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An Electrical Interpretation of Mechanical Systems via the
Pseudo-inductor in the Brayton-Moser Equations

Alessandro de Rinaldis and Jacquelien M.A. Scherpen

Dedicato a Ester.

Abstract— In this paper an analogy between mechanical and
electrical systems is presented, where, in contrast to the tradi-
tional analogy, position dependence of the mass inertia matrix
is allowed. In order to interpret the mechanical system in an
electrical manner, a pseudo-inductor element is introduced to
cope with inductor elements with voltage-dependent electro-
magnetic coupling. The starting point of this paper is given by
systems described in terms of the Euler-Lagrange equations.
Then, via the introduction of the pseudo-inductor, the Brayton-
Moser equations are determined for the mechanical system.

I. INTRODUCTION

Analogies between mechanical and electrical systems have
obtained quite some interest in the recent years. Briefly,
there are two types of analogies. The first one consid-
ers the mass/condensator and spring/inductor analogy, see
e.g, [1]. The second one considers the mass/inductor and
spring/condensator analogy, see e.g., [2]. In this paper we are
interested in the latter analogy. In particular, we are interested
in rewriting motion equations for mechanical systems into
motion equations for electrical circuits that can be written
in terms of the Brayton-Moser framework, see e.g., [3], [4],
[5]. This is a power-based framework that gives rise to a
new power-based passivity based control strategy, [6], that
has been applied successfully to electrical circuits.
We like to extend the above treatment for electrical circuits
to mechanical systems in order to use the advantages of the
power-based control method, including also the considera-
tions about series and parallel damping as presented in [7].
The usual mass/inductor and spring/condensator analogy is
not always satisfactory. For example, up to our knowledge,
so far the gravity force has to be considered as an external
force, while in the mechanical modeling, it is included in
the potential energy and as such, can be considered as an
“internal force”. Furthermore, position dependency of the
mass inertia matrix giving rise to coriolis and centrifugal
forces is a problem in the analogy as well.
In order to interpret the gravity and position dependent mass
inertia matrix in terms of an electrical circuit, we have
to extend the analogy. Considerations that are similar but
not physically interpretable can be found in [8]. The main
problem of [8] is that it keeps the position dependency of
the elements. In the Brayton-Moser framework, the equa-
tions of motion are given entirely in terms of currents and
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voltages. Then, position dependency can not be included in
an intuitively natural way.
In [9] a similar motivation for looking for a power-based de-
scription for mechanical systems is used. However, the major
difference with [9] is that here we look for the electrical
interpretation in terms of the currents and voltages, while
in [9] the purpose is to rewrite the standard Hamiltonian
equations of motion in terms of a power-based description
while not necessarily changing the coordinates and while
not looking for a precise electrical interpretation. Other
considerations are then in order.
We will start by briefly describing the Euler-Lagrange
and Brayton-Moser frameworks, and motivate the paper
by means of the example of the single pendulum. Then
we continue with our main results, i.e., the Brayton-Moser
description stemming from the Euler-Lagrange equations.
Finally, we consider two examples, the double pendulum and
the inverted pendulum on a cart.

II. PRELIMINARIES

A. Euler-Lagrangian systems (EL)

The standard Euler-Lagrange equations (e.g., [10]) for an
r degrees of freedom mechanical system with generalized
coordinates q ∈ R

r and external forces τ ∈ R
r are given by

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= τ (1)

where

L(q, q̇) � T (q, q̇) − V̂(q) (2)

is the so-called Lagrangian function, T (q, q̇) is the kinetic
energy which is of the form

T (q, q̇) =
1
2
q̇T D(q)q̇, (3)

where D(q) ∈ R
r×r is a symmetric positive definite matrix,

and V(q) is the potential function which is assumed to be
bounded from below.
B. RLC-circuits: The Brayton-Moser equations (BM)

The electrical circuits considered in this paper are complete
RLC-circuits in which all the elements can be nonlinear. The
standard definitions of respectively inductance and capacity
matrices are given by

L(iρ) =
∂φρ(iρ)

∂iρ
, C(vσ) =

∂qσ(vσ)
∂vσ

where iρ ∈ R
r represents the currents flowing in the

inductors and φρ(iρ) ∈ R
r is the related magnetic flux
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vector. On the other hand vσ ∈ R
s defines the voltages

across the capacitors and the vector qσ(vσ) ∈ R
s represents

the charges stored in the capacitors. From [3] we know that
the differential equations of such electrical circuits have the
special form⎡⎣ L(iρ) 0

