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Abstract

In this paper, we advocate the use of visual tooling for 

the development and maintenance of component-based 

software systems. Our contribution is twofold. First, 

we demonstrate how an interactive visualization tool 

effectively supports understanding large component 

based software. Secondly, we show how to design such 

a tool in order to make it applicable for a wide range 

of component systems and investigation goals. We 

demonstrate our approach by several visualization 

scenarios for real-world systems. 

1. Introduction 

Component based software systems have recently 

emerged as an alternative to traditional software 

system construction methodologies. Component 

systems attempt to accelerate software development 

and, in the same time, diminish production costs by 

assembling systems from existing software 

components. In this way, complex applications can be 

quickly built by maximizing the reuse of existing 

functionality, which is provided in the form of 

components. However promising, component based 

development can be a complex task. First, the design, 

development, and maintenance of reusable software 

components may be considerably complicated by the 

composability requirement, i.e. the ability of 

components to operate properly and effectively in a 

given composition context. Secondly, constructing 

applications from predefined components such that the 

resulting applications obey a number of functional 

and/or non-functional requirements can be a 

challenging task.   

Most component architectures (e.g. COM [4], CORBA 

[5], Koala [6], or Robocop [1]) describe components as 

a set of interrelated models. Such models describe 

particular aspects of the components, such as the 

execution, functionality, documentation, behaviour, 

and resource consumption. As component-based 

applications become increasingly complex, the 

question of how to effectively understand both their 

structure and behaviour becomes harder to answer. 

Typical questions that frequently arise when 

developing component-based systems are: How do 

component models or their instances (i.e. the 

applications) evolve in time? How can one check that a 

given component instance matches a given component 

model (or set of models)? How cleanly designed (e.g. 

modular) is a given system? How can one find out 

specific design problems in a given component 

instance and/or model? Such questions can be partially 

answered by applying several metrics on the systems at 

hand, such as computing the coupling, fan-in, or fan-

out of a system of interconnected components to assert 

the system’s modularity [3]. However, in most cases 

one does not know beforehand which metrics to 

compute. Understanding the computed metrics can be 

hard even for a moderately sized system of a few tens 

of components and becomes a challenge for systems of 

hundreds of components or more. Finally, many 

objectives, such as understanding a system’s evolution 

in time, are not easily quantifiable in metrics, but 

require a different type of insight.  

We address the above questions by advocating an 

interactive visualization approach using customizable 

tooling. We propose a software framework for 

interactive visualization and exploration of the 

structure, properties, and behaviour of component-

based systems. Our framework implements several 

visual metaphors, or tools, that can be used to 

understand component-based architectures to up to 

hundreds of components.  Users can freely specify 

both the component data to be examined (i.e. what they 

want to visualize) and the visualization scenarios (i.e. 

how they want to view the data). We achieve this high 

customizability by using a component architecture for 

our framework. We demonstrate our solution by 
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visualization scenarios using real-world component 

architectures.

The remainder of this paper is as follows. In Section 2 

we describe how we model a problem, i.e. 

understanding a component-based system, in our 

framework. Section 3 details the design of our 

framework, showing how it effectively and efficiently 

supports the requirements stated in Section 2. Section 

4 demonstrates the use of our framework on several 

real-world component systems. Finally, Section 5 

concludes the paper. 

2. Problem Modeling 

To be successful, our visualization framework should:

Work on software systems based on different 

(ideally, any) component architectures (R1)

Support a wide range (ideally, any) type of queries 

such as the ones sketched in Section 1 (R2)

