

 University of Groningen

A Framework for Interactive Visualization of Component-Based Software
Telea, Alexandru; Voinea, Lucian

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A., & Voinea, L. (2004). A Framework for Interactive Visualization of Component-Based Software. In
EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/515da270-5634-488b-9111-b8f0f8d1d53c

A Framework for Interactive Visualization of Component-Based Software

Alexandru Telea, Lucian Voinea

Department of Mathematics and Computer Science, Eindhoven University of Technology,

Den Dolech 2, 5600 MB, The Netherlands

{a.telea|l.voinea}@tue.nl

Abstract

In this paper, we advocate the use of visual tooling for

the development and maintenance of component-based

software systems. Our contribution is twofold. First,

we demonstrate how an interactive visualization tool

effectively supports understanding large component

based software. Secondly, we show how to design such

a tool in order to make it applicable for a wide range

of component systems and investigation goals. We

demonstrate our approach by several visualization

scenarios for real-world systems.

1. Introduction

Component based software systems have recently

emerged as an alternative to traditional software

system construction methodologies. Component

systems attempt to accelerate software development

and, in the same time, diminish production costs by

assembling systems from existing software

components. In this way, complex applications can be

quickly built by maximizing the reuse of existing

functionality, which is provided in the form of

components. However promising, component based

development can be a complex task. First, the design,

development, and maintenance of reusable software

components may be considerably complicated by the

composability requirement, i.e. the ability of

components to operate properly and effectively in a

given composition context. Secondly, constructing

applications from predefined components such that the

resulting applications obey a number of functional

and/or non-functional requirements can be a

challenging task.

Most component architectures (e.g. COM [4], CORBA

[5], Koala [6], or Robocop [1]) describe components as

a set of interrelated models. Such models describe

particular aspects of the components, such as the

execution, functionality, documentation, behaviour,

and resource consumption. As component-based

applications become increasingly complex, the

question of how to effectively understand both their

structure and behaviour becomes harder to answer.

Typical questions that frequently arise when

developing component-based systems are: How do

component models or their instances (i.e. the

applications) evolve in time? How can one check that a

given component instance matches a given component

model (or set of models)? How cleanly designed (e.g.

modular) is a given system? How can one find out

specific design problems in a given component

instance and/or model? Such questions can be partially

answered by applying several metrics on the systems at

hand, such as computing the coupling, fan-in, or fan-

out of a system of interconnected components to assert

the system’s modularity [3]. However, in most cases

one does not know beforehand which metrics to

compute. Understanding the computed metrics can be

hard even for a moderately sized system of a few tens

of components and becomes a challenge for systems of

hundreds of components or more. Finally, many

objectives, such as understanding a system’s evolution

in time, are not easily quantifiable in metrics, but

require a different type of insight.

We address the above questions by advocating an

interactive visualization approach using customizable

tooling. We propose a software framework for

interactive visualization and exploration of the

structure, properties, and behaviour of component-

based systems. Our framework implements several

visual metaphors, or tools, that can be used to

understand component-based architectures to up to

hundreds of components. Users can freely specify

both the component data to be examined (i.e. what they

want to visualize) and the visualization scenarios (i.e.

how they want to view the data). We achieve this high

customizability by using a component architecture for

our framework. We demonstrate our solution by

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

visualization scenarios using real-world component

architectures.

The remainder of this paper is as follows. In Section 2

we describe how we model a problem, i.e.

understanding a component-based system, in our

framework. Section 3 details the design of our

framework, showing how it effectively and efficiently

supports the requirements stated in Section 2. Section

4 demonstrates the use of our framework on several

real-world component systems. Finally, Section 5

concludes the paper.

