
 

 

 University of Groningen

Interface inheritance for object-oriented service composition based on model driven
configuration
Andrea, Vincenzo D’; Fikouras, Ioannis; Aiello, Marco

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Andrea, V. D., Fikouras, I., & Aiello, M. (2004). Interface inheritance for object-oriented service composition
based on model driven configuration. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli
Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/1acc671e-1ea5-4e8c-bdb5-d7c53267ecd6


Interface inheritance for object-oriented service
composition based on model driven configuration

Vincenzo D’Andrea
DIT, Univ. of Trento
Via Sommarive, 14

38100 Trento
Italy

dandrea@dit.unitn.it

Ioannis Fikouras
BIBA, Univ. of Bremen

Hochschulring 20
28359 Bremen

Germany

fks@biba.uni-bremen.de

Marco Aiello
DIT, Univ. of Trento
Via Sommarive, 14

38100 Trento
Italy

aiellom@dit.unitn.it

ABSTRACT
In today eCommerce environments, customers have to deal
with a wide variety of alternatives, both in terms of service
offerings as well as service providers. They risk to be over-
whelmed by the complexity of alternatives, thus reducing
the usefulness of the experience and consequently the like-
lihood of transactions. There is an increasing need for new
ways to reduce the perceived complexity. Service-oriented
computing can help the user cope with this problem. With
services, interfaces no longer hide units of code, but provide
access to complex functionality equivalent to that of entire
conventional applications.

We introduce a methodology for extended service compo-
sition derived from model-driven configuration and object-
oriented systems. By focusing on the concept of interfaces,
and applying it to the object-oriented concept of inheri-
tance, we propose an innovative approach to composition
that takes into account how the composed services can be
recognized or accessed via the composing service. In or-
der to set the stage, we discuss the similarities between
Service Oriented Computing, Object-Oriented Configura-
tion and Object-Orientation. In addition, we provide an
overview of knowledge-based systems, described as software
systems built by capturing the knowledge used by experts,
and more specifically object oriented configuration for im-
plementing service composition.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and Principles; D.1.5
[Software]: Programming techniques—Object-oriented Pro-
gramming

General Terms
Web services, Object-oriented programming, Model driven
configuration

1. INTRODUCTION
“It is the customer who determines what a business is” [13]
by attempting to address specific needs and express his per-
sonality through custom-made products and services [26].
Customers thus drive vendors to strive for product palettes
with an ever increasing number of variants. Consequently

the pursuit of differentiation through variety leads to unique
products and services [16, 19]. This strategy is known as
“mass customization”. Mass customization is defined as
“when the same large number of customers can be reached
as in mass markets of the industrial economy, and simul-
taneously they can be treated individually as in the cus-
tomized markets of pre-industrial economies” [12]. Accord-
ing to [31] the objective of mass customization is “to deliver
goods and services that meet individual customers needs
with near mass production efficiency”. Online transactions
and specifically eCommerce environments differ greatly from
conventional commercial transactions. Online transactions
achieve greater execution speeds and can bridge greater dis-
tances than traditional commerce. Furthermore purely dig-
ital products (i.e., information services or digitized media)
can be discovered, adapted, evaluated, purchased, paid for
and delivered by a single service platform within a very short
timeframe at any time of day or place on earth [32]. More-
over such platforms compared to conventional sales facilities
(i.e., brick and mortar stores) are quick and cheap to imple-
ment as well as adapt to new requirements even in not previ-
ously predetermined ways [32]. This allows for the rapid and
inexpensive deployment of on-line stores offering advanced
functionality (such as rearranging the product palette for
individual customers) impossible to implement in brick-and-
mortar facilities.

On the other hand, customers in an eCommerce environ-
ment are faced with more information, resulting from a
wider variety of alternatives both in terms of service offer-
ings as well as service providers. However the processing of
this information occurs based on the same knowledge and
information processing capacity available to the customer as
in conventional shopping scenarios [32]. These constraints,
unaffected by new technologies, result in a significant draw-
back to high variety strategies. A customer overwhelmed
by the amount of available products or frustrated by their
complexity is less likely to complete the transaction and pur-
chase the product, and more likely to delay the decision or
leave the shop altogether [18]. This behaviour illustrates
the need for new ways for retailers to reduce the perceived
complexity of their products. Advanced functionalities are
designed to help the user cope with a large amount and at
the same time a significant complexity of product data. The
advance functionality necessary to accomplish the vision of
mass customization may be offered by service composition



functionality implemented in a service-oriented infrastruc-
ture.

