B’
is the closure of B¢,

Half ball: B = {(z1,--+,24) € R | 2? +---2%2 < 1 and z4 > 0}.

Sphere: S = {(x1,--+,zay1) € R*H! | 2% + ---mi_H = 1} is the d-sphere. It is
the boundary of the (d+1)-ball.

Manifold: A space X is a d-dimensional (topological) manifold (also: d-manifold)
if every point of X has a neighborhood homeomorphic to BY. X is a d-manifold
with boundary if every point has a neighborhood homeomorphic to B¢ or Bi.

Surface: A 2-dimensional manifold, with or without boundary. A closed sur-
face is a surface without boundary.

Curve: A curvein X is a continuous map I — X. For zg € X, a x¢-based closed
curve c is a curve for which ¢(0) = ¢(1) = zo.

BASIC TOPOLOGICAL PROBLEMS AND APPLICATIONS

Topological equivalence and classification: Decide whether a space belongs
to (is topologically equivalent to an element of) a class of known objects.
Application: Object recognition in computer vision.

Homotopy equivalence: Decide whether two spaces are homotopy-equivalent, or
whether a curve in X is contractible (the contractibility problem).
Applications: a-hull, skeletons; see [Ede94]. Concurrent computing; see [HS94a].
Embedding: Decide whether X can be embedded in Y. If so, construct an em-
bedding.

Application: Graph drawing (Chapter 52), VLSI-layout, and wire routing.
Extension of maps: Let A be a subspace of X. Decide whetheramap f: A - Y

can be extended to X (i.e., whether there is a map F' : X — Y whose restriction
to Ais f).
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Lifting of maps: Let f: A —» X and p: Y — X be maps. Decide whether there
isamap F: A — Y such that pF' = f.

Application: Inverse kinematics problems and tracking algorithms in robotics;
see [Bak90] and Section 48.1.

32.2

SIMPLICIAL COMPLEXES

Computation requires finite representation of topological spaces. Representing a
space by a simplicial complex corresponds to the idea of building the space from
simplices. Simplicial complexes may be considered as combinatorial objects, with
a straightforward data structure for their representation. See also Section 18.1.

GLOSSARY

Geometric simplex: A geometric k-simplex oy is the convex hull of a set A
of k + 1 independent points ag, - - -, ar in some Euclidean space R? (so d > k).
A is said to span the simplex 0. A simplex spanned by a subset A’ of A is
called a face of op. The face is proper if § # A" # A. The dimension of
the face is |A’| — 1. A 0-dimensional face is called a vertex, a 1-dimensional
face is called an edge. The union of, 0 < i < k, of all faces of dimension at
most 7 is called the i-skeleton of oy. In particular o2 is the set of vertices, and
ok = o). An orientation of oy, is induced by an ordering of its vertices, denoted
by (ao,---,ax), as follows: For any permutation 7 of 0,---,k, the orientation
(@r(0),* "> ar(k)) is equal to (—1)%9(m) (qq, - - - a), where sign(r) is the number
of transpositions of 7 (so any simplex has two distinct orientations). If 7 is
a (k—1)-dimensional face of o, obtained by omitting the vertex a;, then the
induced orientation on 7 is (—1)*(ag,"- -, @i, --,ax), where the hat indicates
omission of a;.

Geometric simplicial complex K: A finite set of simplices in some Euclidean
space R™, such that (i) if ¢ is a simplex of K and 7 is a face of o, then 7 is a
simplex of K, and (ii) if o and 7 are simplices of K, then o N 7 is either empty
or a common face of o and 7. The dimension of K is the maximum of the
dimensions of its simplices. The underlying space of K, denoted by |K|, is
the union of all simplices of K, endowed with the subspace topology of R™. The
i-skeleton of K, denoted by K*, is the union of all simplices of K of dimension
at most i. A subcomplex L of K is a subset of K that is a simplicial complex.

Combinatorial simplicial complex: A pair K = (V,X), where V contains
finitely many elements, called vertices, and ¥ is a collection of subsets of V,
called (combinatorial) simplices, with the property that any subset of a simplex
is a simplex. The dimension of a simplex is one less than the number of vertices it
contains. The dimension of K is the maximum of the dimensions of its simplices.

Geometric realization: A geometric simplicial complex K in R™ is called a
geometric realization (in R™) of the combinatorial simplicial complex K = (V, X)
if there is a 1-1 correspondence f : V — K9, such that A C V is a simplex of K
iff f(A) spans a simplex of K. Furthermore K is called the abstraction of K.
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Triangulation: A triangulation of a topological space X is a pair (K, h), where K
is a geometric simplicial complex and h is a homeomorphism from the underlying
space | K| to X.

Barycentric subdivision: The barycenter (center of mass) of a geometric k-
simplex with vertices ag,---,ar in R™ is the point 1/(k + 1) Zf:o a;. The
barycentric subdivision of a geometric simplicial complex K is defined induc-
tively: (i) the barycentric subdivision of the O-skeleton ¢ is ¢© itself; (ii) if o
is an 4 dimensional face of K, i > 0, then ¢ is subdivided into the collection of
simplices C'(b, ), for all simplices 7 in the barycentric subdivision of the (i—1)-
skeleton of o. Here C(b,7) is the convex hull of b U7 and b the barycenter
of o.

FIGURE 32.2.1
Barycentric subdivision.

The (first) barycentric subdivision of a simplicial complex K is the simplicial
complex s(K) obtained by barycentric subdivision of all simplexes of K; see
Figure 32.2.1. The ith barycentric subdivision of K, i > 1, is defined inductively
as s(s'1(K)). A simplicial complex L is called a refinement of K if L = s'(K),
for some i > 0.

Simplicial map: A simplicial map between simplicial complexes K and L is a
function f : |[K| — |L| such that (i) if a is a vertex of K then f(a) is a vertex
of L; (ii) if ag,---,a are vertices of a simplex of K, then the convex hull of
flag), -+, f(ax) is a simplex of L (whose dimension may be less than k); and
(iii) f is linear on each simplex: if z = Ef:o Aia; is a point in a simplex with
vertices ag, - - -, ar, then f(z) = Zf:o Aif(a;).