2. Problem Modeling

To be successful, our visualization framework should:

Work on software systems based on different

(ideally, any) component architectures (R1)

Support a wide range (ideally, any) type of queries

such as the ones sketched in Section 1 (R2)

Problem Model

Component Model

attribute 1

attribute 2

attribute 3

attribute n

Scenario Model

operation 1

operation 2

operation 3

operation n

Figure 1: Problem model

We model a problem in our visualization framework

by two elements: a component model (CM) and a

scenario model (SM) (see Figure 1). Concerning the

first requirement (R1), one of the main respects in

which software architectures differ from each other is

their component model. So far, there is no

‘mainstream’ component model that easily integrates

other models. Moreover, component models evolve

and/or are open to extension. For the needs of our

visualization framework, we use a very simple, yet

generic component model: A component is a set of

named textual attributes. Every attribute describes

some property, such as the component’s number of

lines of code, required memory consumption,

executable platform, version number, or component

inter-dependencies, such as “provides”, “requires”, or

“contains” relations. Obviously, existing CMs easily

map into our description. For example, the executable

model of a component in the Robocop architecture

consists of several services that provide several

interfaces, or ports [1]. A similar port concept exists in

the COM and CORBA component models too [4,5]. In

our simple CM, these ports would translate to a set of

named attributes. To keep our model simple, we don’t

strongly type our attributes in any way.

Whereas the component model describes what we wish

to visualize, the scenario model (SM) describes how

we want to construct the visualization. Specifically, the

SM consists of a set of operations. Each operation

describes an action that is part of the visualization. For

example, a typical visualization scenario consists of

the following operation sequence:

read some component software description;

select a subset of interest from the whole dataset;

compute some metrics on the selected subset;

represent visually the selected subset, with the

computed metrics;

specify how the visualization reacts to the user

interaction.

To be effective, our visualization framework must

support several scenario models implementing a wide

range of operations (R2). In the next section we

describe the classes of operations our framework

supports and explain the design choices we took to

ensure the requirements (R1) and (R2).

3. Visualization Framework Architecture

The architecture of our visualization framework

consists of two main elements: a data model (DM) and

an operation model (OM). The operations (part of

SMs, described in Section 2) communicate with each

other via the shared data model (Figure 2). The data

model holds component instances of the CM described

in Section 2. The DM is implemented in C++ for

efficiency reasons. The OM is implemented partly in

C++, for efficiency, and partly in the interpreted Tcl

language for flexibility. We next describe both the DM

and OM.

3.1. Data Model

Data to be visualized consists of three elements:

structure, attribute values, and selections, as follows.

Structure and attribute values refer to the instantiation

of the relational, respective non-relational attributes in

the CM. We can see the structure as a graph whose

nodes are the component instances and arcs the

relations between these instances (Figure 2). This

graph can have any topology, as there are no

constraints on the relations between components. The

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

attribute values represent concrete instances of the CM

attributes. They may take values of several basic types

(int, float, string, pointer, and arrays thereof). If

desired, specific problem models may place

topological and/or value constraints on the structure

and attribute values respectively and check them via

operations in their SM (see Section 3.2).

Figure 2: Framework architecture

Selections, defined as named sets of nodes and edges

(i.e. component and relation instances respectively),

are the last element of our framework’s data model.

Selections allow specifying the data elements on which

visualization operations are executed. To make our

framework flexible, we decouple the selection

specification (which are the data to operate on) from

the operations' definitions (what to do with the selected

data). All operations in our framework communicate

with each other only via selections. Practically,

selections play the role of (named) input and output

variables in dataflow programming. Let us give an

example: Given some component-based software, we

want to visualize all component instances thereof,

which are of a given type Package. This

visualization scenario can be expressed as the

following sequence of three operations:

1) Inp = readData(input)

2) Out = selectOnValue(Inp,type,Package)

3) display(Out)

The first operation readData reads all component

data from some input file input and places it in the

selection Inp. The second operation produces the

selection Out containing all data elements in Out

whose attribute called type has the value Package,

i.e. all component instances of package type. Finally,

the third operation display produces a visual image

of the selected subset Out.

3.2. Operation Model

Operations, already introduced in the previous section,

are of three classes (see also Figure 2):

Editing: change the structure and/or attribute data

Selection: change the selection set

Mapping: map selections to visual objects

In the previous example (Sec 3.1), readData is an

editing operation, as it creates new nodes and edges in

the data model, when reading the input data;

selectOnValue is a selection operation, as it creates

a new selection; and display is a mapping operation

as it maps the selection Sel to visual objects.