Service oriented computing (SOC) is a new computing para-
digm in which complex systems are built on the basis of ba-
sic distributed autonomous services by abstracting on the
actual implementation and location of the various services
[24]. This paradigm allows for a high distribution of the
workload, for the building of complex system yet dynami-
cally and easily scalable. Following the “Service Oriented
Computing Manifesto” [25], SOC is more formally defined
in terms of services, that is:

Services are autonomous platform-independent
computational elements that can be described,
published, discovered, orchestrated and programmed
using XML artifacts for the purpose of develop-
ing massively distributed interoperable applica-
tions.

The best-known example of service-oriented technology is
that based on web services. In [10], web service are described
as

a networked application that is, able to interact
using standard application-to-application Web pro-
tocols over well defined interfaces, and which is
described using a standard functional description
language.

In the SOC paradigm the emphasis shifts from the engineer-
ing of appropriate isolated applications towards the integra-
tion, orchestration and choreography of a set of independent
services over a network. Typical distributed systems prop-
erties [8] become of paramount importance in this setting,
most notably: heterogeneity, openness, security, scalability,
failure handling, concurrency, transparency. Furthermore,
in the SOC model no fixed synchronous bindings are es-
tablished, but rather the computational elements follow the
find-bind-use model.

If the scene is that of a web of autonomous computational
elements that offer simple services exposing their interfaces,
then the challenge is that of creating massively distributed
applications offering added value by taking advantage of the
basic services. In other words, service composition is the
cornerstone for the success of the SOC vision.

Various approaches to service composition have been pro-
posed in the literature. On one extreme are those who con-
sider composition as a run-time process in which services
are composed on the fly, e.g., [20]. To achieve this, seman-
tic annotation of services going beyond a simple operational
interface is mandatory. Efforts involving semantic web tech-
nology are blooming, most notable is the semantic web ser-
vice initiative (www.swsi.org), but others based on tempo-
rized automata have also been proposed [4]. On the other
extreme, many approaches consider composition as an engi-
neering process that starting from user requirements, data
or knowledge models arrives at a service composition satis-
fying the requirements. Examples of this approach are [7,
23].

In [14], we have shown how Model Driven Configuration
theory can be exploited for service composition and orches-
tration, in [11] we have shown the analogies relating object-
oriented programming and service-oriented design. In this
paper, we propose a methodology for extended service com-
position derived from model-driven configuration and object-
oriented systems, having the notion of service as the central
building block. By focusing on the concept of interfaces and
applying it to the object-oriented concept of inheritance, we
propose an innovative approach to composition that takes
into account how the composed services can be recognized
or accessed via the composing service. We propose a classi-
fication of service composition, derived from the concepts of
inheritance, interface inheritance, and object composition.
For instance, from the notion of object composition we de-
rive the definition of Opaque Composition, that is, a service
is composed by other services without informing the external
world of the details of the composing services.

The paper is organized as follows. In Section 2 we provide an
overview of knowledge based systems. The paper then pro-
ceeds focusing on the use of knowledge-based construction
systems, specifically object oriented configuration for imple-
menting service composition. In Section 3, we present a dis-
cussion of the similarities between Service Oriented Comput-
ing, Object-Oriented Configuration and Object-Orientation,
in order to bridge the gap between model driven configura-
tion and services. Section 4 presents the main results of the
paper, that is, a methodology for the composition of services
based on object-oriented configuration. Concluding remarks
and open issues are summarized in Section 5.

2. KNOWLEDGE-BASED SYSTEMS
We focus on the use of knowledge-based construction sys-
tems, specifically model-driven variant configuration for im-
plementing service composition. The following section gives
thus a broad overview of knowledge-based systems.

Knowledge-based systems are defined in [1] as:

computer programs which (a) use knowledge and
inference procedures (b) to solve problems which,
if addressed by a human, would be regarded as
difficult enough to require significant expertise.

For the purposes of this paper we use the following definition
of software systems built by capturing the knowledge used by
experts and structuring it according to a specific method, in
order to solve problems requiring application domain spe-
cific knowledge. Such knowledge stored in a knowledge-base
can be organized according to a number of different meth-
ods depending on the underlying concept for storing and
managing knowledge. Methods in use include rules-based
systems using lists of rules for describing dependencies and
conditions, case-based systems that use libraries of prede-
fined descriptions of past cases, and finally object oriented
or model-driven systems that store knowledge in an object
hierarchy with the help of a domain specific data model [29].
Furthermore knowledge-based systems are split into three
broad categories Diagnosis, Simulation and Construction,
according to the type of problem they attempt to solve [27,



28]. In our work, we focus on the category of Construction
and, in particular, on Configuration problems.

The goal of Construction is the creation of a new solution
out of a set of existing components. Construction problems
include the configuration of products, processes, resources
or services. Configuration is the design of a system through
identification, parameterization and combination of instan-
tiations of appropriate components types out of a predefined
component set [17]. Configuration focusing on the modifi-
cation of existing constructions is termed Variant Configu-
ration.

