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VECTOR-ATTRIBUTE FILTERS

Erik R. Urbach, Niek J. Boersma and Michael H.F. Wilkinson

Institute for Mathematics and Computing Science,
University of Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands

{erik,michael}@cs.rug.nl

Abstract A variant of morphological attribute filters is developed, in which the attribute
on which filtering is based, is no longer a scalar, as is usual, but a vector. This
leads to new granulometries and associated pattern spectra. When the vector-
attribute used is a shape descriptor, the resulting granulometries filter an image
based on a shape or shape family instead of one or more scalar values.

Keywords: Mathematical morphology, connected filters, multi-scale analysis, granulome-
tries, pattern spectra, vector-attributes, shape filtering

Introduction

Attribute filters [2, 12], which preserve or remove components in an image
based on the corresponding attribute value, are a comparatively new addition to
the image processing toolbox of mathematical morphology. Besides binary and
gray-scale 2-D images [2, 12], these filters have also been extended to handle
vector images, like color images [5, 7] and tensor-valued data [3], and 3-D im-
ages. So far the attributes used in all of these cases have been scalars. Although
the set of scalar attributes used in multi-variate filters and granulometries [14]
can also be considered as a single vector-attribute, these multi-variate opera-
tors can always be written as a series of uni-variate scalar operators, which is
not the case for vector-attribute filters.

In this paper vector-attribute filters and granulometries will be introduced,
whose attributes consists of vectors instead of scalar values, followed by a
discussion on their use as filters and in granulometries where the parameter
is a single shape image or a family of shape images instead of a threshold
value.
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1. Theory

The theory of granulometries and attribute filters is presented only very
briefly here. For more detail the reader is referred to [2, 9, 12, 16]. In the
following discussion binary images X and Y are defined as subsets of the im-
age domain M ⊂ R

n (usually n = 2), and gray-scale images are mappings
from M to R.

Let us define a scaling Xλ of set X by a scalar factor λ ∈ R as

Xλ = {x ∈ R
n|λ−1x ∈ X}. (1)

An operator φ is said to be scale-invariant if

φ(Xλ) = (φ(X))λ (2)

for all λ > 0. A scale-invariant operator is therefore sensitive to shape rather
than to size. If an operator is scale, rotation and translation invariant, we call it
a shape operator. A shape filter is simply an idempotent shape operator. In the
digital case, pure scale invariance will be harder to achieve due to discretization
artefacts, but a good approximation may be achieved.

Attribute openings and thinnings

Attribute filters, as introduced by Breen and Jones [2], use a criterion to
remove or preserve connected components (or flat zones for the gray-scale
case) based on their attributes. The concept of trivial thinnings ΦT is used,
which accepts or rejects connected sets based on a non-increasing criterion
T . A criterion T is increasing if the fact that C satisfies T implies that D
satisfies T for all D ⊃ C. The binary connected opening Γx(X) of set X
at point x ∈ M yields the connected component of X containing x if x ∈
X , and ∅ otherwise. Thus Γx extracts the connected component to which x
belongs, discarding all others. The trivial thinning ΦT of a connected set C
with criterion T is just the set C if C satisfies T , and is empty otherwise.
Furthermore, ΦT (∅) = ∅.

Definition 1 The binary attribute thinning ΦT of set X with criterion T is
given by

ΦT (X) =
⋃

x∈X

ΦT (Γx(X)) (3)

It can be shown that this is a thinning because it is idempotent and anti-
extensive [2]. The attribute thinning is equivalent to performing a trivial thin-
ning on all connected components in the image, i.e., removing all connected
components which do not meet the criterion. It is trivial to show that if criterion
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T is scale-invariant:

T (C) = T (CλC ) ∀λ > 0 ∧ C ⊆M, (4)

so are ΦT and ΦT . Assume T (C) can be written as τ(C) ≥ r, r ∈ Λ, with
τ some scale-invariant attribute of the connected set C. Let the attribute thin-
nings formed by these T be denoted as Φτ

r . It can readily be shown that

Φτ
r (Φ

τ
s(X)) = Φτ

max(r,s)(X). (5)

Therefore, {Φτ
r} is a shape granulometry, since attribute thinnings are anti-

extensive, and scale invariance is provided by the scale invariance of τ(C). An
attribute thinning with an increasing criterion is an attribute opening.

Definition 2 A binary shape granulometry is a set of operators {βrββ } with
r from some totally ordered set Λ, with the following three properties

βrββ (X) ⊂X (6)

βrββ (Xλ) =(βrββ (X))λ (7)

βrββ (βs(X)) =βmax(r,s)(X), (8)

for all r, s ∈ Λ and λ > 0.