0 −C(vσ)

⎤⎦ ⎡⎣ diρ

dt

dvσ

dt

⎤⎦ =

⎡⎣ ∂P
∂iρ

(iρ, vσ)

∂P
∂vσ

(iρ, vσ)

⎤⎦ , (4)

with the mixed potential function P (iρ, vσ) which contains
the interconnection and resistive structure of the circuit and
that is defined as

P (iρ, vσ) = F (iρ) − G(vσ) + iρ
T Λvσ (5)

where F : R
r → R and G : R

s → R are the current potential
(content) related with the current-controlled resistors (R) and
voltage sources, and the voltage potential (co-content) related
with the voltage-controlled resistors (i.e., conductors, G) and
current sources, respectively. More specifically, the content
and co-content are defined by the integrals∫ iρ

0

v̂R(i′ρ)di′ρ,
∫ vσ

0

îG(v′
σ)dv′

σ,

where v̂R(iρ) and îG(vσ) are the characteristic functions
of the (current-controlled) resistors and conductors (voltage-
controlled resistors), respectively. The r×s matrix Λ is given
by the interconnection of the inductors and capacitors, and
the elements of λ are in {−1, 0, 1}.
C. The single pendulum: a motivating example

Fig. 1. Single pendulum

Consider the pendulum of Fig. 1 with mass m1 connected
by a rigid massless wire of length l1 to a fixed reference.
The angle is denoted by θ1, and the gravity constant by g.
The potential energy V and the kinetic energy T are given
by V(θ) = m1gl1(1 − cos θ) and T (θ̇) = 1

2m1l
2
1θ̇

2
1 . The

Lagrangian is then L(θ, θ̇) = T (θ̇)−V(θ). Now, we like to
study a full nonlinear analogue of the pendulum to an LC
electrical circuit, where we consider masses as inductive ele-
ments. Consider the electrical circuit that is shown in the Fig.
2. We consider the rotational force resulting from the gravity
as a capacitive element. In the analogy, this means that
this will result in a capacitor and a corresponding voltage.
Assuming θ ∈ (−π

2 , π
2 ), it follows that the characteristics of

the capacitor are given by

θ1 = arcsin
(

vσ

m1gl1

)
=: −fv(vσ),

∂fv(vσ)
∂vσ

=
1√

(m1gl1)2 − vσ
2

= C(vσ).

Fig. 2. Single pendulum equivalent LC circuit

Using the standard analogy where m1l
2
1 = L and θ̇ = iρ, we

finally obtain directly from the EL equations that L
diρ

dt +vσ =
0 and additionally, we obtain the capacitor equation given
by C(vσ)dvσ

dt = −iρ. These are the motion equations of the
single pendulum expressed in an electrical fashion.

D. Definitions

In order to introduce the electrical counter part of the position
dependent mass we introduce the so-called pseudo-inductor.
This is an inductor, but now relating the magnetic flux
linkages to current and the voltage, which differs from the
“usual” electrical case, i.e.,

φ = −fφ(vσ, iρ). (6)

where φ ∈ R
ρ is the flux related to the inductors. This

definition lead to the following implicit relation between
voltage and current

vρ =
dφ

dt
= −∂fφ

∂iρ

diρ
dt

− ∂fφ

∂vσ

dvσ

dt
. (7)

Now, define the pseudo-inductance matrix and the co-
pseudo-inductance matrix as

L̃(iρ, vσ) =
∂fφ

∂iρ
, M̃(iρ, vσ) =

∂fφ

∂vσ
(8)

respectively, then (7) can be written as

vρ = −L̃(iρ, vσ)
diρ
dt

− M̃(iρ, vσ)
dvσ

dt
. (9)

Similarly, we will consider a capacitor as a function relating
the charge and the voltage, i.e.,

qσj = −f j
v (vσj), j = 1, . . . , s. (10)

By defining the non-negative capacity matrix C(vσ) =
diag

(
∂fj

v(vσj)

∂vσj

)
, j = 1, . . . , s, we have from differentiation

of (10) that

iσ = −C(vσ)
dvσ

dt
. (11)

Remark 1: The voltage dependency of the pseudo-inductor
results in an incremental pseudo-inductance matrix L̃ given
in (8) that can often be taken as follows

L̃(vσ) =

⎡⎢⎢⎢⎣
L1 · · · M1ρ(vσ)

...
. . .

