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DISTURBANCE REJECTION WITH LTI
INTERNAL MODELS FOR PASSIVE

NONLINEAR SYSTEMS

Bayu Jayawardhana ∗,1 George Weiss ∗

∗ Electrical and Electronic Engineering Dept.,
Imperial College, Exhibition Road, London SW7 2BT, UK

E-mail: b.jwardhana@imperial.ac.uk;
g.weiss@imperial.ac.uk

Abstract: First, the internal model principle is applied for plants that are passive
nonlinear systems, to solve a disturbance rejection problem (without reference
signal), where the exogeneous signal is a finite superposition of sine waves of
arbitrary known frequencies. The proposed controller assures that both the state
of the plant and the error signal converge to zero.
Based on the above result, we solve the tracking and disturbance rejection problem
for a class of fully actuated passive mechanical systems. Here, we combine our first
result with the ideas behind the Slotine-Li controller. We assume that the reference
signal r and its first two derivatives are available to the controller. The internal
model-based compensator that we propose causes the tracking error to converge
to zero. Copyright c© 2005 IFAC

Keywords: passive, disturbance rejection, tracking systems, mechanical
manipulators, regulators, robotic manipulators, servomechanisms.

1. INTRODUCTION

The internal model principle for LTI systems sug-
gests that the dynamic structure of the exosystem
must be included in the controller (see also (Francis
and Wonham, 1975)). For example, to eliminate the
steady-state error for step reference or disturbance
signals, we need integrators in the loop. If an inter-
nal model with transfer function s/(s2 + ω2) (with
suitable multiplicity) is in the feedback loop and
the closed-loop system is stable, then we obtain
tracking and/or disturbance rejection for sinusoidal
reference and disturbance signals of frequency ω. If
the reference and disturbance signals are periodic,
then the internal model principle leads to repetitive

1 This work is supported by the EPSRC, United Kingdom,
under grant number GR/S61256/01.

control (see for example (S. Hara, 1988), (Weiss and
Hafele, 1999)).

The idea of internal model has been generalized for
output regulation of nonlinear systems by Byrnes et
al. (C.I. Byrnes, 1997). The controller design relies
on the solution of the regulator equations, which
make this controller design impractical for many
systems. This drawback has been relaxed by Huang
in (Huang and Lin, 1994) where he only requires
the approximate solution of the regulator equations
in designing the controller, at the price of having a
small steady state error. Other results related to the
output regulation problem for nonlinear systems can
also be found in (Byrnes and Isidori, 2003), (Huang
and Rugh, 1992) and (Priscoli, 2004).

In the first part of this paper, we propose a simple
controller design method leading to an LTI con-
troller (based on the internal model principle) for a



disturbance rejection problem for nonlinear passive
plants. In the second part of the paper, we combine
this LTI controller with a Slotine-Li type controller
(Slotine and Li, 1988) used for tracking a smooth
reference signal r. Here, we assume that the plant is
a fully actuated mechanical system, and the signals
r, ṙ and r̈ are available.

Passive systems have a C1 storage function H (de-
fined on the state space) which has the intuitive
meaning of stored energy. The input signal u and
the output signal y take values in the same inner
product space. We denote the state of the system at
time t by x(t). The defining property of a passive
system is that

Ḣ ≤ 〈y, u〉, where Ḣ =
〈

∂H(x)
∂x

, ẋ

〉
. (1)

The function H is often used as a Lyapunov function
in analyzing the system stability. The interconnec-
tion of several passive systems leads to a passive
closed-loop system if the interconnection is neutral
with respect to the power supply, see (van der
Schaft, 2000). Many physical systems (electrical cir-
cuits, mechanical systems, etc.) are passive if the
input and output variables are chosen carefully such
that their product represents the flow of power into
the system.

For nonlinear plants, passivity can be used for
controller design, see for example (Byrnes and
Isidori, 1991), (R. Ortega and Sira-Ramirez, 1998)
and (van der Schaft, 2000).

