

 University of Groningen

What’s in an Agreement? An Analysis and an Extension of WS-Agreement
Aiello, Marco; Frankova, Ganna; Malfatti, Daniela

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Aiello, M., Frankova, G., & Malfatti, D. (2005). What’s in an Agreement? An Analysis and an Extension of
WS-Agreement. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for
Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/bc3f6ce5-dfa3-4a34-a1e0-a26dba72aac4

What’s in an Agreement?

An Analysis and an Extension of WS-Agreement

Marco Aiello1, Ganna Frankova1, and Daniela Malfatti2

1 Dept. of Information and Communication Technologies,
University of Trento, Via Sommarive, 14, 38100 Trento, Italy

{marco.aiello, ganna.frankova}@unitn.it
2 Corso di Laurea in Informatica

University of Trento, Via Sommarive, 14, 38100 Trento, Italy
daniela.malfatti@studenti.unitn.it

Abstract. Non-functional properties of services and service composi-
tions are of paramount importance for the success of web services. The
negotiation of non-functional properties between web service provider
and consumer can be agreed a priori by specifying an agreement. WS-
Agreement is a recently proposed and emerging protocol for the speci-
fication of agreements in the context of web services. Though, WS-
Agreement only specifies the XML syntax and the intended meaning
of each tag, which naturally leads to posing the question of “What’s in
an Agreement?” We answer this question by providing a formal defini-
tion of an agreement and analyzing the possible evolution of agreements
and their terms. From our analysis we identify ways in which to make
an agreement more robust and long lived by proposing two extensions
to the specification and supporting environment.

1 Introduction

Web Services (WS) are a set of technologies that allow the construction of mas-
sively distributed and loosely coupled applications. One of the most thought
provoking issues in web services is that of automatically composing individual
operations of services in order to build complex added-value services. The re-
search on composition is well under way, but most of the focus is on functional
properties of the composition, that is, how does one automatically compose? How
does one enrich the services with semantic self-describing information? How does
one discover the available services to use for the composition? If, on the one hand,
this is crucial, on the other one, it is not enough. Non-functional properties of
the composition are also of paramount importance in defining the usability and
success of a composed service. Think for instance of desiring a service that per-
forms a biological computation composing the services offered by a number of
web service enabled machines. If the user knows that the composition is correct
with respect to his goal, he will be satisfied with the answer he receives, but if the
answer takes 3 years to be delivered to the user, the correctness is of little use.
Therefore, the quality of a composed service is very important when interacting
with an asynchronous system built out of independent components.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 424–436, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 425

With the term Quality of Service (QoS) we refer to the non-functional proper-
ties of an individual service, or a composition of services. The term is widely used
in the field of networking. Usually it refers to the properties of availability and
performance. In the field of web services, the term has a wider meaning. Any non-
functional property which affects the definition and execution of a web service
falls into the category of QoS, most notably, accessibility, integrity, reliability,
regulatory, and security [15]. Dealing with QoS requires the study of a number of
problems. One, the design of quality aware systems. Two, the provision of quality
of service information at the level of the individual service. Three, ensuring that
a promised quality of service is actually provided during execution. In [2], we
addressed the first issue by using the Tropos design methodology, and the second
one by resorting to WS-Policy to describe QoS properties. In this paper, we
consider the second and third issues; in particular, we show how to provide a
framework to negotiate the provision of a service according to a predefined QoS,
and how to handle changes during the interactions of web services, and how to
prevent the QoS conditions failure.

WS-Agreement is an XML based language and protocol designed for adverti-
sing the capabilities of providers and creating agreements based on initial offers,
and for monitoring agreement compliance at run-time. The motivations for the
design of WS-Agreement stem out of QoS concerns, especially in the context of
load balancing heavy loads on a grid of web service enabled hosts [10]. However,
the definition of the protocol is totally general and allows for the negotiation of
QoS in any web service enabled distributed system. If, on the one hand, the pro-
posal of WS-Agreement is a step forward for obtaining web service based systems
with QoS guarantees, on the other hand, the protocol proposal is preliminary.
The current specification [3] defines XML syntax for the language and protocol,
and it gives a vague textual overview of the intended semantics, without defin-
ing a set of formal mathematical rules. Furthermore, a reference architecture is
proposed to show how WS-Agreement are to be handled, [13]. Nevertheless, a
formal analysis of what an agreement is still missing.