...

Mρ1(vσ) · · · Lρ

⎤⎥⎥⎥⎦ (12)
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where Mij(vσ) represents a magnetic effect between the
inductors Li and Lj that can be written as

Mij(vσ) = kij(vσ)
√

LiLj . (13)

We thus consider a coupling coefficient kij(vσ), that is
voltage controlled.
Remark 2: We consider topologically complete RLC-
circuits. Then, the current flowing through the inductors iρ
and the voltages across the capacitors vσ are independent and
fully descriptive. It means that, even in the case of pseudo-
inductors we keep the following relations

vρ = fρ(iρ, vσ) = −∂P (iρ, vσ)
∂iρ

iσ = fσ(iρ, vσ) =
∂P (iρ, vσ)

∂vσ

In other words, the voltage across any inductor vρ is given
by a combination of the voltage across each capacitor vσ and
the current flowing in each inductor iρ. The same holds for
the current iσ through the branches of the capacitors.

III. MAIN RESULT

EL equations for mechanical systems represent the force
balance evaluated on each mass. Indeed, the generalized
coordinates qi and q̇i characterize the position and velocity of
the mass mi. For a few number of simple motion systems,
replacing the position by the charge stored in a capacitor
and the velocity by the current flowing through the inductors,
leads to a set of equations that also describes the behavior of
an electrical circuit. For more complex mechanical systems
that have a coriolis and centrifugal term this is not possible
anymore. Our main result gives conditions such that the
analogy between mechanical and electrical systems holds
even for more complex mechanical behaviors. Our results
are currently only valid for mechanical systems that move
in the plane. Furthermore, we present some examples of
mechanical systems where an electrical interpretation is
provided.
A. From EL to BM

Compare the functions in (2) and (5). It is then easily
observed that a main difference between the two functions
is the relation between the state variables, in the first case
(q, q̇) and in the second one (iρ, vσ). Notice that (q, q̇) ∈
R

2r while (iρ, vσ) ∈ R
r+s, which corresponds to the fact

that mechanical systems are “nodical” (see e.g., [2]), where
as electrical systems are not. In order to cope with this,
the Kirchhoff current law may be needed (see e.g., [11]).
However, it can also be translated into an integral version
and will be represented in one of the conditions of our
theorem. In the following Lemma 1, we show that, if the
qρ ∈ R

r dependency of the general mass matrix D(qρ) can
be expressed in terms of a new variable qσ ∈ R

s, assumption
A1, and if there exists a a direct force-position link between
qσ and vσ ∈ R

s, assumption A2, then, via the use of the
pseudo-inductor defined in the previous section, the behavior
of mechanical systems that exhibit coriolis and centrifugal
terms can be still electrically interpretable. As a consequence,

a re-styling of the BM framework, where a cross-term will
be added into the Q(iρ, vσ) matrix, is also provided.
Lemma 1: Consider the general Lagrangian function (2).
Assume that:
A1 (interconnection) iρ = iσ , 1

A2 (force-position link) qσj = −f j
v (vσj) ∈ C1 with j =

1, ..., r is a set of invertible functions such that:

-) ∂fj
v(vσj)

∂vσj
= Cj(vσj),

-) f j
q (qσj) = vσj .

Then:

∂L(qρ, q̇ρ)
∂qρ

= −D̂(iρ, vσ)C(vσ)
dvσ

dt
+ vσ (14)

d

dt

(
∂L(qρ, q̇ρ)

∂q̇ρ

)
= D̃(vσ)

diρ
dt

− ˙̃
D(vσ)C(vσ)

dvσ

dt
(15)

where

D̂(iρ, vσ) =

⎡⎢⎣
1
2 iρ

T ∂D(qρ)
∂qρ1

|qρ=−fv(vσ)

...
1
2 iρ

T ∂D(qρ)
∂qρr

|qρ=−fv(vσ)

⎤⎥⎦ (16)

C(vσ) = diag

(
∂f j

v (vσj)
∂vσj

, j = 1, ..., r
)

(17)

D̃(vσ) = D(qρ)|qρ=−fv(vσ) (18)

D̄(iρ, vσ) =

⎡⎢⎢⎢⎣
a11(iρ, vσ) · · · a1r(iρ, vσ)

...
. . .