Problem Model 

Component Model 

attribute 1 

attribute 2 

attribute 3 

attribute n 

Scenario Model 

operation 1 

operation 2 

operation 3 

operation n 

Figure 1: Problem model 

We model a problem in our visualization framework 

by two elements: a component model (CM) and a 

scenario model (SM) (see Figure 1). Concerning the 

first requirement (R1), one of the main respects in 

which software architectures differ from each other is 

their component model. So far, there is no 

‘mainstream’ component model that easily integrates 

other models. Moreover, component models evolve 

and/or are open to extension. For the needs of our 

visualization framework, we use a very simple, yet 

generic component model: A component is a set of 

named textual attributes. Every attribute describes 

some property, such as the component’s number of 

lines of code, required memory consumption, 

executable platform, version number, or component 

inter-dependencies, such as “provides”, “requires”, or 

“contains” relations. Obviously, existing CMs easily 

map into our description. For example, the executable 

model of a component in the Robocop architecture 

consists of several services that provide several 

interfaces, or ports [1]. A similar port concept exists in 

the COM and CORBA component models too [4,5]. In 

our simple CM, these ports would translate to a set of 

named attributes. To keep our model simple, we don’t 

strongly type our attributes in any way.  

Whereas the component model describes what we wish 

to visualize, the scenario model (SM) describes how

we want to construct the visualization. Specifically, the 

SM consists of a set of operations. Each operation 

describes an action that is part of the visualization. For 

example, a typical visualization scenario consists of 

the following operation sequence: 

read some component software description;  

select a subset of interest from the whole dataset; 

compute some metrics on the selected subset;  

represent visually the selected subset, with the 

computed metrics;  

specify how the visualization reacts to the user 

interaction.  

To be effective, our visualization framework must 

support several scenario models implementing a wide 

range of operations (R2). In the next section we 

describe the classes of operations our framework 

supports and explain the design choices we took to 

ensure the requirements (R1) and (R2).

3. Visualization Framework Architecture 

The architecture of our visualization framework 

consists of two main elements: a data model (DM) and 

an operation model (OM). The operations (part of 

SMs, described in Section 2) communicate with each 

other via the shared data model (Figure 2). The data 

model holds component instances of the CM described 

in Section 2. The DM is implemented in C++ for 

efficiency reasons. The OM is implemented partly in 

C++, for efficiency, and partly in the interpreted Tcl 

language for flexibility. We next describe both the DM 

and OM. 

3.1. Data Model 

Data to be visualized consists of three elements: 

structure, attribute values, and selections, as follows. 

Structure and attribute values refer to the instantiation 

of the relational, respective non-relational attributes in 

the CM. We can see the structure as a graph whose 

nodes are the component instances and arcs the 

relations between these instances (Figure 2). This 

graph can have any topology, as there are no 

constraints on the relations between components. The 
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attribute values represent concrete instances of the CM 

attributes. They may take values of several basic types 

(int, float, string, pointer, and arrays thereof). If 

desired, specific problem models may place 

topological and/or value constraints on the structure 

and attribute values respectively and check them via 

operations in their SM (see Section 3.2). 

Figure 2:  Framework architecture 

Selections, defined as named sets of nodes and edges 

(i.e. component and relation instances respectively), 

are the last element of our framework’s data model. 

Selections allow specifying the data elements on which 

visualization operations are executed. To make our 

framework flexible, we decouple the selection 

specification (which are the data to operate on) from 

the operations' definitions (what to do with the selected 

data). All operations in our framework communicate 

with each other only via selections. Practically, 

selections play the role of (named) input and output 

variables in dataflow programming. Let us give an 

example: Given some component-based software, we 

want to visualize all component instances thereof, 

which are of a given type Package. This 

visualization scenario can be expressed as the 

following sequence of three operations: 

1) Inp = readData(input) 

2) Out = selectOnValue(Inp,type,Package) 

3) display(Out) 

The first operation readData reads all component 

data from some input file input and places it in the 

selection Inp. The second operation produces the 

selection Out containing all data elements in Out

whose attribute called type has the value Package,

i.e. all component instances of package type. Finally, 

the third operation display produces a visual image 

of the selected subset Out.