In this paper, we address the question What’s in an Agreement? In parti-
cular, we provide a formal analysis of WS-Agreement by resorting to finite state
automata, we provide a set of formal rules that tie together agreement terms
and the life-cycle of an agreement. From the analysis, some shortcomings of the
protocol become evident. Most notably, there is no checking of how close a term
to being violated and, even more, breaking one single term of the agreement
results in terminating the whole agreement, while a more graceful degradation
is desirable. Therefore, we propose an extension of the protocol for which we
provide appropriate semantics, that allows for providing warning before the vio-
lation of an agreement and eventually the renegotiation of running agreements
by tolerating the break of a term.

Web service QoS issues are gaining attention and have been addressed in a
number of recent works. Some approaches are based on the extension of the
Web Service Description Language (WSDL) to define not only functional, but
also non-functional properties of the service, e.g., [11]. The main idea of the

426 M. Aiello, G. Frankova, and D. Malfatti

approach is simple: provide syntax to define terms which refer to non-functional
properties of operations. The problem with this kind of approach is that the QoS
definition is tied to the individual operation, rather than with the service as a
whole; furthermore, there is no run-time support. Once a quality is defined, it
can not be changed at execution time.

In [18], the authors propose to define WS QoS by using XML schemata that
both service consumers and service providers apply to define the agreed QoS
parameters. The approach allows for the dynamic selection of WS depending
on various QoS requirements. On the negative side, the life-cycle of agreements
is not taken into account, and it is not possible to define an expiration for
a negotiation. The feasibility of using constraint programming to improve the
automation of web services procurement is shown in [16]. A semantic web ap-
proach, in which services are searched on the basis of the quality of semantically
tagged service attributes is presented in [17]. A predictive QoS model for work-
flows involving QoS properties is proposed in [6]. In [9], the authors propose
a model and architecture to let the consumer rate the qualities of a service.
In addition, the industry has proposed a number of standards to address the
issue of QoS: IBM Web Service Level Agreement (WSLA) and HP’s Web Ser-
vice Management Language (WSML) are examples of languages used to describe
quality metrics of services, [12]. A recent proposal is the specification of a new
WS protocol, called Web Services Agreement Specification [3]. In [7], it is pre-
sented the Agreement-Based Open Grid Service Management (OGSI-A) model.
Its aim is to integrate Grid technologies with Web Service mechanisms and to
manage dynamically negotiable applications and services, using WS-Agreement.
The WS-Agreement protocol proposal is supported by the definition of a mana-
ging architecture: CREMONA–An Architecture and Library for Creation and
Monitoring of WS-Agreement [13]. The Web Services Agreement Specification
defines the interaction between a service provider and a consumer, and a proto-
col for creating an agreement using agreement templates. The above approaches
show that frameworks for QoS definition and management are essential to the
success of the web service technology, but there are a number of shortcomings
that still need to be addressed. First, no one has worked out a formal definition
of what the semantics of a QoS negotiation should be. Second, the frameworks
should be more flexible at execution time because actual qualities of services
may change over time during execution.

The remainder of the paper is organized as follows. In Section 2, we present the
WS-Agreement protocol defined in [3]. In Section 3, we propose a formal defini-
tion of an agreement and of its life-cycle. Section 4 is devoted to the presentation
of an extension of WS-Agreement with the goal of improving the duration and
tolerance of an agreement in execution. Preliminary experimental results are in
Section 5. Concluding remarks are summarized in Section 6.

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 427

2 WS-Agreement

In order to be successful, web service providers have to offer and meet guaran-
tees related to the services they develop. Taking into account that a guaran-
tee depends on actual resource usage, the service consumer must request state-
dependent guarantees from the service provider. Additionally, the guarantees on
service quality must be monitored and service consumers must be notified in case
of failure of meeting the guarantees. An agreement between a service consumer
and a service provider specifies the associated guarantees. The agreement can
be formally specified using the WS-Agreement Specification [3].

A WS-Agreement is an XML-based document containing descriptions of the
functional and non-functional properties of a service oriented application. It con-
sists of two main components that are the agreement Context and the agreement
Terms. The agreement Context includes the description of the parties involved
in the agreement process, and various metadata about the agreement. One of
the most relevant components is the duration of the agreement, that is, the time
interval during which the agreement is valid.