...

ar1(iρ, vσ) · · · arr(iρ, vσ)

⎤⎥⎥⎥⎦(19)

with aij(iρ, vσ) = iρ
T C−1(vσ)∇vσ

D̃ij(vσ) for i, j ∈
{1, r}.

Proof: Consider T (qρ, iρ) in (3), then for j = 1, . . . , r

∂T (qρ, iρ)
∂qρj

=
1
2
iρ

T Dj
q(qρ)iρ. (20)

where

Dj
q(qρ) :=

∂D(qρ)
∂qρj

. (21)

By using assumptions A1 and A2, where we adopt the
integrated version of A1 with equal integral constants, then

qρ = qσ = −fv(vσ). (22)

Replacing (22) into (21), we define the following new matrix

Dj
v(vσ) := Dj

q(qρ)|qρ=−fv(vσ). (23)

Now, substituting (11) and (23) into (20), we obtain

∂T (qρ, iρ)
∂qρj

= −1
2
iρ

T Dj
v(vσ)C

dvσ

dt
=

= −D̂j(iρ, vσ)C
dvσ

dt
(24)

1Implying that s = r and Λ = I . See Remark 4 for the physical
implications.
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where D̂j(iρ, vσ) := 1
2 iρ

T Dj
v(vσ) is the jth row of (16).

Furthermore, we have that

∂V̂(qρ)
∂qρ

=
∂V(qσ)

∂qρ
=

(
∂qσ

∂qρ

)T
∂V(qσ)

∂qσ
= vσ

This proofs (14). On the other hand, considering (22) and
(18) it follows that

∂L(qρ, iρ)
∂iρ

= D(qρ)iρ = D̃(vσ)iρ (25)

which, once differentiated w.r.t. time, yields

d

dt

(
∂L(qρ, iρ)

∂iρ

)
= D̃(vσ)

diρ
dt

+ D̄(iρ, vσ)iρ. (26)

with ˙̃
D(vσ) given by (19). Then (15) is obtained by using

A1 and (11).

Theorem 1: If the conditions of Lemma 1 are fulfilled, then
the Euler-Lagrange (1) equations can be rewritten in terms
of the Brayton-Moser framework as follows

−Q(iρ, vσ)

⎡⎣ diρ

dt

dvσ

dt

⎤⎦ =

⎡⎢⎣
∂P (iρ,vσ)

∂iρ

∂P (iρ,vσ)
∂vσ

⎤⎥⎦ (27)

with

Q(iρ, vσ) =

⎡⎣ −D̃(vσ) (D̄(iρ, vσ) − D̂(iρ, vσ))C(vσ)

0 C(vσ)

⎤⎦ ,

P (iρ, vσ) = F (iρ) − G(vσ) + iρ
T vσ

, and the functions F (iρ) and G(iσ) being the content and
the co-content of the mixed potential function P (iρ, vσ),
respectively.

Proof: Substitute (15) and (14) the EL equations. Then

D̃(vσ)
diρ
dt

− D̄(iρ, vσ)C(vσ)
dvσ

dt
+

+D̂(iρ, vσ)C
dvσ

dt
= τ + vσ =

∂P

∂iρ
(28)

where ∂F (iρ)
∂iρ

= τ is a velocity controlled force that includes
external forces and velocity controlled dissipation. As a
consequence of assumption A1 we have that G(vσ) = 0—
see Remark 4—. Thus, ∂P

∂vσ
= iρ = iσ. Combined with (11)

we obtain
∂P

∂vσ
= −C(vσ)

dvσ

dt
(29)

which concludes the proof.

Remark 3: The flux related to the inductor element (the mass
analogue) is given by

φ = [L(vσ) + M(vσ)]iρ.