Operations may have three types of parameters:

Selections: specify the selections to be

read/written

Attributes: specify the attribute names from the

CM to be read/written

Values: specify other operation-specific

parameters, such as thresholds, flags, options, etc.

This above operation model has several advantages. As

operations are explicit about which data elements they

change, the framework can perform automatic updates.

For example, if some selection Sel changes, all data

viewers (discussed in Section 3.2.3) that monitor Sel

are automatically updated. The fixed operation

interface (selections, attributes, values) allows the

framework to automatically construct graphics user

interfaces (GUIs) for all operations, in which users can

set operation parameters and monitor results. Overall,

this allows users to easily program new operations and

incorporate them with minimal effort in SMs of the

framework, as detailed in Section 3.3.

We next discuss the three operation types, give

examples for each type, and show how the genericity

and flexibility requirements set to our framework are

met.

3.2.1. Selection Operations

Selection operations are the main instrument used to

navigate through large component architectures. Given

one or several input selections, a selection operation

produces an output selection containing component

instances and relations (i.e. nodes and edges) that

match the desired criteria. Several examples follow.

Conditional selections gather all elements in the input

whose attribute values match some condition. In this

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

way, filters such as “get all component instances of a

type T” or “get all component instances providing an

interface I” can be readily implemented. Call graph

selections gather all component instances reachable

from a given component via a given function or

service call. Level selections (called 'horizontal slices'

in the reverse engineering literature [8]) are useful to

visualize multi-layer software architectures at a given

level of detail, by gathering all component instances in

a given architectural layer. Tree selections (called

'vertical slices' in [8]) gather all component instances

and containment relations reachable from an input

selection, and are useful for visualizing subsystem

structures or change propagation [2]. Finally, boolean

selections allow combining existing selections via

intersection, union, etc, and allow creating arbitrarily

complex filters from simple building bricks.

3.2.2. Editing Operations

Structure editing operations construct and modify the

graph. Such operations include reading several data

file formats such as RSF [8], DOT [9], and GXL [2].

Visualizing some custom component-based software

amounts thus to program a new operation for reading

the desired data format. If the data at hand is too large

to be directly visualized (e.g. there are too many

components), aggregation operations can be used to

simplify it. These take the data (nodes and edges) in an

input selection and replace them with a unique

‘cluster’ node. The input selection can be

programmatically constructed, e.g. by automatic

clustering methods, or can be the output of user

interaction, described in Section 3.2.3.

Attribute editing operations modify the attribute

values of component instances but not the relations,

i.e. the graph structure. Such operations are

architectural metrics, e.g. component coupling

strength, number of provisions, requirements, and

internalizations [8]. Metrics can compute new attribute

values for each component instance, such as the above

examples, or single values for whole selections, such

as global subsystem quality metrics. Decoupling the

selection of the metric’s input from the metric

computation itself allows applying any metric on any

subset of components (selection), which is not the case

in other software visualization tools [8, 11]. Moreover,

explicitly specifying the attribute names that store the

metric allows easy run-time prototyping of various

metric combinations. For example, one can compute

several metrics, store them in several attribute values,

and then interactively cycle through the computed

metrics to e.g. visually compare them.

Layout operations (or layouts briefly) are the first

step in bringing the abstract component data to a visual

representation. Given that component instances and

their relations form a graph (as explained in Section

3.1), a very natural way to visualize these is to draw

this graph. Drawing the graph involves two steps:

assigning a geometric position to every node and edge;

and choosing a graphic symbol to draw every node and

edge. The first step, called laying out the graph, is

performed by layout operations. In detail, layouts

compute geometric position attributes for the nodes

and edges in a given input selection. The second step,

called mapping the graph, is discussed separately in

Section 3.2.3.

Decoupling the drawing in the layout and mapping

steps has several benefits. First, we can layout different

subgraphs corresponding to different component

subsystems separately. For example, containment

relations between component instances (vertical slices,

Section 3.2.1) are best visualized using a tree layout

(Figure 6 top). Call graphs or horizontal slices (Section

3.2.1) are best visualized using a so-called spring

embedder layout [9]. Second, we can precompute

several layouts e.g. to quickly switch between them.