2. PRELIMINARIES

Notation. Throughout this paper, the inner prod-
uct on any Hilbert space is denoted by 〈·, ·〉 and
R+ = [0,∞). For a finite-dimensional vector x, we

use the norm ‖x‖ =
(∑

n |xn|2
) 1

2 and for matrices,
we use the operator norm induced by ‖ · ‖ (the
largest singular value). For any ε ≥ 0, we denote
Bε = {x ∈ R

n|‖x‖ ≤ ε}. For a square matrix A,
σ(A) denotes the set of its eigenvalues.

The set L2[0,∞) denotes the space of all the mea-
surable functions f : R+ → R which satisfy∫ ∞
0

|f(t)|2dt < ∞. We denote by fT the truncation
of f to the interval [0, T ]. The space L2

loc[0,∞)
consists of all the measurable functions f : R+ → R

such that fT ∈ L2[0,∞), for all T > 0. For any
finite-dimensional vector space V endowed with a
norm ‖ · ‖V , the space L2([0,∞),V) consists of all
the measurable functions f : R+ → V such that∫ ∞
0 ‖f(t)‖2

Vdt < ∞. The space C1(Rl, Rp) consists of
continuously differentiable functions f : R

l → R
p,

while C2[0,∞) consists of all the twice continuously
differentiable functions r : R+ → R.

We consider a nonlinear plant P described by

�+
��

+
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�
−

+
���C

d u y

yc e r

Figure 1. The tracking and disturbance rejection
problem for a certain class of signals d and r is
to find a controller C for the plant P such that
this closed-loop system L is stable and e(t) → 0
as t → ∞.

ẋ = f(x) + g(x)u, (2)

y = h(x), (3)

where the state x, the input u and the output
y are functions of t ≥ 0, such that x(t) ∈ R

n,
u(t), y(t) ∈ R

m, m ≤ n, f ∈ C1(Rn, Rn) with f(0) =
0, g ∈ C1(Rn, Rn×m), g(x) has rank m for all x ∈ R

n

and h ∈ C1(Rn, Rm) with h(0) = 0. We assume that
there exists a storage function H ∈ C1(Rn, R+) such
that

∂H(x)
∂x

[f(x) + g(x)u] ≤ 〈h(x), u〉. (4)

Equivalently, the storage function H satisfies the
Hill-Moylan conditions :

∂H(x)
∂x

f(x) ≤ 0,
∂H(x)

∂x
g(x) = hT (x), (5)

see (van der Schaft, 2000). H is called proper if
H(x) → ∞ whenever ‖x‖ → ∞.

P is said to be zero-state observable if u(t) =
0, y(t) = 0 for all t ≥ 0 implies that x(t) = 0 for
all t ≥ 0, and P is zero-state detectable if u(t) =
0, y(t) = 0 for all t ≥ 0 implies that lim

t→∞ x(t) = 0.

Consider the feedback system L as shown in Figure
1, which consists of the above plant P with a
controller C and with r = 0. If we regard y as the
output function of the closed-loop system and use
a proportional gain K = K∗ > 0 as our controller,
i.e., yc = −Ky, then the closed-loop system becomes
strictly output passive, which means that

Ḣ ≤ 〈y, d〉 − K‖y‖2. (6)

Remark 2.1. (van der Schaft, 2000) If P is described
by (2), (3), H ∈ C1(Rn, R+) and L satisfies (6), then
L has L2-gain ≤ 1/K (from d to y), as defined in
(van der Schaft, 2000). Indeed, it can be shown that

‖yT ‖ ≤ 1
K

‖dT ‖ +

√
2
K

H(x(0)), (7)

for all T > 0.

The following proposition is a consequence of
Lemma 3.2.8 in (van der Schaft, 2000).

Proposition 2.2. Suppose that the plant P is de-
scribed by (2), (3), with H(x) > 0 for all x 	= 0,



H(0) = 0 and P is zero-state detectable. Let the
controller C be a proportional gain K = K∗ > 0.
Consider the feedback system L as in Figure 1,
with r = 0 and d = 0. Then the origin of L is
asymptotically stable. If H is proper, then the origin
of L is globally asymptotically stable.