Variant Configuration [29] is a process were complex prod-
ucts are composed out of elementary components. A con-
figurator in this sense is a knowledge-based system imple-
menting such process, based on predefined goals as well as
domain specific knowledge. Design goals can be constraints,
functional requirements, predetermined components or vari-
ous quality criteria [21]. Such systems do not follow a single
predefined method, but rather a strategy based on a se-
ries of small steps, each step representing a certain aspect
or assumption leading to the configuration of the composite
service. Configuration is therefore considered as the solution
to a single exercise and not the solution to a whole problem
or problem class that has first to be methodically analyzed.
This implies the following, see Figure 1:

• The set of all possible solutions is finite.

• The solution sought is not innovative, but rather is a
subset of the available parts.

• The configuration problem is known and well defined.

Figure 1: Variant Configuration solution-space.

Configuration as a knowledge-based system requires a knowl-
edge-base as the source of its domain specific knowledge.
The structure of this knowledge-base determines to a large
degree the configuration process itself. Currently three ma-
jor types of variant configuration are defined: (i) rules based

configuration, (ii) case-based configuration, and (iii) model
driven or object oriented configuration.

Object-oriented Variant Configuration is based on the con-
cept of iterative composition of the final product out of a
set of elementary components that have been previously or-
ganized according to a product data model into a structure,
known as the object hierarchy that contains all knowledge
related to the product in question. The relationships be-
tween components and how they fit together are described
with the help of constraints.

Constraints are constructs connecting two unknown or vari-
able components and their respective attributes which have
predefined values (taken from a specific knowledge domain).
The constraint defines the values the variables are allowed
to have, but also connects variables, and more importantly,
defines the relationship between the two values [30]. In other
words, constraints contain general rules that can be applied
to make sure that specific components are put together in
a correct fashion without having to specify any component-
related rules or calculations [30]. The constraint satisfaction
problem is defined as follows [2]:

• There is a finite set of variables X = {x1, . . . , xn}.

• For each variable xi, there exists a finite set Di of
possible values (its domain).

• There is also a set of constraints, which restrict the
possible values that these variables are allowed to take
at the same time.

The object hierarchy contains all relevant objects and the
relationships between them in an “is-a” relationship that
defines types of objects, object classes and subclasses, and
their properties. The configuration process creates objects
on the basis of this information according to the products
being configured. In one specific hierarchy (as depicted in
Figure 2 for the configuration of automobiles), classes for
specific car types (i.e., coupè, minivan, etc.) are connected
by “is-a” relationships to the main “car” class. This hierar-
chy also allows the breakdown of a product into components
with the help of further “has-parts” relationships. These
“has-parts” relationships are the basis for the decision-making
process employed to create new configurations. An example
of such a relationship would be the relationship between a
chassis and a wheel. A chassis can be connected to up to
four wheels in a passenger car, but the wheels are repre-
sented only once, with appropriate cardinality.

The greatest hurdle to be resolved when creating new con-
figurations is the fact that the software is required to make
decisions that are not based on available information. Such
an action can possibly lead to a dysfunctional composition
or simply to a combination that does not conform to user re-
quirements. In this case all related configuration steps have
to be undone (backtracking) in order to return to a valid
state. The longer it takes for the configuration to detect
that a mistake has been made, the more difficult it is to
correct the error in question [21]. The configuration process
itself is composed of three phases [9]:



Figure 2: Automotive object hierarchy.

• Analysis of the product in order to define possible ac-
tions.

• Specification of further configuration actions.

• Execution of specified actions.

These actions are:

• Disassembly of the product into its components. This
is meant to reduce the complexity of the problem and
create a large number of smaller objectives in the man-
ner of conventional top-down specification.

• Assembly of components, integration and aggregation.
This step creates a product out of its components in a
bottom-up manner.

• Creation of specialized objects. Object classes are spe-
cialized through the definition of subclasses.

• Parameterize objects. Define attributes and parame-
ters for the specified objects that can be used for the
application of constraints or other configuration mech-
anisms.

3. MODEL DRIVEN CONFIGURATION AND
OBJECT ORIENTATION

A service composition engine based on object-oriented con-
figuration implemented by project NOMAD [22] employs
the following data model for composition of services. It di-
vides services conceptually into two categories, Elementary
Services and Composite Services, cf. Figure 3. Elementary
Services represent a specific instantiation of a service and
contain all data needed to describe it. Composite Services
act as templates designed to provide the default knowledge
required to produce a specific composition and consist of
groups of Components derived individually from Elemen-
tary Services. Interfaces can be defined between Elemen-
tary Services, Composite Services, Service Categories and
Service Providers. For a detailed discussion of the NOMAD
service composition data model the reader is referred to [15].