This is useful for large graphs (thousands of

component instances) whose layouts may take up to

minutes. Finally, we can cascade different layouts on

the same position attributes, e.g. to interactively refine

an existing layout. An example of cascading is the

nested layout described next. Nested layouts are useful

to visualize both containment and association

(“provides”, “requires”) relations of a component

architecture. If we draw components as boxes, we

depict containment (“A contains B”) by drawing B’s

box inside A’s, and association (“A provides/requires

B”) by drawing a line between A and B (see Figure 5

and Figure 6). To produce such results, we lay out

separately the sub-components of every component

instance using the spring embedder layout and then lay

out recursively the bounding boxes of the containing

nodes. Nested layouts produce images similar to

package UML diagrams and have proven to be very

helpful in many applications [9,10], as they are quite

familiar to software engineers. Users can easily

combine simple layouts as the building bricks for the

more complex layouts. Adding new layouts to our

framework is reasonably simple. The implementations

of the spring embedder and tree layouts we use in our

framework [9] exceed 50000 C lines. Adding them in

a black-box fashion required less than 100 C++ lines

for each. Our custom layouts, such as the nested

layout, have each fewer than 200 C++ lines.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

3.2.3. Mapping Operations

So far, we described how to read data (Section 3.2.2),

select subsets of interest (Section 3.2.1), and assign

geometric positions for drawing it (Section 3.2.2).

Mapping operations, discussed here, allow users to

customize the way data is finally drawn to produce the

visualization, and how users can interact with the

visual objects.

Creating visual representations of our data model must

obey two requirements. First, users must be able to

easily customize the way objects are drawn. Second,

the framework must cope with drawing and interacting

with potentially complex drawings of thousands of

visual objects in real time. To fulfill these

requirements, we designed an architecture consisting

of four elements: mappers, viewers, glyph factories,

and user actions (Figure 3). The implementation is

based on the C++ toolkit Open Inventor that provides

advanced mechanisms for rendering and interacting

with large 3D models [7].

The mapper is the central element of the mapping

subsystem. It is responsible for creating 2D or 3D

visual representations of the data model. We have

implemented several mappers, and we present here as

example the glyph mapper. This mapper creates an

iconic symbol, also called a glyph, for each component

instance (node) and relation (edge) in its input

selection, and places these glyphs at the geometric

coordinates provided by attribute values previously

computed by a layout operation (Section 3.2.2).

The glyph mapper allows customizing the drawing of

every individual node or edge glyph, as follows. For

every node and edge it maps, the glyph mapper calls a

glyph factory software component, which builds the

desired glyph visual representation and returns it to the

mapper. The glyph factory sets the glyph's graphical

properties (color, shape, size, annotation, transparency,

and so on) from the attributes of the mapped node or

edge. Users can thus customize the appearance of

every single node and edge in the visualization by

simply switching between various predefined glyph

factories. Most such factories are programmed in the

scripting language Tcl, so users can even edit them on

the fly, to obtain complete customization. The usage of

glyphs is exemplified by applications in Section 4.1

(Figure 5) and 4.2 (Figure 6).

The third component of the mapping subsystem is the

viewer. Viewers (Figure 5) display the output of

mappers and also allow mouse-based 2D and 3D

navigation (zoom, pan, rotate, fly through) in the

displayed data, as well as interaction with the

displayed data. Viewers can be thought as operations

(Section 3.2) having an input and an output selection

and an attribute argument. The data in the input

selection is displayed using a mapper. When the user

selects the displayed objects, using the mouse, the

viewer adds the selected objects in its output selection.

The output selection can be then passed as input to any

of the framework’s operations (filtering, editing,

viewing, etc). In this way, users can easily both

navigate the complete data to get an overview and

select some subsystem of interest to examine it in more

detail. Finally, viewers allow specifying a so-called

user action. This is an operation that is executed every

time the user performs mouse-based selection in a

viewer, and receives as input the viewer’s output

selection. By customizing the user action, a wide range

of exploration scenarios can be implemented. For

example, a user action can pop up a second viewer

displaying the data the user selected in a first viewer,

as demonstrated by the application in Section 4.2.