Proof. The closed-loop system L is described by
ẋ = fL(x) + g(x)d, y = h(x), where fL(x) = f(x)−
g(x)Kh(x), which is of class C1 and fL(0) = 0. It is
easy to see that L is zero-state detectable. It follows
from (6) that for d = 0, Ḣ ≤ −K‖y‖2 ≤ 0 for
all t ≥ 0. This implies (using H as a Lyapunov
function) that L is stable. It follows that there exists
δ > 0 such that x(0) ∈ Bδ ⇒ x(t) ∈ B1 for all
t ≥ 0. By the La-Salle invariance principle (van der
Schaft, 2000) and the zero-state detectability of
L, it is easy to derive that the origin of L is
asymptotically stable.

When H is proper, then every state trajectory of
L with d = 0 remains bounded, as it is easy to
see. Thus, for any state trajectory x, we can apply
the preceding argument with B1 replaced by a ball
Bε that contains this state trajectory. Then, we
conclude that limt→∞ x(t) = 0. �

3. THE INTERNAL MODEL PRINCIPLE IN
PASSIVE SYSTEMS

Let us consider the feedback system in Figure 1,
where r = 0 and the disturbance d is given by

ẇ = Sw
d(t) = Cww(t) (8)

where Cw ∈ R
m×p, w(t) ∈ R

p is the exosystem
state, S ∈ R

p×p has its eigenvalues on the imaginary
axis and eSt is uniformly bounded for t ≥ 0. An
equivalent way of expressing our assumptions on S
is the following: σ(S) ⊂ iR and all its Jordan blocks
are of dimension 1 (i.e., there are no generalised
eigenvectors for S).

Let the plant P be defined as in (2), (3). We choose
the controller C as follows:

ẋc = Axc + Be, yc = B∗xc + De, (9)

where xc ∈ R
l, l ≥ p, e ∈ R

m, yc ∈ R
m, A ∈ R

l×l,
A∗ + A = 0, B ∈ R

l×m, (B∗, A) is observable and
D = kIm×m, k > 0. Let L be the closed-loop system
as in Figure 1, with u = d + yc and e = −y. Then
the closed-loop system L is described by

ẋ = f(x) + g(x)B∗xc − kg(x)h(x) + g(x)d,(10)

ẋc = Axc − Bh(x), y = h(x). (11)

The controller C solves the disturbance rejection
problem for the plant P with d as in (8) if, in the
closed-loop system L shown in Figure 1 with r = 0,

all state trajectories of the closed-loop system are
bounded and x → 0 as t → ∞ (and hence y → 0 as
t → ∞). C solves the disturbance rejection problem
locally, if it solves the disturbance rejection problem
for all initial conditions x(0) in some neighborhood
of the origin and for xc(0) ∈ Xc (an open set which
may be dependent on w(0) ∈ R

p). C solves the
disturbance rejection problem globally, if it solves
the disturbance rejection problem for any initial
conditions x(0) ∈ R

n and xc(0) ∈ R
m.

Lemma 3.1. Suppose that the plant P defined by
(2), (3) is zero-state detectable. Let the controller
C be given by (9) and consider the control system
L as in Figure 1, with r = 0. Then, the following
two conditions are equivalent.

(1) L is zero-state detectable (with output y).
(2) For any xco ∈ R

l, xco 	= 0 and for any x(0) =
x0 ∈ R

n, the plant P satisfies u(t) = B∗eAtxco ⇒
∃ t ≥ 0 such that y(t) 	= 0.

Proof. The proof (1) ⇒ (2) is omitted due to
space constraint. For our main result, it is sufficient
to show that (2) ⇒ (1). From Figure 1, if y = 0
and d = 0, then we have

u(t) = yc(t) = B∗eAtxc(0) where xc(0) ∈ R
l.

This together with the condition (2) implies that
xc(0) = 0, hence xc(t) = 0 for all t ≥ 0 and u = 0.
By the zero-state detectability of P, u = 0 and y = 0
implies that x(t) → 0 as t → ∞. Hence,

[
x(t)
xc(t)

]
→ 0

as t → ∞. �

Theorem 3.1. Let the plant P defined by (2), (3)
be zero-state detectable with a storage function H
such that H(x) > 0 for x 	= 0, H(0) = 0 and
satisfying (4). Let the controller C be given by (9)
and consider the control system L as in Figure 1,
with r = 0. We assume that P has property (2)
from Lemma 3.1. Suppose that the disturbance d is
generated by the exosystem (8). Then C solves the
disturbance rejection problem if and only if there
exists a matrix Σ ∈ R

l×p which satisfies

ΣS = AΣ and B∗Σ + Cw = 0. (12)

If such a Σ exists, then it is unique.