The relationship between interfaces and elementary services
matched by the filters contained in an interface resembles

Figure 3: Object hierarchy for composition of ser-
vices.

the one between plugs and sockets, whereby interfaces as
sockets match multiple plugs. Henceforth, connections to
Elementary Components that have a direct reference to an
interface via its unique identifier will be referred as sock-
ets and components that are matched by a socket will be
referred to as plugs. An interface object is not restricted
in its scope to use by only one pair of services, but rather
implements a generic rule (constraint) that can be used by
multiple components for describing their interfaces. For a
detailed discussion of the NOMAD service composition en-
gine the reader is referred to [14].

One of the common metaphors used in textbooks on Object-
Oriented programming (OOP) is to view objects in terms of
the services they provide, describing them in “service ori-
ented” terms (see for instance [5]). Building on abstraction
and encapsulation, the key idea is to hide programming de-
tails that provide object functionalities. An interface de-
scribes these functionalities in terms of methods and prop-
erties, providing a logical boundary between operation invo-
cations and their implementations. Then an object is just a
“server” of its own methods.

Objects in this respect closely resemble services with their
plug and socket interfaces as implemented based on the
above model-driven configuration service composition en-
gine. Furthermore, similarities between the Object-Oriented
paradigm and the Service Oriented paradigm as illustrated
by this composition engine extend to a number of proper-
ties typical of objects and Object-Orientation. Referring
to Figure 4, we draw a parallel. The concept of an ontol-
ogy is fundamental to both paradigms. Any development
is based on an ontology appropriate to the application do-
main in question. Based on this ontology in object-oriented
terms use cases and scenarios are defined. These usually lead
to a class diagram detailing the architecture to be imple-
mented. This is analogous to the object hierarchy produced
from the object-oriented model employed by model-driven
configuration. Another common mechanism used to convey
semantics related to the overall architecture and propagate
best-practice design are design patterns. In order to achieve
a certain type of composition in an efficient way (based on
best practice) default knowledge is required. This knowl-
edge is provided by composite service templates previously
described. Design patterns directly correspond to such com-
posite service templates.



Figure 4: Relations between model driven configu-
ration concepts and object orientation.

Based on these parallels further similarities can be estab-
lished, see Figure 5. Elementary or composite service def-
initions directly correspond to classes. Categories of ser-
vices, providing convenient ways of sorting large amounts of
instances of services, are the equivalent of abstract classes,
that describe common features but can not produce objects
through instantiation. Constraints on the other hand are the
equivalent of preconditions and post-conditions commonly
used in object-oriented development.

Figure 5: Additional relations between model driven
configuration concepts and object orientation

More object related concepts can move into the service ori-
ented world in order to enhance the technology and, per-
haps, clarify the role and scope of web services. Here are
the most immediate example of concept migration:

Inheritance. Two modes of inheritance are used in OOP:
code inheritance and interface inheritance. Interface inheri-
tance is the most immediate to apply to web services. Con-
sider a payment service, which could be subtyped in a service
with acknowledgment of receipt. In a workflow, the former
could be substituted by the latter as it is guaranteed that the
same port types are implemented in the subtyped service.
Inheritance enables service substitution, service composition
and it induces a notion of inheritance on entire compositions
of services. Consider a workflow A built on a generic service
and another one B with the same data and control links, but

built on services which subtype the services of A. Could we
say that B inherits from A or that B is a specialization of
A?

Polymorphism. Both inclusion polymorphism and over-
loading can be extended to the service paradigm. A compo-
sition operation in a workflow may have different meanings
depending on the type of the composed services. For exam-
ple, composing a payment and a delivery service may have
a semantics for which the two services run in parallel; on
the other hand, the composition of two subtyped services
in which the payment must be acknowledged by the payers
bank and the delivery must include the payment transaction
identifier have the semantics of a sequencing the execution
of the services.

Composition. A formal and accepted notion of composi-
tion is currently missing in the SOC domain and, as just
proposed, inheritance and polymorphism could induce such
precise notions of composition over services. Some of the
gaps left by standards which do not have a clear semantics,
most notably, BPEL [3], could benefit from semantically
funded definitions of composition.

4. INTERFACE INHERITANCE FOR SER-
VICE COMPOSITION

Composition is a central issue both in the object-oriented
paradigm and in service oriented computing. By means of
composition an entity can access other independent entities
during the execution of its operations. On the other hand,
the concept of inheritance, which is quite central in object
oriented systems, does not have a relevant role in the service
oriented paradigm.