Thus, a shape granulometry consists of operators which are anti-extensive, and
idempotent, but not necessarily increasing. Therefore, the operators must be
thinnings, rather than openings. To exclude any sensitivity to size, we add
property (7), which is just scale invariance for all βrββ .

Size and shape pattern spectra

Size pattern spectra were introduced by Maragos [8]. Essentially they are a
histogram containing the number of pixels, or the amount of image detail over
a range of size classes. If r is the scale parameter of a size granulometry, the
size class of x ∈ X is the smallest value of r for which x �∈ αr(X). Shape
pattern spectra can be defined in a similar way [15]. The pattern spectra sα(X)
and sβ(X) obtained by applying size and shape granulometries {αr} and {βrββ }
to a binary image X are defined as

(sα(X))(u) = −dA(αr(X))
dr

∣∣∣∣∣∣∣∣∣∣
r=u

(9)

and

(sβ(X))(u) = −dA(βrββ (X))
dr

∣∣∣∣∣∣∣∣∣∣
r=u

(10)
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in which A(X) denotes the Lebesgue measure in R
n, which is just the area if

n = 2.
In the discrete case, a pattern spectrum can be computed by repeatedly fil-

tering an image by each βrββ , in ascending order of r. After each filter step,
the sum of gray levels SrSS of the resulting image βrββ (f) is computed. The pat-
tern spectrum value at r is computed by subtracting SrSS from SrSS − , with r−

the scale immediately preceding r. In practice, faster methods for computing
pattern spectra can be used [2, 10, 11]. These faster methods do not compute
pattern spectra by filtering an image by each βrββ . However, for methods using
structuring elements this is usually unavoidable [1].

2. Vector-attribute granulometries

Attribute filters as described by Breen and Jones [2] filter an image based
on a criterion. Much work has been done since: uni- and multi-variate gran-
ulometries [1, 14] and their use on different types of images, such as binary,
gray-scale, and vector images. Although the original definition of the attribute
filters was not limited to scalar attributes, the attributes used so far have always
been based on scalar values.

A multi-variate attribute thinning Φ{TiTT }(X) with scalar attributes {τiττ } and
their corresponding criteria {TiTT }, with 1 ≤ i ≤ N , can be defined such that
connected components are preserved if they satisfy at least one of the criteria
TiTT = τiττ (C) ≥ ri and are removed otherwise:

Φ{TiTT }(X) =
N⋃

i=1

ΦTiTT (X). (11)

The set of scalar attributes {τiττ } can also be considered as a single vector-
attribute �τ = {τ1ττ , τ2ττ , . . . , τNτ }, in which case a vector-attribute thinning is
needed with a criterion:

T �τ
�rTT = ∃i : τiττ (C) ≥ ri for 1 ≤ i ≤ N . (12)

Although a thinning using this definition of T �τ
�rTT and �τ can be considered as a

multi-variate thinning with scalar attributes, and thus be decomposed into a
series of uni-variate thinnings (see definition 11), this is not the case with the
vector-attributes and their corresponding filters for binary and gray-scale 2-D
images that will be discussed below.

A binary vector-attribute thinning Φ�τ
�r,ε(X), with d-dimensional vectors from

a space Υ ⊆ R
d, removes the connected components of a binary image X

whose vector-attributes differ more than a given quantity from a reference vec-
tor �r ∈ Υ. For this purpose we need to introduce some dissimilarity measure
d : Υ × Υ → R, which quantifies the difference between the attribute vec-
tor �τ(C) and �r. A connected component� C is preserved if its vector-attribute



Vector-attribute Filters 99

�τ(C) ∈ Υ satisfies criterion T �τ
�TTr,εTT (C) = d(�τ(C), �)�� ≥ ε and is removed other-

wise, with ε some threshold. Thus it satisfies T �τ
�TTr,εTT if the dissimilarity d(�τ(C), �)��

between vectors �τ(C) and �r is at least ε. The simplest choice for d is the Eu-
clidean distance: d(u,�� ) =� ||�v − �u||, and any other distance measure (such as
Mahalanobis ) could be used. However, d need not be a distance, because the
triangle inequality d(a, c) ≤ d(a, b) + d(b, c) is not required.

More formally, the vector-attribute thinning can be defined as:

Definition 3 The vector-attribute thinning Φ�τ
�r,ε of X with respect to a ref-

erence vector �r and using vector-attribute �τ and scalar value ε is given by

Φ�τ
�r,ε(X) = {x ∈ X| T �τ

�TTr,εTT (Γx(X))}. (13)

This equation can be derived from definition 1 of the binary attribute thinning
[2] by substituting T with T �τ

�TTr,εTT in the definition of the trivial thinning.