Proof. The necessity proof is omitted due to
space constraint. The proof can be obtained by
observing that if C solves the disturbance rejection
problem, then [w x xc]T is bounded and converges
to an invariant set Ω, where x = 0 in Ω. In Ω, we
have x = 0 and xc = Σw, and Σ satisfies (12).

(Sufficiency) First, let us denote ρ = xc − Σw, then
by evaluating (10) – (12) and using x, ρ as the state
variables of L, we have



ẋ = f(x) + g(x)B∗δ − kg(x)h(x), (13)

ρ̇ = Aρ − Bh(x), y = h(x). (14)

Consider the storage function Hcl(x, ρ) = H(x) +
1
2‖ρ‖2. Then, using the Hill-Moylan conditions in (5)
and (13) – (14), Ḣcl = −k‖y‖2. By the assumptions
of the theorem and using Lemma 3.1, the system
described by (13) – (14) is zero-state detectable.
Then, by using the same argument as in Proposition
2.2, there exists δ > 0 such that

[
x(0)
ρ(0)

]
∈ Bδ ⇒[

x(t)
ρ(t)

]
→ 0 as t → ∞. This implies xc−Σw → 0 and

y → 0. C solves the disturbance rejection problem
locally. Moreover, if H is proper, it implies that Hcl

is also proper. Then, by using the same argument
as in Proposition 2.2, it can be shown that C solves
the disturbance rejection problem globally.

It is easy to derive that Σ as in (12) is unique. The
proof is omitted due to space constraint. �

Remark 3.2. The solution of nonlinear regulator
equations, as given in (Byrnes and Isidori, 1991),
for the nonlinear plant P above is trivia, i.e., the
mappings π(w) = 0 and c(w) = −Cww satisfy

∂π

∂w
Sw = 0 = f(π(w)) + g(π(w))(c(w) + d)

0 = h(π(w)).

Let χ(s) = sq + aq−1s
q−1 . . . + a1s + a0 be the

minimal polynomial of S ∈ R
p×p, so that

Sq + aq−1S
q−1 + . . . + a2S

2 + a1S + a0 = 0, (15)

where aq−1, . . . , a0 ≥ 0, q ≤ p and χ has only simple
zeros, all on iR.

Suppose that Smin ∈ R
q×q is such that Smin +

S∗
min = 0 and its characteristic polynomial is χ. If

0 ∈ σ(S), then the simplest choice would be

Smin =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 Ω1 0 · · · 0
0 0 Ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ων

⎤
⎥⎥⎥⎥⎥⎦ , (16)

where for each k = 1 . . . , ν, Ωk =
[

0 −ωk

ωk 0

]
for

some ωk ∈ R\{0} and ωk 	= ωj for k 	= j. The
set σ(Smin) = σ(S) contains 0 and ±iωk (k =
1, . . . , ν) (0 and ωk are the known frequencies of
the disturbance signal). If 0 /∈ σ(S), then we omit
the first line and the first column in (16), so that
σ(Smin) contains only ±iωk.

For i = 1 . . . , m, let Γi ∈ R
q×1 be such that

(Γ∗
i , Smin) is observable (the m vectors Γi may be

taken equal).

Consider the controller C described in (9) where
xc ∈ R

qm (q is as in (15)), the matrices A ∈ R
qm×qm

and B ∈ R
qm×m are given by

A =

⎡
⎢⎢⎢⎣
Smin 0 · · · 0

0 Smin · · · 0
...

...
. . .

...
0 0 · · · Smin

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣
Γ1 0 · · · 0
0 Γ2 · · · 0
...

...
. . .

...
0 0 · · · Γm

⎤
⎥⎥⎥⎦ ,

(17)
and D = kIm×m where k > 0.