Functional and non-functional requirements are specified in the Terms section
that is divided into Service Description Terms (SDTs) and Guarantee Terms.
The first provides information to define the services functionalities that will be
delivered under the agreement. An agreement may contain any number of SDTs.
An agreement can refer to multiple components of functionalities within one
service, and can refer to several services. Guarantee Terms define an assurance on
service quality associated with the service described by the Service Description
Terms. An agreement may contain zero or more Guarantee Terms.

In [8] a definition for guarantee terms in WS-Agreement is specified and a
mechanisms for defining guarantees is provided. An agreement creation process
starts when an agreement initiator sends an agreement template to the con-
sumer. The structure of the template is the same as that of an agreement, but
an agreement template may also contain a Creation Constraint section, i.e., a
section with constraints on possible values of terms for creating an agreement. In
[4] enabling of customizations of terms and attributes for the agreement creation
is proposed. After the consumer fills in the template, he sends it to the initiator
as an offer. The initiator decides to accept or reject the offer depending on the
availability of resource, the service cost, and other requirements monitored by
the service provider. The reply of the initiator is a confirmation or a rejection.

An agreement life-cycle includes the creation, termination and monitoring of
agreement states. Figure 1 shows a representation of the life-cycle. When an
agreement is created, it does not imply that it is monitored. It remains in an
not observed state until a service starts its execution. The semantics of the

NOTOBSERVED OBSERVED FINISHED

Fig. 1. The life-cycle of a WS-Agreement

428 M. Aiello, G. Frankova, and D. Malfatti

states is as follows: not observed: the agreement is created and is in execution,
but no service involved in the agreement is running; observed: at least one
service of the agreement is running; and finished: the agreement has terminated
either successfully or not.

3 What’s in an Agreement?

The WS-Agreement specification provides XML syntax and a textual explana-
tion of what the various XML tags mean and how they should be interpreted.
Thank to the syntax, it is possible to prepare machine readable agreements, but
a formal notion of agreement is missing. In this section, we formalize the notion
of agreement by defining its main components.

Definition 1 (Term). A term t is a couple (s, g) with s ∈ S and g ∈ G, where
S is a set of n services and G is a set of m guarantees. T ⊆ S × G is the set of
the terms t.

In words, a term involves the relationship between a service s and a guarantee g,
not simply a specific tag of the agreement structure. If the service s appears in
the list of services, which the guarantee g is applied to, it means that the couple
(s, g) is a term. The number of terms varies between 0 and n ·m, where 0 means
that there is no association between services and guarantees, and n ·m indicates
the case where each guarantee is associated with all services.

Definition 2 (Agreement). An agreement A is a tuple 〈S, G, T 〉, where S is
a set of n services, G is a set of m guarantees, and T is the set of the terms t.

In the following analysis, it is more convenient to consider the agreement as
a set of Terms rather than a set of related services and guarantees. From the
definition of WS-Agreement, we say that an agreement can be in one and only
one of three states: not observed, observed and finished.

Definition 3 (External State). The external state Aes of an agreement A is
an element of the set {not observed, observed or finished}.
We call the above state external, as it is the observable one. We also define
an internal state of an agreement, which captures the state of the individual
terms.

Definition 4 (Internal State). The internal state Ais of an agreement A is
a sequence of terms’ states ts1, . . . , tsp of maximum size n · m, where tsi =
(ssj , gsk) represents the state of gk guarantee with respect to the state of the sj

service. Service and guarantee states range over the following sets, respectively:

– ssj ∈{not ready, ready, running, finished}, and
– gsk ∈{not determined, fulfilled, violated}.
From the definition of Term, we see that services and guarantees are related

and we can define the internal state of an agreement, but it is necessary to

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 429

terms are in state state of the agreement transitions

(A) (1) not observed (B)
(B) (1)(2) not observed (C) (E)
(C) (1)(2)(3) observed (D)(E)(F)(G)
(D) (1)(2)(3)(5) observed (F)(G)
(E) (1)(2)(4) observed (F)(H)
(F) (1)(2)(3)(4)(5) observed (H)
(G) (5) finished

(H) (1)(2)(3)(4)(5)(6) finished

Fig. 2. Transition table for the relation between internal and external states

distinguish between terms that have the same service and terms that have the
same guarantee.