Although a multi-variate thinning Φ{TiTT } can be defined as a vector-attribute
thinning Φ�τ

�r,ε with T �τ
�TTr,εTT = T �τ

�rTT , equation 13 cannot be decomposed in a similar
way, unless d(�τ(C), �)�� is the L∞ norm.

It should be noted here that vector-attribute openings are vector-attribute
thinnings with an increasing criterion T �τ

�TTr,εTT . Although it is easy to define an
increasing criterion based on scalar attributes, this is much harder for vector-
attributes, i.e. a criterion using a vector-attribute consisting of only increasing
scalar attributes is not necessarily increasing. Furthermore, since all of these
scalar attributes are increasing, they will generally be strongly correlated. For
this reason we restrict our attention to thinnings.

The reference vector �r in the definition of vector-attribute thinnings can be
computed using a given shape S: �r = �τ(S). This way a binary vector-attribute
thinning with respect to a given shape S can be constructed:

Definition 4 The binary attribute thinning with respect to a shape S ∈ C
can be defined as:

Φ�τ
S,ε = Φ�τ

�τ(S),ε (14)

In Fig. 1 the effect of ε in the criterion T �τ
�TTr,εTT (C) = d(�τ(C), �)�� ≥ ε is demon-

strated, with d(�τ(C), �) =�� ||�r− �τ(C)||. The reference vector �r was computed
from an image of the letter A. Three values were (manually) chosen for ε:
the maximum (rounded) value that removes exactly one letter, one value that
removes nearly all letters, and one value in between.

The extension of binary attribute filters and granulometries to gray-scale has
been studied extensively [2, 10–12]. Extending our vector-attribute thinnings
and granulometries can be done in a similar fashion. Gray-scale thinning with
respect to a shape is demonstrated in Fig. 2.
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Original image X ε = 0.01 ε = 0.10 ε = 0.15

Figure 1. Filtering using a vector-attribute thinning Φ�τ
�r,ε(X) with increasing values of ε

X Φ�τ
SA ,ε(X) Φ�τ

SB ,ε(X) Φ�τ
SC ,ε(X)

Figure 2. Removal of letters using Φ�τ
Si ,ε(X) in gray-scale image (left) of letters A, B, C with

Si being respectively the shapes SA , SB , and SC

Definition 5 A granulometry with respect to reference vector �r ∈ Υ, using
scale, rotation and translation invariant vector-attribute �τ ∈ Υ is given by the
family of vector-attribute thinnings {Φ�τ

�r,ε} with ε from R.

It is obvious from (13) that Φ�τ
�r,ε is anti-extensive and idempotent, and more

importantly that

Φ�τ
�r,η(Φ

�τ
�r,ε(X)) = Φ�τ

�r,max(ε,η)(X) ε, η ∈ R (15)

Furthermore, if �τ is scale, rotation, and translation invariant, Φ�τ
�r,ε is a shape

filter and {Φ�τ
�r,ε} is a shape granulometry [15].

An example of a suitable vector-attribute for shape granulometries are mo-
ment invariants. Hu’s moment invariants [6] are invariant to rotation, scaling
and translation, and are therefore suitable as shape attribute. Recently, new sets
of moment invariants have been presented, such as the Krawtchouk moment in-
variants [17], which form a set of discrete and orthogonal moment invariants,
and a set of complete and independent moment invariants by Flusser and Suk
[4]. A problem that occurs with Krawtchouk moment invariants when the ref-
erence shape is not rotationally symmetric, like most letters, is that the angle
used in the definitions of these moment invariants is defined by the orientation
instead of the direction of the shape, which means that a 180 degrees rotated
version of a shape S will generate a different vector-attribute than S does. The
sensitivity of the moment invariants of Hu and Krawtchouk to rotation and
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Figure 3. Effect of orientation on the distance between the vector-attributes of a connected
component CiCC and a given reference image SjS for Hu (left) and Krawtchouk (middle and right)
moment invariants, where CiCC represents the letter A, double-sized A, half-sized A, and B for
i = 1, 2, 3, 4 respectively; SjS represents the letter A for j = 1, 2 at 0 and 180 degrees rotation
respectively

X Φ�τ
SA ,ε(X) Φ�τ

SB ,ε(X) Φ�τ
SC ,ε(X)

Figure 4. Left to right: original image and letters A, B, and C removed

scaling is demonstrated in Fig. 3, where one would expect the distance d be-
tween different orientations and sizes of the same letter A to be smaller than
the distance between A and, according to the vector-attribute, the letter closest
the A: the B. As can be seen, this is in both cases true for scaling, but it is clear
that for Krawtchouk moment invariants rotation-invariance only holds for a
certain range of orientations. This problem can be solved by using a filter that
removes a connected component C if it matches any of the four orientations
of a given shape S. This is demonstrated in Fig. 3(right). Furthermore, the
Krawtchouk moments depend on the image size, which means that comparing
two vectors requires that the same image size is used for the computation of
both vectors and that some form of normalization is necessary. Considering
these drawbacks of the Krawtchouk moment invariants we decided to use the
well-known moment invariants of Hu for the other experiments described in
this paper.