Theorem 3.3. Suppose that the plant P defined by
(2), (3) satisfies (4) (passivity) with a storage func-
tion H such that H(x) > 0 for x 	= 0, H(0) = 0.
Assume that P is zero-state detectable. Suppose
that the disturbance d is generated by the exosystem
(8) and denote by χ the minimal polynomial of
S. Let the controller C be given by (9) where the
matrices A, B and D are as in (17), Smin has charac-
teristic polynomial χ and satisfies Smin +S∗

min = 0.
Consider the control system L as in Figure 1, with
r = 0. We assume that P has property (2) from
Lemma 3.1. Then C solves the disturbance rejection
problem locally for P. Moreover, if H is proper, then
C solves the disturbance rejection problem globally.

Proof. The theorem is proved by showing that
there exists a mapping Σ satisfying (12) and then
using Theorem 3.1. It can be shown that

Σ = −(φc)−1φw,

where

φc =

⎡
⎢⎢⎢⎣

B∗

B∗A
...

B∗Aq−1

⎤
⎥⎥⎥⎦ , φw =

⎡
⎢⎢⎢⎣

Cw

CwS
...

CwSq−1

⎤
⎥⎥⎥⎦ ,

satisfies both identities in (12). The proof is omitted
due to space constraint. �

Remark 3.4. Theorem 3.3 shows that we can design
a controller C knowing only the minimal polyno-
mial of the exosystem, and C achieves asymptotic
disturbance rejection for P. The simple choice of
Smin as in (16) can be used in Theorem 3.3 where
ωk is assigned based on the known frequencies of
the disturbance signal. The proposed high-order
compensator assures that the identity (12) have a
(unique) solution.

4. TRACKING AND DISTURBANCE
REJECTION IN FULLY-ACTUATED

MECHANICAL SYSTEMS

We consider a plant P described by the second-order
differential equation

M(q)q̈ + D(q, q̇)q̇ + g(q) = u, (18)

which often corresponds to a fully actuated mechan-
ical system, see (A. Astolfi, 1997), (Koivo, 1989).
Here, q ∈ R

n is the vector of generalized coor-
dinates, M(q) is a positive definite inertia matrix



Figure 2. The new plant obtained after the feedback
(20), which contains the signal generator for
the reference r. The tracking error is e. This
is a time-varying passive system with input v,
state [e ζ]T , and output ζ.

which satisfies m1I ≤ M(q) ≤ m2I for some pos-
itive constants m1 and m2, g(q) is a continuous
function (which usually represents forces due to the
potential energy) and u ∈ R

n is the input (usually,
forces or torques). The function M(·) is assumed to
be continuously differentiable and D(·, ·) is assumed
to be continuous. As usual, we denote Ṁ(q, q̇) =∑n

j=1
∂M
∂qj

q̇j . The state of this system is the vector[ q
q̇

]
. We assume that J(q, q̇) = Ṁ(q, q̇) − 2D(q, q̇)

satisfies J∗(q, q̇) + J(q, q̇) ≤ 0, so that〈(
1
2
Ṁ − D

)
ζ, ζ

〉
≤ 0 ∀ζ ∈ R

n. (19)

Note that the matrix J(q, q̇) may contain terms
which are due to friction from D(q, q̇).

Let us describe a first feedback loop which is based
on the Slotine-Li controller and which eliminates
r from the picture, so that the problem is reduced
to the disturbance rejection problem discussed in
Section 3. We assume that r ∈ C2 ([0,∞), Rn)
and the signals ṙ, r̈ are available to the controller.
Consider the static feedback law

u = M(q)ξ̇ + D(q, q̇)ξ + g(q) + v, (20)

where

ξ := ṙ + Λ(r − q), Λ = Λ∗ > 0

and v is a new input signal, see Figure 2. Substitu-
tion of (20) into (18) gives

M(q)ζ̇ + D(q, q̇)ζ = v, (21)

where ζ = q̇ − ξ. A simple computation shows that
denoting e = r − q,

−ė − Λe = ζ. (22)