Figure 3: Mapping and visualization subsystem

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

3.3. Component Architecture

For our framework to be effective in practice, users

must avail of a wide range of problem models,

consisting of component models (CMs) and scenario

models (SMs). Writing a CM for a given component-

based system is usually easy, as it involves translating

the native application CM to our simple CM format

(Section 2). Writing a custom SM involves crafting

appropriate editing, filtering, and mapping operations

that support the questions specific to the system being

analyzed. In order to simplify the usage of such

operations (i.e. writing, packaging, browsing, and

customizing them), we introduced a simple

component-based metaphor in our framework. All

customizable software elements in our framework

(operations, viewers, glyph factories, and user actions)

are implemented as components with fixed interfaces.

Components are declared in Tcl and may be

implemented either in Tcl or compiled C or C++. To

exemplify, we sketch next the declaration of the

operation component selectOnValue introduced

in Section 3.1:

component selectOnValue {
 type operation
 library filters
 selections { input output }
 attributes { name value }
 info “Selects by attribute value”
 proc exec { input output name value }
 { … implementation … }
}

The first declarator type gives the component’s type,

i.e. operation in this case. The library declarator

specifies the component library this component is part

of. Components can be organized in hierarchical

component libraries, much as class libraries in OO

languages. The selections declarator gives the

operation’s selection arguments, in this case the

selections input and output. The
attributes declarator gives the operation’s

attribute arguments, in this case the attribute name
whose value should equal value. The info
declarator gives some information text to be displayed

in the component’s GUI. Finally, the exec declarator

is the name of a Tcl procedure that implements the

operation’s functionality. Given this declaration, the

visualization framework automatically constructs a

component GUI and adds the component in a visual

browser. Figure 4 (upper half) shows the browser in

which we selected the selectOnValue component,

whose GUI is shown in the lower half of Figure 4.

Figure 4: Component browser and GUI

Creating SMs is easily done by packaging those

components that should be used together for a given

problem domain. A typical visualization proceeds then

as follows. The user loads the desired PM, e.g.

“Architectural metrics for Java-based software”, from

an existing set of pre-packaged PMs. Next, the

concrete data to be visualized is loaded, in this case an

architectural description of some Java-based system.

Next, the user browses through the components made

available by the loaded PM, selects the desired ones,

and applies them on the loaded data in the desired

order, to gain the desired insight. No programming

experience is needed here, as all actions are done just

via the component GUIs.

4. Applications

In this section, we demonstrate the use of our

visualization framework with three real-world

applications using component-based software.

4.1. Architectural Metrics

In this application, we visualize several architectural

metrics computed by the software analysis tool SAAT

[3] on a given software system (Figure 5). Our system

representation consists of a logical view, containing

structural inter-component relations, and a scenario

view, containing use cases describing specific system

tasks. We use a nested layout (Section 3.2.3) to

represent the use cases, scenarios, and components: If

component C is in scenario S, its visual representation

is contained in C’s visual representation. For use cases

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

and scenarios, we use simple box glyphs. For the

system we study, containment has just three levels

(components in scenarios, scenarios in use cases).

However, our nested layout can accommodate in

principle any number of containment levels. Inter-

component relations (method calls) are drawn as lines.

If the same element (e.g. component) appears in

several scenarios, it is separately drawn in every

scenario box. This matches the representation expected

by system architects. When the user selects a

component in a scenario with the mouse, all visual

representations of that component in all scenarios it

occurs are automatically highlighted (Figure 5). This is

easily implemented by a custom user action (Section

3.2.3). This allows easy comparison of the behavior of

a given component in different scenarios. For

components, we use a special glyph that shows four

metrics: coupling, inverse coupling, fan in, and fan out.

These are displayed as a four (individually colored) bar

chart in 3D. Finding outliers, i.e. components with

high/low metrics, is easy, as these have the

longest/shortest metric bars. Displaying the four

metrics along each other with the bar chart glyph

allows easy comparison of the metrics for the same

component. Using the same color for the same metric

allows comparison of that metric between different

components.