3.2. Operation Model 

Operations, already introduced in the previous section, 

are of three classes (see also Figure 2): 

Editing: change the structure and/or attribute data 

Selection: change the selection set 

Mapping: map selections to visual objects 

In the previous example (Sec 3.1), readData is an 

editing operation, as it creates new nodes and edges in 

the data model, when reading the input data; 

selectOnValue is a selection operation, as it creates 

a new selection; and display is a mapping operation 

as it maps the selection Sel to visual objects. 

Operations may have three types of parameters: 

Selections: specify the selections to be 

read/written

Attributes: specify the attribute names from the 

CM to be read/written

Values: specify other operation-specific 

parameters, such as thresholds, flags, options, etc.

This above operation model has several advantages. As 

operations are explicit about which data elements they 

change, the framework can perform automatic updates. 

For example, if some selection Sel changes, all data 

viewers (discussed in Section 3.2.3) that monitor Sel

are automatically updated. The fixed operation 

interface (selections, attributes, values) allows the 

framework to automatically construct graphics user 

interfaces (GUIs) for all operations, in which users can 

set operation parameters and monitor results. Overall, 

this allows users to easily program new operations and 

incorporate them with minimal effort in SMs of the 

framework, as detailed in Section 3.3. 

We next discuss the three operation types, give 

examples for each type, and show how the genericity 

and flexibility requirements set to our framework are 

met. 

3.2.1. Selection Operations 

Selection operations are the main instrument used to 

navigate through large component architectures. Given 

one or several input selections, a selection operation 

produces an output selection containing component 

instances and relations (i.e. nodes and edges) that 

match the desired criteria. Several examples follow. 

Conditional selections gather all elements in the input 

whose attribute values match some condition. In this 
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way, filters such as “get all component instances of a 

type T” or “get all component instances providing an 

interface I” can be readily implemented. Call graph

selections gather all component instances reachable 

from a given component via a given function or 

service call. Level selections (called 'horizontal slices' 

in the reverse engineering literature [8]) are useful to 

visualize multi-layer software architectures at a given 

level of detail, by gathering all component instances in 

a given architectural layer. Tree selections (called 

'vertical slices' in [8]) gather all component instances 

and containment relations reachable from an input 

selection, and are useful for visualizing subsystem 

structures or change propagation [2]. Finally, boolean 

selections allow combining existing selections via 

intersection, union, etc, and allow creating arbitrarily 

complex filters from simple building bricks. 

3.2.2. Editing Operations 

Structure editing operations construct and modify the 

graph. Such operations include reading several data 

file formats such as RSF [8], DOT [9], and GXL [2]. 

Visualizing some custom component-based software 

amounts thus to program a new operation for reading 

the desired data format. If the data at hand is too large 

to be directly visualized (e.g. there are too many 

components), aggregation operations can be used to 

simplify it. These take the data (nodes and edges) in an 

input selection and replace them with a unique 

‘cluster’ node. The input selection can be 

programmatically constructed, e.g. by automatic 

clustering methods, or can be the output of user 

interaction, described in Section 3.2.3.  

Attribute editing operations modify the attribute 

values of component instances but not the relations, 

i.e. the graph structure. Such operations are 

architectural metrics, e.g. component coupling 

strength, number of provisions, requirements, and 

internalizations [8]. Metrics can compute new attribute 

values for each component instance, such as the above 

examples, or single values for whole selections, such 

as global subsystem quality metrics. Decoupling the 

selection of the metric’s input from the metric 

computation itself allows applying any metric on any

subset of components (selection), which is not the case 

in other software visualization tools [8, 11]. Moreover, 

explicitly specifying the attribute names that store the 

metric allows easy run-time prototyping of various 

metric combinations. For example, one can compute 

several metrics, store them in several attribute values, 

and then interactively cycle through the computed 

metrics to e.g. visually compare them. 

Layout operations (or layouts briefly) are the first 

step in bringing the abstract component data to a visual 

representation. Given that component instances and 

their relations form a graph (as explained in Section 

3.1), a very natural way to visualize these is to draw 

this graph. Drawing the graph involves two steps: 

assigning a geometric position to every node and edge; 

and choosing a graphic symbol to draw every node and 

edge. The first step, called laying out the graph, is 

performed by layout operations. In detail, layouts 

compute geometric position attributes for the nodes 

and edges in a given input selection. The second step, 

called mapping the graph, is discussed separately in 

Section 3.2.3. 