In object oriented systems, the term inheritance is used to
describe the mechanism allowing the derivation of a class
C2 from another one C1. Class C2, the inheriting class, is
said to be a subclass of C1. The subclass class will have to
present the same external interface of C1, in addition to its
own public interface. In other words, it is possible to treat
as object O2 of class C2 as if it is of class C1: that is O2 will
accept the same messages of objects of class C1.

The behaviour of C2 could extend or limit the behaviour
of C1, but the important fact is that it is defined with re-
spect to C1 behaviour. One may distinguish between several
forms of inheritance [5], but in our discussion we focus on
inheritance for specialization; a class is defined in terms of
specialization of an already existing one – this is expressed
by the “is a” relationships. For instance, if we state that a
TextWindow is a Window, we mean that the TextWindow
has all the properties and behaviors of the Window, plus
some additional property and/or behaviour.

Specialization usually implies a semantic coherence between
the two classes. When this is true, C2, that is, the specializ-
ing class or subclass, is also called a subtype of the class C1.
If semantic coherence is not granted the subclass will just
have the same names as C1 for public variables and meth-
ods, but the meanings attached to these interface elements
can arbitrarily change. In other words, the subclass requires
only a syntactical match, while the subtype guarantees also
a semantical match between the involved classes.



The concepts of subclass/subtype are also related to a dis-
tinction commonly made between what is sometime referred
to as “true” or “code” inheritance versus interface inher-
itance. The former is used when, besides presenting the
same external interface, a class includes also the same code
of the inherited class. As a consequence, a subclass formed
via code inheritance will also be a subtype unless it explic-
itly overrides the behaviour of the inherited class. The lat-
ter term, interface inheritance, is used when a class has the
same external interface of the inherited one, but it has no
direct access to its code. In this case, a subclass becomes
a subtype only when the behaviour of the inherited class is
reproduced with the same semantics.

In terms of implementation, a simplifying model is to view
inheritance as a special form of composition. Composi-
tion generally implies wrapping the interface of the included
classes, and filtering the communication between these classes
and the external world – the composition operation could be
completely hidden. In the case of inheritance, the interface
of the inherited class is added to the one of the inheriting
class, letting the external world know of the relationship
between the two classes. In addition, in the case of code
inheritance, the operation of the inherited class will also be
available.

Inheritance can be described as if the inheriting class incor-
porates (composes with) the inherited one, but without fil-
tering the communication; the inherited class interface is di-
rectly accessible. An object of the inheriting class responds
to the same invocations as an object of the inherited class.
If the subclass is also a subtype, the results will also be
the same. To think at inheritance (subtyping) as a form
of composition which maintains the interface (behaviour) of
the composed object, makes it easier to reason about similar
concepts in the service world.

Before presenting the application of interface inheritance for
service composition (see Section 4.2), in the next section
we discuss the role of composition in the service oriented
paradigm and its relationship with the similar concept in
OOP.

4.1 Object composition versus service compo-
sition

A large amount of effort in research literature and in indus-
try standards is devoted to service composition. As repre-
sentatives of the approaches mentioned at the end of Sec-
tion 3, we refer on one hand to authors focusing on designing
the composition of service (e.g., [6, 33]) and on the other
hand to authors defining how semantically annotated ser-
vices can be automatically composed (e.g., [20]).

Service composition based on model driven configuration ad-
dresses the problem of creation of composite services during
run-time. This is achieved through the iterative composition
of elementary components into a composite service based on
well-defined constraints. Connections between elementary
services are realized based on the aforementioned plugs and
sockets concept where composition dependencies (connec-
tions) that make use of an interface component are referred
to as sockets and components that are matched by a socket
are referred to as plugs. A composition created based on this

process consists of a group of elementary services connected
via their interfaces in order to produce a more complex ef-
fect defined to be the composite service. Consequently a
composite service can synthesize its functionality out of the
functionality of a number of other services, e.g., a location
based weather forecast service that is composed out of a
service providing positioning data and a service providing
weather forecast information. This behaviour can be cleanly
mapped to the type of composition employed in the context
of object oriented development, where the composite service
functions as an inheritor and composing elementary services
play the role of the parents.

In comparison, composition in Object Oriented development
is a design-time activity mainly dealing with statically de-
signing the architecture of the system. To state that an
object is composed of another one, means that in the class
diagram a containment relationship between the two corre-
sponding classes exists. In this relationship the containing
object is able to use the contained one, possibly shielding it
from other parts of the system (see Section 4.2).

An additional level of detail, related to composition in the
object oriented world, is grounded in the difference between
the abstract view of classes and the instantiation process,
that is, the creation of the actual objects. A composition
relationship between classes C1 and C2 will lead to the fact
that an object O1 (instance of class C1) will contain an ob-
ject O2 (instance of class C2). This result can be achieved
in two radically different ways: exclusive or non-exclusive
composition. In the former case, the instantiation of O1 will
create O2, a new instance of C2; when O1 will be destroyed,
O2 will also be deleted. In the latter, non-exclusive, case,
O1 will make use of O′

2, an already existing instance of C2;
in this case, deleting O1 will not affect O′

2.