Proceeding in our goal of answering the question of what is in an agreement,
we define the relationship between the internal and external state of an agree-
ment A. First, we note that not all state combinations make sense. For instance,
it has no meaning to say that a guarantee is violated, when a service is in a
not ready state. The only admissible combinations are the following ones.

(1) (not ready, not determined) (2) (ready, not determined)
(3) (running, fulfilled) (4) (running, violated)
(5) (finished, fulfilled) (6) (finished, violated)

In theory, there are 63 possible combinations of states in which terms can be.

That is,
∑6

i=1

(
6
i

)

all terms could be in state (1), or in state (2),. . . or in state

(6); there could be terms in states (1) and (2), (1) and (3), and so on. But again,
considering the definition of WS-Agreement in [3], one concludes that not all
63 combinations make sense. Furthermore, it is possible to extract the possible
evolutions of these aggregated internal states.

When an agreement is created its external state is not observed, while all
services are not ready and all guarantees are not determined, i.e., state (1). In
the next stage some services will be ready while others will still be not ready,
i.e., there will be terms in state (1) and (2). In this case, the external state
is also not observed. Proceeding in this analysis, one can conclude that there
are 8 situations in which terms can be. We summarize these in the table in
Figure 2. In the table, we also present the relation between the internal states
and the external states, and the set of transitions to go from one set of states
to another. The latter transitions are best viewed as an automaton (which is
illustrated in [1]).

4 Extension of WS-Agreement

From the semantics and formal analysis presented in Section 3, inspecting the
automaton provided, we note that if the agreement arrives into the states (E)

430 M. Aiello, G. Frankova, and D. Malfatti

or (F) there is a non recoverable failure, and consequently an agreement termi-
nation. Even if one single term is violated, the whole agreement is terminated.
Furthermore, when an agreement is running there is no consideration on how
the guarantee terms are fulfilled. Our goal is to provide an extension of WS-
Agreement and of its semantics in order to make agreements more long-lived,
and robust to individual term violations. In [14] we provide appropriate XML
syntax to implement the proposed extension, while an example of using a subset
on a concrete case study (DeltaDator Spa, Trento) of the proposed extension
can be found in [1].

We propose two extensions to WS-Agreement. The first is used to (i) anti-
cipate violations, while the second is devoted to the (ii) run-time renego-
tiation. (i) WS-Agreement considers guarantees of a running service as fulfilled
or violated. Nothing is said about how the guarantee is fulfilled. Is the guarantee
close or far to being violated? Is there a trend bringing the guarantee close to
its violation? We propose to introduce a new state for the agreement in which a
warning has been issued due to the fact that one or more guarantees are likely to
be violated in the near future. By detecting possible violations, one may inter-
vene by modifying the run-time conditions or might renegotiate the guarantees
which are close to being violated. (ii) The WS-Agreement specification does not
contemplate the possibility of changing an agreement at run-time. If a guaran-
tee is not fulfilled because of resource overload or faults in assigning availability
to consumers, the agreement must terminate. For maintaining the service and
related supplied guarantees, it is necessary to create another agreement and ne-
gotiate the QoS again. This approach wastes resources and computational time,
and increases network traffic. The goal of negotiation terms is to have the chance
to modify the agreement applying the negotiation terms rather than respecting
the original agreement. Applying the negotiation terms means that the services
included in the agreement will be performed according to the new guarantees.

4.1 Life-Cycle and Semantics for the Extended Agreement

To obtain the desired extensions, we expand the set of states in which an agree-
ment and a guarantee term can be and thus update the transition system. More
precisely, the definition of an agreement does not change with respect to Defi-
nition 2, the difference lies in the fact that the set of terms T is now extended
with special negotiation terms. These terms are defined as in Definition 1, but
have a different role, i.e., they specify new conditions that enable modification
of guarantees at run-time.