Simplicial equivalence: Two simplicial complexes K and L are simplicially
equivalent iff there are simplicial maps f : |K| — |L| and g : |L| = |K| such that
gf is the identity on |K| and fg is the identity on |L|.

Piecewise linear (PL)-equivalence: Two simplicial complexes K and L are
called piecewise linearly equivalent (PL-equivalent, for short) if there is a refine-
ment K’ of K and L' of L such that K’ and L’ are simplicially equivalent.

Orientation of a simplicial manifold: An orientation of a simplicial complex
K, whose underlying space is a d-manifold, is a choice of orientation for each
simplex of K, such that, if 7 is a (d—1)-face of two distinct d-simplices o1 and
02, then the orientation on 7 induced by o7 is the opposite of the orientation
induced by o2. The manifold is called orientable if it has a triangulation that
has an orientation, otherwise it is nonorientable.

Euler characteristic: (Combinatorial definition; cf. Section 32.4) The Euler
characteristic of a simplicial d-complex K, denoted by x(K), is the number

E‘Z:O(—l)"a,-, where «; is the number of i-simplices of K.
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Polygonal schema for a surface: Let Mg(ai,by,---,ay,b,y) be a regular 4g-
gon, whose successive edges are labeled ay,bi,@1,b1,- -, ay, bg,ag,l_)g. Edge z is
directed counterclockwise, edge T clockwise. The space obtained by identifying
edges = and T, as indicated by their direction, is a closed oriented surface, denoted
by My; see e.g., [Sti93, Chapter 1.4]. This surface, called the orientable surface
of genus g, is homeomorphic to a 2-sphere with g handles.

Let Ny(ai,---,a,) be the regular 2g-gon whose successive edges are labeled
ai,0a1,---,04,0y. Identifying edges in pairs, as indicated by their oriented la-
bels, yields a closed nonorientable surface, denoted by N,. This surface, called
the nonorientable surface of genus g, is homeomorphic to a 2-sphere with g
CT0SS-Ccaps.
The labeled polygon M, (N,) is called the polygonal schema of M, (N,). M;
is the torus, N; is the projective plane, N» is the Klein bottle.

Minimal triangulation: A triangulation of a surface is called minimal if it has

no contractible edges (i.e., contracting an edge yields a subdivision that is not a
triangulation).

EXAMPLES

1. A graph is a 1-dimensional simplicial complex. The complete graph with n

vertices is the 1-skeleton of an (n—1)-simplex: K,, = o_;.

2. Every connected, compact 1-manifold is topologically equivalent to S' or I.

3. The Delaunay triangulation of a set of points in general position in R? is a
simplicial complex.

BASIC PROPERTIES

1. Every triangulation of an orientable manifold has an orientation (i.e., the
definition of orientability does not depend on the particular triangulation).

2. The Euler characteristic is a homotopy (and hence a topological) invariant
(cf. Section 32.4).

3. A simplicial 2-complex is (topologically equivalent to) a closed surface iff every
edge is incident with two faces, and the faces around a vertex can be ordered
as fo, -+, fr—1 so that there is exactly one edge incident with both f; and
fi+1 (indices modulo k).

4. An oriented closed surface X is topologically equivalent to S? if x(X) = 2,
or to M if x(X) # 2, where g is uniquely determined by x(X) =2 —2g. A
nonorientable closed surface X is topologically equivalent to Ny, with x(X) =
2 — g. The number g is called the genus of the surface.

5. Every surface has finitely many minimal triangulations. (This number is 1
for S?, 2 for the projective plane, and 22 for the torus; cf. Section 21.2.)

6. A simplicial complex is a 3-manifold without boundary iff every 2-simplex is
incident with exactly two 3-simplices and x(M) = 0. See [Fom91, p. 184].
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7. Every combinatorial simplicial d-complex has a geometric realization in R4+

8. Two geometric realizations K7 and K5 of a combinatorial simplicial complex
K are simplicially equivalent (therefore the topology of K does not depend
on the Euclidean space in which K is geometrically realized).

9. A simplicial map f : |K| — |L| is continuous. Hence both simplicial equiva-
lence and PL-equivalence imply topological equivalence.

10. Hauptvermutung: Two simplicial complexes are PL-equivalent iff their un-
derlying spaces are topologically equivalent. The Hauptvermutung is true if
the underlying spaces are manifolds of dimension < 3, and open for manifolds
of dimension exceeding 3. It is false for general simplicial complexes, see Mil-
nor [Mil61]. (Reidemeister torsion is a PL-invariant, but not a topological
invariant [DFN90, pp. 156, 372].)

ALGORITHMS, DATA STRUCTURES, AND COMPLEXITY

Representation of spaces: The Delaunay complex Dx is a geometric simplicial
complex which is, under some conditions, homotopically (or even topologically)
equivalent to a given subspace X of some Euclidean space R%. See [ES94]. For
applications of simplicial complexes to geometric modeling, see [Ede94].

Classification of surfaces: The Euler characteristic and orientability of a trian-
gulated surface with n simplices can both be computed in O(n) time.

Polygonal schema for a surface of genus g > 0: Given a triangulation of a
closed orientable (nonorientable) surface of genus g > 0 with n triangles, there is
a sequence of O(n) elementary transformations (called eross-cap or handle nor-
malizations) that turns the triangulation into a polygonal schema of the form M,
(N,). This sequence of transformations can be computed in O(nlogn) time [VY90].

Minimal triangulations of a surface: For a triangulation of a surface of genus
g with n triangles, a sequence of O(n) edge contractions leading to a minimal trian-
gulation, can be computed in O(nlogn) time [Sch91]. Therefore the classification
problem for triangulated surfaces with n-triangles can be solved in O(n) time; see
property (4) above.

Isomorphism (simplicial equivalence): The homeomorphism problem for 2-
complexes is equivalent to the graph-isomorphism problem [()WWOO]. It is un-
known whether the graph-isomorphism problem is solvable in polynomial time (in
the size of the graphs). See [vL90].

PL-equivalence: Deciding whether two arbitrary simplicial d-manifolds are PL-
equivalent is unsolvable for d > 4 [Sti93, Chapter 9].