Recapitulating, the main difference between service com-
position and composition of objects is that composite ser-
vices are not statically designed, but rather are composed
at run-time, as services providing the required supporting
infrastructure are composed using dynamic discovery mech-
anisms. Consequently, the service paradigm provides the
capabilities for dynamic, runtime composition instead of a
statically planned architecture.

The dynamic nature of service composition has several con-
sequences. A significant one is that negotiation and contrac-
tual agreements cannot be accomplished off-line, they have
to be dealt with at run-time. The role of catalogues and
the discovery mechanism have no counterpart in the world
of objects and components.

Services demand a transition from static binding between
objects or components that are to be integrated to the dy-
namic binding of services. From the point of view of the
design there is the need of a transition from designing an
architecture to designing the enabling medium, that is, the
infrastructure for runtime composition.

Furthermore, a composite service functioning as the inher-
itor retains all the interfaces of its individual elementary
components playing the role of the parents. This behaviour
can be cleanly mapped to object-oriented inheritance mech-



anisms.

4.2 Interface inheritance for service composi-
tion

Interface inheritance allows to treat in the same way two
elements of a composition relationship: with interface in-
heritance, a member of a composition can be substituted
its inheritor (descendant). Interface inheritance for services
guarantees the presence in the inheriting service of a specific
interface: the inherited one.

An example is a service A designed for informing client ser-
vices about conformance to certain policies, for instance,
acceptance of a certain kind of credit card or availability
of express shipping. A business process could then be de-
signed in terms of requests to A and decisions based on its
responses. If a second service B is built inheriting A inter-
face: in addition to its own operations, it will respond to
the A-like requests regarding card acceptance or shipping.
Moreover, interface inheritance guarantees that the format
of the requests accepted by B is the same as the ones of A.
We can then substitute A with B in the business process. In
addition, the service B may have further interface elements
which do not affect the process.

We identify four different composition scenarios, which differ
on the basis of the kind of operations performed and on the
relationship between service interfaces. Table 6 summarizes
the four scenarios, illustrated in Figures 7–9 and discussed in
the reminder of this section. In Table 6 we use two categories
for describing composition scenarios. Along the vertical di-
mension, we discriminate services according to the fact that
the composing service presents (or not) to external applica-
tions the same interface elements as the composed services.
On the horizontal dimension, we differentiate services ac-
cording to the additional operations that are performed in
addition to using the composed service. We define as value-
added the operations that significantly change the nature of
the operation of a composed service, while we define pass-
through the operations that are only rearranging or refor-
matting data in addition to activating the composed service
operation.

Value-Added Pass-Through
Operations Operations

Same Sub-class Sub-type
Interface composition composition
Different Opaque Transparent
Interface composition composition

Figure 6: Composition and Inheritance.

In Figures 7–9, we represent a service with an oval in the
diagrams and with capital letters in the text. Elements of
the interface (that is, service operations) are represented
by small shapes positioned on the oval boundary. Different
shapes represent different operations, the same shape in two
services indicates that the two services offer the same oper-
ation. In the text, interface elements are identified with ix,
iy, and so on. Arrows represent requests or invocation of ser-
vice operations. The + inside an oval of a service indicates
that the service adds its own processing to a request, instead

of just passing it to a composed service operation, possibly
with some trivial data transformation. This second case is
represented by a line connecting the interface element with
the activation of the composed service. We also include sim-
plified UML class diagrams, indicating the object oriented
relationship from which we originate our description.

Figure 7: Opaque composition.

In the case of Opaque composition, see Figure 7, service
B is composed by another independent services: A. The
interface of service B is not related to the one of A. For an
external application, there is no indication that B contains
service A.

A request iz to service B will be performed by activating
operation ix in service A. Besides requesting operations to
A, B will perform additional work when it receives request
iz.

On the outside of B there is no notion of A operations.

Figure 8: Transparent composition.

Transparent composition, see Figure 8, differs from Opaque
composition because B does not process request iz, but dif-
ferently from the following cases, B’s interface, iz, is not
the same as A’s interface, ix. For this reason, rearranging iz
data to match ix format does not change the nature of this
composition.

For instance, B could be a commercial service which is using
A, a credit card validation service. Beside using a validation
operation ix of A, B could offer to external applications a
validation operation iz, using a different name and different
parameters from ix. Upon receiving request iz, B will reor-
ganize the request parameters and it will in turn ask A to
perform ix.