Decoupling the drawing in the layout and mapping 

steps has several benefits. First, we can layout different 

subgraphs corresponding to different component 

subsystems separately. For example, containment 

relations between component instances (vertical slices, 

Section 3.2.1) are best visualized using a tree layout 

(Figure 6 top). Call graphs or horizontal slices (Section 

3.2.1) are best visualized using a so-called spring 

embedder layout [9]. Second, we can precompute 

several layouts e.g. to quickly switch between them. 

This is useful for large graphs (thousands of 

component instances) whose layouts may take up to 

minutes. Finally, we can cascade different layouts on 

the same position attributes, e.g. to interactively refine 

an existing layout. An example of cascading is the 

nested layout described next. Nested layouts are useful 

to visualize both containment and association 

(“provides”, “requires”) relations of a component 

architecture. If we draw components as boxes, we 

depict containment (“A contains B”) by drawing B’s 

box inside A’s, and association (“A provides/requires 

B”) by drawing a line between A and B (see Figure 5 

and Figure 6). To produce such results, we lay out 

separately the sub-components of every component 

instance using the spring embedder layout and then lay 

out recursively the bounding boxes of the containing 

nodes. Nested layouts produce images similar to 

package UML diagrams and have proven to be very 

helpful in many applications [9,10], as they are quite 

familiar to software engineers. Users can easily 

combine simple layouts as the building bricks for the 

more complex layouts. Adding new layouts to our 

framework is reasonably simple. The implementations 

of the spring embedder and tree layouts we use in our 

framework [9] exceed 50000 C lines.  Adding them in 

a black-box fashion required less than 100 C++ lines 

for each. Our custom layouts, such as the nested 

layout, have each fewer than 200 C++ lines.
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3.2.3. Mapping Operations 

So far, we described how to read data (Section 3.2.2), 

select subsets of interest (Section 3.2.1), and assign 

geometric positions for drawing it (Section 3.2.2). 

Mapping operations, discussed here, allow users to 

customize the way data is finally drawn to produce the 

visualization, and how users can interact with the 

visual objects.  

Creating visual representations of our data model must 

obey two requirements. First, users must be able to 

easily customize the way objects are drawn. Second, 

the framework must cope with drawing and interacting 

with potentially complex drawings of thousands of 

visual objects in real time. To fulfill these 

requirements, we designed an architecture consisting 

of four elements: mappers, viewers, glyph factories, 

and user actions (Figure 3). The implementation is 

based on the C++ toolkit Open Inventor that provides 

advanced mechanisms for rendering and interacting 

with large 3D models [7].  

The mapper is the central element of the mapping 

subsystem. It is responsible for creating 2D or 3D 

visual representations of the data model. We have 

implemented several mappers, and we present here as 

example the glyph mapper. This mapper creates an 

iconic symbol, also called a glyph, for each component 

instance (node) and relation (edge) in its input 

selection, and places these glyphs at the geometric 

coordinates provided by attribute values previously 

computed by a layout operation (Section 3.2.2). 

The glyph mapper allows customizing the drawing of 

every individual node or edge glyph, as follows.  For 

every node and edge it maps, the glyph mapper calls a 

glyph factory software component, which builds the 

desired glyph visual representation and returns it to the 

mapper. The glyph factory sets the glyph's graphical 

properties (color, shape, size, annotation, transparency, 

and so on) from the attributes of the mapped node or 

edge. Users can thus customize the appearance of 

every single node and edge in the visualization by 

simply switching between various predefined glyph 

factories. Most such factories are programmed in the 

scripting language Tcl, so users can even edit them on 

the fly, to obtain complete customization. The usage of 

glyphs is exemplified by applications in Section 4.1 

(Figure 5) and 4.2 (Figure 6). 