OPEN PROBLEMS

1. Design an algorithm that determines whether a simplicial 3-manifold is topo-
logically equivalent to S®. This is a hard problem; see [VKF74] for partial
results.
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2. Design an algorithm that computes all minimal triangulations for a surface
of genus g.

3. Determine the minimal size of a triangulation for a triangulable d-manifold
[BK87, Sar87].

32.3 CELL COMPLEXES

Although simplicial complexes are convenient representations of topological spaces
from an algorithmic point of view, they usually have many simplices. If a represen-
tation with a smaller number of cells is desirable, CW-complexes seem appropriate.
See also Section 18.4.

GLOSSARY

Attaching cells to a space: Let X and Y be topological spaces, such that
X CY. We say that Y is obtained by attaching a (finite) collection of k-cells to
X if Y\ X is the disjoint union of a finite number of open k-balls {ef | i € I},

—k
with the property that, for each i in the index set I, there is amap f; : B — eF,
called the characteristic map of the cell ¥, such that f;(S* ') ¢ X and

the restriction f; | B* is a homeomorphism BF — eF. (Note: B* need not be
homeomorphic to e~.)

Cell complex (CW complex): A (finite) CW-decomposition of a topological
space X is a finite sequence

P=X'cX°cX'c---cX?=X (32.3.1)

such that (i) X© is a finite set of points, called the 0-cells of X; (ii) for k > 0,
X* is obtained from X*~! by attaching a finite number of k-cells to X*~!. The
connected components of X* \ X*~! are called the k-cells of X. The space X
is called a (finite) CW-complex. The dimension of X is the maximal dimension
of the cells of X. A finite CW-complex is called regular if the characteristic
map of each cell is a homeomorphism. (“CW?” stands for “Closure-finite with
the Weak topology.”)

EXAMPLES AND ELEMENTARY PROPERTIES

1. The d-sphere (d > 0) is a CW-complex, obtained by attaching a d-cell to a
point p (so X* = {p}, for 0 < k < d, and X% = S§%). This CW-complex is
not regular: the characteristic map of the d-cell maps the boundary of B? to
a single point.

2. The orientable surface M, of genus g > 1 is a CW-complex with one 0-cell,
2g 1-cells, and one 2-cell. Let the 1-cells be a;,b1,---,a4,by, endowed with
an orientation (direction). The characteristic map of the 2-cell is uniquely
determined by attaching the labeled 4g-gon Mg(a1,b1,---,a4,by) (cf. Sec-
tion 32.2) to the 1-skeleton by mapping an edge to the 1-cell with the same
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label, so that the directions of the edge and the 1-cell correspond. See [VY90].
The 2g 1-cells are curves on the surface, disjoint except at their common end-
point (which is the 0-cell). These curves are called canonical generators
of the surface (see Section 32.4 for a justification of this nomenclature). The
total number of cells is 29 + 2, whereas the total number of simplices in a
triangulation is at least 10g — 10 + ©(,/g) [JR80].

3. The nonorientable surface N, of genus g > 1 is a CW-complex, with one
0-cell, g 1-cells, and one 2-cell. The characteristic map of the 2-cell is obtained
from the polygonal schema represented by the 2g-gon N,(ay,---,a,).

4. A geometric simplicial complex is a regular CW-complex.

5. The dual map of a triangulation of a surface is a regular CW-complex, but
not a simplicial complex.

6. Examples of CW-complexes arising in computational geometry are: arrange-
ments of hyperplanes in R? (after addition of a point at infinity), the visibility
complex [PV93], the free space of a polygonal robot moving amid polygonal
obstacles (see [SS83] and Chapter 47 of this Handbook), and the zero-set of
a generic polynomial defined on §¢ ¢ R4*!.

ALGORITHMS AND DATA STRUCTURES

Representation: A data structure for the representation and manipulation of a
finite, d-manifold CW-complex is described in [Bri93].

CW-decomposition of surfaces from triangulations: For a triangulated sur-
face of genus g, with a total of n simplices, a set of canonical generators (cf. property
(2)) can be computed in O(gn) time, which is optimal in the worst case [VY90]. Two
algorithms achieving this time complexity have been implemented; See [LPVVO01].

Each of the g or 2g canonical generators is represented by a polygonal curve
whose vertices are on the 1-skeleton, while its other points are in the interior of a
2-simplex. In some cases the total number of edges of a single generator is O(n).
This method can be used to construct covering surfaces of m sheets in time O(gnm)
time and space; see also Section 32.4.

CW-decomposition in motion planning: A general method to solve motion
planning problems is the construction of a cell decomposition (Equation 32.3.1) of
the free space X of the robot, together with a retraction r : X — X* of X onto a
low-dimensional skeleton, such that there is a motion from initial position zo € X
to final position z; € X iff there is a motion from r(zg) to r(z1). This may be
regarded as a reduction of the degrees of freedom of the robot. Because in general
the complexity of the motion planning problem is exponential in the number of
degrees of freedom, this approach simplifies the problem. For more details on the
cell decomposition method in motion planning, see Section 47.1.

32.4

ALGEBRAIC TOPOLOGY

In algebraic topology one associates homotopy-invariant groups (homology and
homotopy groups) to a space, and homotopy-invariant homomorphisms to maps
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between spaces. In passing from topology to algebra one may lose information
since topologically distinct spaces may give rise to identical algebraic invariants.
However, one gains on the algorithmic side, since the algebraic counterpart of an
intractable topological problem may be tractable.

3241

SIMPLICIAL HOMOLOGY GROUPS

Historically speaking, simplicial homology groups were among the first invariants
associated with topological spaces. They are conceptually and algorithmically ap-
pealing. Modern algebraic topology usually deals with singular and cellular homol-
ogy groups, which are more convenient from a mathematical point of view.

GLOSSARY

Ordered simplex: Let the vertices of a simplicial complex K be ordered vy, - - -,
Um. A k-simplex of K with vertices v;,,---,vi,, %0 < --- < i} is represented by
the symbol [v;,,- -, v;.], and called an ordered simplex.

Simplicial chain: If G is an abelian group, then an (ordered) simplicial k-chain
is a formal sum of the form ). ajo;, with a; € G and o; the symbol of a k-
simplex in K. With the obvious definition for addition, the set of all (ordered)
simplicial k-chains forms a (free) abelian group Ci(K,G), called the group of
(ordered) simplicial k-chains of K. If G = Z, the group of integers, an element
of Cx (K, Q) is called an integral k-chain.