From the point of view of the external application, there is
no connection between operation iz of B and operation ix



of A. They just happen to have a similar scope.

Figure 9: Sub-class composition.

With Subclass composition, see Figure 9, the role of inher-
itance starts to appear. Since service B inherits service A
interface, it has to present to external applications the same
interface as A, in addition to its own operations.

In Figure 9, B has ix and iy operations, with the same names
and parameters as A operations. Since this is a subclass,
there is no requirement to guarantee that B will produce
the same results as the requests of the same these operations
to service A. In fact, B could assign a completely different
meaning to these operations.

Since B is not using A, there is no composition between the
services. Nevertheless, from the point of view of an external
application, B could be treated as an A, since having the
same interface it will accept the same requests.

Figure 10: Sub-type composition.

As for Sub-class composition, in the case of Sub-type com-
position, (Figure 10), service B has the same interface as A,
possibly with additional elements. The important difference
is that B has to preserve the meaning assigned by A to its
own operations.

One possible description of the case in Figure 10 is that B
just receives the requests ix and iy, passing them on to A.
It this way B guarantees that an accessing application will
be able to treat B as if it was an A service, obtaining the
same results.

Substitution of A with service B is possible also in the pre-
vious case, but without being semantically coherent.

4.3 Discussion
The widespread use of composition in systems based on ser-
vice oriented architectures will ultimately lead to complex

business models, relying on advanced service composition
functionality. We suggest that the concept of composite ser-
vices can be extended in a useful manner by allowing access
to individual elementary services through interfaces exposed
on the composite service. Examples scenarios where this
type of extended composition would be useful are location
based services (LBS). LBS typically require the integration
of at least one service providing positioning data. Conse-
quently every invocation of any composite LBS, like for in-
stance a location based weather service, would also require
the invocation of a service providing access to a positioning
system, i.e., cellular positioning. If a user makes continu-
ous use of composite LBS, a business model providing cost
saving is to allow an already invoked composite LBS to par-
ticipate in a new composition. In the new composition, the
composite LBS would play the role of an elementary service,
using only a subset of its functionalities. According to our
model, the composite LBS would be used via the positioning
system service interface only. In a different scenario, the mo-
tivation for this type of extended composition could be the
provision of value-added services based on simpler versions
provided by elementary components of a composition.

Such business models pose additional requirements for con-
trolling the way the functionalities of the elementary services
are composed and made accessible to the composite service
consumer. Based on the concept of object-oriented inheri-
tance, and of interface inheritance in particular, we propose
a number of extended types of composition, supporting dif-
ferentiated access modes to the functionalities and interfaces
of elementary services.

Transparent, opaque, sub-type and sub-class composition
can be compared to public, private and private protected in-
terfaces in object-oriented terms. Much like object-oriented
development makes use of such mechanisms to selectively
expose interfaces to outside users or direct inheritors of a
class, we propose access control mechanisms to achieve sim-
ilar results when dealing with interfaces of elementary ser-
vices participating in a more complex composition.

5. CONCLUDING REMARKS

The object oriented paradigm has a solid formal background
and is a well-established reality of today’s computer science.
Service oriented computing is, on the other hand, a new
emerging field, which tries to realize global interoperability
between independent services. To meet this goal, service
oriented technology will need to solve a number of challeng-
ing issues, such as how to manage service composition and
orchestration. We have proposed a methodology based on
model variant configuration by ‘borrowing’ concepts from
the object oriented world. In particular, we have shown
how the concepts of interface inheritance induce four forms
of service composition.

Future investigation will be pursued in two directions. On
the one hand, the utility of the approach will be tested by
implementing a tool for designing compositions of services
based on the proposed methodology. On the other hand,
the added value of semantical enrichments of the interfaces
will be investigated.



6. REFERENCES
[1] A. Barr and E. Feigenbaum, editors. The Handbook of

Artificial Intelligence. Kaufman, 1981–82. Vols. 1–2.

[2] R. Barták. Week of Doctoral Students (WDS99).
MatFyzPress, 1999.

[3] BEA, IBM, Microsoft, S. AG, and Siebel. Business
Process Execution Language for Web Services, 2003.
http://www-106.ibm.com/developerworks/library/

ws-bpel/.

[4] D. Berardi, D. Calvanese, G. De Giacomo,
M. Lenzerini, and M. Mecella. Automatic composition
of e-services that export their behavior. In
E. Orlowska, M. Papzoglou, S. Weerawarana, and
J. Yang, editors, Int. Conf. on Service Oriented
Computing (ICSOC 03), LNCS, 2910, pages 43–58.
Springer, 2003.

[5] T. Budd. An Introduction to Object-Oriented
Programming. Addison Wesley, 2002. (3rd edition).