In Fig. 4 an image X consisting of the letters A, B, C, D, and E at different
sizes and orientations is filtered with the goal of removing all instances of a
certain letter in the image. As can be seen, especially the smallest letters in the
image are not always removed when they should have been.
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3. Granulometries with respect to a shape family

Let Φ�τ
S,ε be defined as above, and let F = {S1, S2, ..., SnSS } be a shape family

with F ⊆ C. The vector-attribute thinning Φ�τ
F,ε with respect to shape family F

is defined as

Definition 6 The vector-attribute thinning Φ�τ
F,ε of X with respect to a set

F , with F ⊆ C and using vector-attribute thinning with respect to shape Φ�τ
S,ε

is given by
Φ�τ

F,ε(X) =
⋂

S∈F

Φ�τ
S,ε (16)

In other words, connected components are removed if they resemble any mem-
ber of the shape family F closer than a given amount ε and are preserved oth-
erwise. Again we have that Φ�τ

F,ε is anti-extensive and idempotent, and scale,
rotation, and translation invariance is inherited from �τ . Furthermore,

Φ�τ
F,ε(Φ

�τ
G,ε(X)) = Φ�τ

G,ε(Φ
�τ
F,ε(X)) = Φ�τ

F,ε(X) for G ⊆ F . (17)

Definition 7 Assume we have N shapes S1, S2, . . . , SN and let FnFF be a set
containing the n ≤ N shapes S1, . . . , SnSS . A granulometry {βnββ }with respect to
shape family FNF using vector-attribute thinning with respect to shape Φ�τ

Si ,ε
(X)

for SiSS ∈ FNF , is given by the family of vector-attribute thinnings with respect
to shape family {Φ�τ

FnFF ,ε} such that

βnββ = Φ�τ
FnFF ,ε (18)

It is easy to see that if all {Φ�τ
Si ,ε
} are a shape granulometry, then so is {βnββ }.

The use of granulometries with respect to a shape family F for the compu-
tation of pattern spectra is demonstrated in Fig. 5, where a pattern spectrum of
the input image in Fig. 4(left) is computed using a granulometry with respect
to a family FnFF = {S1, . . . , S5}, with S1, . . . , S5 representing the letters A till
E respectively. As a comparison, a histogram was also computed representing
the number of occurrences of each letter in the image.

4. Conclusions

A new class of attribute filters was presented, whose attributes are vector
instead of scalar values. These vector-attribute filtersvector-attribute filter are a
subclass of the attribute filters defined by Breen and Jones. Using Hu’s moment
invariants, it was shown how thinnings and granulometries could be defined
that filter images based on a given shape or a family of shapes.

For discrete images, the rotation- and scale-invariance of the moment invari-
ant attributes is only by approximation. Furthermore, the rotation-invariance
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Figure 5. Pattern spectrum and shape histogram computed using Φ�τ
FnFF ,ε(X) with n =

1, 2, . . . , 5, resulting in filtering with family FnFF , where FnFF is the family of the first n letters
in the alphabet. Each FnFF includes one more shape to remove (top row)

of the Krawtchouk moment invariants does not hold for all orientations for
shapes without rotational symmetry, due to the fact that the angle computed
here refers to the orientation instead of the direction of the component. Al-
though this problem can be solved by filtering using a few orientations of one
shape, vector-attributes that do not have this problem, like Hu’s moment in-
variants, are preferred. Future research will also investigate alternatives such
as the complex moment invariants of Flusser and Suk [4]. More research is
also needed to determine better ways for selecting the parameters like ε and
the order and the choice of shape classes.

The dissimilarity measure d is also a critical choice. Other dissimilarity
measures than the Euclidean distance should be investigated. If an adaptive
system like a genetic algorithm would be used for d, an adaptive shape filter
would be obtained. If multiple (reference) instances of the target class are
available, the Mahalanobis distance is an option. This would lend more weight
to directions in the attribute space Υ in which the class is compact, compared
to directions in which the class is extended. Because we only use examples of
the target class, the filtering problem resembles one-class classification [13].
This can be done with (kernel) density estimates to obtain a likelihood of class
membership. The inverse of this probability would also yield a dissimilarity
measure. Support-vector domain description could be used in a similar way
[13].

An interesting approach would be the use of pattern spectra consisting of
three dimensions: shape information from vector-attributes, size information
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such as the area, and the orientation of the components. This would be partic-
ularly useful in texture classification.
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