Boundary operator: The boundary operator 0 : Cy(K,G) = Ci_1(K,Q)
is defined as follows. For a single (ordered) k-simplex o = [vi,,--+,v;,], let
oo = > p_o(=D"[vig, -, 04, -, v;,], and then let J), be extended linearly,
viz., Ox(32; ajo;) = 3, a;0k0;. The boundary operator is a homomorphism of
groups. It satisfies 90,41 = 0.

Simplicial k-cycles: Z,(K,G) = ker dy, is called the group of (ordered) simpli-
cial k-cycles.

Simplicial k-boundaries: By(K,G) = im 041 is called the group of (ordered)
simplicial k-boundaries. Since the boundary of a boundary is 0, By, is a subgroup
of Zk (K, G) .

Simplicial homology groups: The group Hy(K,G) = Zy(K,G)/Br(K,QG) is
the kth (simplicial) homology group of K. This is a purely combinatorial object,
since in fact it is defined for abstract simplicial complexes. If G = Z, these
groups are called integral homology groups, usually denoted by Hy(K). If
G is a field (such as R), then Hy (K, Q) is a vector space.

Homology groups of a triangulable topological space: H,(X,G) = Hi(K,G),
if K is a simplicial complex triangulating X. This definition is independent of
the triangulation K: if h; : K; — X, ¢ = 1,2, are two triangulations of X, then
Hk(Kla G) = Hk(K2a G)

Betti numbers: The kth Betti number S;(K) of a simplicial complex K is the
dimension of the real vector space Hy(K,R). (For an alternative definition,
see [Bre93, Chapter IV.1].)

Euler characteristic: The Euler characteristic x(X) of a simplicial d-complex
K is defined by x(K) = Y0 ,(~1)¥8;(K). This definition is equivalent to the
one of Section 32.2.
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EXAMPLES

1. The n-sphere (n > 0): H,(S",Z) = Z, if k = 0 or n, and 0 otherwise.

2. Orientable surface: For g > 0, Hy(M,,G) = Ho(M,,G) = G, Hi(M,,G) =
@?ilG, H,(M,,G) =0 for k > 2. Taking G = R we see that x(M,) = 2—2g.

3. Nonorientable surface: For g > 0, Hy(Ny,Z) = Z, H (Ny,Z) = &I\ 7. & 7,
Hy,(N,,Z) = 0 for k > 2. Hy(Ny,R) = R, Hi(N,,R) = @7/ R, H5(N,,R) =
0. Hence, x(Ny) =2 —g.

BASIC PROPERTIES

1. Homology is a homotopy invariant: if X; and X, are homotopy-equivalent,
then Hy(X;) = Hi(X2) for all k. In particular, Betti numbers and the Euler
characteristic are homotopy invariants.

2. For a simplicial d-complex K: Hy(K,G) =0 for k > d.

3. Let o;(K) be the number of i-simplices of a simplicial d-complex K. Then
x(K) = X%, (~1)ia;(K). This justifies the definition of y in Section 32.2.

COMPUTING BETTI NUMBERS AND HOMOLOGY GROUPS

See Table 32.4.1 for the algorithmic complexity of computing the Betti numbers
of several important types of spaces. The paper [DG98] also presents a method of
computing a basis for the first and second homology groups of a complex in R® of
size m, in time O(gn?), where the integer g is an invariant of the complex, with
g<n.

Bounds on the sum of the Betti numbers of closed semialgebraic sets are given
in [Bas99], as well as a single-exponential-time algorithm for computing the Euler
characteristic of arbitrary closed semialgebraic sets.

TABLE 32.4.1 Complexity of computing Betti numbers.

TYPE OF SPACE COMPLEXITY SOURCE
Simplicial subcomplex of S® of size n O(na(n)) [DE95]
Simplicial complex in R® of size n Oo(n) [DG9S]
Sparse simplicial complex of size n O(n?) (probabilistic) [DC91]
Semialgebraic set, defined by m

poly’s (deg < d) on R™, n fixed polynomial in m, d [SS83]

32.4.2

HOMOTOPY GROUPS

Homotopy groups usually provide more information than homology groups, but are
generally harder to compute. The main object is the fundamental group, whose
computation requires some combinatorial group theory.
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GLOSSARY

Fundamental group: The space of zg-based curves on X is endowed with a

group structure by (group multiplication) (u1 - u2)(t) = u1(2t), if 0 <t < 1, and
uz(2t — 1) if £ <t <1, and (inverse) u=*(t) = u(l — ¢).
This group structure can be extended to homotopy classes of zy-based curves:
If u,v are homotopic, then v~! and v~—! are homotopic, and if u; and v;, i =
1,2, are homotopic, then u; - us and vy - v2 are homotopic (homotopies respect
the basepoint zg). The group of homotopy classes of closed xg-based curves is
called the fundamental group (or, the first homotopy group) of (X, xy), and
is denoted by 71 (X, z0). If X is connected, the definition is independent of the
basepoint. Then the fundamental group is denoted by m (X).

Combinatorial definition of the fundamental group: If X is a connected
space with triangulation K and vertices ag, - - -, G, then the fundamental group
has generators g;;, one per ordered 1-simplex [a;, a;], and relations g;;g; gi_k1 =1,
one for each ordered 2-simplex [a;, a;, ax] [Mau70, Chapter 3]. See [Sti93] for an
introduction to combinatorial group theory.

kth homotopy group: Let so € S¥, for k > 1. The space of homotopy classes
of basepoint-preserving maps (S*,s0) = (X,20) can be endowed with a group
structure. The group is called the kth homotopy group of (X, z¢), and is denoted
by 7, (X, zo)-

Word problem for a group G: Given a (finitely generated) group generated by
91,--.,9k (the alphabet), and a finite set of relations of the form gi"* --- g;"* =1
(rewrite rules) with m; € Z, decide whether a given word of the form gi"* - -- g;**
represents the unit element 1.