Time differentiation yields the dynamical behavior of a
coupled pseudo-inductor, as given in (9), where

L̃(vσ) = D̃(vσ)

M̃(iρ, vσ) = −(D̄(iρ, vσ) − D̂v(iρ, vσ))C(vσ)

In physical terms, it means that the kinetic energy T (qρ, iρ)
in electrical terms corresponds to the energy stored into
coupled inductors, where the coupling coefficient kij =
kij(vσ) is assumed to be voltage-controlled.
Remark 4: As seen in the proof of Theorem 1, a conse-
quence of assumption A1 is that G(vσ) = 0, i.e., there
are no purely resistive branches or current sources in the
circuit. Moreover, the equivalent circuit presents an equal
number of inductors and capacitors that are series-connected.
To overcome this drawback we refer to our second example.

B. Example: the double pendulum

Fig. 3. Double pendulum

Consider a double pendulum with masses m1,m2 and rigid
massless wires of lengths l1 and l2. The angles with the
vertical are denoted by θ1 and θ2, as illustrated in Fig. 3,
i.e., θ = (θ1, θ2)T . The gravity constant is given by g. Then
the potential energy of the system is given as

V(θ) = −K1 cos θ1 − K2 cos θ2 + Cg

where Ki = (
∑2

k=i mk)lig and Cg = (m1l1+m2(l1+l2))g.
The kinetic energy is given by

T (θ, θ̇) =
1
2
(D11θ̇

2
1 + D22θ̇

2
2) + D12(θ)θ̇1θ̇2

where Dii = (
∑2

k=i mk)l2i and D12(θ) = D21(θ) =
m2l1l2 cos(θ2 − θ1) are the terms of the mass-matrix D(θ)
defined in (3). Hence, the position dependence of the mass
inertia matrix is only present in D12 = D21. This term
represents the coupling induced by the second mass – or
the other way around –. The Euler-Lagrange equations of
motion are given by

D11θ̈1 + D12(θ)θ̈1 −
∂D12(θ)

∂θ1
θ̇2
2 + K1 sin θ1 = τ1 (30)

D22θ̈2 + D12(θ)θ̈1 +
∂D12(θ)

∂θ2
θ̇2
2 + K2 sin θ1 = τ2 (31)

where the vector τ = (τ1, τ2)T represent the external
torques applied on each joint. Clearly, the angular position
θ corresponds to qρ in the mass matrix configuration. The
angular velocity θ̇ is related to the current vector iρ. Thus,

L(qρ, iρ) =
1
2
iρ

T D(qρ)iρ −
2∑

j=1

∫
f j

q (qρj)dqρj (32)
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where ∫
f1

q (qρ1)dqσ1 = −K1 cos qρ1,∫
f2

q (qρ2)dq2 = −K2 cos qρ2 + Cg (33)

In this case, there are two masses that both experience an
independent gravity force that accounts for two potential
energy sources. Hence, iρ = iσ . Clearly, assumption 2 is
fulfilled as well and

f j
q (qσj) = Kj sin qσj , j = 1, 2.

As far as they are locally invertible for qσj ∈ (−π
2 , π

2 ),
naming f j

q (qσj) = −vσj , we have that

qσj = arcsin
(
−vσj

Kj

)
= −f j

v (vσj) , j = 1, 2

and
∂f j

v (vσj)
∂vσj

=
1√

K2
j − vσ

2
j

= Cj(vσj)

are well defined in the open interval (−Kj ,Kj). Now, apply
Theorem 1 to obtain the following set of equations in the BM
fashion

−Q(iρ, vσ)

⎡⎣ diρ

dt

dvσ

dt

⎤⎦ =

⎡⎢⎣
∂P (iρ,vσ)

∂iρ

∂P (iρ,vσ)
∂vσ

⎤⎥⎦ , (34)

where, with for ease of notation we write f j
v (vσj) = f j

v . For
i = 1, 2, we have

D̃ii(vσ) = Dii =

(
2∑

k=i

mk

)
l2i ,

D̃12(vσ) = m2l1l2 cos(f1
v − f2

v ),

D̄ii(iρ, vσ) = D̂ii(iρ, vσ) = 0,

D̄12(iρ, vσ) = m2l1l2 sin(f1
v−f2

v )iρ1−m2l1l2 sin(f1
v−f2

v )iρ2,

D̂12(iρ, vσ) = m2l1l2 sin (f1
v − f2

v )iρ1,

D̂21(iρ, vσ) = −m2l1l2 sin (f1
v − f2

v )iρ2.