To account for the new type of terms, we need to extend the definition of
external and internal state of an agreement. The external states of an extended
agreement are enriched by the warned state, checked state, the revisited
state, and the denied state. We say that an agreement can be in one of seven
states. not observed, observed and finished have the same meaning as in
WS-Agreement, Figure 1. An Agreement is in state checked when the monitor-
ing system is checking its services and guarantees. From the checked state the
agreement can go to five different states: to finished if the agreement finishes

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 431

Fig. 3. The life-cylce of the WS-Agreement extension

its life-cycle; to denied if the agreement is violated and no negotiation terms can
be applied, the agreement must terminate; to warned if the monitoring system
has issued at least one warning for at least one term; back to observed if the
agreement is fulfilled; to revisited if the agreement is fulfilled or violated and
a negotiation term can be applied.

to finished if the agreement finishes its life-cycle;

Definition 5 (Extended External State). The extended agreement external
state Axes of an agreement A is an element of the set {not observed, observed,
warned, checked, revisited, denied or finished}.

The transitions between states are illustrated by the automaton in Figure 3,
which is an extension of the one presented in Figure 1. The automaton represents
the new evolution of an agreement where a guarantee can be modified during the
processing of a service or a warning can be raised. When a guarantee is violated
we have two situations: the first presents a recoverable violation which implies
the chance to apply a negotiation term and so the agreement is in a revisited
state, the second presents a non recoverable violation which implies that there
is no suitable negotiation term for the current violated guarantee and so the
agreement must terminate. Otherwise, if a warning is raised, this can be ignored
or the agreement can go in a renegotiation state by ending in the revisited state.
Also, when a guarantee is fulfilled, it is possible to change the current agreement
configuration, applying a negotiation term that changes the QoS.

The internal state definition for the extended agreement is similar to the
internal state definition stated before, but a new state for the services is added
and two for the guarantees. A new state is stopped and is needed to define a
state of a service where its associated guarantee is unrecoverable violated and the
service must terminate or the guarantee can be revisited. It is an intermediate
state. A guarantee can also be warned if it is close to being violated in a given
time instant. Other state for a guarantee is the non recoverable violated state
in which a guarantee is violated and it has no related negotiation terms for the
current violation.

432 M. Aiello, G. Frankova, and D. Malfatti

Definition 6 (Extended Internal State). The extended internal state Axis

of an agreement A is a sequence of terms’ states ts1, . . . , tsp of maximum size
n · m, where tsi = (ssj , gsk) represents the state of gk guarantee with respect
to the sj service. Service and guarantee states range over the following sets,
respectively:

– ssj ∈{not ready, ready, running, stopped, finished}, and
– gsk ∈{not determined, fulfilled, warned, violated,

non recoverably violated}.
As for Definition 4, one notes that not all the state combinations make sense. The
only possible ones are the combinations itemized in Section 3 plus the following
four: (7) (stopped, fulfilled)

(8) (stopped, violated)
(9) (stopped, non recoverably violated)
(10) (running, warned)

The state combinations (7), (8) and (9) determine the states when a service is
stopped because a guarantee is violated or is being modified. In state (7) a gua-
rantee is fulfilled and we try to improve it applying a positive negotiation term. In
(8) and (9) a guarantee is currently violated. In (8) the service is stopped and the
guarantee is violated but it is possible to apply a negotiation term and to preserve
the agreement again. In (9), instead, the guarantee is irrecoverably violated and
the agreement must terminate, there are not any suitable negotiation terms.
State (10) represents the fact that a warning has been raised for a running
service guarantee.

The relation between internal and external states of an extended agreement
is an extension of the one presented in the table in Figure 2, and it is presented
in Figure 4. The table respects the original agreement evolution and presents
some new transitions.

terms are in state state of the agreement transitions

(A) (1) not observed (B)
(B) (1)(2) not observed (C)
(C) (1)(2)(3) observed (D)(E)(F)(G)
(D) (1)(2)(3)(5) observed (F)(G)(I)
(E) (1)(2)(4) checked (F)(H)(I))
(F) (1)(2)(3)(4)(5) checked (H)(I))(J)(K)(L)
(G) (5) finished

(H) (1)(2)(3)(4)(5)(6) finished

(I) (1)(2)(3)(4)(5)(7) observed (D)(E)(F)(G)
(J) (1)(2)(3)(4)(5)(8) revisited (D)
(K) (1)(2)(3)(4)(5)(9) denied (F)(H)
(L) (1)(2)(3)(5)(7)(10) warned (C)(D)(H)(I)(J))

Fig. 4. Extension of the transition table for the relation between internal and external
states

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 433

4.2 Framework

The proposed extension to WS-Agreement must be handled by an appropriate
framework that allows for monitoring and provides run-time renegotiation.