Covering space: A continuous map p:Y — X is a covering map if every point
z € X has a connected neighborhood U such that for each connected component
V of p~1(z) the restriction of p to V is a homeomorphism V — U. Y is called
a covering space of X. If the cardinality n of p~1(U) is finite, ¥ is called an
n-sheeted cover of X. This number is the same for all x € X.

Universal covering space: A connected covering space Y of X is called uni-
versal if m (Y) = 0.

EXAMPLES
1. The n-sphere (n > 0): 71 (S",80) = Z if n = 1, and 0 otherwise.

2. Orientable surface of genus g > 1: m (M) is generated by 2g generators
a1,bi,- -+, ay,by, with the single relation aibya; 'by " -+ agbga; byt = 1.

3. Nonorientable surface of genus g > 1: m(Ny) is generated by g generators
ai,---,ay, with the single relation aja; ---agay = 1.

4. Universal covering space: The universal covering space of S' is R, with cov-
ering map p : R — S' defined by p(t) = (cost,sint). The universal covering
space of the projective plane P is S?, the covering map being antipodal iden-
tification. The plane is the universal covering space of My and Ng, g > 0.
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BASIC PROPERTIES

1. The homotopy groups are homotopy invariants.
2. The first integral homology group is the abelianized fundamental group.

3. The fundamental group of a simplicial complex is the fundamental group of
its 2-skeleton.

4. For every finitely generated group G there is a finite simplicial 2-complex K
and a 4-manifold M such that 71 (K) = G and 71 (M) = G.

5. Homotopy invariants are topological invariants, but not vice versa. For ex-
ample, the lens spaces L(5,1) and L(5,2) are not homotopy-equivalent, but
do have isomorphic homology and homotopy groups [Bre93, Chapter VI].

6. Let Y be a universal covering space of X with covering map p : ¥ — X,
and let yo € Y and zo = p(yo) € X. Every curve ¢ : I — X with ¢(0) = =g
has a unique lift ¢ : T — Y with ¢(0) = yo. Furthermore, a closed curve ¢
is contractible in X iff € is a closed curve in Y, i.e., ¢(1) = yo [Sti93, Chap-
ter 6]. This is the basis of Dehn’s algorithm for the contractibility problem
on surfaces (see below).

ALGORITHMS AND COMPLEXITY

Undecidability of homeomorphism problem: The word problem for general
groups is undecidable. Hence the contractibility problem for general simplicial 2-
complexes, and for manifolds of dimension > 4, is undecidable [Sti93]. A slight
variation even proves that the homeomorphism problem for 4-manifolds is undecid-
able.

Contractibility problem for surfaces: Determine whether a curve with k edges
on a triangulated surface M, of size n is contractible, and, if so, construct a con-
traction.

Dey and Schipper [DS95] implement Dehn’s algorithm in O(n + klogg) time
and O(n + k) space by constructing a finite portion of the covering surface of My,
for g > 1, and determining whether the lift of the curve to the covering space is
closed. These algorithms can also be applied to solving the homotopy problem for
curves on a surface.

The paper [DG99] presents an algorithmic solution of the word problem for
fundamental groups of the orientable surfaces M, if g # 2, and of the nonorientable
surfaces Ng, if g # 3,4. This algorithm yields a method to decide whether a curve
on such a surface is contractible in O(n + k) time and space, which is optimal.

Representation problem: There is an algorithm that decides whether a homo-
topy class of curves contains a simple closed curve. The algorithm of [Chi72] can be
turned into a polynomial-time algorithm using methods similar to those of [Sch92]
and [VY90]. (Poincaré had already given a condition for a homology class of a
curve on a surface to contain a simple closed curve. This can also be turned into a
polynomial algorithm along similar lines.)

Homotopy of polygonal paths among points in the plane: Several algo-
rithms determine whether two polygonal paths in the plane with n points removed
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are homotopic. Hershberger and Snoeyink [HS94b] construct part of the covering
space to compute minimum length curves that are homotopy-equivalent to a given
curve, in ©(n?) time, where n is the number of point-shaped holes and the input
curve consists of at most n edges. Cabello, Liu, Mantler, and Snoeyink [CLMS02]
present an O(nlogn) algorithm to test whether two simple paths, with the same
endpoints, are homotopic. See Section 27.2.

32.5 EMBEDDING SIMPLICIAL COMPLEXES
Embeddability problems are important for their own sake, but also for computa-
tions. Especially important algorithmically is the problem of embedding a simplicial
complex in a Euclidean space of lowest dimension. See also Section 21.1.
GLOSSARY

Simplicial embedding of a simplicial complex K in simplicial complex L: A
simplicial map f : |K| — |L| that is a topological embedding.

Geometric embedding of a simplicial complex K in R%: A simplicial equivalence
f: K — L, where L is a geometric simplicial complex in RY.

Piecewise-linear (PL) embedding of a simplicial complex K in a simplicial
complex L: A simplicial embedding of a refinement K’ of K in a refinement
L' of L. If L is a geometric simplicial complex in R?, we say that K can be
PL-embedded in R%.

PL-minimality: A simplicial complex is PL-minimal in R? if is not PL-embed-
dable in R?, but every proper subcomplex can be PL-embedded in R%.

Genus of a graph: The orientable (nonorientable) genus of a graph G is the
minimal genus of an orientable (nonorientable) surface in which G is PL-embed-
dable.

Book: A book with p pages is a simplicial complex consisting of p triangles sharing
a common edge (and nothing else).

Page number of a graph: Minimal number of pages of a book in which the
graph is PL-embeddable.

32.5.1 PL-EMBEDDINGS

BASIC RESULTS

1. A simplicial d-complex that is topologically embeddable in R?*? is also PL-
embeddable in R?? [Web67].

2. For d > 3, a simplicial d-complex K is PL-embeddable in R?? iff its van Kam-
pen obstruction class o(K) = 0. (o(K) is an element of the 2dth cohomology
group of the symmetric product of K minus the diagonal; see [vK33, Sha57].)
If K is a triangulation of a d-manifold, then o(K) = 0, so K can be embedded
in R?¢ [Whi44].
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3. Kuratowski’s theorem: a graph G is PL-embeddable in the plane iff K5

and K33 are not PL-embeddable in G. The graphs K5 and K33 are called
forbidden minors for planarity.