Furthermore vσ =
[
−(m1 + m2)l1g sin f1

v , − m2l2g sin f2
v

]T

and P (iρ, vσ) = τT iρ + iρ
T vσ . The matrix C(vσ) follows

straightforward from the definition in assumption A2.
An electrical interpretation of this set of equations is given

Fig. 4. Double pendulum equivalent C–L electrical circuit

in Fig. 4 where we have the mass matrix D̃(vσ) = L̃(vσ),

i.e., the pseudo inductor matrix as given in (12). The
torque vector τ is equivalent to the two voltage sources
E = [E1, E2]T .
C. Example: the inverted pendulum on a cart

Fig. 5. Inverted pendulum on a cart.

Another interesting example of mechanical system to study
is the inverted pendulum with rigid massless rod (of length
l) placed on a cart as shown if Fig. 5. It is often present in
the literature of non-linear control to test the performance of
command laws in order to stabilize the pendulum mass m2

in its natural unstable equilibrium point through a force F
acting just on the cart of mass m1. The equations describing
the dynamics of the to masses could be computed considering
as state variables the angular position of the row with the
vertical axis θ and the cart distance x−x0 to a fixed reference
(x0 = 0). The motion equations can be determined via the
Euler-Lagrange equations. Considering the energetic terms
as follows

T (θ, θ̇, ẋ) =
1
2
D11ẋ

2 +
1
2
D22θ̇

2 + D12(θ)θ̇ẋ

V(θ) = K cos θ

where D11 = m1 + m2, D22 = m2l
2, D12 = m2l cos θ

and K = m2gl, the related Lagrangian is L(θ, θ̇, ẋ) =
T (θ, θ̇, ẋ) − V(θ) and consequently the EL equations, con-
sidering the external force vector τ = [F, 0]T , are given by

D11ẍ + D12(θ)θ̈ +
∂D12(θ)

∂θ
θ̇2 = F (35)

D22θ̈ + D12(θ)ẍ − K sin θ = 0 (36)

As in the previous example, just replace [θ, θ̇, ẋ] by
[qρ1, iρ1, iρ2]

L(qρ1, iρ) =
1
2
iρ

T D(qρ1)iρ −
∫

f1
v (qρ1)dqρ1 (37)

where iρ = [iρ1, iρ2]
T . If we take s to be the number of

capacitive elements, or in other words, as the amount of
potential energy sources, we find in this case that s = 1,
and thus assumption A1 is violated. For that reason, we add
a virtual potential energy source∫

f2
v (vσ2)dvσ2

such that his energetic contribution is approximately 0. So
far, we choose f2

v (vσ2) = C2vσ2, where we assume C2 very
large, i.e., so that

lim
C2→∞

1
2C2

qσ
2
2 = 0
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For simplicity but without loosing in generality, notice that
we assumed C2(vσ2) = C2. The other potential energy term
is ∫

f1
v (qσ1)dqσ1 = K cos qσ1.

Then, we obtain the following relations

qσ1 = arcsin−vσ1

K
= −f1

v (vσ1),

∂f1
v (vσ1)
∂vσ1

=
1√

K2 − vσ
2
1

= C1(vσ1)

with f1
v (vσ1) and C1(vσ1) invertible functions in the open

interval (−K,K). Since A1 and A2 of Lemma 1 are now
satisfied for the system with virtual capacitor, from Theorem
1 we have

−Q(iρ, vσ)

⎡⎣ diρ

dt

dvσ

dt

⎤⎦ =

⎡⎣ ∂P
∂iρ

∂P
∂vσ

⎤⎦ , (38)

where, with a slight abuse of notation f i
v(vσi) = f i

v , i = 1, 2,
we have

D̃ii(vσ) = Dii , D̃12(vσ) = m2l cos f1
v ,

D̄ii(iρ, vσ) = 0 , D̄12(iρ, vσ) = −m2l sin(f1
v )iρ1,

D̂ii(iρ, vσ) = D̂21(iρ, vσ) = 0 ,

D̂12(iρ, vσ) = −m2l sin(f1
v )iρ1.

Moreover P (iρ, vσ) = τT iρ + iρ
T vσ. Regarding the matrix

Fig. 6. Electrical interpretation of pendulum on the cart motion equations.