For this new system P̃ (shown in Figure 2), we
may choose e and ζ as state variables and then
the system is described by the differential equations
(21) and (22). The old state variables q and q̇ may
be expressed in terms of the new ones: q = r − e,
q̇ = ṙ+ ζ +Λe (remember that r and ṙ are regarded

�+
��

+
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+
���K

d v ζ

yc −ζ 0

Figure 3. The modified plant P̃ with a proportional
gain controller K and a disturbance d.

as known functions) and then it is possible to rewrite
(21) as

Mr(e)ζ̇ + Dr(e, ζ)ζ = v, (23)
where, by definition,

Mr(e) = M(r−e), Dr(e, ζ) = D(r−e, ṙ+ζ+Λe).

We denote

Ṁr =
∂Mr

∂t
+

n∑
j=1

∂Mr

∂ej
ėj ,

where ∂Mr(e)
∂t =

∑n
j=1

∂M
∂q (r − e)ṙj . Note that

Ṁr(e) = Ṁ(r − e), so that (as in (19)),〈(
1
2
Ṁr −Dr

)
ζ, ζ

〉
≤ 0, ∀ζ ∈ R

n. (24)

Using H̃(e, ζ) = 1
2 〈Mr(e)ζ, ζ〉 as a storage function,

the new plant P̃ is a time-varying passive system
with input v, state [ e

ζ ] and output ζ. Indeed, using
(24),

˙̃H = −〈ζ,Drζ〉 + 〈ζ, v〉 +
1
2
〈Ṁrζ, ζ〉 ≤ 〈ζ, v〉.

Assume that a disturbance d acts on the new system
P̃ and we connect a proportional controller to it, as
shown in Figure 3, with yc = −Kζ, K = K∗ >
0. Then the closed-loop system is strictly output
passive with input d and output ζ. Thus, for every
d ∈ L2[0,∞), the signal ζ will be in L2[0,∞),
as follows from Remark 2.1. Since ė = −Λe − ζ,
Λ = Λ∗ > 0, and ζ ∈ L2[0,∞), it follows that
e ∈ L2[0,∞) and ė ∈ L2[0,∞). This implies that
e(t) → 0 as t → ∞.

Suppose now that the disturbance d is as in (8).
In practice, the disturbance d can be produced,
for example, if an unknown load is given to the
manipulator while tracking a periodic signal r.

Proposition 4.1. Consider the system P as in (18)
with outputs q and q̇, the reference r ∈ C2([0,∞), Rn)
and the disturbance d generated by the exosystem
(8).

Let the controller C be given by the state equation

ẋc = Axc − Bζ, (25)

where xc ∈ R
l, l ≥ p, ζ ∈ R

n as in (22), A ∈ R
l×l,

A∗ +A = 0, B ∈ R
l×n. The controller generates the

signal



yc = M(q)ξ̇ + D(q, q̇)ξ + g(q) + B∗xc − kζ,

where yc ∈ R
n, ξ := ṙ + Λe and k > 0.

If (B∗, A) is detectable and there exists Σ ∈ R
l×p

which satisfies

ΣS = AΣ and B∗Σ + Cw = 0, (26)

then trajectory of the closed-loop system L as in
Figure 3 with state variables (e, ζ, xc) is bounded
and lim

t→∞ e(t) = 0.

Proof. Let us denotes ρ = xc − Σw, then by
evaluating (23), (25) – (26) and (8), we have

Mrζ̇ =−Drζ + B∗ρ − kζ, (27)

ρ̇ = Aρ − Bζ, (28)

ė =−ρe − ζ, (29)

where
[
e ζ ρ

]T is the new state of the closed-loop
system.

By using the storage function Hcl = 1
2 〈Mr(e)ζ, ζ〉+

1
2‖ρ‖2, it can be easily evaluated that Ḣcl ≤
−k‖ζ‖2. The system described by (27) – (29) is
zero-state detectable (with output ζ), as can be
easily verified. By La-Salle invariance principle, the
state

[
e ζ δ

]T converges to zero. Indeed, by Remark

2.1, ‖ζT ‖ ≤
√

2
kHcl(e(0), ζ(0), ρ(0)) for all T ≥ 0

which implies ζ ∈ L2[0,∞). Since ė = −Λe − ζ,
Λ = Λ∗ > 0, and ζ ∈ L2[0,∞), it follows that
e ∈ L2[0,∞) and ė ∈ L2[0,∞). This implies that
e(t) → 0 as t → ∞. �

Similar to the development of high-order compen-
sator as in Theorem 3.3, we can have the high-order
compensator version of Proposition 4.1.