. Every orientable triangulated surface can be PL-embedded in R®. Every

nonorientable triangulated surface can be PL-embedded in R*, but not in R?
(for a simple proof of the latter, see [Mae93]).

. Kuratowski’s theorem can be rephrased by saying that K5 and K3 3 are the

only PL-minimal 1-complexes in R%. For each n > 2 and each d, with n+1 <
d < 2n, there are countably many nonhomeomorphic n-complexes that are
all PL-minimal in R? [Zak69)].

There is a finite set of forbidden minors for PL-embeddability in a surface of
fixed genus g [RS90].

7. The page-number of a graph is O(g) [HI92].

ALGORITHMS AND COMPLEXITY

PL-embeddability of graphs: It can be decided in O(nlogn) time whether a
graph with n vertices is planar (PL-embeddable in the plane). In O(nlogn) time
a geometric embedding in the plane can be constructed [HT74].

Graph genus: The graph genus problem is NP-complete [Tho89).

OPEN PROBLEMS

1.

Give an efficient algorithm that computes the van Kampen obstruction o(K)
for a simplicial d-complex K with a total of n simplices. Find an algorithm
that constructs a PL-embedding (of reasonable complexity) for K in case
o(K) =0.

. Design an efficient algorithm that determines whether a simplicial d-complex

can be PL-embedded in R*, for d < k < 2d.

32.5.2 GEOMETRIC EMBEDDINGS

MAIN RESULTS

1.
2.

Every simplicial d-complex can be geometrically embedded in R?*+.
Every simplicial 1-complex (graph) that is PL-embeddable in R? can be geo-
metrically embedded in R? (Fdry’s theorem).

For each d > 2 there is a simplicial d-complex that is PL-embeddable in R+,

but not geometrically embeddable in R*** [Duk70].

All minimal triangulations of the 2-sphere and the torus can be geometrically
embedded in R® [BW93]. All minimal triangulations of the projective plane
can be geometrically embedded in R* [BW93].



Chapter 32: Computational topology 15

ALGORITHMS

Geometric embeddability of a graph: It can be decided in O(nlogn) time
whether a simplicial 1-complex (graph) with n cells (edges and vertices) can be
geometrically embedded in the plane. If such an embedding exists, it can be con-
structed in O(nlogn) time [HT74].

OPEN PROBLEMS

1. Can every minimal triangulation (see Section 32.2) of the surface of genus g
be geometrically embedded in R? (cf. [BW93])?

2. Design an efficient (polynomial-time) algorithm that determines whether a
simplicial d-complex can be geometrically embedded in R¥, for d < k < 2d.

3. Prove or disprove: If a simplicial d-complex is PL-embeddable in R*?, then it
is geometrically embeddable in R

4. Is there a constant ¢ such that the cth barycentric subdivision of any simpli-
cial complex K whose underlying space can be PL-embedded in R¢, can be
geometrically embedded in R%? Recall that there are examples of simplicial
complexes that are PL-embeddable in R¢, but not geometrically embeddable.

32.5.3 KNOTS

GLOSSARY

Knot: A PL-embedding of a polygon in R®.

Spanning surface of a knot: A PL-embedded orientable surface in R®, whose
boundary is the knot (also called a Seifert surface).

Trivial knot: A knot with a spanning surface that is PL-equivalent to a disk.

Genus of a knot: Minimum possible genus of a spanning surface. (The genus
of a spanning surface is the genus of the closed orientable surface obtained by
attaching a disk—cf. Section 32.3—along the boundary of the spanning surface.
In particular, a trivial knot has genus 0.)

ALGORITHMS AND COMPLEXITY

1. A spanning surface for a polygonal knot with n vertices can be constructed
in O(n?) time (Seifert’s construction [Liv93]).

2. There is an algorithm that solves the knot triviality problem (or, unknotting
problem), i.e., that decides whether a polygonal knot with n vertices is trivial,
in O(exp(cn?)) time and O(n?logn) space, for some positive constant ¢ (the
Haken-Hemion unknottedness algorithm; see [Hem92]). The Jaco-Tollefson
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3.

unknottedness algorithm [JT95] decides this question in at most O(exp(c'n)
time and O(n?logn) space, for some positive constant ¢’. The knot triviality
problem is in NP, [HLP99].

The genus problem for a polygonal knot is in PSPACE [HLP99).

OPEN PROBLEM

Knot triviality: Is the knot triviality problem NP-complete?

32.6 IMMERSIONS

GLOSSARY

Immersion: Let K and L be simplicial complexes. A PL-map f : |K| — |L]
is called an immersion if it is locally injective (i.e., every point p € |K| has a
neighborhood in |K| on which f is 1-1). We say that |K| is immersed in |L|. An
immersion of |K| in R? is defined similarly.

Regular equivalence of immersions: Two immersions fy and f; of |[K|in |L]
(or ]Rd) are regularly equivalent if there is a homotopy F', between fy and fi,
defined on |K| x I, such that f;, defined by fi(z) = F(z,t), is an immersion of
|K| in || (or RY).

Winding number: Consider a polygon P with n vertices, immersed in the plane.
Let its exterior angles 61, ---,6,, be measured with sign. The winding number
of Pis w(P) = 3£ Y1 | 6; € Z (the total number of turns of its tangent vector).

2r

P may be considered as the image of a PL-immersion ¢ : S' — R?, for which we
define w(c) = w(P).

BASIC RESULTS

1.
2.
3.

Every PL-embedding is an immersion.
Every simplicial d-manifold can be immersed in R2?-1 [Whid4].

Two immersions ¢;, ¢ : S' — R? are regularly equivalent iff w(c;) = w(cy) (a
theorem of Whitney-Graustein).

There are two regular equivalence classes of immersions S' — S?, viz the
curves that go once and twice along the equator of S%.

. Smale [Sma58a] associates with each immersion ¢ : S' — M, an element W (c)

of the fundamental group of the unit tangent bundle S*(M,) of M, that is a
complete invariant for the regular equivalence class of ¢. This element W (c)
may be considered the generalization of the winding number of an immersion
of §' in R®. For related definitions, see [Chi72, MC93].