On the one hand, there must be rules specifying when and how to raise a
warning for any given guarantee. These rules should be easy to compute to
avoid overloading of the monitoring system and be fast to provide warnings. In
addition they should provide good performance in detecting as many violations
as possible generating the minimum number of false positives. A forecasting
method which enjoys this characteristics is the linear least squares method [5].
The method of linear least squares requires a straight line to be fitted to a set
of data points such that the sum of the squares of the vertical deviations from
the points to the line is minimized. By analyzing such a parameter of the line as
a slope ratio, it is possible to predict a change over time.

On the other hand, to allow for renegotiation of guarantee terms at run-
time the parties involved in the agreement need to be able to decide whether
a renegotation has been agreed upon. Before execution it must be possible to
specify negotiation terms. This can be done by using appropriate templates in
the spirit of the original work in [13].

5 Preliminary Experimental Results

We have conducted preliminary experimentation to show the feasibility of the
warning strategy. We used synthetic data. We generated a sequence of 1100 el-
ements considered as a service guarantee for a single operation over a continu-
ous time interval (for instance the cost of a service which should be below the
value 10). The data set and the complete results of the experiments are avail-
able at http://www.dit.unitn.it/~frankova/ICSOC05_Exp/. The points were
generated by a function that returns a random number greater or equal to 6.00
and less or equal to 14.00, evenly distributed. We split the data set into two
subsets. The first part of the data set was used to decide the size of the time
window and of the threshold values to be used for prediction. The rest of the
data was used for evaluating the system.

To evaluate the method we consider the following performance measures:
Precision is the ratio of the number of true warnings (i.e., warnings thrown
to notify violation points) to the number of total warnings (i.e., true warnings
and false warnings). Recall is the ratio of the number of warned violations (i.e.,
violation points for which a warning is issued) to the number of total violation
points. Total violation points include warned violations and missed violations.

The following table summarizes the results of the experimentation:

Warnings Violations
True False Warned Missed
303 11 156 13

Total 314 169
Precision 96.50%
Recall 92.31%

http://www.dit.unitn.it/~frankova/ICSOC05_Exp/

434 M. Aiello, G. Frankova, and D. Malfatti

Fig. 5. Experimental results for 100 points

The number of true and false warnings is shown in the first column. The diffe-
rence in the number of total warnings and violations is due to the fact that more
than one warning in the same time window may refer to the same violation. The
number of warned and missed violations is reported in the second column of the
table. The total sum of warnings and violations is in the ”Total” row. The last
two rows present the precision and recall of the method.

The results of experimentation on the first 100 points of the data set is shown
in Figure 5. In the figure, two types of warnings, true and false, are marked by
diamonds and crosses, respectively. A warning is thrown if the cost and tangent of
the cost curve are higher then the threshold (8 for cost and 0.1 for the tangent
differences). Squares represent warned violation points, while circles indicate
missed violation points.

The method shows good performance when the increase in cost is smooth
(points 8, 9, and 10), a case that normally takes place during web services exe-
cution. If the change in values is abrupt then the method fails to generate warn-
ings, e.g., points 43 (cost is 6.36) and 44 (cost is 10.63). It is difficult to find
a violation point if the point is in the very beginning of the process, within or
just after the first time window (point 7). The latter cases should be considered
exceptional, in fact those occur only 13 times in the whole experiment.

In the experimentation using the method, more than 92% of violation points
are warned in advance, and 96.5% of thrown warnings are true warnings. Us-
ing bigger time windows does not improve performances, see http://www.dit.
unitn.it/~frankova/ICSOC05_Exp/.

6 Concluding Remarks

Describing and invoking an individual functionality of a web service is becoming
more and more common practice. One of the next steps is moving from functional

http://www.dit.
unitn.it/~frankova/ICSOC05_Exp/

What’s in an Agreement? An Analysis and an Extension of WS-Agreement 435

properties of basic services to non-functional properties of composed services.
The non-functional properties need to be specified by the services, but also to
be negotiated among services.