Proposition 4.2. Consider the system P as in (18)
with outputs q and q̇ and the reference r ∈
C2([0,∞), Rn). Suppose that the disturbance d is
generated by the exosystem (8) and denote by χ
the minimal polynomial of S.

Let the controller C be given by the state equation

ẋc = Axc − Bζ, (30)

where xc ∈ R
qn (q is the degree of χ), ζ ∈ R

n is as in
(22). The matrices A ∈ R

qn×qn and B ∈ R
qn×n are

as in (17) where Smin has characteristic polynomial
χ and satisfies Smin + S∗

min = 0. Let the controller
output be given by

yc = M(q)ξ̇ + D(q, q̇)ξ + g(q) + B∗xc − kζ,

where yc ∈ R
n, ξ := ṙ + Λe and k > 0.

Then trajectory of the closed-loop system L as in
Figure 3 with state variables (e, ζ, xc) is bounded
and lim

t→∞ e(t) = 0.

Proof. The theorem is proved by using Proposi-
tion 4.1 where the solution of (26) can be obtained

by using a similar approach to the proof in Theorem
3.3, hence it is omitted. �

5. CONCLUSION

In this paper, internal model-based compensator
has been presented for dealing with the disturbance
of a finite superposition of sine waves of arbitrary
known frequencies for passive nonlinear plants. The
internal model-based compensator is used to solve
the tracking and disturbance rejection problem for
a class of fully actuated passive mechanical systems.

REFERENCES

A. Astolfi, et al. (1997). Proceedings of the Work-
shop Modelling and Control of Mechanical Sys-
tems. Imperial College Press. London.

Byrnes, C.I. and A. Isidori (1991). Asymptotic sta-
bilization of minimum phase nonlinear systems.
IEEE Trans. Automatic Control 36, 1122–1137.

Byrnes, C.I. and A. Isidori (2003). Limit sets, zero
dynamics, and internal models in the problem
of nonlinear output regulation. IEEE Trans.
Automatic Control 48(10), 1712–1723.

C.I. Byrnes, et al. (1997). Output Regulation of
Uncertain Nonlinear Systems. Birkhauser.

Francis, B.A. and W.M. Wonham (1975). The inter-
nal model principle for linear multivariable reg-
ulators. Applied Mathematics and Optimization
2, 170–194.

Huang, J. and C.F. Lin (1994). On a robust non-
linear servomechanism problem. IEEE Trans.
Automatic Control 39, 1510–1513.

Huang, J. and W.J. Rugh (1992). Stabilization on
zero-error manifolds and the nonlinear servo-
mechanism problem. IEEE Trans. Automatic
Control 37(7), 1009–1013.

Koivo, A.J. (1989). Fundamentals for Control of
Robotic Manipulators. John-Wiley. New York.

Priscoli, F.D. (2004). Output regulation with non-
linear internal models. Systems & Control Let-
ters 53, 177–185.

R. Ortega, A. Loria, P.J. Nicklasson and H. Sira-
Ramirez (1998). Passivity-Based Control of
Euler-Lagrange Systems. Springer-Verlag. Lon-
don.

S. Hara, et al. (1988). Repetitive control system:
A new type servo system for periodic exoge-
nous signals. IEEE Trans. Automatic Control
33, 659–668.

Slotine, J.J.E. and W. Li (1988). Adaptive manipu-
lator control: a case study. IEEE Trans. Auto-
matic Control 33, 995–1003.

van der Schaft, A.J. (2000). L2-Gain and Passiv-
ity Techniques in Nonlinear Control. Springer-
Verlag. London.

Weiss, G. and M. Hafele (1999). Repetitive control
of MIMO systems using H∞ design. Automatica
35, 1185–1199.