All immersions of S§? in R® are regularly equivalent. See [Sma58b] and [Fra87,
Phi66] for pictures and constructions.



Chapter 32: Computational topology 17

7. More generally, there are 49 regular equivalence classes of immersions of an
oriented closed surface in R® [JT66]. See [Phi66] for pictures of the 4 classes
of immersions of the torus M; in R®.

ALGORITHMS

Kinkfree deformations of immersed curves in R?: If w(P,) = w(P,) for
planar polygons P, and P, with a total of n vertices, there is a sequence of O(n)
“elementary” moves that realizes a regular equivalence between P; and P». This se-
quence can be computed in O(nlogn) time [Veg89]. This algorithm can be adapted
to construct a regular equivalence between two polygonal curves on S2.

Regular closed curves on Mg, g > 0: There is an algorithm that determines
in polynomial time whether two PL-immersions S' — M, are regularly equiva-
lent [Chi72, MC93].

OPEN

PROBLEMS

1. Regular deformations of curves on a surface: Design an optimal algorithm
that determines whether two PL-immersions S' — M, are regularly equiva-
lent, and, if so, construct such an equivalence.

2. Immersions of S* in R3: Design an efficient algorithm that constructs a reg-
ular equivalence between two arbitrary PL-immersions of S? in R®.

3. Immersions of My in R®: Design an algorithm that determines whether two
immersions of M, in R® are regularly equivalent. Extend the method to the
construction of such an equivalence.

32.7

MORSE THEORY

Finite dimensional Morse theory deals with the relation between the topology of
a smooth manifold and the critical points of smooth real-valued functions on the
manifold. It is the basic tool for the solution of fundamental problems in differential
topology. Recently, basic notions from Morse theory have been used in the study
of the geometry and topology of large molecules.

GLOSSARY

Differential of a smooth map between Euclidean spaces: A function f :
R™ — R is called smooth if it has derivatives of all orders. A map ¢ : R* — R™
is called smooth if its component functions are smooth. The differential of ¢
at ¢ € R" is the linear map dp, : R" — R™ defined as follows. For v € R", let
a: I — R" with I = (—¢,¢) for some positive g, be defined by a(t) = ¢(q + tv);
then dpg(v) = o/(0). If p(z1,...,2n) = (V1(T1,---,ZTn),-- s Em(T1,-- -, Tn)),
then the differential dip, is represented by the Jacobian matriz
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91 9p1
B, (@) .. B, (9)
Om Om
Bt (@) --- oz, (9)

Submanifold of R": If m < n, a subset M of R" is an m-dimensional smooth

submanifold of R™ if, for each p € M, there is an open set V in R" containing
p, and a map ¢ : U - M NV from an open subset U in R™ onto V N M, such
that (i) ¢ is a smooth homeomorphism and (ii) the differential dp, : R™ — R"
is injective for each ¢ € U. The map ¢ is called a parametrization of M at p.

Tangent space of a manifold: A smooth curve through a point p on a smooth

submanifold M of R" is a smooth map a : I — R”, with I = (—¢,¢) for some
positive e, satisfying a(t) € M for t € I and a(0) = p. A tangent vector of
M at p is the tangent vector o' (0) of some smooth curve a : I — M through p.
The set T, M of all tangent vectors of M at p is the tangent space of M at p.

If ¢ : U - M is a smooth parametrization of M at p, with 0 € U and ¢(0) = p,
then T, M is the m-dimensional subspace dyo(R™) of R™, which passes through
»(0) = p. Let {e1,...,em} be the standard basis of R™, and define the tangent
vector €; € T,M by €; = dyo(e;). Then {&1,...,€,} is a basis of T, M.

Smooth function on a submanifold: A function f: M — R on an m-dimen-

sional smooth submanifold M of R™ is smooth at p € M if there is a smooth
parametrization ¢ : U - M NV, with U an open set in R™ and V' an open set
in R™ containing p, such that the function f o : U — R is smooth. A function
on a manifold is called smooth if it is smooth at every point of the manifold.

Critical point: A point p € M is a critical point of a smooth function f : M — R

if there is a local parametrization ¢ : U — R" of M at p, with ¢(0) = p, such
that 0 is a critical point of fo ¢ : U — R (i.e., the differential of f o ¢ at g
is the zero function on R™). This condition does not depend on the particular
parametrization. A real number ¢ € R is a regular value of f if f(p) # ¢ for
all critical points p of f, and a eritical value if f~1(c) contains a critical point
of f.

Hessian at a critical point: Let M be a smooth submanifold of R", and let

f : M — R be a smooth function. The Hessian of f at a critical point p is the
quadratic form Hpf on T, M defined as follows. For v € T, M, let o : (—¢,e) —
M be a curve with «(0) = p and &’(0) = v. Then

Let ¢ : U - M be a smooth parametrization of M at p, with 0 € U and
¢(0) =p, and let v = vi€1 + - - + vmem € TpM, where & = dpg(e;). Then

m 2 °
1,500 = 3 LD 0) v

i,j=1

In particular, the matrix of Hy(p) with respect to this basis is
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2 o] 2 o
’ (8f:17§ 2 ) 68:15106;6:) ©)
: : (32.7.1)
0*(f o) 0*(f o)
0z10z, 0 - 0z2, ©

Nondegenerate critical point: The critical point p of f : M — R is nondegen-
erate if the Hessian H, f is nondegenerate. The index of the critical point p is
the number of negative eigenvalues of the Hessian at p. If M is 2-dimensional,
then a critical point of index 0, 1, or 2, is called a minimum, saddle point,
or maximum , respectively.

Morse function: A smooth function on a manifold is a Morse function if all
critical points are nondegerate. The kth Morse number of a Morse function
f, denoted by ur(f), is the number of critical points of f of index k.

EXAMPLES

1.

R™ is a smooth submanifold of R”, for m < n. For m < n, we identify R™
with the subset {(z1,...,2,) € R" | Zjp41 = ... =2, =0} of R™.
. The quadratic function f: R™ — R defined by
flzy,...,xp) = —x3 — ...—xi+xi+1 +.o+ a2
is a Morse function, with a single critical point (0,...,0). This point is
a nondegenerate critical point, since the Hessian matrix at this point is
diag(—2,...,—2,2,...,2), with k entries on the diagonal equal to —2. In

particular, the index of the critical point is k.