The third component of the mapping subsystem is the 

viewer. Viewers (Figure 5) display the output of 

mappers and also allow mouse-based 2D and 3D 

navigation (zoom, pan, rotate, fly through) in the 

displayed data, as well as interaction with the 

displayed data.  Viewers can be thought as operations 

(Section 3.2) having an input and an output selection 

and an attribute argument. The data in the input 

selection is displayed using a mapper. When the user 

selects the displayed objects, using the mouse, the 

viewer adds the selected objects in its output selection. 

The output selection can be then passed as input to any 

of the framework’s operations (filtering, editing, 

viewing, etc). In this way, users can easily both 

navigate the complete data to get an overview and 

select some subsystem of interest to examine it in more 

detail. Finally, viewers allow specifying a so-called 

user action. This is an operation that is executed every 

time the user performs mouse-based selection in a 

viewer, and receives as input the viewer’s output 

selection. By customizing the user action, a wide range 

of exploration scenarios can be implemented. For 

example, a user action can pop up a second viewer 

displaying the data the user selected in a first viewer, 

as demonstrated by the application in Section 4.2. 

Figure 3: Mapping and visualization subsystem 
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3.3. Component Architecture 

For our framework to be effective in practice, users 

must avail of a wide range of problem models, 

consisting of component models (CMs) and scenario 

models (SMs). Writing a CM for a given component-

based system is usually easy, as it involves translating 

the native application CM to our simple CM format 

(Section 2). Writing a custom SM involves crafting 

appropriate editing, filtering, and mapping operations 

that support the questions specific to the system being 

analyzed. In order to simplify the usage of such 

operations (i.e. writing, packaging, browsing, and 

customizing them), we introduced a simple 

component-based metaphor in our framework. All 

customizable software elements in our framework 

(operations, viewers, glyph factories, and user actions) 

are implemented as components with fixed interfaces. 

Components are declared in Tcl and may be 

implemented either in Tcl or compiled C or C++. To 

exemplify, we sketch next the declaration of the 

operation component selectOnValue introduced 

in Section 3.1: 

component selectOnValue { 
  type       operation 
  library    filters 
  selections { input output } 
  attributes { name  value  } 
  info      “Selects by attribute value” 
  proc       exec { input output name value } 
             { … implementation … } 
}

The first declarator type gives the component’s type, 

i.e. operation in this case. The library declarator 

specifies the component library this component is part 

of. Components can be organized in hierarchical 

component libraries, much as class libraries in OO 

languages. The selections declarator gives the 

operation’s selection arguments, in this case the 

selections input and output. The 
attributes declarator gives the operation’s 

attribute arguments, in this case the attribute name
whose value should equal value. The info
declarator gives some information text to be displayed 

in the component’s GUI. Finally, the exec declarator

is the name of a Tcl procedure that implements the 

operation’s functionality. Given this declaration, the 

visualization framework automatically constructs a 

component GUI and adds the component in a visual 

browser. Figure 4 (upper half) shows the browser in 

which we selected the selectOnValue component, 

whose GUI is shown in the lower half of Figure 4. 

Figure 4: Component browser and GUI 

Creating SMs is easily done by packaging those 

components that should be used together for a given 

problem domain. A typical visualization proceeds then 

as follows. The user loads the desired PM, e.g. 

“Architectural metrics for Java-based software”, from 

an existing set of pre-packaged PMs. Next, the 

concrete data to be visualized is loaded, in this case an 

architectural description of some Java-based system. 

Next, the user browses through the components made 

available by the loaded PM, selects the desired ones, 

and applies them on the loaded data in the desired 

order, to gain the desired insight. No programming 

experience is needed here, as all actions are done just 

via the component GUIs. 

4. Applications 

In this section, we demonstrate the use of our 

visualization framework with three real-world 

applications using component-based software. 