[6] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and
M.-C. Shan. eFlow: a platform for developing and
managing composite e-services. Technical report,
Hewlett Packard, 2000.

[7] F. Casati and M. C. Shan. Definition, execution,
analysis and optimization of composite E-Services.
Bullettin of the IEEE Computer Society Techincal
Committee on Data Engineering, 24(1):29–34, 2001.

[8] G. Coulouris, J. Dollimore, and T. Kindberg.
Distributed Systems: Concepts and Design. Addison
Wesley, 2001. (3rd edition).

[9] R. Cunis, A. Günter, and H. Strecker. Das
PLACON-Buch. Informatik Fachberichte. Springer,
1991.

[10] F. Curbera, W. Nagy, and S. Weerawarana. Web
services: Why and how. In Workshop on Obejcet
Orientation and Web Services OOWS2001, 2001.

[11] V. D’Andrea and M. Aiello. Services and objects:
Open issues. In G. Piccinelli and S. Weerawarana,
editors, European workshop on OO and Web Service,
pages 23–29, 2003. IBM Research Report. IBM.
Computer Science, (RA 220).

[12] S. Davis. Future Perfect. Addison-Wesley, 1987.

[13] P. Drucker. The Practice of Management. New York:
Harper, 1954.

[14] I. Fikouras and E. Freiter. Service discovery and
orchestration for distributed service repositories. In
E. Orlowska, M. Papzoglou, S. Weerawarana, and
J. Yang, editors, Int. Conf. on Service Oriented
Computing (ICSOC 03), LNCS, 2910, pages 59–74.
Springer, 2003.

[15] I. Fikouras and F. Ramme. Service orchestration with
generic service elements. In Proceedings of the 6th
International Symposium on Wireless Personal
Multimedia Communications, 2003.

[16] R. Glazer. Winning in smart markets. Sloan
Management Review, 40:59–69, 1999.

[17] M. Heinrich. Ressourcenorientieres konfigurieren.
Künstliche Intelligenz, 7(1):11–15, 1993.

[18] C. Huffman and B. E. Kahn. Variety for sale: Mass
customization or mass confusion? Technical Report
R98-111, Marketing Science Institute, 2004.
http://www.msi.org/msi/publication_summary.

cfm?publication=491.

[19] B. Kahn. Dynamic relationships with customers:
high-variety strategies, volume 26. Sage, 1998.

[20] S. McIlraith and T. C. Son. Adapting Golog for
composition of semantic web-services. In D. Fensel,
F. Giunchiglia, D. McGuinness, and M. Williams,
editors, Int. Conf. on Knowledge Representation and
Reasoning (KR2002), pages 482–493, 2002.

[21] B. Neumann. Configuration expert systems: a case
study and tutorial. In H. Bunke, editor, Artificial
Intelligence in Manufacturing, Assembly and Robotics.
Oldenbourg, 1988.

[22] NOMAD. Ist-2001-33292. Project Web-Site:
http://www.ist-nomad.org.

[23] B. Orriëns, J. Yang, and M. P. Papazoglou. Model
driven service composition. In E. Orlowska,
M. Papzoglou, S. Weerawarana, and J. Yang, editors,
Int. Conf. on Service Oriented Computing (ICSOC
03), LNCS, 2910, pages 75–99. Springer, 2003.

[24] M. P. Papazoglou and D. Georgakopoulos.
Service-oriented computing. Commun. ACM,
46(10):24–28, 2003.

[25] M. Papazoglou et al. SOC: Service Oriented
Computing manifesto, 2003. Working draft available
at http://www.eusoc.net.

[26] F. Piller. Kundenindividuelle Massenproduktion: Die
Wettbewerbsstrategie der Zukunft. Carl Hanser Verlag,
1998.

[27] F. Puppe. Expertensysteme. Informatik Spektrum,
9(1), 1986.

[28] P. Schnupp, H. Nguyen, and T. Chau.
Expertensystem-Praktikum. Springer, 1987.

[29] W. Tank. Wissensbasiertes konfigurieren: Ein
überblick. Künstliche Intelligenz, 7(1):7–10, 1993.

[30] E. Tsang. Foundations of Constraint Satisfaction.
Academic Press, 1993.

[31] M. Tseng and J. Jiao. Mass customization. In
G. Salvendy, editor, Handbook of Industrial
Engineering, pages 684–709. Wiley, 2001.

[32] P. West, D. Ariely, S. Bellman, E. Bradlow, J. Huber,
E. Johnson, B. Kahn, J. Little, and D. Schkade.
Agents to the rescue? Marketing Letters,
10(3):285–300, 1999.

[33] J. Yang and M. Papazoglou. Web component: A
substrate for web service reuse and composition. In
CAiSE, pages 21–36, 2002.