S™~! is a smooth submanifold of R™. A smooth parametrization of S™~! at
(0,...,0,1) € S™ ! is given by ¢ : U — R™, with
U={(x1, ..., Zm 1) ER™ |22 +... 4+ 22 | <1}

and
o(T1y -3 Tm—1) = (1, -, Tm—1, \/1 -z =z ).

In fact, ¢ is a parametrization at every point of the upper hemisphere, i.e.,
the intersection of ™' and the upper half space {(y1,---,%m) | ¥m > 0}.

. The height function on S™ 1, defined by f(y1,.-.,Ym) = Ym for (y1,...,ym) €

S™=1 is a Morse function. With respect to the parametrization ¢ the ex-

2
m—17

pression of the height function is f o p(z1,...,Zm_1) = \/1 -
so that the only critical point of f on the upper hemisphere is (0,...,0,1).
The Hessian matrix (32.7.1) is the diagonal matrix diag(—1,-1,...,—1), so
that (0,...,0,1) is a critical point of index n — 1. Similarly, the other critical
point is (0,...,0,—1), which is of index 0.

. The torus M in R?, obtained by rotating a circle in the z, y-plane with center

(0, R,0) and radius r around the z-axis, is a smooth 2-manifold. Let U =
{(u,v) | =7/2 < u,v < 37/2} C R?, and let the map ¢ : U — R® be defined
by

p(u,v) = (rsinu, (R — rcosu) sinv, (R — r cosu) cosv).
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Then ¢ is a parametrization at all points of M, except for points on one
latitudinal and one longitudinal circle. The height function on M is the
function h : M — R defined by

h(u,v) = h(p(u,v)) = (R —rcosu) cosv,

so that the singular points of h are as shown in Table 32.7.1.

TABLE 32.7.1 Singularities of the height function for a torus.

(u,v) | o(u,v) TYPE OF SINGULARITY
(0,0) | (0,0,R—r) saddle point

(0,7) | (0,0,—R+r) | saddle point

(m,0) | (0,0,R+ 1) maximum

(mym) | (0,0,—R —r) | minimum

BASIC RESULTS

1. Regular level sets. Let M be an m-dimensional submanifold of R", and

let f: M — R be a smooth function. If ¢ € R is a regular value of f, then
f~1(c) is a regular (m — 1)-dimensional submanifold of R™.

Fora € R, let M, = {g € M | f(¢) <a}. If f has no critical values in [a, b],
for a < b, then the subsets M, and M} of M are homotopy-equivalent.

. The Morse Lemma. Let M be a smooth m-dimensional submanifold of R”,

and let f : M — R be a smooth function on M with a nondegenerate critical
point p of index k. Then there is a smooth parametrization ¢ : U = M of M
at p, with U an open neighborhood of 0 € R™ and ¢(0) = p, such that

f°<P($1;---,$m)=f(p)—$f—---—x%+x%+1+...+$gn_

In particular, a critical point of index 0 is a local minimum of f, whereas a
critical point of index m is a local maximum of f.

. Abundance of Morse functions. (i) Morse functions are generic. Every

smooth compact submanifold of R™ has a Morse function. (In fact, if we
endow the set C°° (M) of smooth functions on M with the so-called Whitney
topology, then the the set of Morse functions on M is an open and dense
subset of C*°(M). In particular, there are Morse functions arbitrarily close
to any smooth function on M)

(ii) Generic height functions are Morse functions. Let M be an m-dimensional
submanifold of R™* (e.g., a smooth surface in R*). For v € S™, the height
function h, : M — R with respect to direction v is defined by h,(p) = (v, p).
The set of v for which h, is not a Morse function has measure zero in S™.

. Passing critical levels. Let f : M — R be a smooth Morse function with

exactly one critical level in (a, b), and let @ and b be regular values of f. Then
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My is homotopy-equivalent to M, with a cell of dimension k attached (cf.
Section 32.3), where k is the index of the critical point in f~!([a,b]). See
Figure 32.7.1.

FIGURE 32.7.1

Passing a critical level of index 1 corresponds to attaching a 1-cell. Here M is the 2-torus embedded
n RB, in standard vertical position, and f is the height function with respect to the vertical direction.
Left: M, for a below the critical level of the lower saddle point of f. Middle: M, with a 1-cell
attached to it. Right: My, for b above the critical level of the lower saddle point of f. This set is
homotopy-equivalent to the set in the middle part of the figure.
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5. Morse inequalities. Let f be a Morse function on a compact m-dimensional
smooth submanifold of R™. For each k, 0 < k < m, the kth Morse number of
f dominates the kth Betti number of M:

e (f) > Br(M).
The Morse numbers of f are related to the Betti numbers and the Euler
characteristic of M by the following identity:

m m

YD u(f) = Y (=1 Br(M) = x(M).

k=1 k=1

32.8 SOURCES AND RELATED MATERIAL

FURTHER READING

[Sti93]: Low dimensional topology, including some knot theory and relationships
with combinatorial group theory. Good starting point for exploration of topology;
nice historical setting.

[Fom91]: User-friendly introduction to algebraic topology and the classification
problem for manifolds.

[ST34]: A classic, dealing with combinatorial algebraic topology.

[Mau70]: Extensive treatment of simplicial complexes and simplicial algebraic topol-
ogy.

[Bre93]: Modern textbook on algebraic topology, especially as related to topological
aspects of manifold theory.

[FK97]: Introduction to concepts from differential geometry and topology. Well
illustrated.
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[GP74]: Introduction to differential topology.
[Mil73]: The classic monograph on Morse theory.
[DEG99]: A survey on computational topology, containing links to applications.

[Ede01]: Introduces the language of combinatorial topology, and applies it to mesh
generation and simplification problems.

[Epp01]: A web page, containing web pointers and course notes on knot theory,
primarily related to geometry.

RELATED CHAPTERS

Chapter 14: Topological methods

Chapter 15: Face numbers of polytopes and complexes
Chapter 18: Polyhedral maps

Chapter 29: Computational real algebraic geometry

Chapter 63: Biological applications of computational topology
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