WS-Agreement is a protocol that defines a syntax to specify a number of
guarantee terms within an agreement. We looked into the protocol specification
with the goal of providing a formalization of the notion of an agreement and
proposing a formal representation for the internal and external states in which
an agreement can be. From this analysis we discovered that an agreement can
be made more long-lived and robust with respect to forecoming violations. We
presented the details of the proposed extension in formal terms and provided
some preliminary experimentation on synthetic data.

This work prods for more investigation of agreements and of their mana-
gement. In the next future, we plan to dive into the details of a framework
implementing the extended agreement version and then to experiment on real
data coming from an actual case study.

Acknowledgments

Marco thanks Asit Dan and Heiko Ludwig for useful discussion on
WS-Agreement while visiting IBM TJ Watson.

References

1. M. Aiello, G. Frankova, and D. Malfatti. What’s in an agreement? A formal
analysis and an extension of WS-Agreement. Technical Report DIT-05-039, DIT,
University of Trento, 2005.

2. M. Aiello and P. Giorgini. Applying the Tropos methodology for analysing web
services requirements and reasoning about Qualities of Services. CEPIS Upgrade -
The European journal of the informatics professional, 5(4), 2004.

3. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement).
Technical report, Grid Resource allocation Agreement Protocol (GRAAP) WG,
2004.

4. A. Andrieux, A. Dan, K. Keahey, H. Ludwig, and J. Rofrano. Negotiability con-
straints in WS-Agreement. Technical report, Grid Resource Allocation Agreement
Protocol (GRAAP) Working Group Meetings, 2004.

5. Rudolf K. Bock. The data analysis : briefbook. Springer: Berlin [etc.], 1998.
6. J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for

workflows and web service processes. Journal of Web Semantics, 2004. To appear.
7. K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu. Agreement-based Grid

Service Management (OGSI-Agreement). Technical report, Global Grid Forum,
GRAAP-WG Author Contribution, 2003.

8. A. Dan, K. Keahey, H. Ludwig, and J. Rofrano. Guarantee Terms in WS-
Agreement. Technical report, Grid Resource Allocation Agreement Protocol
(GRAAP) Working Group Meetings, 2004.

9. V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian. A quality of service management
framework based on user expectations. In Service-Oriented Computing (ICSOC),
pages 104–114. LNCS 2910, Springer, 2003.

436 M. Aiello, G. Frankova, and D. Malfatti

10. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed
system integration. IEEE Computer, 35(6), 2002.

11. D. Gouscos, M. Kalikakis, and P. Georgiadis. An approach to modeling web service
QoS and provision price. In 1st Web Services Quality Workshop (WQW2003) at
WISE, 2003.

12. H. Ludwig. Web services QoS: External SLAs and internal policies or: How do we
deliver what we promise? In 1st Web Services Quality Workshop (WQW2003) at
WISE, 2003.

13. H. Ludwig, A. Dan, and R. Kearney. CREMONA: an architecture and library for
creation and monitoring of ws-agreements. In M. Aiello, M. Aoyama, F. Curbera,
and M. Papazoglou, editors, ICSOC, pages 65–74. ACM, 2004.

14. D. Malfatti. A framework for the monitoring of the QoS by extending WS-
Agreement. Master’s thesis, Corso di Laurea in Informatica, Università degli Studi
di Trento, 2005. In Italian.

15. A. Mani and A. Nagarajan. Understanding quality of service for web services,
2002. http://www-106.ibm.com/developerworks/library/ws-quality.html .

16. O. Martn-Daz, A. Ruiz Corts, A. Durn, D. Benavides, and M. Toro. Automating
the procurement of web services. In Service-Oriented Computing (ICSOC), pages
91–103. LNCS 2910, Springer, 2003.

17. M. P. Singh and A. Soydan Bilgin. A DAML-based repository for QoS-aware
semantic web service selection. In IEEE International Conference on Web Services
(ICWS 2004), 2004.

18. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A concept for QoS
integration in web services. In 1st Web Services Quality Workshop (WQW2003)
at WISE, 2003.

http://www-106.ibm.com/developerworks/library/ws-quality.html

	Introduction
	WS-Agreement
	What's in an Agreement?
	Extension of WS-Agreement
	Life-Cycle and Semantics for the Extended Agreement
	Framework

	Preliminary Experimental Results
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