4.1. Architectural Metrics 

In this application, we visualize several architectural 

metrics computed by the software analysis tool SAAT 

[3] on a given software system (Figure 5). Our system 

representation consists of a logical view, containing 

structural inter-component relations, and a scenario 

view, containing use cases describing specific system 

tasks. We use a nested layout (Section 3.2.3) to 

represent the use cases, scenarios, and components: If 

component C is in scenario S, its visual representation 

is contained in C’s visual representation. For use cases 
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and scenarios, we use simple box glyphs. For the 

system we study, containment has just three levels 

(components in scenarios, scenarios in use cases). 

However, our nested layout can accommodate in 

principle any number of containment levels. Inter-

component relations (method calls) are drawn as lines. 

If the same element (e.g. component) appears in 

several scenarios, it is separately drawn in every 

scenario box. This matches the representation expected 

by system architects. When the user selects a 

component in a scenario with the mouse, all visual 

representations of that component in all scenarios it 

occurs are automatically highlighted (Figure 5). This is 

easily implemented by a custom user action (Section 

3.2.3). This allows easy comparison of the behavior of 

a given component in different scenarios. For 

components, we use a special glyph that shows four 

metrics: coupling, inverse coupling, fan in, and fan out. 

These are displayed as a four (individually colored) bar 

chart in 3D. Finding outliers, i.e. components with 

high/low metrics, is easy, as these have the 

longest/shortest metric bars. Displaying the four 

metrics along each other with the bar chart glyph 

allows easy comparison of the metrics for the same 

component. Using the same color for the same metric 

allows comparison of that metric between different 

components. 

4.2. Multiple Views in Reverse Engineering 

In this application, we visualize a component-based 

mobile phone architecture from Nokia [10]. The data 

Figure 5: Architectural metrics 

comes from reverse engineering an existing software 

system of several hundred components. First, we use a 

filter to select all component instances and their 

containment relations. We display these using a tree 

layout and a glyph colored by the component type 

(Figure 6 top). When the user selects, with the mouse, 

some components in this viewer, we display them and 

all contained sub-components in a second viewer using 

a nested layout (Figure 6 bottom). This shows us both 

containment relations (boxes in boxes) and call 

relations (lines between boxes). We easily implement 

the above by a user action for the first viewer (Section 

3.2.3).

Figure 6: Subsystem containment (top) and dependencies (bottom)
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This scenario, constructed in just a few minutes,

allows us to see which are the 'interface' components 

through which Subsystems 1 and 2 communicate. We 

also see that lower level components (innermost boxes 

in the nested layout) do not make cross-system calls, a 

desired property of software architectures. 

4.3. Visualizing Provisions 

In this application, we visualize the provision, or “is 

called by”, relations in a Java-based software system of 

about 2000 components. Since the provision relations 

graph is dense, visualizing it using a spring embedder 

layout and glyphs (e.g. boxes and lines) produces a 

cluttered image. Instead, we use a splat mapper 

(Section 3.2.3). The dots in Figure 7(left) show the 

components’ positions computed by a spring 

embedder. The shaded image shows the density field 

computed as number of packages times number of 

provision relations per unit area. Figure 7(right) shows 

the same field as a height plot. We can see two ‘hot 

spots’ in the left image, corresponding to the two peaks 

in the right image. These correspond to the most called 

classes in the system, i.e. String and ListIter.

Other hot spots correspond to other frequently used 

components. A similar scenario can be built to 

visualize component requirements. 

Figure 7: Visualizing provisions

5. Conclusions 

The aim of this paper is to demonstrate the usefulness 

of visual tooling for the development and maintenance 

of component-based software. Our contribution is 

twofold. First, we demonstrate the usage of our 

visualization tool in three scenarios for real-world 

software systems. Secondly, we show how we used a 

component based tool architecture to make the 

customizability of our tool simple for end users. This 

lets us define a visualization scenario in minutes by 

assembling pre-packaged components such as data 

editing, filtering, rendering, and user actions. Having 

this stable framework, our main focus now is to 

construct more visualization components and apply 

them to support both forward and reverse engineering 

of large component-based software systems. 
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