C(vσ), just consider the definition given in the previous
section. Also in this case, replacing D̃(vσ1) by the pseudo-
inductance matrix L̃(vσ1) and considering F = E, an elec-
trical interpretation of (38) is provided and can be depicted in
Fig. 7. Then, if we let C2 → ∞,2 we obtain the equivalent
electrical circuit for the inverted pendulum on a cart, that
yields the electrical configuration shown in Fig. 7.

2Since dvσ2
dt

= C−1
2 iσ2, as far as iσ2 = iρ2, the right term being

limited by the presence of the inductor L2, we are just assuming vσ2 as a
constant which we consider to be = 0.

Fig. 7. Equivalent electrical circuit provided C2 → ∞.

IV. CONCLUSION

In this paper, we have presented an electrical interpretation
that fits within the Brayton-Moser framework of mechanical
systems that move in the plane. First, we gave a new
form to the Brayton-Moser framework introducing a new
definition of coupled pseudo-inductors (9) where the mutual
inductance is voltage controlled via the coupling coefficient
kij = kij(vσ) defined in (13). Indeed, under the assumptions
A1 and A2 of Lemma 1, applying Theorem 1 and considering
the BM equations can now be written as⎡⎣ L̃(vσ) M̃(iρ, vσ)

0 −C(vσ)

⎤⎦ ⎡⎣ diρ

dt

dvσ

dt

⎤⎦ =

⎡⎣ ∂P
∂iρ

∂P
∂vσ

⎤⎦ . (39)

where L̃(vσ) = D̃(vσ) and M̃(iρ, vσ) = −( ˙̃
D(vσ) −

D̂(iρ, vσ) justify the electrical interpretation presented for
the given examples.

ACKNOWLEDGEMENTS

The work was partially supported through a European Com-
munity Marie Curie Fellowship, in the framework of the
CTS (contract number: HPMT-CT-2001-00278) and partially
financed by the european exchange program Van Gogh.

REFERENCES

[1] M. Smith, “Synthesis of mechanical networks: the interter,” IEEE
Trans. Aut. Contr., vol. 47, no. 10, pp. 1648–1662, october 2002.

[2] S. Stramigioli, Modeling and IPC Control of Interactive Mechanical
Systems: a coordinate free approach. Springer Verlag, London, 2000.

[3] R. K. Bryton and J. K. Moser, “A theory of nonlinear networks (part
1),” Quarterly Of Applied Mathematics, vol. XXII, no. 1, pp. 1–33,
april 1964.

[4] D. Jeltsema, R. Ortega, and J. M. A. Scherpen, “On passivity and
power-balance inequalities of nonlinear RLC circuits,” IEEE Trans.
Circ. Syst., vol. 50, no. 9, pp. 1174–1179, september 2003.

[5] D. Jeltsema and J. M. A. Scherpen, “On mechanical mixed potential,
content and co-content,” Proceedings of the European Control Con-
ference (ACC), pp. 73–78, 2003.

[6] R. Ortega, D. Jeltsema, and J. M. A. Scherpen, “Power shaping: A
new paradigm for stabilization of nonlinear rlc circuits,” IEEE Trans.
Aut. Cont., vol. 48, no. 10, pp. 1762–1767, october 2003.

[7] D. Jeltsema and J. M. A. Scherpen, “Tuning of passivity-preserving
controllers for switched-mode power converters,” IEEE Trans. Aut.
Cont., vol. 49, no. 8, pp. 1333–1344, 2004.

[8] S. Arimoto and T. Nakayama, “Another language for describing mo-
tions of mechatronics systems: a nonlinear position-dependent circuit
theory,” IEEE/ASME Trans. Mechatronics, vol. 1, no. 2, pp. 168–180,
1996.

[9] D. Jeltsema and J. M. A. Scherpen, “A power-based perspective
mechanical systems,” accepted to CDC/ECC 05, Seville, Spain, 2005.

[10] R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez, Passivity-
based Control of Euler-Lagrange Systems. Springer, London, 1998.

[11] J. Scherpen, D. Jeltsema, and J. Klaassens, “Lagrangian modeling of
switching electrical networks,” Systems & Control Letters, vol. 48,
no. 5, pp. 365–374, april 2003.

5988

Authorized licensed use limited to: University of Groningen. Downloaded on March 21,2010 at 10:16:55 EDT from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