4.2. Multiple Views in Reverse Engineering

In this application, we visualize a component-based

mobile phone architecture from Nokia [10]. The data

Figure 5: Architectural metrics

comes from reverse engineering an existing software

system of several hundred components. First, we use a

filter to select all component instances and their

containment relations. We display these using a tree

layout and a glyph colored by the component type

(Figure 6 top). When the user selects, with the mouse,

some components in this viewer, we display them and

all contained sub-components in a second viewer using

a nested layout (Figure 6 bottom). This shows us both

containment relations (boxes in boxes) and call

relations (lines between boxes). We easily implement

the above by a user action for the first viewer (Section

3.2.3).

Figure 6: Subsystem containment (top) and dependencies (bottom)

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

This scenario, constructed in just a few minutes,

allows us to see which are the 'interface' components

through which Subsystems 1 and 2 communicate. We

also see that lower level components (innermost boxes

in the nested layout) do not make cross-system calls, a

desired property of software architectures.

4.3. Visualizing Provisions

In this application, we visualize the provision, or “is

called by”, relations in a Java-based software system of

about 2000 components. Since the provision relations

graph is dense, visualizing it using a spring embedder

layout and glyphs (e.g. boxes and lines) produces a

cluttered image. Instead, we use a splat mapper

(Section 3.2.3). The dots in Figure 7(left) show the

components’ positions computed by a spring

embedder. The shaded image shows the density field

computed as number of packages times number of

provision relations per unit area. Figure 7(right) shows

the same field as a height plot. We can see two ‘hot

spots’ in the left image, corresponding to the two peaks

in the right image. These correspond to the most called

classes in the system, i.e. String and ListIter.

Other hot spots correspond to other frequently used

components. A similar scenario can be built to

visualize component requirements.

Figure 7: Visualizing provisions

5. Conclusions

The aim of this paper is to demonstrate the usefulness

of visual tooling for the development and maintenance

of component-based software. Our contribution is

twofold. First, we demonstrate the usage of our

visualization tool in three scenarios for real-world

software systems. Secondly, we show how we used a

component based tool architecture to make the

customizability of our tool simple for end users. This

lets us define a visualization scenario in minutes by

assembling pre-packaged components such as data

editing, filtering, rendering, and user actions. Having

this stable framework, our main focus now is to

construct more visualization components and apply

them to support both forward and reverse engineering

of large component-based software systems.

6. References

[1] ITEA, ROBOCOP : Robust Open Component Based

Software Architecture for Configurable Devices Project --

Framework concepts. Public Document V1.0, May 2002

[2] Marshall, M. S., Herman, I., and Melançon, G., “An

object-oriented design for graph visualization”,

Software: Practice and Experience, 31(8), John Wiley

& Sons, 2001, pp. 739-756.

[3] Muskens, J., SAAT: Software Architectural Analysis Tool,

Master’s Thesis, Department of Mathematics and Computer

Science, Eindhoven University of Technology, 2002[4] Box,

D, Essential COM, Object Technology Series, Addison-

Wesley, 1997

[5] Mowbrai, T. and Zahavi, R, Essential Corba, John

wiley & Sons, 1995

[6] Van Ommering, R., F. van der Linden, J. Kramer,

and J. Magee, “The Koala Component Model for

Consumer Electronics Software”, IEEE Computer, 33

(3), IEEE CS Press, 2002, pp. 78-85.

[7] Wernecke, J. The Inventor Mentor: Programming

Object-Oriented 3D Graphics, Addison-Wesley, 1993.

[8] Wong, K., S. Tilley, H. Muller, and M. Storey,

“Structural Redocumentation: A Case Study”, IEEE

Software, 12 (1), 1995, IEEE CS Press, pp. 46-50. See

also Rigi User’s Manual, Dept. of Computer Science,

Univ. of Victoria, Canada.

[9] North, S. C. and E. Koutsofios, “DOT and

NEATO’s User Guide”, AT&T Bell Labs Reports,

http://www.research.att.com, 2000

[10] Riva, C., A. Maccari, A. Telea, “An Open

Visualisation Toolkit for Reverse Architecting”, Proc.

IWPC, IEEE CS Press, 2002

[11] Kazman, R. and Carriere, J., “Rapid Prototyping

of Information Visualization using VANISH”, Proc.

IEEE InfoVis, IEEE CS Press, 1996, pp. 91-98

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

	footer1:

