

 University of Groningen

2nd SC@RUG 2005 proceedings
Smedinga, Rein; Terlouw, Jan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., & Terlouw, J. (Eds.) (2005). 2nd SC@RUG 2005 proceedings: Proceedings Student
Colloquium 2004-2005. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/955e1d1b-7db9-4527-81d1-f7bcfe2054b2

Proceedings
Student Colloquium

2004-2005

Rein Smedinga,
Jan Terlouw

Computing Science
University of Groningen

Studcoll 2005 proceedings

Rein Smedinga
Jan Terlouw

editors

2005
Groningen

ISBN 90-367-2326-4
Publisher: Bibliotheek der R.U.

Title: Proceedings 2nd Student Colloquium 2004-2005
Computing Science, University of Groningen

NUR-code: 980

Contents

1 About StudColl 5

2 A Comparison of Connected Filters – Roland Veen, Bjørn Lindeijer 6

3 Assembling Classes at Runtime – Peter Hut, Zef Hemel 12

4 Adaptive Object-Models – Peter Swart, Nico van Benthem 21

5 A Survey on Taxonomies of Software Evolution Wouter – Storteboom, Arjen Vellinga 29

6 Efficient software engineering using software reuse – Bart Lemstra, Roland Oldengarm 37

7 An introduction to Software aging: How to deal with it? – Rodney Heinkens, Onno de Graaf 44

8 Software Aging and Design Erosion – D.S.C. Ruiter, K. Werkman 52

9 Evaluation of Methods for Area Openings by Connected Set Operators – Marten Pijl, Gideon Laugs 59

10 A look at Programming Methods for solving problems of current Software Development – Kenneth Rohde
Christiansen, Niek Oost 67

11 Image Segmentation: Problems, Techniques and Evaluation Criteria – Timo Laman, Martijn Bodewes 73

12 Using Force-Directed Methods For Drawing Graphs – Michiel Koning, Maarten Everts 82

13 Friendship - friend or foe: a research into the structures of friendship and their effects on productivity –
Rick Oost, Niels Hageman 89

14 The Effects of Age, Experience and Tenure on Team Creative Performance – Tjaard de Vries, Mark Bas-
tiaans 99

15 Team creativity: influence of heterogeneity in age, sex, education and service years on creativity of r&d
teams – Frank van den Nieuwboer, Klaas-Jan Stol 107

16 Level of Education, the Diversity of Field of Specialization, Problem- Solving Communication, and the
Productivity of R&D Teams – J. Kizito, D. Tuheirwe 124

1. About StudColl

Introduction StudColl is a course that master students in
computing science follow in the first year of their master
study at the University of Groningen.

In the academic year 2004-2005 StudColl was orga-
nized for the second time as a conference. Students wrote
a paper, participated in the review process, gave a presenta-
tion and were session chair during the conference.

The organizers Rein Smedinga and Jan Terlouw would
like to thank all colleagues, who cooperated in this Stud-
Coll by collecting sets of papers to be used by the students
and by being expert reviewers during the review process.
They would also like to thank Marjolein van der Werff from
the Faculty of Arts for her help in organizing this course.

In these proceedings all accepted papers are published.

Organizational matters StudColl 2005 was organized as
follows. Students were expected to work in teams, con-
sisting of two persons. The student teams could choose
between different sets of papers, that were made available
through Nestor, the digital learning environment of the uni-
versity. Each set of papers consisted of three papers about
the same subject (within Computing Science). Soms sets
of papers contained conflicting meanings. Students were
instructed to write a survey paper about this subject includ-
ing the different approaches in the given papers. The paper
should compare the theory in each of the papers in the set
and include own conclusions about the subject.
Some teams proposed an own subject.
Six teams previously followed the course “Research
Methodologies” and could use StudColl2004 for presenting
their results, both in a paper and by giving a presentation.

After submission of the papers individual students were
assigned one paper to review using a standard review form
(see Appendix A of the previous StudColl2004 proceed-

ings). The colleagues who had provided the set of papers
were also asked to fill in such a form. Thus, each paper was
reviewed three times. Each review form was made avail-
able to the authors of the paper through Nestor.

All papers could be rewritten and resubmitted, indepen-
dent of the conclusions from the review. After resubmis-
sion each reviewer was asked to rereview the same paper
and to conclude whether the paper had improved. Rere-
viewers could accept or reject a paper. All accepted papers
can be found in these proceedings.

All students were asked to present their paper at the
conference and act as a chair or as discussion leader dur-
ing one of the other presentations. The audience graded
both the presentation and the chairing or leading the discus-
sion. Marjolein van der Werff of the Faculty of Arts gave
an introductory lecture about general aspects of presenta-
tion techniques to help the students with their presentation.

Students were graded both on the writing process, the
review process and the presentation. Writing and rewrit-
ing counted for 40% (here we used the grades given by
the reviewers and the rereviewers), the review process it-
self for 15% and the presentation for 45% (including 5%
for the grading of being a chair or discussion leader during
the conference). For the grading of the presentations we
used a selected number of judgements from the audience
and calculated the average of these.

On January 31st and February 1st 2005, the actual con-
ference took place. Of each writing team both authors pre-
sented half of the presentation. Both days, we had ten pre-
sentations, each consisting of a total of 30 minutes for the
presentation and 10 minutes for discussion. As mentioned
before each presenter also had to act as a chair or as discus-
sion leader for another presentation during that day. The
audience was asked to fill in a questionnaire and grade the
presentations, the chairing and leading the discussion.

A Comparison of Connected Filters

Roland Veen Bjørn Lindeijer

{r.j.veen, t.lindeijer}@wing.rug.nl

Abstract

Some algorithms and operators related to Con-
nected Filtering are discussed. This includes an
elaborate discussion about the Max-Tree approach,
a discussion about the Fast Level Lines Transform
and we briefly mention the union-find method.

Keywords — Connected set operators, attribute
filters, union-find, max-tree, fast level lines trans-
form, connectivity.

1 Introduction

Connected set operators are often used when
preservation of shape is very important in image fil-
tering, for example in medical applications. These
operators have evolved from working on binary im-
ages to handling complex grey-scale images, which
makes efficiency a very important aspect in which a
lot of research is done. In this paper we present an
overview of a number of algorithms to extract con-
nected components from images, and Connected
Set Operators that can perform filtering on these
connected sets depending on their properties. The
goal is to assert the applicability and usefulness of
these operators and related algorithms.

In the next section we will briefly summarize
some of the aspects of connected set theory. In
the then following sections, algorithms for building
structures of connected components are discussed,
and then some different connected set operators are
described.

2 Theory

For clarity, we briefly summarize some important
aspects about Connected Set Operators.

Instead of operating on individual pixels, con-
nected set operators operate on flat zones of im-
ages. The image is divided into disjoint sets of pix-
els, which form the connected shapes.

In figure 1, you can see an example of a basic
binary structural and area opening and closing. It
is important to notice that these operators do not
introduce new edges in the image, thus preserve the
shape of the components. This is specifically im-
portant in medical applications, where introduction
of artifacts is not tolerated.

3 Algorithms for building
connected set representa-
tions

In this section we will give an overview of some of
the methods used and in use for the construction
of connected set representations.

3.1 Pixel-Queue

3.1.1 Description

The Pixel-Queue algorithm was briefly mentioned
in [1]. The algorithm, not very surprising, scans
an image using a pixel queue to create a list of all
regional maxima. Then these maxima are put in
a priority queue based on their grey-level. These
maxima are then processed sequentially, essentially
flooding the region surrounding it with the same
grey-level until either a pixel is encountered with
a higher grey-level, or the covered area equals a
predefined size. This results in a grey-level map
which can be used to apply connected set operators
on the fly.

6

Figure 1: Area versus structural openings: (a) An
original image, (b) Structural opening with 7 × 7
structuring element, (c) opening by reconstruction
using same element, (d) Area opening with λ =
49. the shapes of connected foreground components
remain unchanged. Source: [1]

3.1.2 Evaluation

The application of operators on the fly potentially
allows for reducing computation time by stopping
when criteria are met or have no chance of being
met anymore. However this property is also one of
the drawbacks of the pixel-queue algorithm, since
the deconstruction of the image in components is
not reusable, and has to be redone for every change
in parameters. The Max-Tree approach, described
next, separates the application of the connected op-
erator from the deconstruction of the image.

3.2 Max-Tree

3.2.1 Description

The Max-Tree was introduced by Salembier et al.
[3]. To describe a Max-Tree we first picture an im-
age as a height map, for example with the bright

Figure 2: Visualization of a Max-tree structure in
one dimension. Source: [1]

areas higher than the dark areas. The peaks in
this image form the leaves of the Max-Tree and
the lowest level is the root. Each node in the
tree corresponds with a connected component in
a slice through the landscape at a certain height.
All nodes except for the root node point to their
parent, which is the component containing them
that is lower. When the parent of a node happens
to be exactly the same shape, it can be removed to
simplify the tree.

In figure 2 an example is given of a Max-Tree
structure generated from a 1-dimensional image.
The leftmost picture shows the slicing of the height
map and already superfluous nodes have been re-
moved. The middle image shows the component
assignments to the actual pixels. Finally the right-
most image shows the Max-Tree itself.

In summary the Max-Tree gives us a structural
tree presentation of the image. This presentation
is useful for processing the connected components
as we’ll show later. First, we will briefly describe
the construction of a a Max-Tree.

3.2.2 Building a Max-Tree

The Max-Tree construction can be described as re-
cursive application of binarization using a certain
increasing grey-level threshold on the image and
connected component analysis on each resulting bi-
nary image. The final result is that each pixel will
be tagged with the connected component node in
the tree it belongs to, and the tree itself. The grow-
ing process of the Max-Tree is shown in figure 4.

Salembier et al. [3] describes a very fast al-
gorithm to construct a Max-Tree using recursive
flooding in combination with a first-in-first-out
(FIFO) pixel queue. Its execution time it typi-
cally of less than one second on a Sun-Sparc 10 for
256x256 images of 256 grey-levels. The complex-

NIOC 2004 proceedings

7

ity of this algorithm is O(N) because the floodfill,
pruning and producing the output are all of linear
complexity.

3.2.3 Filtering a Max-Tree

Given a Max-Tree and a filter criteria on connected
components, there are several ways to go about fil-
tering out the components. When the filter criteria
is increasing towards the root of the Max-Tree the
obvious thing to do is to remove all nodes that do
not reach the criteria threshold, and their children.
This is for example the case for an area opening.
The components in a Max-Tree are naturally de-
creasing in area towards the leaves.

However, many filters are not necessarily increas-
ing. Examples are filters on shape, entropy or mo-
tion. In this case a path from the root of a Max-Tree
towards one of the leaves will contain an arbitrary
amount of nodes not reaching the criteria threshold
spread arbitrarily.

There are three straightforward ways to deter-
mine which parts of such a path should remain in
the tree, illustrated in figure 3. The “Min” decision
chooses to preserve only the nodes until the thresh-
old isn’t reached for the first time. The “Max” deci-
sion chooses to preserve all nodes up to the last time
that the threshold has been reached. Finally the
“Direct” decision preserves any nodes that reach
the threshold and removes all others.

While these decision rules are very straightfor-
ward, the results are often not satisfactory. The
”Min”decision will quickly leave out too much,
whereas the ”Max”decision leaves in too much. The
problem here is that the decisions are local and do
not depend on the decision of neighboring nodes,
making the approach not robust in practice. This is
also the case for the ”Direct”decision. A solution to
this is mentioned when we describe anti-extensive
operators in section 4.2.1.

3.3 Fast Level Lines Transform

The Fast Level Lines Transform, which is presented
in [2], builds a representation of the image in the
form of a tree containing shapes in the image. It
uses both a Max-Tree and a Min-Tree to create
an inclusion map of the shapes. The advantage of
having such an inclusion map is the ability to filter
out small shapes by pruning the tree at a certain

Figure 4: Example of Max-Tree construction.
Source: [3]

depth, which is illustrated in figures 5 and 6. When
looking at the decomposition of the image with re-
spectively Max-Tree, Min-Tree and FLLT, we see
this difference in which shapes are identified in an
image.

To obtain the tree of shapes, thresholding of
the image at certain grey-levels can be performed,
which is very costly. However, when taking advan-
tage of the tree structure, FLLT builds and merges
upper and lower level sets as computed by a Max-
Tree and Min-Tree algorithm, which results in a
drastic speed improvement. A nice example of the
FLLT is shown in figure 7.

3.4 Union-find method

3.4.1 Description

The union-find method [1] does essentially the same
as the Max-Tree. The pixels are processed in grey-
level order, in combination with Tarjan’s union-find
algorithm for keeping track of disjoint sets [4]. The
algorithm uses a tree-based approach where two ob-
jects x and y are members of the same set if and
only if their they are nodes in the same tree. Sets
can be merged based on properties of two nodes
r and p, which is done by setting a common root.
The end result is a tree like the Max-Tree.

A Comparison of Connected Filters – Roland Veen, Bjørn Lindeijer

8

Figure 3: Illustration of various decision rules in the case of non-increasing criterion. Source: [3]

3.4.2 Evaluation

The advantage of the union-find method is that it
doesn’t walk through the image level by level, but
instead it can process the image in parallel while
keeping track of connected components found. An-
other advantage of the union-find method is its low
memory usage. On large data sets this translates
to major speed increases.

4 Connected Set Operators

A few connected set operators are discussed.

4.1 Scale-invariant thinning opera-
tor

One example that uses the union-find method is
shown in figure 8. This example uses a 2563 volu-
metric dataset, showing that this method can per-
form well even with large datasets because of its
limited memory usage. The criterion used is based
on the momentum of the shape, distinguishing long
narrow objects from more compact ones, effectively
filtering out noise and preserving the blood vessels.

4.2 Some Anti-Extensive Operators

In Salembier et al. [3] the flexibility of the Max-
Tree is shown using many examples. We’ll mention
them here.

4.2.1 Simplicity criteria

The simplicity of a connected component is given
by the ratio between its perimeter P and area A.

Simplicity(C) = A(C)/P (C)

This criterium is not necessarily increasing,
hence a Viterbi algorithm is used to find the short-
est path from root to leaf. The cost of this path
is then thresholded. This takes into account much
better the overall appropriateness to include a con-
nected component than the Min, Max or Direct
decision methods would.

4.2.2 Motion

Given a Max-Tree of a single image from an ani-
mation, the decision of which components to be in-
cluded can be made by comparing the components
with their contents in previous time-steps. This is

NIOC 2004 proceedings

9

Figure 5: Connected components of upper and
lower level sets. Source: [2]

also not necessarily an increasing criteria, solved in
a similar way as the previous example.

5 Conclusions

The discussed algorithms for performing image op-
erations with connected sets look very interesting
with respect to flexibility and performance. The
FLLT looks very useful, and of the operators, the
scale invariant attribute thinning has already show-
ing a lot of promise in medical applications. When
comparing the union-find method to the Max-Tree,
the former seems to be better in practice (see figure
8), since it is optimized for memory, which becomes
more apparent when using real-size images.

Acknowledgements

Special thanks to Dr M.H.F. Wilkinson, Dr. J. Ter-
louw and Dr. R. Smedinga.

Figure 6: The tree given by the FLLT. Source: [2]

References

[1] A. Meijster and M. Wilkinson. A comparison
of algorithms for connected set openings and
closings, 2002.

[2] P. Monasse and F. Guichard. Fast computa-
tion of a contrast invariant image representa-
tion, 1998.

[3] P. Salembier, A. Oliveras, and L. Garrido. Anti-
extensive connected operators for image and se-
quence processing. IEEE Transactions on Im-
age Processing, 7(4):555–570, 1998.

[4] R.E. Tarjan. Efficiency of a good but not linear
set union algorithm, 1975.

A Comparison of Connected Filters – Roland Veen, Bjørn Lindeijer

10

Figure 7: Example of Fast Level Lines Transform.
Shown are the boundaries of shapes of respectively
10, 40 and 800 pixels. Source: [2]

Figure 8: A medical application of the scale invari-
ant attribute thinning. Source: [1]

NIOC 2004 proceedings

11

Assembling Classes at Runtime
By Peter Hut (p.h.hut@student.rug.nl) and Zef Hemel (z.hemel@student.rug.nl)

Abstract: This paper will describe the problem of assembling classes at runtime.
Four solutions will be considered and their advantages and disadvantages
explored. The solutions are: the Type Object pattern, the Adaptive Object-Model,
the UML Virtual Machine and using a Dynamic Language.

1. The problem
Dynamic and configurable systems
are the upcoming trend. Most
systems are demanded to be flexible
and easily extensible. This is needed
to adapt the system to changing
business rules (Rouvellou, 1998). An
example of this is a system designed
for administration of measurements
done in a hospital. There are many
different possible measurements. It is
not feasible to design a subclass for
each type of measurement.
Furthermore it is very likely that new
types of measurements need to be
added to the system after
deployment. The adding of new types
of measurement should be possible
for non-programmers. Additionally,
the system has to keep running at all
times. So shutting down the system,
adding the new classes, recompiling
the system and then starting it up
again is not an option. The solution
for this problem is assembling classes
at runtime.

As in this example, there are three
main reasons to need runtime
assembling of classes. They are:

The number of subclasses is
unknown upfront
The number of subclasses is
huge
Changes to the system have to
be made without the system
going down

2. Four solutions
For these problems four possible
solutions exist:

The Type Object Pattern
Adaptive Object-Models
The UML Virtual Machine
Using a Dynamic Language

Each of these solutions will be
discussed separately and at the end
the solutions will be compared to one
another.

2.1. The Type Object Pattern
The Type Object Pattern is a simple
way to assemble classes at runtime
(Johnson, 1998). An example will
describe how it works.

A library contains a lot of
different books. It also has multiple
copies of one book. Some
information about such a book, like
whether it has been borrowed and by
whom, is different for each copy. So
therefore, an instance of the Book
class is necessary for each copy. This
leads to duplication of information.

A possible solution is to create a
class for each title (for example
1984Book, TomSawyerBook and
TheTimeMachineBook). In the class
itself common data for all copies is
stored; each instance represents a
copy and stores data such as who has
borrowed it.

This solves the data duplication
problem, but is not very elegant.
Another problem is that for every
single title a subclass has to be

12

created. This is not only a lot of
work, but would also mean that for
every addition of a title a new class
has to be written.

The Type Object pattern solution
suggests creating two classes: Title
and Book. The Title class would
contain data common to all copies of
that title and the Book class contains
a reference to the Title class and
stores data specific to that particular
copy (such as who borrowed it).

Title

title : String

author : String

Book

isBorrowed : bool

borrower : String-

0..*

-

Figure 1 – Type Object pattern example.

Now, when a new copy of a book
comes in, a new instance of the Book
class can be created that references
the Title it belongs to. If a new title
comes in all that has to be done is the
creation of an instance of the Title
class and an instance of the Book
class for each copy that came in.

Figure 2 gives the more general
structure of the Type Object pattern.
The Type Object pattern has two
concrete classes, one that represents
objects and another that represents
their type. Each Object-class instance
has a pointer to its corresponding
TypeObject object.

TypeObject

typeAttribute : int

Object

attribute : int
-

0..*

-

Figure 2 - The Type Object pattern.

2.2. Adaptive Object-Models
If it is not only necessary to create
new classes at runtime, but also to
customise the attributes, associations
and the behaviour of these classes,
then the Type Object pattern isn’t
fully suitable. In the library example
no new attributes have to be defined,
these are all known upfront, but in

some cases the attributes that the
objects will have is unknown. In
many cases it is then possible to use
an Adaptive Object-Model.

To make the customisation of
attributes possible, the Type Object
pattern is combined with the Property
pattern (Foote, 1998). The property
pattern makes it is possible to
dynamically add attributes to classes.
The two patterns combined lead to
the architecture as represented by
Figure 3.

Object ObjectType

Property PropertyType

name : String

type : Type

0..*

- -type

-

0..*

-properties
-

0..*

-properties

0..*

- -type

Figure 3 – Type Object and Property pattern
combined.

The ObjectType object needs to
store a list of properties (and their
types) that its instances will have.
And each Object needs to store a list
of values for these properties.

To handle relationships between
objects two subclasses of
PropertyType are introduced:
AssociationType and AttributeType.
And two subclasses of Property:
Association and Attribute. See
Figure 4 - Handling associations
(Yoder, 2003).

NIOC 2004 proceedings

13

Object ObjectType

Property PropertyType

name : String

type : Type

Attribute

value : int

AttributeType

0..*

- -type

-

0..*

-properties

0..*

- -type

-

0..*

-properties

1..*

-

1..*

-

0..*

Association AssociationType
0..*

- -type 0..*

-

0..*

-

--type

Figure 4 - Handling associations (Yoder, 2003)

To define the behaviour of an
object, the Strategy pattern can be
used. Strategies can, for example, be
used to validate the values of
properties.

In general a Strategy is an object
that represents an algorithm. The
Strategy pattern defines a standard
interface for a family of algorithms
so that clients can work with any of
them. If an object's behaviour is
defined by one or more strategies
then that behaviour is easy to change.
(Yoder, 2001)

Figure 5 is a UML diagram of
applying the Type Object pattern
twice with the Property pattern and
then adding Strategies (called Rules
in the diagram).

Object ObjectType Rule

Property PropertyType
SimpleRule CompositeRule

0..*

- -type - -

0..*

-

-

-

0..*

-properties
-

0..*

-

0..*

- -type

Figure 5 - Handling strategies.

To show how Adaptive Object-
Models can be applied, an example
will be used from (Yoder, 2001). In a
hospital, measurements are done on
people. The number of different
kinds of measurements is very large
and not known upfront. That’s why it
should be possible for hospital

personnel (not just programmers) to
define new kinds of measurements.
Each measurement has different
properties and relations.

To implement these requirements,
the Adaptive Object-Model is used.
This results in the class diagram in
Figure 6. There are two types of
Observations. One type consists of
discrete values such as blood type or
eye colour (Trait). The other has
continuous values such as weight or
height (Measurement).

Person Observation ObservationType

Quantity Measurement Trait

traitValue : Symbol

-

0..*

-

0..*

--

0..* -

-

Validator

RangeValidator

unit : Unit

isValid(quantity)

DiscreteValidator

descriptorSet : Collection

isValid(discreteValue)

Range
0..* -

-

0..*

- -

Figure 6 - Hospital example.

To create a new kind of
observation a new instance of
ObservationType has to be created.
To be able to validate the values of
the measurements, the Strategy
Pattern is applied. The validators can
be used by the ObservationType to
check whether the value of an
Observation is legal. Because of the
two kinds of observations, for
Measurements and traits, there are
two kinds of validators. One
represents a range of Measurements
and one represents a set of Traits. A
validator is just an algorithm telling
whether a value is valid.

2.3. The UML Virtual Machine
The UML Virtual Machine is a
totally different approach to software
development, based on the Model
Driven Architecture (MDA). MDA
encourages efficient use of system
models in the software development
process and it supports reuse of best
practices when creating applications.
The main idea is to develop as much
as possible of the application through

Assembling Classes at Runtime – Peter Hut, Zef Hemel

14

design and less through
implementation.

UML is a well-known standard for
designing and specifying software. It
knows different diagrams, such as the
class diagram to define the structure
of the software and other diagrams to
specify the behaviour of the software.
The most used diagrams for
behaviour are state chart diagrams
and collaboration diagrams. In
version 1.5 of UML (OMG, 2003),
action semantics were added to allow
full specification of the behaviour of
software. Additionally the Object
Constraint Language (OCL) can be
used to define constrains on objects.

It’s very common to first design
an application in a UML application
(like Visio or Rational Rose) and
then implement it in some
programming language. Sometimes
the UML diagrams are used to
automatically generate some of the
code, interfaces and stubs for the
classes and methods.

Executable UML (Mellor, 2002)
takes this a step further. It eliminates
the implementation phase. The
Executable UML application will
read the UML specification and
compile it to executable code. This,
however, does still mean that the
system has to be restarted each time
the object model is adapted. So it
can’t assemble classes at runtime.

UML Virtual Machines (Riehle,
2001) on the other hand are different.
UML Virtual Machines will read the
UML specification and interpret it on
the fly. While the application is
running, the UML specification can
be changed. New classes, attributes
and associations can be added and
behaviour can be defined, all without
shutting down the application.
Algorithmic detail can be added as
hand-programmed policy classes that

fit into a well-defined extension
architecture.

The UML Virtual Machine, in
contrast to the Type Object pattern or
Adaptive Object-Models, is not a set
of patterns that can be used, but
rather a runtime environment that
runs the application. It's a product
that can be bought. At this moment,
though, there is no working
implementation of the UML Virtual
Machine. (Riehle, 2001) is working
on one, but it’s only slowly
progressing. There’s also a group at
the university of Massachusetts (Lall,
2004) working on an implementation
(expecting to deliver in May, 2005).

This system could be used as a
solution to assemble classes at
runtime, as the UML specification
can be changed at runtime, including
defining new classes. The problem is
that a UML tool will have to be used
to design the new classes, which not
every layman will understand. On the
other hand, it is imaginable that an
application can be created that
interfaces with the UML Virtual
Machine and exposes a user-friendly
GUI to the user to define new
classes, associations and behaviours.

Unfortunately there is no working
implementation of the UML Virtual
Machine yet. Therefore only guesses
can be made about its opportunities.

2.4. Dynamic Languages
Dynamic Languages such as Python
and Ruby allow runtime assembling
of classes and at runtime adaptation
of classes and objects, by design; it is
part of the dynamic nature of the
languages (Mertz, 2003). Everything
that can be done at “compile” time
can be done at runtime.

It is possible to generate classes
and methods; and attach new
properties and methods to classes and
individual objects. To show this, a

NIOC 2004 proceedings

15

simple Python example is included in
Listing 1 at the end of this paper. The
example implements a couple of
elements of the hospital example as
presented in section 2.2.

3. Comparing the solutions
The table on the next page gives a
quick overview of the differences
between the discussed solutions. In
the next sections we’ll discuss what
each row means.

3.1. Design complexity
Design in this context means how
much the complexity of the design of
your application increases because of
adding class assembling features.

Before the Type Object pattern or
an Adaptive Object-Model can be
used effectively it is necessary to
understand the principles of the
chosen method. These are not always
obvious. In practice both will result
in more design complexity, in
particular Adaptive Object-Models,
which requires quite a complex class
structure.

As an application can be designed
for a UML Virtual Machines as usual
and the changing of classes at
runtime comes with using the UML
Virtual Machine, the design
complexity is low.

Because class assemblage is very
common and natural in a Dynamic
Language, no special design tricks
have to be applied. Therefore the
design complexity of adding features
to assemble classes at runtime is low,
but the availability of these features
might not be obvious from the
design.

3.2. Implementation complexity
When the Adaptive Object-Model is
used it will result in a more difficult
architecture than when only the Type

Object pattern is used. Consequently
the first will be harder to implement.

When it is possible to use the
UML Virtual Machine as a
component off the shelf, not much
implementation work is needed,
except maybe a graphical user
interface to allow laymen to create
new structures. But of course, this all
depends on the implementation of the
UML Virtual Machine, which does
not exist as of yet. If an entire UML
Virtual Machine has to be
implemented, the implementation
complexity would become very high.

To use a Dynamic Language,
familiarity with the language is
necessary and a Dynamic-Language
interpreter has to be used or
integrated in the application.
Implementing the assembling of
classes at runtime is very simple.

3.3. Implementation language
constraints
For the Type Object, Adaptive
Object-Model and UML Virtual
Machine no particular language
features are required. For the
Dynamic Language solution to be
used, a Dynamic Language is
necessary (obviously).

3.4. Application-embedded domain
knowledge
When the Type Object pattern is used
the classes that can be assembled at
runtime can only be changed in
minimal ways and are, for the most
part, designed with the domain
knowledge in mind. Therefore a lot
of domain knowledge is embedded in
the application.

When an Abstract Object-Model
or Dynamic Language is used, even
the attributes of the classes can be
changed at runtime. This means the
system can still be adapted to a
domain in which it is used, even

Assembling Classes at Runtime – Peter Hut, Zef Hemel

16

while it is running. Therefore when
designing a system using an Abstract
Object-Model or Dynamic Language,
only limited domain knowledge has
to be embedded in the application, as
a lot can be defined at runtime. This
also depends on the tools the system
has available to change or add classes
at runtime. In most cases the purpose
of using an Abstract Object-Model
would be to let the user adapt the
system to domain in which it is used.

The UML Virtual Machine, like
Dynamic Languages, allows you to
assemble any kind of class at runtime
as desired, with any kind of
behaviour desired. Therefore very
little domain knowledge has to be
embedded into the application
upfront.

3.5. Change properties/association
at runtime
With an Abstract Object-Model,
UML Virtual Machine and Dynamic
Language it is possible to add and
remove properties of a class. With
just the Type Object pattern it is not.

3.6. Change behaviour at runtime
The Type Object pattern does not
allow you to change behaviour at
runtime, for an Adaptive Object-
Model the behaviour can only be
changed by using the Strategy pattern
(see Figure 5). The user, in many
cases, can choose one of pre-defined
strategies which is somewhat
limiting, but enough in many cases.

Depending on the chosen way to
implement behaviour in the UML
Virtual Machine, the system’s
behaviour can be fully changed at
runtime. In a Dynamic Language it is
possible to generate code at runtime
and instantly interpret it. So any kind
of logic can be generated at runtime.

3.7. Flexibility
Using the Type Object pattern means
that the new classes that can be
generated will have pre-defined
properties and behaviour.

When an Abstract Object-Model
is used the properties of the (at
runtime assembled) classes can be
modified and behaviour can be
chosen from pre-defined strategies.

The UML Virtual Machine allows
the creation of whole new programs
and there are no constraints. The
same goes for the Dynamic Language
approach.

3.8. Runtime overhead
If the Type Object pattern is used
instead of a normal class-subclass
relationship it would mean slightly
more runtime overhead than usual, as
the objects need to keep track of their
TypeObject-relation themselves.
Also some requests to the object
might need to be forwarded to its
TypeObject.

If, on the other hand an Adaptive
Object-Model would be used it,
would give more overhead than the
Type Object pattern, as it keeps track
of properties and relationships as
objects.

When the UML Virtual Machine
is used, the object model is re-
implemented on the object model of
the implementation language. On top
of that the application is run. This
will of course mean a lot more
overhead compared to implementing
the application directly in the
implementation language.

For Dynamic Languages, the
runtime overhead is hard to
determine. It highly depends on the
implementation of the Dynamic
Language’s interpreter. Most
implementations work like the
Adaptive Object-Models, others emit
machine code at runtime for the at-

NIOC 2004 proceedings

17

An entirely different solution is to
use a UML Virtual Machine. The
design of the system will be the same
as usual, but it would be possible to
also give the user the option to add
and change classes at runtime. From
this the same advantage is obtained
as from an Adaptive Object-Models,
but not the disadvantage that the
design is more complex than usual.
The problem is that currently no
finished implementation is available
of a UML Virtual Machine and
implementing one would mean quite
an investment.

runtime generated classes. In that
case there is hardly any runtime
overhead.

4. Conclusion
If a system needs to be created in
which:

there are a large amount of
sub-classes of one class;
the number of sub-classes
upfront is not known; or
it is necessary to make
changes without the system
going down;

then a solution can be used that
allows the assembling or change of
classes at runtime. Four solutions and
their advantages and disadvantages
were discussed.

The last solution that was
discussed, Dynamic Languages,
allows for a normal design and
implement of a system, and also
allows the addition of features to
allow users to make runtime changes
to the classes. The disadvantage in
this case is the restriction to a limited
group of implementation languages.

The Type Object pattern is quite
simple and can be used in any design
but offers limited flexibility.

The Adaptive Object-Model is
more flexible and allows the system
to be adapted later to better fit
organizational changes. This means
less domain knowledge is embedded
into the application compared to a
normal situation or when the Type
Object pattern is used. The drawback
of using an Adaptive Object-Model is
that the system will be more difficult
to understand.

5. References
Foote, B., Yoder, Y.W., “Metadata and
Active Object Models”, Proceedings of
Plop98. Techincal Report #wucs-98-25.
Washington University Department of
Computer Science. URL:
http://jerry.cs.uiuc.edu/~plop/plop98/final_s
ubmissions/P59.pdf (1998)

Assembling Classes at Runtime – Peter Hut, Zef Hemel

18

Johnson, R., Wolf, B., “Type Object”,
Pattern Languages of Program Design 3,
Addison Wesley. (1998)

Lall, A., Malinowski, A., Qureshi, M.,
Solaiappan, K., "UML Virtual Machine",
URL: http://umlvm.cs.umb.edu (2004)

Mellor, S.J., Balcer, M.J., "Executable UML:
A Foundation for Model Driven
Architecture", Addison-Wesley Pub Co; 1st
edition, ISBN 0201748045 (2002)

Object Management Group Inc., "Unified
Modeling Language specification 1.5"
(2003)

Mertz, D., “A Primer on Python Metaclass
Programming”, URL:
http://www.onlamp.com/pub/a/python/2003/
04/17/metaclasses.html (2003)

Riehle, D., Fraleigh S., Bucka-Lassen, D.,
and Omorogbe, N.,”The Architecture Of A

UML virtual machine”, Proceedings of
OOPSLA'01. ACM Press, New York, 327-
341. (2001)

Rouvellou, I., Degenaro, L., Rasmus, K.,
Ehnebuske, D., McKee, B., “Extending
business objects with business rules”.
Proceedings on Software Engineering:
Education & Practice. Page(s): 238 - 249.
(1998)

Yoder, J. W., Johnson, R., “The Adaptive
Object-Model Architectural Style”. URL:
http://www.adaptiveobjectmodel.com/WICS
A3/ArchitectureOfAOMsWICSA3.htm
(2003)

Yoder, J. W., Balaguer, F., Johnson, R.,
“Intriguing technology from OOPSLA:
Architecture and design of adaptive object-
models”, December 2001 ACM SIGPLAN
Notices, Volume 36 Issue 12

Listing 1: Runtime assembling of classes in Python 2.2+
class InvalidInputException(Exception):

"""The exception that's raised on invalid input"""
pass

def generateClass():
"""Generates an empty class"""
class Dummy(object):

pass
return Dummy

def generateDiscreteValidatingSetter(attr, allowedValues):
"""Generates a setter that validates discrete values"""
def alidate screte(self, value): v Di

if value in allowedValues:
 setattr(self, '__'+attr, value)

else:
raise InvalidInputException

return validateDiscrete
def generateRangeValidatingSetter(attr, lowerBound, upperBound):

"""Generates a setter that range validates a value"""
def alidateRange(self, va): v lue

if lowerBound <= value and value <= upperBound:
 setattr(self, '__'+attr, value)

else:
raise InvalidInputException

return validateRange

NIOC 2004 proceedings

19

def generateGetter(attr):
"""Generates a simple getter"""
def getter(self):

return getattr(self, '__'+attr)
return getter

Generate classes
BodyLengths = generateClass() # Composite class
LengthMeasurement = generateClass() # General length measurement

Add validating properties to LengthMeasurement
LengthMeasurement.value = property(generateGetter('value'), \
 generateRangeValidatingSetter('value', 0, 300))
LengthMeasurement.unit = property(generateGetter('unit'), \
 generateDiscreteValidatingSetter('unit',['meters', 'inches',\
 'feet']))

Instantiate and use the classes the natural way
lengths = BodyLengths()
lengths.arms = LengthMeasurement()
lengths.arms.value = 30
lengths.arms.unit = 'inches'

And now the same, the dynamic way
Obtain property names/values from somewhere
propname = 'fullbody'
valuepropname = 'value'
valuepropvalue = 1.85
unitpropname = 'unit'
unitpropvalue = 'meters'
Use them
setattr(lengths, propname, LengthMeasurement())
setattr(getattr(lengths, propname), valuepropname,
valuepropvalue)
setattr(getattr(lengths, propname), unitpropname, unitpropvalue)

Assign invalid values to properties
lengths.fullbody.value = 500 # Exception
lengths.fullbody.unit = 'yards' # Exception

Assembling Classes at Runtime – Peter Hut, Zef Hemel

20

Adaptive Object-Models

Peter Swart Nico van Benthem
Student Colloquium Group Student Colloquium Group

Department of Computer Science Department of Computer Science
University of Groningen University of Groningen
p.swart@student.rug.nl n.van.benthem@student.rug.nl

Abstract

Current software tools let developers model a software system and generate program code
which implements the modeled system. Using this method, there is a time delay between
changing the model and executing its implementation, which degrades the flexibility and
run-time adaptability of the software system. Adaptive Object-Models interpret the model of
the system at run-time. The architecture of Adaptive Object-Models uses several methods to
eliminate the time-delay and let changes to the model affect the system immediately.

The UML Virtual Machine is based on Adaptive Object-Models and provides an archi-
tecture for executing models. The use of UML as its input modeling language and its
implementation imposes new concepts and limitations of the UML Virtual Machine in relation
to Adaptive Object-Models.

Keywords

Adaptive Object-Model, Adaptive Systems, Meta-modeling, Meta-data, Causal Connection,
UML virtual machines, logical architecture, physical architecture.

1 INTRODUCTION

Traditionally, developers model a software
system using a modeling language like UML
[4] or OPEN [2]. The resulting model is
then used to generate program code, which
implements the modeled system. When the
model changes, the program code must be re-
generated, the system must be reinstalled and
reconfigured in order to make these changes
effective. With the generation step being

time consuming, rapid model prototyping is
almost impossible. This time delay also makes
optimization hard and often results in not
fully optimized systems.

Nowadays most information systems need
to be highly dynamic and flexible in order to
meet their customers business needs. To be
able to make changes to the system without
having to write new code, certain aspects

21

of the model can be disconnected from the
code. For example, instead of implementing
business rules in the code, they can be stored
externally in a database or XML files.

Systems where the description of the model
representing the changing needs of the user
are interpreted by the system at runtime are
called “Adaptive Object-Models” [3]. When
the object model is changed, the systems
behaviour is affected immediately.

A “UML virtual machine” [1] is based
on Adaptive Object-Models and uses the
UML language as its modeling language After
discussing the concept of Adaptive Object-
Models in more detail, this paper illustrates
how to embed UML in the meta-level archi-
tecture of Adaptive Object-Models. It also
addresses the new concepts and the resulting
limitations of the UML virtual machine in
relation to Adaptive Object-Models.

2 ADAPTIVE OBJECT

MODELS

In the architecture of traditional object mod-
els, different business entities are usually mod-
eled by different user classes. Code-generation
is used to generate programming-level classes
from their corresponding modeling-level
classes. In order to make changes in business
model affective, regeneration of the code is
needed.

In Adaptive Object-Models, business en-
tities are represented by instances rather
than classes. This way, new entity types
can be created at run-time by making new
instances of a generic class. To support this,
the architecture of Adaptive Object-Models
has to deal with several issues:

• Subclasses model the small differences be-
tween classes and represent the changing
business entities, so the number of sub-
classes is unknown.

• Although we cannot change a class with-
out having to change the code, their num-
ber and type of attributes must be able to
vary.

• Like attributes, business rules also have to
be able to vary without having to change
the code.

• In order to be able to change entity-
relationships easily and immediately we
need a way to separate associations from
attributes.

After a short description of the classical frame-
work for meta-modeling we will describe how
to handle each of these issues in the following
subsections.

2.1 Meta-modeling

The classical framework for meta-modeling is
based on an architecture with four metal-ayers
[6]:

• The information layer (M0) contains all
the objects that are currently instanti-
ated, also known as user objects.

• The model layer (M1) which contains the
objects describing the objects in the infor-
mation layer, also known as user classes.

• The meta-model layer (M2) contains the
objects describing the used modeling lan-
guage (e.g. UML).

• The meta-meta-model layer (M3) which
defines the objects used to represent the
modeling language.

Adaptive Object-Models – Peter Swart, Nico van Benthem

22

In the traditional code-generation approach
the modeling language (M2) is used to model
the business entities (M1). Then tools are used
to generate user classes (also M1) which can
be instantiated at run-time (user objects, M0).
This results in a disconnection in the meta-
modeling framework between modeling-level
classes (M1) and the user objects (M0, see fig-
ure 1). Instead of generating user classes from

Figure 1: The disconnection in the code gen-
eration approach.

the descriptions of business entities, Adap-
tive Object-Models make instances of a generic
class to model these business entities. New en-
tities can now be created or changed at run-
time, affecting the system immediately. This
eliminates the disconnection between layers
M1 and M0.

2.2 Subclasses

Object-oriented systems generally use the con-
cept of subclassing in order to model the small
differences between similar business entities.
For example, a book store has to deal with
different book types. All types have similar
properties but also properties specific for their
type.

In normal object models subclasses can be
created as shown in figure 2. Each subclass
inherits the attributes from its superclass
Book and has its own, specific attributes.

Figure 2: Traditional approach.

In Adaptive Object-Models, the TypeOb-
ject-pattern [3] is used to make subclasses
simple instances of a generic class. This way,
we can create an generic class BookType which
defines all common properties for its sub-
classes. Each instance of BookType represents
a new subclass having the same properties as
its generic class (figure 3). To create a new
subclass NovelBook at run-time, we can make
a new instance of BookType and set the name

property to novel.

Figure 3: Using the TypeObject pattern

To instantiate a subclass we would need to
create an instance from an instance. In-
stead, TypeObject-pattern requires another
class Book to represent these instances. So to
make an instance of the subclass NovelBook

we have to create an instance of Book and link
it to its corresponding subclass (see figure 3).

2.3 Attributes

Now we can create subclasses dynamically but
the attributes of a subclass are still fixed. If we
want to add an attribute, we would still have
to change the code. The solution to this is to
make a separate class PropertyType with at-
tributes for the name and type of the attribute
[3]. To add an attribute to a subclass we have

NIOC 2004 proceedings

23

to make a new instance of PropertyType and
link it to its corresponding subclass.

Figure 4: Property Types

For each new instance of the class Book

we now also have to create an instance of
Property to hold the values for each instance
of PropertyType that is linked to its subclass.

Figure 5: Properties

2.4 Rules and Algorithms

Policies and constraints on a system are called
business rules. These business rules affect
the behaviour of the system. They describe
which values of attributes are valid and
specifies when an algorithm can be or must
be executed. Because we want to be able to
create and change business rules at run-time
we cannot implement them as methods of a
certain class. Because we use a single class
Book to create instances of different types of
books, all these methods would have to be in
this class.

When we use a Rule object to imple-
ment these algorithms, it is easy to change
the behaviour by making or changing Rule

objects at run-time [3]. For example, we can
associate a Rule object to instances of the
BookType class.
Complex business rules are combinations of
primitive rules so two types of rules are pos-
sible. Primitive rules are elementary rules and
composite rules can be specified by a set of

Figure 6: Adding rules.

primitive rules. This can be modeled by mak-
ing subclasses of the Rule object.

2.5 Entity-Relationships

Relationships are properties of entities that as-
sociates it with another entity. Although there
are several ways to make a distinction between
properties and associations as attributes, in
Adaptive Object-Model designs, associations
are often represented as objects [3]. These ob-
jects can be created and changed during run-
time in order to adapt to the changing business
environment. Figure 7 illustrates how an asso-
ciation between a book and an author can be
created using an instance of the Association

object.

Figure 7: Association as an object.

Similar to attributes, we can link instances
of a AssociationType to the corresponding
instance of BookType to specify possible
entity-relations between two subclasses.

An association object always represents a
relation between two objects, but the cardi-
nality between these object should also be
specified. In our example, we would need
extra attributes in the association object to
specify that a book can only have one author.

Adaptive Object-Models – Peter Swart, Nico van Benthem

24

3 UML VIRTUAL MA-

CHINE

In the previous section we described the
architectural style of Adaptive Object-Models.
In this section we will describe the UML
Virtual Machine [1].

It is based on Adaptive Object-Models
and uses UML as its modeling language. We
will discuss how its architecture relates to the
architecture of Adaptive Object-Models and
what new concepts it has. Besides the new
concepts, we will also discuss the limitations
of the UML Virtual Machine in relation to
Adaptive Object Models.
The object of Adaptive-Model systems in gen-
eral is to make a causal connection between
meta-layer M1 and M0. A causal connection
is achieved when changes in the upper layer
immediately affect the underlying layer. The
UML Virtual Machine takes this one step fur-
ther: it realizes a causal connection between
all four meta-layers [1].

3.1 Architecture

Riehle [1] divides the architecture of the vir-
tual machine in two parts:

• The logical architecture describes how the
causal connection between all four layers
is obtained. The classes of all four lay-
ers are represented by instances. For ex-
ample. UML objects like Association

or Generalisation are represented as in-
stances of MetaClass in the logical archi-
tecture.

• The physical architecture describes the
physical classes that can be instantiated
to represent the logical objects. The phys-
ical objects can be described in a object-
oriented programming language like Java.

Figure 8 shows how the two layers relate to
each other. In our example, the user class Book
object is a physical instance of Class and the
user object book12345 is a physical instance of
Element.

3.2 Implementation

This section describes implementation issues
of Adaptive Object-Models and how the UML
Virtual Machine deals with these issues.

3.2.1 Behaviour modeling

Although modeling languages like UML are
able to describe object models, the modeling
of a system’s behaviour is less supported.
Adaptive Object-Models use the concept of
Strategy objects to add algorithmic detail
through business rules . Strategy objects
are used to define validation an operations on
business entities at runtime.

To describe the complete behavior of a
system based on the UML Virtual Machine,
the UML state charts technique is used to
describe the state and transitions of each
entities in the system. In addition, the Object
Constraint Language (OCL) is used to model
constraints on elements, like business rules.

But even with these additions UML is
not specified enough to be fully executable.
Because UML is a modeling language we still
need something to add algorithmic detail [1].
To add these details as hand-programmed
classes, a well-defined extension architecture
[8] is part of the virtual machine architec-
ture. Because hand-programmed classes are
needed, there is still a disconnection between
meta-layers M1 and M0.

NIOC 2004 proceedings

25

Figure 8: Relation between the logical and physical layer

3.2.2 Storing the model

In Adaptive Object-Model systems the user
model isn’t part of the code but is stored
externally. Different kinds of databases can
be used or the meta-data can be stored in an
XML-file as long as the system can read and
interpret it at run-time.

With the implementation of the UML
Virtual Machine, XMI [5] is used to specify
the model and its behaviour in UML. This
does not add any extra limitations to the
modeling capabilities of UML.

3.2.3 Understanding Adaptive Object-
Models

With the design of Adaptive Object-Models,
developers have to make a system that inter-
preters the model, rather than to implement
it. This is probably unconventional for most
developers, making the model difficult to un-
derstand and mistakes can easily be made. To
support developers, editors and programming
tools are made to assist them.

To assist business experts in changing
the system model and behaviour at run-time,

user interfaces must be created to specify new
types or strategies.

UML is a common accepted modeling lan-
guage and therefor suitable as input language
for an Adaptive Object-Model system.

3.2.4 Performance

The concept of Adaptive Object-Models
eliminates the time delay between changing
the model and affecting the running system.
However this time delay is eliminated by inter-
preting the model. At run-time, interpreting
a model will be slower than generating and
executing the code.

In the architecture of the UML Virtual
Machine all logical object are instances of
Element. Because it would be inefficient
to re-specify shared constraints for each
logical object, large parts of the UML classes
are implemented as subclasses of Element.
Furthermore UML classes like Attributes and
Associations are replaced by more efficient key
objects.

Adaptive Object-Models – Peter Swart, Nico van Benthem

26

3.2.5 Run-time Environment

Because UML itself is not (yet) a program-
ming language, it needs a dedicated run-time
environment to execute models. This run-time
environment will result in limitations of what
can be executed. The UML Virtual Machine
currently uses Java as its implementation lan-
guage.

4 RELATED WORK

In section 2 we discussed the TypeObject.
[7] highlights how to decouple instances from
their classes so that those classes can be
implemented as instances with an detailed
example.

The UML virtual machine is an architec-
ture for an Adaptive Object-Model bases on
UML and aimes for Java as its implemen-
tation language. [1] gives a more detailed
description of the architecture along with its
implementation.

A site [9] of Joseph W. Yoder links to
several example implementations of the
Adaptive Object-Model using Smalltalk or
Java.

5 CONCLUSIONS

An Adaptive Object-Model is a system that
represents classes, attributes, and relation-
ships as meta-data. The business model, along
with its business rules and policies, isn’t part
of the code but is stored externally to be inter-
preted at run-time. The basic idea is that user
classes can be created at run-time to specify
or change business entities at run-time. In the
architecture of the UML Virtual Machine all
logical classes are instances of physical classes

and can be created at run-time. Developers
have to build a machine that executes a model
rather than to implement the model itself.

Because UML isn’t specified enough to
describe the behaviour of the system, al-
gorithmic details have to be added by
hand-programmed classes. This disconnection
between the model and its execution conflicts
with the idea of Adaptive Object-Models.The
dedicated run-time environment needed to
execute UML also imposes limitations of what
can be executed.

References

[1] Dirk Bucka-Lassen Dirk Riehle,
Steve Fraleigh and Nosa Omorogbe.
The architecture of a uml virtual machine.
OOPSLA ’01, pages 327–341, 2001.

[2] Ian Graham Donald G. Firesmith, Brian
Henderson-Sellers and Meilir Page-Jones.
Open modeling language reference manual,
1998.

[3] Ralph Johnson Joseph W. Yoder, Fed-
erico Balaguer. Architecture and design of
adaptive object-models. ACM SIGPLAN
Notices archive, 36:50–60, 2001.

[4] OMG. Omg unified modeling language
specification 1.3, 2000. Available from
www.omg.org.

[5] OMG. Omg xml metadata interchange
(xmi) specification, 2000. Available from
www.omg.org.

[6] OMG. Metaobject facility specification
v1.4, 2002.

[7] Bobby Woolf Ralph Johnson. The type ob-
ject pattern, 1997. Available from www-
lifia.info.unlp.edu.ar/fer/classof.html.

NIOC 2004 proceedings

27

[8] Dirk Riehle. Framework design: a role
modeling approach, 2000.

[9] Joseph W. Yoder. Joe’s metadata and
adaptive object-model pages, 1998.

Adaptive Object-Models – Peter Swart, Nico van Benthem

28

A Survey on Taxonomies of Software Evolution

Wouter Storteboom and Arjen Vellinga

Institute for Mathematics and Computing Science
University of Groningen

P.O. Box 800, 9700 AV Groningen, The Netherlands
<w.storteboom, a.f.vellinga>@student.rug.nl

Abstract
Software evolution was an area that was hardly explored. Nowadays the impact
of software evolution is becoming known. In this article an overview will be
given on the current state of the taxonomy of software evolution. With the
taxonomy, a framework can be constructed for analyzing the software evolution,
models and tools. With the taxonomy of Felici a good starting point for the
analysis of the software evolution is given. Mens et al. proposes a practical
taxonomy for the evaluation of software tools for tracking software changes.
These taxonomies complement each other; Felici gives the analysis of the
evolution and Mens et al. provides the tools to gather data.

Keywords: taxonomy, software evolution, framework, change, analysis,
overview

1 Introduction
Today a world without computers and
software systems is not imaginable. We
depend on major systems like banking,
flight control, and telecommunications. It
is not reasonable to think that once those
systems were designed, they would never
change. The software systems operate in a
fast evolving world where new
technologies are developed, and
requirements for a particular system
change with time. It also becomes
apparent that as computer based systems
become more and more complex, that the
impact of changes has to be analyzed in
order to minimize the consequences.
Fixing a bug late during development is
known to cost more then one fixed early in

development. Software configuration
management deals with the procedures of
making a change in the software system,
but not with changes in the environment or
the people working with the system. Also,
there is little information on how effective
the software configuration management
was.

The change of software is called
software evolution. Software evolution is
regarded as inevitable and needed by [1],
although information about the subject is
scarce. Software evolution is almost
ignored by software engineering literature.
A survey in [2] showed that just one of a
hundred software engineering books
dedicated a separate chapter on software
evolution.

29

Without a proper definition and
classification of software evolution it is
hard for people to talk about the subject, or
to use it. So a taxonomy (division into
groups with similar attributes) of software
evolution can help in understanding it.
With a taxonomy, a conceptual framework
can be identified. Software evolution,
evolution models, formalisms and concrete
tools can be analyzed and compared when
using such a framework. This framework
could be used to evaluate tools for
gathering software evolution data (i.e. a
versioning control system).

The goal of this paper is to give an
overview on different taxonomies of
software evolution. The three proposed
taxonomies by Verhoef, Felici, and Mens
will be explained in section 2. In section 3
the proposals will be discussed and
compared. Section 4 concludes this paper.

2 Three proposed taxonomies
In this section three proposed taxonomies
on software evolution by Verhoef, Felici,
and Mens will be described.

2.1 “Software evolution: a taxonomy” by
Verhoef
In [3] a possible definition of software

evolution is introduced: Software evolution
concerns any change that is being made to
the entire set of programs, procedures,
and related documentation associated with
a computer system that makes up a
software system. According to Verhoef
there are three major aspects for software
evolution, namely: software maintenance,
software enhancement, and software life-
cycle enabling.

The next sections describe these three
major aspects.

2.1.1 Software maintenance
In [3] software maintenance is divided

into five types:
Predeliver maintenance: The activities
to support future maintenance and

ensuring supportability (i.e. automatic
update down loader).
Corrective maintenance: Maintenance
that is needed to correct actual errors
(i.e. bug fixing).
Adaptive maintenance: Maintenance of
software due to the changing
environment in which it operates (i.e.
porting to another platform).
Perfective maintenance: Optimization
of the software, performance, and its
documentation.
Preventive maintenance: All the
activities to prevent faulty behavior
due to unknown circumstances (i.e.
adding exception handling).

2.1.2 Software enhancement
Software enhancement can be

categorized into five types according to
[3].

Block functions: Adding new features
to an existing system without causing
extensive internal changes.
Modified blocks: Make internal
changes to the software system to
extend its functionality.
Modification and deletion: Replacing
an obsolete feature with a new one.
Scatter updates: Multiple new features
that cause extensive internal changes
throughout the whole software system.
Hybrid enhancement: Multiple
enhancements of poorly structured
legacy systems.

2.1.3 Life-cycle enabling
Life-cycle enabling is according to [3]

associated with legacy software and
software renovation. It consists of all the
previous activities described in sections
2.1.1 and 2.1.2.

It should be noted that paper [3] is not
yet complete.

A Survey on Taxonomies of Software Evolution Wouter – Storteboom, Arjen Vellinga

30

2.2.1 Software evolution 2.2 “Taxonomy of Evolution and
Dependability” by Felici Three patterns have been recognized by

[1].In [1] Felici describes a framework to
aid in the analysis of software evolution.
Felici regards evolution of computer-based
systems as a two-fold concept. On one
hand it is an inevitable and needed aspect
of computer systems. On the other hand
the degradation of the dependability of
computer-based systems may be due to
evolution.

Software tectonics emphasizes that
software systems need to
accommodate arising changes. This
includes fixing bugs, but also fixing
errors early in design. So software
has to be implemented in order to
support software evolution.
Software systems should be
adaptable to requirement changes
by a series of small and controlled
steps. By this, degradation of the
software could be avoided.

Felici defines the evolutionary space as
shown in figure 1.

Flexible foundation says that the
basics (tools, language, framework)
where a software systems is made
of, should be able to evolve also.
Metamorphosis pattern: With this
pattern, systems have mechanisms
that allow them to manipulate their
environment dynamically.

2.2.2 Architecture (design) evolution
When designing a software system the

evolution of the architecture is unclear.
Crucial is the ability to predict the
evolution, so the architecture should
implement the most suitable trade off
between generality and specificity.
Evolution can be divided in three groups,
namely architecture evolution, component
evolution or a combination of both.

Figure 1 - Evolutionary space

Horizontally the life-cycle of a software
system is displayed. This temporal
dimension stands for the design,
deployment, use of the computer system
and eventually the demise. Vertically the
physical dimension, where the evolution
takes place, is stressed. Five evolutionary
phenomena can be seen in figure 1 which
are: 2.2.3 Requirements evolution

Software evolution This form of evolution was regarded as
a management problem, but is receiving
more interest within Software Engineering
nowadays. What follows, are structures to
support the creation of models concerning
requirements evolution regarded by [1]:

Architecture (Design) evolution
Requirements evolution
Computer-based system evolution
Organization evolution

Although figure 1 shows the evolution
phenomena individually, there might be
overlap. So evolution could take place at
more than one level at the same time. The
different phenomena are described in the
following subsections followed by a
conceptual framework that is constructed
by looking at the dependability relations.

Type of requirements: This will
identify the stable and possible
changing requirements.
Dependencies between requirements
may be redefined across subsequent
releases in order to minimize them.

NIOC 2004 proceedings

31

Type of changes, like adding, deleting
and modifying requirements, define
how changes alter the specification of
the requirements.
Requirements trace ability provides
further information to analyze
requirements evolution. A combination
of the above structures and the formal
requirements specification can be used
to reason about requirements
evolution.

2.2.4 Computer-based system evolution
Computer-based system evolution

emphasizes the human aspects within
socio-technical systems. Socio-technical
systems are systems where the interaction
between humans and technology is
modeled. Figure 2 shows how the relations
could be between social and technical
systems.
A few models have arisen to capture data
on socio-technical systems. One such
model is social learning. Social learning
explains how humans perceive machines
in order to acquire computational artifacts
and accomplish specific tasks. Another
model is distributed cognition.

Figure 2

Distributed cognition recognizes the
complex settings of socio-technical
systems and analyzes how humans work,
operate and create internal and external

artifacts (e.g. rules, tools, representations,
etcetera).

The above models are quite useful in
order to look as a whole to analyze the
evolution of computer-based systems. But
they still need to be fully integrated with
classical engineering methodologies, such
as those described in the previous
subsections.

2.2.5 Organization evolution
Due to the strong link between the

social and technical evolution of
computer-based systems they influence an
evolution on organizational level. This
aspect of evolution is not fully researched.

2.2.6 Dependability of evolution
The dependability of a software system

changes as the software system evolves.
Some hints that can be used to assessing
the dependability are:

Software evolution: Monitor software
complexity; Identify the change-prone
parts of the software; Carefully
manage basic software structures;
Monitor dependability metrics.
Architecture (design) evolution:
Assess the stability of the software
architecture; Understand the
relationships between the architecture
and the business core; Analyze any
(proposed or implemented)
architecture change.
Requirements evolution: Classify
requirements according to their
stability / volatility; Classify
requirements changes; Monitor
requirements evolution.
Computer-based system evolution:
Acquire a systematic view; Monitor
the interactions between resources;
Understand evolutionary
dependencies; Monitor and analyze the
(human) activities supported by the
system.

A Survey on Taxonomies of Software Evolution Wouter – Storteboom, Arjen Vellinga

32

Figure 3

Organization evolution: Understand
environmental constraints; Understand
the business culture; Identify obstacles
to changes.

The hints can be used to construct a
conceptual framework for analyzing
software evolution.

2.3 “Towards a Taxonomy of Software
Evolution” by Mens et al.
In [4] a taxonomy of software evolution

based on the characterizing mechanisms of
change and the factors that influence the
mechanism, is proposed. In this way the
focus is shifted away from the purpose of
the change (i.e., the why, and who
question) and towards the underlying
mechanisms. The taxonomy is organized
into four logical groupings: temporal
properties, objects of change, system
properties, and change support. These
groupings will be discussed further on.

The purpose of this taxonomy is
manifold: (1) to position concrete software
evolution tools and techniques within this
domain; (2) to provide a framework for
comparing and combining individual tools
and techniques; (3) to evaluate the
potential use of a software evolution tool
or technique for a particular maintenance
or change context and thus; (4) to provide
an overview of the research domain of
software evolution.

The proposed taxonomy focuses on the
when, where, what and how aspects of
software changes. These aspects follow
from the logical groupings: temporal
properties (when), objects of change
(where), system properties (what) and
change support (how) (figure 3).

The proposed taxonomy is not complete
by any means. First of all, not all aspects
of software changes are taken into
consideration. The who and why aspects,
for example, are not dealt with. Second,
the proposed taxonomy is only one way of
many to group software change
mechanisms. And last, this taxonomy is

continuously evolving, since the basis
elements are also evolving.

In the next subsection the four factors
that define the evolutionary space, will be
described.

2.3.1 Temporal properties (when)
The when question addresses the

temporal properties that influences change
support mechanisms. In [4] the following
properties are mentioned:

Time of change: The time of change in
the software life-cycle will influence
the kinds of change mechanisms that
are needed. A software system that, for
example, has to perform changes at
runtime, must have a built in way to
load a new component correctly.
Change history: Change history has to
do with all the changes that have been
made to the software. This is what a
version control system like CVS would
do. If there was no version control
system, changes would overwrite the
previous ones and make it unable to
keep track of the change history of the
software.
Change frequency: Changes to a
software system may be performed
continuously, periodically or at
arbitrary intervals. If there are, for
example, frequent changes, the change
support mechanism has to be able to
handle that. Otherwise it will become
very difficult to roll-back the system to
a previous version.

NIOC 2004 proceedings

33

2.3.2 Object of change (where)
This grouping addresses the where

question. Where in the software can
changes be made, and which supporting
mechanisms are needed for this? In [4] the
following aspects of the where property
are regarded:

Artifact: Many kinds of software
artifacts (man-made products) are
subject to changes. This may vary from
changes in the requirements,
architecture, design, source code,
documentation and test environments.
Granularity: The granularity of a
change defines the scale of the change.
Coarse granularity could be changes to
the entire software system or a
subsystem. Medium granularity could
be changes to classes. Fine granularity
could be changes to local variables.
Impact: The impact of a change is
related to the granularity. Renaming a
local variable is a local change, but
renaming a global variable has global
effects throughout the software system.
The impact can also vary if there are
changes in the level of abstraction that
is used.
Change propagation: A change in one
part of the system can cause changes in
other parts of the system. For this,
mechanisms or tools are needed to help
with analyzing how these changes
propagate.

2.3.3 System properties (what)
The what question tries to answer what

the software system has to go through in
order to change. In [4] the following
factors are mentioned related to the system
properties:

Availability: Most software system
will continue to evolve during their
lifetime. If systems have to be
available the whole time, changes will
have to be done at run-time. These
systems will have to be designed
differently from systems that do not
have to be available the whole time.

For them it is acceptable not to be
available while changes are made.
Activeness: Software systems can
either be reactive or proactive. A
proactive software system has internal
monitors and logic to automatically
change itself. A reactive system has
changes applied to it externally.
Openness: Software systems have a
certain degree of openness. An open
system is a system that was built with
the idea of extensions. It usually has a
framework that allows it to support
extensions. An operating system is the
perfect example of this. A closed
system has no support for extensions.
That does not mean it cannot be
extended but changes are more
difficult to make.
Safety: A software system has to act
flawless. Changes can cause unwanted
behavior but a safe system would have
safeguards for that. Static safety would
ensure that there are no errors at
compile-time. Dynamic safety is
provided by a system to minimize
errors and odd behavior at run-time by
including code to prevent or restrict
undesired behavior.

2.3.4 Change support (how)
During a change, various support

mechanisms can be provided. These
mechanisms help to analyze, manage,
control, implement or measure software
changes. The proposed mechanisms in [4]
are:

Degree of automation: Mechanisms to
support software changes can be fully
automated, partially automated or
completely manual.
Degree of formality: A change support
mechanism can be based on a
formalism or on an ad-hoc way of
applying the change.
Process support: Process support is the
extent to which activities in the change
process are supported by automated
tools.

A Survey on Taxonomies of Software Evolution Wouter – Storteboom, Arjen Vellinga

34

Change type: Structural changes are
adding, removing or modifying parts
of the system. Semantic changes deal
with the actual coding of the system.
Other change types have been
presented in [5]. The type of change
influences the way the change is
performed.

Future work will go into the usage and
extension of the proposed taxonomy to be
able to compare change support
formalisms and processes.

3 Discussion
People are becoming more aware of the
impact of software evolution and the need
for a taxonomy of it. Verhoef, Felici, Mens
et al. described different taxonomies.
When comparing the three proposed
taxonomies of software evolution in this
paper it is clear that Felici [section 2.2]
takes a more abstract approach. He defines
the evolutionary space by just two
dimensions, namely when and where the
evolution takes place. In this space he
places five evolutionary phenomena
(software evolution, architecture
evolution, requirements evolution,
computer-based system evolution and
organization evolution). With this rather
limited classification the taxonomy stays
more general in its description. On the
other hand Mens et al. [section 2.3] takes a
more concrete approach. More dimensions
are used for defining the evolutionary
space (the when, where, what, and how
questions). By this more extensive
arrangement of evolutionary phenomena a
more detailed taxonomy is formed. That
his taxonomy is more practical is proven
by the evaluation in [4] of three tools by
the proposed taxonomy.

Verhoef proposed in [section 2.1] a
taxonomy of software evolution which is
the least extensive of the three described.
He only mentioned five forms of
maintenance and five types of

enhancements. In our view this is not a
complete taxonomy, because maintenance
and enhancements are also covered by the
change type of the how question of Mens.
Also other factors, like for instance
temporal properties, are not evaluated by
Verhoef.

In the previous section three
taxonomies on software evolution were
described, but only Verhoef proposed in
[3] a definition: Software evolution
concerns any change that is being made to
the entire set of programs, procedures,
and related documentation associated with
a computer system that makes up a
software system. This definition is not
applicable to the other two taxonomies.
Felici and Mens takes a lot more factors on
software evolution into account. An
example of this is that humans could also
be regarded as a factor for software
evolution. Software is developed for
humans, so it is an important factor. The
end-user of a software system learns when
working with the software and humans
also drive technical innovations which
lead on their turn to software evolution.
Mens et al. and Verhoef do not consider
the human factor in their taxonomies.

Next to the differences between the
taxonomies, there are similarities. The
proposed taxonomy of Mens et al.
describes a way to evaluate tools that
support the gathering of evolutionary data.
This is an implementation of the software
that is needed to support software
evolution, according to Felici [section
2.2.1]. The proposed taxonomy of Verhoef
also adds to the software evolution of
Felici [section 2.2.1]. Verhoef gives a
more detailed description than Felici. The
other parts of the taxonomy of Verhoef,
could also add detail to the organisational
evolution [section 2.2.5] when it is
finished. But at the moment of writing this
is not known. Overlap is present in these
taxonomies and could make a contribution
to a generic taxonomy of software
evolution.

NIOC 2004 proceedings

35

4 Conclusions
Software evolution was a neglected field
of research but has grown. In order to have
a common vocabulary for everyone to talk
about software evolution, a taxonomy is
the next step. Three proposed taxonomies
are described and discussed.

In our opinion the proposal of Verhoef
can not be regarded as a complete
taxonomy. The maintenance and
enhancement of software is covered by
Mens et al.

The definition of software evolution
given by Verhoef is rather limited; it is not
applicable on the taxonomies by Felici and
Mens. But we think that it is necessary to
come with a better definition. With such a
definition the evolutionary space can be
defined better.

The taxonomy of Felici is an abstract
taxonomy that makes for a good starting
point to proceed with in research. The
taxonomy of
Mens et al is oriented in a practical way.
This taxonomy also gives an example of
the actual use of software evolution
analysis by evaluating three different tools.
So at the moment the proposals of Felici
and Mens et al complement each other and
could be used together as one taxonomy.
From this new taxonomy, further research
can be done.

5 References
[1] M. Felici. Taxonomy of Evolution and

Dependability, LFCS School of
Informatics, The University of
Edinburgh, United Kingdom

[2] C. Jones. Estimating Software Costs
H10 p595-596, McCraw-Hill, 1998

[3] C. Verhoef. Software Evolution: A
Taxonomy, University of Amsterdam,
Amsterdam, The Netherlands

[4] T. Mens, J. Buckley, M. Zenger and A.
Rashid. Towards a Taxonomy of
Software Evolution, Vrije Universiteit
Brussel Belgium.

[5] N. Chaplin, J. Hale, K. Khan, J. Ramil
and W.-G Than. Types of software
evolution and software maintenance,
Journal of software maintenance and
evolution p3-30, 2001

A Survey on Taxonomies of Software Evolution Wouter – Storteboom, Arjen Vellinga

36

Efficient software engineering using software reuse

Bart Lemstra 1211196 and Roland Oldengarm 1211234

l.lemstra@student.rug.nl, r.oldengarm@student.rug.nl

Abstract
Software reuse is getting more important in software engineering. Systems are getting bigger
and it would save a lot of time if existing software components (code, design, etc.) could
be reused. In this paper a number of programming techniques are discussed which make
software reuse easier. At the end a technique for component base reused is discussed.

Keywords: Software reuse, Separation of concerns, Aspect Oriented Programming, Subject
Oriented Programming, Component adaptation techniques

1 Introduction

Software products are getting larger and more com-
plicated. It is harder and harder to write good
software programs totally from scratch. The pri-
mary goals of software engineering are to improve
the quality of the software produced and to re-
duce the costs of construction and later on main-
tenance. Maintenance requires a comprehensible
software product. A good way to achieve software
comprehensibility and quality is to construct the
software out of manageable pieces. This can be
achieved by decomposing the software product into
components. If the software is built up like this in
a good manner, the different components can be
reused in future software products. Also complex-
ity is divided over the different components, so it is
easier to adapt the product. Component based soft-
ware engineering also allows existing components to
be used in the product. In this paper we will dis-
cuss different ways how software can be built up
from components and how these components can
be reused in other software products.

2 Separation of concerns

Even in small software products contain lot of dif-
ferent units (units are e.g. classes). When perform-
ing some development task, the developer must be
able to focus those units that are pertinent to that

task and ignore all others. To accomplish this,
software engineers identify concerns of importance,
and seek to localize units representing concepts
that pertain to each concern into a module. Ideally,
one only need to look inside a module if one is in-
terested in a given concern. For example, a class is
a module containing units (describing methods and
instance variables) that model a particular kind of
object; all internal details of such objects, such as
their representation, are described within the class.
Separation of concerns of a software product will re-
duce the complexity of the software product. Also
(parts of) the product can be reused and mainte-
nance is easier to perform. Separation of concerns
in multiple dimensions is discussed in [8]. They
describe a new way how software artifacts can be
modelled and implemented. This model allows sep-
aration of overlapping concerns along multiple di-
mensions. All current software formalisms support
separation of concerns, using decomposition and
composition. However, they provide only a lim-
ited set of decomposition and composition mecha-
nisms. Separation of concerns in multiple dimen-
sions claims not to have these limitations.
Software products consist of artifacts, such as re-
quirements, design and code. Each artifact is be-
ing made up of units. E.g. in object-oriented pro-
gramming each unit is a class. Units which con-
tains smaller units are called compound units; the
smaller units (which do not contain smaller units)

37

are called primitive units. The purpose of separat-
ing the product into different modules is Separation
of concerns[7]. Even software products of moderate
size are too large to be contained in one unit. That
is why it is separated into different units. Ideally,
when solving a problem, a software engineer can
focus only on the relevant unit and can ignore all
other units. Many kinds of concerns are important
during the development, we call them dimensions
of concern. Most common are data or object (data
abstraction) or functional concerns (leading to sep-
aration into functions). Some concerns come from
the domain in which the product is placed, others
come from the requirements. E.g. object-oriented
programming allows for decomposition to only a
single dimension of concern, namely the data di-
mension. This is called the dominant dimension.
In the formalism used, this dominant dimension
should be stated.
However, decomposition along only one dominant
dimension is in most cases inadequate. Modules
and units become tangled and concerns are not sep-
arated well anymore. So, separation of concerns is
not possible anymore. In [8] hyperslices are intro-
duced to solve this problem.

2.1 Example: SEE

Because hyperslices are not easily understood, we
give a short example. We take a look at the con-
struction of a simple software engineering environ-
ment (SEE) for programs consisting of expressions.
We assume a simplified software development pro-
cess, consisting of informal requirements specifica-
tion in natural language, design in UML, and im-
plementation in Java. In short, the requirements
are: The SEE supports the specification of expres-
sion programs. It contains a set of tools that share a
common representation of expressions. The initial
tool set should include: an evaluation capability,
which determines the result of evaluating an expres-
sion; a display capability, which depicts an expres-
sion textually; and a check capability, which checks
an expression for syntactic and semantic correct-
ness.

2.1.1 Evaluating the SEE

In [8] the system is now evaluated by looking at
the system and how it reacts on possible future

changes. We will sum up their general conclusions:

Impact of change The goal of low impact of
change requires additive (adding components
or code, e.g.), rather than invasive (changing
existing code). Simple changes often have a
widespread and invasive when applying them
to for example the expression SEE.

Reuse Many people see reuse as the holy grale, be-
cause it should be the answer to the growing
complexity of programs. But reuse is currently
often limited and only used on code, not on re-
quirements or designs. Part of the impediment
to large-scale reuse is that larger artifacts en-
tail more design and implementation decisions,
which can result in tangling of concerns and
coupling of features, thus reducing reusability.

Traceability Different artifacts are written for
different purposes and include different levels
of abstraction. Thus, they are specified in dif-
ferent formalisms and are often decomposed
and structured differently. Developers must
create connections among related artifacts ex-
plicitly (e.g. in [3]). These connections are
complex and can be invalidated readily, and
more important, they do not solve the prob-
lem of tangling or scattering.

The other conclusion is that the main reason for
these problems is the tyranny of the dominant de-
composition, as said before. Using current pro-
gramming techniques, only support a small set of
decompositions and usually only a single dominant
one at a time. This dominant decomposition sat-
isfies some important needs, but usually at the ex-
pense of others. For e.g., when decomposing to
minimalize the impact of future changes, the trace-
ability may decrease.

2.1.2 Breaking the tyranny

To achieve the full potential of separation of con-
cerns, we need to break the tyranny of the dominant
decomposition. If a system could be modularized
according to all possible concerns (e.g. features),
the problems described would be solved. Hyper-
slices are a solution; we will use the example of
SEE to explain hyperslices.

Efficient software engineering using software reuse – Bart Lemstra, Roland Oldengarm

38

2.2 Hyperslices

Hyperslices are a set of conventional modules, each
module is written in any formalism. Hyperslices are
intended to encapsulate one dimension of concern
other than the dominant dimension. The modules
and units that are contained thus only pertain a
given concern. It can occur that one unit is in more
than one hyperslice, thus hyperslices can overlap. A
system is built up from multiple hyperslices. There
will be a hyperslice for each necessary dimension of
concern. It is not required new artifact formalisms
have to be used, so the engineer can use their fa-
miliar formalisms. The modules inside a hyperslice
are standard modules, except that they only con-
tain the units pertinent to the concern of the hy-
perslice. This can give problems in e.g. Java, which
require that all methods are declared. However, be-
cause hyperslices are composed later on, the miss-
ing methods will be combined again. The system
is built up from hyperslices, thereby separating all
the concerns of importance in the system.
To make it more clear we take a look at how SEE,
the example from the previous section, will look
like in terms of hyperslices:

2.2.1 Composing hyperslices

When we have defined the hyperslices, they have
to be composed. This is achieved by hyper-
modules, a hypermodule is a set of hyperslices.
Each hypermodule has a composition rule that
specifies how the hyperslices should be composed.
The composition rules have to be defined by the
engineer. Note that the complete system is also a
hypermodule, consisting of all artifacts.
Composition is based on commonality of concepts
across units. Units with the same concept are
combined. This is done in three steps:
Matching the concepts of the units in different
hyperslices, reconciliation of differences in these
descriptions and integration of the units to provide
a unified whole. The rule stated in [8] comes from
their research into subject oriented programming
[2; 6]. Their approach is one general rule and
specific rules for exceptions on the general rule.
An alternative is to define different rules for each
hyperslice, thus let each hyperslice specify how it
is composed. If it is possible that hyperslices can
refer to other hyperslices, coupling is increased and

thus reusability will decrease. Other hyperslices
can be referred to come to a composition. If not,
flexibility is decreased, but reusability is increased.
The solution is to put the rule a level higher, in the
hypermodule. This manner allows for enhanced
flexibility and flexible overlap.

2.3 Summary

Summarizing hyperslices, each artifact is written
as a hypermodule. For each concern of importance
that can not be encapsulated using artifacts effec-
tively using the artifact formalism, a hyperslice is
introduced. Composition rules are written which
define how the hyperslices are combined together.
An enclosing hypermodule is defined which encap-
sulates the entire system.

3 Aspect-Oriented Programming

Using object-oriented programming (OOP) it is
very difficult to capture all the important design
decisions a program must implement. In [4] a new
programming technique, aspect-oriented program-
ming (AOP) is presented. The issues that design
decisions address are called aspects. AOP makes
it possible to clearly express programs involving
such aspects.

In general, whenever two properties being
programmed must compose differently and yet be
coordinated, we say that they cross-cut each other.
Because existing programming languages provide
only one composition mechanism, the programmer
must do the co-composition manually, leading to
complexity and tangling in the code. An aspect
is a property that has to be implemented and
can not be cleanly encapsulated in a generalized
procedure. A component on the other hand, can be
encapsulated in a generalized procedure. The goal
of AOP is: to support the programmer in cleanly
separating components and aspects from each
other. Existing programming languages only allow
the programmer to separate components, and not
aspects. When using an existing programming
language, these aspects become intangled in the
code. This could be solved by using AOP.

NIOC 2004 proceedings

39

Aspect-oriented programming allows for ap-
propriate isolation, composition and reuse of the
aspect code. It is a new technique, and only at the
beginning stage. A lot of things still have to be
researched, but AOP is a very promising idea.

4 Subject oriented programming

In classical object-oriented programming the differ-
ent views of the users of the system are not taken
into account. In [2] they introduce a new object-
oriented approach, called subject oriented program-
ming. When we look at a tree, the class in classical
object-oriented programming would have for exam-
ple the following properties:

Properties Height, weight, density

Actions Grow, photosynthesis.

But e.g. a tax-assessor has his own view which
differs from the class above. A property he may
be interested in is assessed value when cutting the
tree. To solve this problem, the designer of the
tax-assessor application can do it two ways:

• Using encapsulation and polymorphism which
inherits all methods and properties of the su-
perclass Tree but implements new methods es-
pecially for the tax-assessor.

• Integrating the methods and properties which
are particular for the tax-assessor into the class
Tree.

The latter is unmanageable, because the tax-
assessor was just an example. Other applications
(application in terms of a program), such as a bird
or a gardener, have their own methods and prop-
erties too and have to be integrated in the class
Tree. This will result in an unmanageable large
class Tree.
Note that the names tax-assessor, bird and gar-
dener are just random chosen. The tree also could
have been a node in a parse tree and the bird the
compiler.
The first solution is better than the latter, but there
is one big disadvantage. To use the advantages of
polymorphism and encapsulation, the designer has
to cope with a ever-expanding collection of meth-
ods and properties. Because not all programming
is done in-house, the designer has to implement

all future requirements at forehand. This is, as
you can imagine, impossible. Subject-oriented pro-
gramming may be the solution.

4.1 Overview

The overall goal of subject-oriented programming is
to facilitate the development and evolution of suites
of cooperating applications. Applications share ob-
jects and jointly contribute to the execution of the
program. The following requirements should be
met:

• It must be possible to develop applications sep-
arately and compose them later on.

• The different applications should not be de-
pendent on other applications they are to be
composed with.

• The composed applications might cooperate
loosely or closely, and might be tightly bound
for frequent , fast interaction or be widely dis-
tributed.

• It must be possible to introduce new applica-
tions into the composition, without changing
the other applications.

• Unanticipated, including new applications
that extend the current applications in unan-
ticipated ways, must be supported. This is
discussed in more detail in [5].

• Within each application, polymorphism, en-
capsulation and inheritance should be main-
tained.

The link with object-oriented programming is
discussed in more detail in [1].
In subject oriented programming each application
is a collection of one or more subjects. A subject is
defined as a collection of states and behaviors; thus
a perception of the world as seen by a particular
application or tool. Subjects are not the same as
classes; they describe the behavior and states of
many classes.
In classical object-oriented programming particular
state and behavior are often thought of as intrinsic
to an object. In subject oriented programming the
developer is free to have a subject deal with this.
Thus, the subject deals with the intrinsic proper-
ties of more than one object. Any manipulation of

Efficient software engineering using software reuse – Bart Lemstra, Roland Oldengarm

40

an intrinsic property of a particular object should
be handled by that object.
One essential characteristic of subject-oriented
programming is that different subjects can sepa-
rately define and operate upon different subjects,
without any subject needing to know the details
associated with those objects by other objects.
Only object identity is necessarily needed.

A subject activation is nothing more than an
executing instance of a subject, including the
data which is manipulated. Subjects can also be
composed. Composition rules has to be defined,
they tell how the composition of the different
subjects takes place.
An object identifier (or an OID in short) gives us
a unique identification of the objects, global or in
the context of a subject.

In classical object-oriented programming, an
object model is the model seen by any subject.
Within a subject, an object ha an implementation
class, according to the needs of the subject.
Thus, subject-oriented programming includes the
classical object-oriented programming.
Interfaces describe which operations a class of
objects supports. Because the underlying code is
not known (it is seen as a black box), this leads
to enhanced flexibility and software reuse. In clas-
sical object-oriented programming this is already
often used. In subject-oriented programming
this is essential, because subjects do not know
the implementation of other subjects, only their
interface.

4.2 Conclusion

Classical object oriented programming gives in
some cases serious problems. Subject oriented pro-
gramming, which uses classical object oriented pro-
gramming can be the solution. A subject is a part
of the whole system and the subject compositor
puts these parts together to a whole.
Subjects consist of a number of classes and inter-
act with other subjects through their interface. The
subjects are seen as black boxes, thus their imple-
mentation is invisible to the outer world. This leads
to greater flexibility and software reuse.

5 Component adaptation techniques

The aim of component reuse is to create a collec-
tion of reusable components that can be used for
component-based application development. This
can allow for faster and cheaper development. Ex-
isting reuse techniques however are rather naive.
They assume that existing components can just be
plugged into an application. This is of course not
true. Often a component needs to be adapted in
order to fit into a specific application. There are
several traditional techniques for adapting a com-
ponent.

5.1 Requirements

There are a couple of requirements that the adap-
tion techniques should meet in order to be success-
ful.

Transparent The adaptation should be transpar-
ent. This means that both the user of the
adapted component and the component it-
self are unaware of the adaptation in between
them.

Black-box The software engineer should be able
to view a component as a black box. This
means that the adaptation technique needs no
knowledge of the internal structure of the com-
ponent.

Composable The adaptation technique should be
easily composable with the component for
which it is applied. Also, the adaptation
should be composable with other adaptations,
it may be that a component needs multiple
adaptations.

Configurable Adaptation techniques have to be
sufficiently configurable in order to be useful.

Reusable The adaptation technique should also
be reusable, so that the adaptation type can
be reused in the future.

5.2 Different techniques

There are three convential component adaptation
techniques, copy-paste, inheritance and wrapping.
Using copy-paste, a software engineer just copy
pasts parts of existing components. The engineer

NIOC 2004 proceedings

41

will often make changes to the code before actually
using it. Copy-paste is a transparent technique.
The requirements for black-box, composable, con-
figurable and Reusable are not met. A second tech-
nique for white-box adaptation and reuse is pro-
vided by inheritance. Inheritance provides the im-
portant advantage that the code remains to exist in
one location. However, one of the main disadvan-
tages of inheritance is that the software engineer
generally must have detailed understanding of the
internal functionality of a superclass. This is also a
transparent technique. Whether it meets the black-
box requirement, depends on its implementation in
the language model. The composability require-
ment is partly met. Configurability and reusabil-
ity are hardly supported. Wrapping declares one
or more components as part of an encapsulating
component, i.e. the wrapper, but this component
only has functionality for forwarding, with minor
changes, requests from clients to the wrapped com-
ponents. An important disadvantage of wrapping
is that it may result in considerable implementa-
tion overhead since the complete interface of the
wrapped component needs to be handled by the
wrapper. Wrapping is not transparent and config-
urable, but is does support black-box and compos-
ability. The wrapper can be reused in those cases
where exactly the same adaptation behavior is re-
quired.

Concluding, none of the conventional component
adaptation techniques fulfils the requirements that
are required for effective component-based software
engineering.

5.3 Super imposition

Super imposition as a concept is a very suit-
able technique for adapting components in a
component-based system. A component and the
functionality adapting the component are two
separate entities, but need to be very tightly
integrated. Often, both the component and the
adaptation technique are reusable entities. The
combination of component and adaptation how-
ever, is in most cases too specific for reuse. So, in
super imposition, in addition to a set of reusable
components, there is a set of reusable component
adaptation types. The adaptations should be
configurable and composable. This should allow
for complex component adaptations. Components

can be adapted by more than one adaptation type.

A object o is defined as o = (I,M, S, P) where
I indicates the interface of the object, M the
set of methods, S the state space formed by
the instance variables and P the mapping from
the interface to the methods. An object can
have a set of superimposing entities gn. An
entity gn can be composed with an object o. This
results in another object o′. o′ is an adaptation of o.

There are different component adaptation types:
component interface changes, component composi-
tion and component monitoring.

5.3.1 Component interface changes

It is often the case that the interface of a component
that is to be reused does not match the expected in-
terface. Typical examples are that operations have
the wrong names or that the interface contains ir-
relevant operations. In this case, the interface of
the component has to be adapted. There are some
typical examples of component interface changes:

Changing operation names Some of the names
of the operations provided do not match the
expected interface

Restricting parts of the interface A compo-
nent may require the exclusion of a part of
the interface. This part may not be relevant.

Client and state-based restriction A compo-
nent may need to act in several roles. This
requires the component to present a tailored
interface to each client type.

5.3.2 Component composition

During the design of a system, an overview of the
needed components is defined. When searching for
suitable components, it may occur that there isn’t a
component that exactly matches the required com-
ponent. It can however be the case that the re-
quired component can be composed of two or more
components. There are three types of component
adaptation relevant for component composition:

Delegation of requests If a component is not
able to provide a required service, the compo-
nent can delegate a request for such a service

Efficient software engineering using software reuse – Bart Lemstra, Roland Oldengarm

42

to another component that is able to provide
the requested service.

Component composition Two components can
be aggregated in a encapsulating component.

Acquaintance selection and binding
Virtually all components require other
components, acquaintances, to provide them
with services in order to be able to deliver the
functionality needed by the system.

5.3.3 Component monitoring

This category is, as the name implies, primarily
concerned with the monitoring of the component so
that other components are notified or invoked when
certain events at the monitored component occur.
There are again three examples of monitoring that
can be superimposed on reusable components:

Implicit invocation The concept of implicit in-
vocation is concerned with notifying relevant
components, either directly by message send-
ing or indirectly through event generation.

Observer notification This explains how the re-
lation between some object and a set of objects
depending on the state of that object should
be implemented.

State monitoring In some cases, dependent com-
ponents do not want to be notified for every
state change in the observed component, but
only when the component state exceeds certain
boundaries.

5.4 Evaluation of super imposition

Super imposition meets all the requirements for an
adaptation technique. It is fully transparent and
fully black-box. Adaptation types can be freely
composed with each other. The adaptation types
are configurable and reusable. So super imposi-
tion is superior to the conventional adaptation tech-
niques.

6 Conclusion

The main problem of software engineering in the
future will be the larger and more complex sys-
tems that have to be built. To solve this prob-
lem, we have presented a couple of techniques in

this paper that help in building better understand-
able and maintainable software systems. Subject
and aspect oriented programming aid in designing
and programming in a way that is much better for
maintainability and reusability. Super imposition
is a very promising technique for reuse. The ideas
behind these techniques are good, but it remains
to be seen if they will really work in practice. Only
time will tell.

References

[1] W. Harrison, H. Ossher, and M. Kavianpour.
Integrating coarse-grained and fine-grained tool
integration. Proceedings of Fifth Internation
Workshop on Computer Aided Software Engi-
neering, 1992.

[2] W. H. Harrison and H. Ossher. Subject-oriented
programming (a critique of pure objects). In
OOPSLA, pages 411–428, 1993.

[3] R. Kadia. Issues encountered in building
a flexible software development environment:
Lessons from the arcadia project. Proceedings
of the Fifth ACM SIG-SOFT Symposium on
Software Development Environments (SDE5),
pages 169–180, 1992.

[4] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. V. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. Pro-
ceedings of the European Conference on Object-
Oriented Programming (ECOOP), 1997.

[5] H. Ossher and W. H. Harrison. Combination
of inheritance hierarchies. In OOPSLA, pages
25–40, 1992.

[6] H. Ossher, M. Kaplan, A. Katz, W. Harrison,
and V. Kruskal. Specifiying subject-oriented
programming. TAPOS, 1996.

[7] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun.
ACM, 15(12):1053–1058, 1972.

[8] P. L. Tarr, H. Ossher, W. H. Harrison, and
S. M. S. Jr. degrees of separation: Multi-
dimensional separation of concerns. In ICSE,
pages 107–119, 1999.

NIOC 2004 proceedings

43

An introduction to Software aging:
How to deal with it?

Rodney Heinkens, Onno de Graaf
R.Heinkens@Student.RuG.nl, O.de.Graaf@Student.RuG.nl

Dept. of Mathematics and Computing Science, University of Groningen

Abstract. Even though software is a mathematical product, it can still age. In this
paper, we identify two types of software aging, namely aging due to updating a
software product and aging due to the lacking of updating the software product.
We discuss several causes and corresponding causes related to software aging.
Finally, we will propose several methods to deal with software aging. Our conclu-
sion, however, is that software aging is inevitable. The proposed methods only de-
lay the aging process.

Keywords. Software aging, software architecture, software design, design deci-
sion, rationale, architectural erosion, architectural drift, customer require-
ments/desires.

1 Introduction
In this article, we will discuss the notion of
software aging. As software products grow
older, new technologies arise. Such tech-
nologies could offer new functionality,
which could lead to totally different de-
signs for software products. Object-
oriented programming languages are ex-
amples of such innovative technologies.
Besides these new technologies, the desires
from customers also change. For instance,
customers could ask for more functionality
or better performance. If your software
product is not capable of sufficing these
desires, often there are other software
products which do suffice their desires. So
there is a need to update one’s software
product. However, by adapting your soft-
ware product according to the desires of
the customer, architectural erosion could
take place. Architectural erosion, some-
times referred to as design erosion, is what
we define as a decrease in the structure and
quality attributes of the software product.
Often, the impact on short-term is little,
but for long-term, the impact could be
dramatic. Architectural erosion is one as-
pect of software aging. If you do not up-
date your product according to the desires
of customers, one has to cope with soft-

ware aging of a different form, namely
outdated software.

In this article we will discuss the long-
term impacts of software aging. In section
2, we will discuss software architectures in
more detail. We will use the concepts of
software architectures to make architec-
tural erosion more clear. In section 3, we
will introduce different aspects regarding
software aging. Sections 4 and 5 provide
more insight in the causes of and problems
that arise with software aging. In section 6
we will discuss some methods how the
impact of software aging can be mini-
mized. Finally, section 7 provides an over-
view of our findings in this article.

2 Software architectures
There is no standard universally-accepted
definition of the concept software architec-
ture. In [IEEE Standard P1471], the fol-
lowing definition of software architecture
is given: “Architecture is the fundamental
organization of a system embodied in its
components, their relationships to each
other and to the environment and the prin-
ciples guiding its design and evolution”.
Based on this definition, we can identify
some aspects of software architecture,
which we shall discuss briefly in this sec-
tion.

44

2.1 Design process The final factor that will be discussed
here, the available technologies and re-
sources, can limit the architect in his con-
siderations. An example of this is the use
of the Internet, which would have been no
option for an architect twenty years ago.
Nowadays, it is a very common practice to
make use of the Internet, for instance with
network gaming. Examples of resources
are intelligent development tools, like edi-
tors and build tools.

People designing software architectures are
referred to as software architects. Software
architects have to cope with all kinds of
limiting factors. Noteworthy factors are:

Time,
Experience,
Stakeholders,
Available technologies & resources.

We will address these factors briefly. The
first factor, time, is limiting the architect in
taking all possible solutions into account.
An instance of this factor is time-to-
market, the time between the start of de-
velopment and the actual launch of a prod-
uct. If a software product is launched too
late, it is likely that another vendor has
gained a proportional share of the market.
The choices the architect makes during the
design process are referred to as design
decisions, which we shall address in the
following paragraph. Considerations that
are made to come up with design decisions
are referred to as the rationale, which we
will address in paragraph 2.3. Since there
is a need to achieve a short time-to-market,
often, suboptimal design decisions are
taken.

2.2 Design decisions
As was mentioned before, the design deci-
sions are the decisions that are taken dur-
ing the design of the architecture. During
an architectural design, a series of design
decisions are taken. Making one decision
can exclude other decisions. An example
of such a dependency is when choosing to
develop for Windows, one cannot make
use of a Linux API. The succession of de-
sign decisions can be regarded as a chain.
If one design decision is changed, this
could affect following design decisions
drastically.

As with software architectures, there is
no standard universally-accepted definition
of design decisions. Also, for documenting
these decisions there is no standard. This is
one of the issues which we will address
later on in this article.

The second factor, experience, is influ-
encing the decision making of the archi-
tect. If the architect has made a fault in the
past, he probably will not make it again in
the future. However, if one lacks this ex-
perience, it is prone to happen that wrong
decisions are taken.

2.3 Rationale
When making design decisions, one takes
different options into account. The reason
for choosing one option and declining the
other options is referred to as the rationale
of the design decision at hand. It can be
referred to as a textual explanation of the
“why” of a design decision [6] and it
should be included in the design docu-
ments. The lack of documenting the ra-
tionale is one of the key issues when look-
ing at software aging. This too will be dis-
cussed later on in this article.

The third factor, stakeholders, are per-
sons who have some interest in the soft-
ware product at hand and have some power
or influence [7]. Examples of stakeholders
are end users and management. It happens
more than once that different stakeholders
have different requirements. For instance,
the end users want good performance and
ease-of-use, but the management does not
want to make a too large investment in the
software product. The negative conse-
quences which result from conflicting re-
quirements can also be enforced by inter-
nal company politics.

2.4 Design documents
The design of a software architecture is
often documented. For this purpose, one

NIOC 2004 proceedings

45

could use UML diagrams. These docu-
ments amongst others help for communica-
tion with the different stakeholders. For
different types of stakeholders different
types of design documents are made.
These different types of design documents
are a representation of the architecture and
they provide a different view on the archi-
tecture [8]. This is necessary in order to
make the architecture understandable for
the different stakeholders who often want
to know different aspects about the archi-
tecture.

3 Software aging
In this section, we will discuss the aging of
software in general. We will use examples
to illustrate it. In the succeeding two sec-
tions, we will discuss the causes and prob-
lems regarding software aging more thor-
oughly.

As mentioned earlier, software is de-
signed by software architects. At a certain
point in time, the software architect de-
signing the architecture will have to make
a design decision. Such decisions have a
certain impact on the quality attributes of
the software product at hand. Examples of
such attributes are performance and reli-
ability. When one desires high perform-
ance, this implies that one needs to pay
with some other quality attribute [9], for
instance maintainability. After the software
product is being used for a while, the cus-
tomers might want to have some function-
ality added to it. To implement these
changes, the original design will have to be
modified. It is not unlikely that the redes-
ign will be performed by a different soft-
ware architect than the one who designed
the original software product. This is
where the problems start.

The original architect took multiple de-
sign decisions when designing the archi-
tecture of the software product. These de-
sign decisions affected the quality attrib-
utes of the software product. However, it
can be very hard for the new architect to
understand all the design decisions that
were taken during the earlier design. Espe-

cially the rationale behind such a decision
needs to be understood well, which unfor-
tunately often is not the case. To even fur-
ther complicate the matter, changing de-
sign decisions could affect other design
decisions later on in the chain.

However, by not understanding the de-
cisions and corresponding rationales, it is
very likely that wrong decisions are taken,
based upon a miscommunication between
the new architect and the documentation
provided by the earlier architects, if any.
The rationales behind design decisions
provide insight to why such a decision was
taken. Too often, these design decisions
and rationales are not provided in docu-
ments. Results of mismatches in the ra-
tionale of the original architect and the
rationale of the new architects result in
reductions of the overall quality of the
software attributes. This is an instance of
architectural erosion.

In [4], two definitions are given, which
we will use in this article also. First, they
define architectural erosion as follows:
“violations in the architecture that lead to
increased system problems and brittle-
ness”. Second, architectural drift is defined
as “a lack of coherence and clarity of form
which may lead to architectural violation
and increased inadaptability of the archi-
tecture”.

In the following two sections, we will
make use of the aforementioned concepts,
in order to illustrate the causes and prob-
lems of software aging.

4 Causes of software aging
In this section, we will discuss the causes
of software aging. First, we will discuss
two distinct types of software aging, as
proposed by [2]. The first type is related to
modifiability, or rather the lack of modifi-
ability. Modifying software products is
needed in order to meet the ever-changing
requirements of the customers. The other
type is related to the impacts that the per-
formed changes have on software products.
The combination of these two can lead to a
value decline of the software product at

An introduction to Software aging: How to deal with it? – Rodney Heinkens, Onno de Graaf

46

hand. We now will discuss the causes of
software aging, without trying to cover
every aspect of it.

4.1 Modifiability causes
The first cause of software aging is caused
by the lack of updating the software prod-
uct with respect to its features. As was
explained in the example in the introduc-
tion, one always has to improve the soft-
ware to keep up with the desires of cus-
tomers. If software is not updated fre-
quently in order to make it adhere to cus-
tomer desires, the customers will become
dissatisfied. If this is the case, they will
switch to a new software product, as soon
as the benefits of using the other software
product outweigh the costs of converting to
that product [2].

An associated problem is the lack of
time and how the architects have to cope
with this. Since the software product needs
to be kept up-to-date, changes have to be
carried through as fast as possible. As a
result of this, the architect will not have
time for all of the necessary tasks for suc-
cessfully keeping the software ‘young’.
Such tasks are for instance: taking time to
understand the rationales of the design
decisions, document the rationale of the
new decisions, update the documentation,
etc.

4.2 Architectural erosion
The software architect, who designed the
original architecture, took the original de-
sign decisions. Often, the rationales why
the decisions were taken as they were, are
not documented (well enough). So, the
next software architect who designs the
modified software architecture, which is in
turn based on the original architecture,
does not fully understand the rationale be-
hind the original design decisions. How-
ever, the software architect will have to
make the proper design decisions based on
his experience, his understanding of the
software architecture and the documenta-
tion at hand. Mismatches in the rationales

here could lead to architectural erosion and
architectural drift.

The big problem with mismatches in
the rationale is that it could easily lead to a
vicious circle. Since the original architect’s
rationale and the second architect’s ration-
ale did not match up, the new architecture
and the corresponding documentation, if
any, will be even harder to understand.
This in turn leads to more mismatches in
the following update of the software prod-
uct. Also, the structure becomes more
complex. Hence, the structure is also
harder to understand after every update.

An important cause which needs to be
considered, is formed by the relations or
dependencies between design decisions.
As mentioned earlier, if one decision was
taken, it could imply that some other deci-
sion, which appears later on in the decision
chain, is no longer an option. This is for
instance the case when one is developing
for Windows and makes use of the Win-
dows API, but wants to switch to Linux.
The design decisions, which were made
possible by the available Windows API,
will have to be revised.

As a final cause of software aging, we
mention how designers and engineers re-
gard their own work. Sometimes it is the
case that they are reluctant to criticism,
since they cannot cope with the thought
that their own work is not perfect. How
could it be wrong? After all, they have
designed it themselves. Some even con-
sider their designs as works of art. How-
ever, not accepting your own mistakes will
result in repetitive error making. This will
be addressed more thoroughly in section
6.4.

5 Software aging problems
In this section, we discuss the problems
that arise with the aging of software. We
will use the same distinction that was used
in the previous section, namely modifiabil-
ity problems and architectural erosion.

NIOC 2004 proceedings

47

5.1 Modifiability problems
The first type of problems has to do with
the modification of the software product.
As mentioned earlier, the updating of
software products is necessary to keep up
with the ever-changing requirements and
desires of the customers. The two prob-
lems we will discuss here are the traceabil-
ity of the design decisions and the increas-
ing maintenance costs.

First, we will discuss the traceability of
the design decisions. Since these decisions
and the corresponding rationale often are
not documented (well), one needs to trace
these design decisions. As software prod-
ucts grow, and the size of the source code
grows as well, the design becomes more
complex also. As a consequence, tracing
the design decisions becomes harder.
However, when the aspects were not un-
derstood completely at first hand, the up-
dated document will contain even less use-
ful documentation. The harder these design
decisions are to be traced, the more diffi-
cult it is to modify the software product
properly.

This brings us to the second problem
regarding modifying software products.
Each time it becomes harder to understand
the software, whether it is caused by poor
documentation or more complex source
code and corresponding designs, the main-
tenance cost rise. Since it is harder to
maintain the product, designers and engi-
neers will tend to use suboptimal solutions
rather than the more complex optimal solu-
tions. These suboptimal solutions only are
less expensive on the short term, not on the
long term. When a couple of suboptimal
solutions are used, they can get in each
others way. This is what some people refer
to as smelly or rotting code [5], and what
we see as an instance of architectural ero-
sion.

5.2 Architectural erosion
Next, we will discuss the problems that
arise regarding the software architecture.
The two problems we discuss here are the
reduced performance and the decreasing

reliability. Both problems are related to
architectural erosion.

First of all, we will discuss the reduced
performance. Since the requirements and
desires of customers change, the available
features will have to adapt in order to
comply with their requirements and de-
sires. However, also the factor time plays
an important role. This is for instance the
case with the aspect time-to-market. If a
product takes too long for development,
another vendor will probably have a simi-
lar product launched earlier on. So, archi-
tects would most likely take the easiest
route to implement the necessary features.
Often, the easiest method to add features is
to add new code to the current source code.
However, then the source code grows lar-
ger by every added feature. The result of
growing amounts of source code often is a
dropdown in performance. However, not
only the performance suffers here. Also,
(more complex) growing source code re-
sults in less understandable code and
hence, less optimal solutions will be taken
for the following updates.

Another quality attribute that suffers
from software aging is the reliability.
When software is maintained, for instance
adding features, not only new features are
introduced, but also new errors in the
source code are introduced [2]. If the prod-
uct is not tested sufficiently, this results in
a less reliable product. Keep in mind that
testing in itself is not enough to ensure
quality. The need for extensive testing re-
sults in higher maintenance costs as proper
testing often takes a lot of time, and time is
money. These additional costs bring us
back to the earlier referred to problem,
namely the rising maintenance costs.

Since multiple quality attributes suffer
from the above problems, e.g. performance
and maintainability, one could speak of
architectural drift.

6 How to deal with software aging?
In this section we will discuss several
methods for dealing with software aging.

An introduction to Software aging: How to deal with it? – Rodney Heinkens, Onno de Graaf

48

6.1 Minimal vs. optimal design
strategy

In an experiment [1], a program was cre-
ated using both an optimal design strategy
and a minimal design strategy. In that ex-
periment, it became clear that a minimal
design strategy speeds up the development,
at least before the architectural design had
eroded too much. However, even in the
optimal design strategy, they experienced
architectural erosion. Some design deci-
sions have enormous impact on the code.
Decisions to change other decisions which
have such a great impact can be really
troublesome. Therefore you can conclude
that using an optimal design strategy is not
the single, ideal solution to deal with soft-
ware aging. However, using an optimal
design strategy helps to reduce the impact
of the symptoms of old age in software
products.

6.2 Structural Analysis of the software
architecture

In [3], it is described how you can main-
tain a structural overview of a software
project. They make use of metrics like the
number of components and the number of
calls between components. Also, the call
paths between components could be taken
into account. They use these types of data
from different versions of a product to get
an idea of the deterioration of the software
products structure from a maintainability
point of view. It helps to understand the
quality of a software product during its
development evolution. However, it seems
that a lot of effort is put into creating this
analysis and this effort is not directly put in
the goal to reduce software aging. Better
understanding of the quality of a software
product is useful to learn about how soft-
ware erodes, and eventually may lead re-
searchers to solve the problem of software
aging.

6.3 Design for change
An eXtreme programming principal [5] is:
“Welcome changing requirements, even
late in development. Agile process harness

changes for the customer’s competitive
advantage.” In general, the cooperation
between the development team and the
customers is very good.

In previous sections, we have learned
that the causes of software aging generally
lead back to changes in the requirements of
the software product. Therefore, this prin-
cipal of welcoming change seems good.
Nowadays, we experience that a popular
software architecture is the plug-in archi-
tecture. Applications like Internet Ex-
plorer, Winamp or Eclipse for example
allow to be extended with extra functional-
ity from third party developers. There are
also numerous other ways to prepare a
software product to be so flexible, that
changes in the requirements are not major
operations.

6.4 Education
The history of software engineering is a
very short one in comparison with other
engineering disciplines. It is not uncom-
mon for a software engineer to have rolled
into the job. The demand for good applica-
tions grows and quality attributes are more
important than ten years ago. Therefore, it
should not be so very surprising that we
need better-educated engineers. Someone
with an interest to C-compilers can work
as a software architect. Not claiming that
today’s engineers are old people that can-
not keep up with today’s technology, but
more that early generation engineers
maybe did too much work in creating
technology that we new engineers have a
hard time to learn.

Developers often have a high self-
esteem and are really proud of their work;
they see their work as works of art. This
raises a couple of inconveniences. Engi-
neers sometimes have trouble with discard-
ing components which they created them-
selves. Also, they sometimes deny that
there could be bugs in their code. What
happens in practice is that people write
there own functions, because they did not
know that a colleague already imple-

NIOC 2004 proceedings

49

When you accept that your software
product will not last forever, you can plan
how long it will take before your software
product needs to be replaced. This has the
advantage that you do not have the burden
of an old piece of software that is hard to
maintain. Also, you give customers the
feeling that they are being served with new
applications. Sometimes the peoples need
for new software is rather subjective [2].

mented the functionality in some library.
Also, trust could play a role in this.

In more mature engineering disci-
plines, an architect or engineer needs to
follow proper schooling and has to be cer-
tified by a specific association. Consider-
ing that we want evolution for our imma-
ture engineering discipline, it probably
would be a good idea to send out future
architects and engineers through proper
schooling and certify them to ensure the
quality of the software products.

Microsoft is an example of a company
that works like this. They create new Op-
erating systems at intervals of years. Re-
cent products like Windows XP are pub-
lished, while older products like Windows
95 are no longer being maintained.

6.5 Documentation
The natural tendency of software develop-
ers is that the source code is the best
documentation of a software product. And
that all effort to write documentation will
be in vain, because no one will ever read it.
Therefore, it is not a very big surprise that
design documents are not always consis-
tent with the source code. It is important
that the design documents are clear and up-
to-date to prevent architectural drift. Ide-
ally, it should always be relatively easily to
find out the reason and rational behind any
module or component within the software
architecture and good documentation could
provide this.

7 Conclusion
By focusing on software aging and its
negative consequences, we realize the need
for prevention of these consequences. First
of all, we discussed what software archi-
tecture is in general. After that, we looked
at software aging more closely. By doing
so, we could identify the causes and corre-
sponding problems regarding software
aging. Finally, we proposed an overview of
multiple methods for dealing with software
aging. However, it appears that software
aging is inevitable [1,2]. Nevertheless, the
proposed methods reduce the impact of
software aging. Sometimes it will be nec-
essary to build a software product from
scratch, so all the design decisions can be
taken without any revising of other deci-
sions or other implications whatsoever.

If we take a look at other engineering
disciplines, we often see that their design
documents are based on mathematical
models. As a result, the quality attributes
of the final product can be predicted very
accurately. Somehow, the idea of using
such models seems not feasible for soft-
ware architecture. Maybe in the future, we
might acquire an interest for this way of
documenting software products.

8 References
[1] Van Gurp, J., Bosch, J., “Design

Erosion: Problems & Causes”.
6.6 Retirement and death [2] Parnas, D.L., “Software aging, in-

vited plenary talk”. The last consideration seems grim. Con-
sidering that using an optimal design strat-
egy, monitor maintainability, designing to
welcome change, educate software engi-
neers properly and writing useful docu-
mentation all do not ensure everlasting
software products, you might as well better
accept the fact that your software product
will die of old age.

[3] Jaktman, C.B., Leaney, J., Liu, M.,
“Structural Analysis of the Software
Architecture – A Maintenance Assess-
ment Case Study”.

[4] Perry, D. E., Wolf, A.L., “Founda-
tions for the Study of Software Archi-
tecture”.

An introduction to Software aging: How to deal with it? – Rodney Heinkens, Onno de Graaf

50

[5] Martin, R.C., “Agile Software De-
velopment”.

[8] Kruchten, P., “Architectural Blue-
prints — The “4+1” View Model of
Software Architecture” [6] Kruchten, P., “An Ontology of Ar-

chitectural Design Decisions in Soft-
ware-Intensive Systems”.

[9] Bosch, J., “Design & Use of Soft-
ware Architectures: Adopting and
Evolving a product-line approach” [7] Sommerville, I., “Software Engi-

neering, 6th Edition”.

NIOC 2004 proceedings

51

Software Aging and Design Erosion

D.S.C. Ruiter, K. Werkman
Dept. of Mathematics and Computing Science, University of Groningen
PO Box 800, 9700 AV Groningen, The Netherlands
csg153@wing.rug.nl, k.werkman@student.rug.nl

Abstract. Software aging or design erosion is an unavoidable problem in the
lifecycle of every software written. It can be partly prevented and the efforts and
financial costs can be diminished to an acceptable level by taking preventive
measures in the early stages of the software design process. Good management of
and investment into the documentation of the software project is also needed to keep
the aging and erosion of software at acceptable levels until the erosion stage has
reached a level where redesigning from scratch is preferable above updating.

Keywords: software aging, design erosion, software life cycle, erosion measurement.

1. Introduction

 We will begin with a describing the
problems with software aging and design
erosion in the software life cycle. Then
we will discuss the measurability of the
design erosion properties. After this
several methods to reduce design erosion
and software aging are described and
finally a short discussion and a
conclusion is given.
 When time elapses users do expect
much more from the programs they use.
From one side they would like to use the
program with more convenience. On the
other side they want to use extra
features. These new requirements force
the programmer to modify the software
to satisfy the user (customer). In spite of
the good programming technique of the
programmer these modifications will
spoil the structure of the software in
some way. The spoiled structure of the
program due to changing requirements is
called design erosion, which can result
in decreasing performance.
 Requirements have to be changed
when the current requirements do not
suffice anymore. This can eventually

lead to design alterations, which can lead
to inefficiency and unclear overview of
the working of the software. This is
called software erosion or aging.
 Requirements do not only change as a
result of increasing functionality of the
software. It can also occur when new
hardware or a new operating system
must be integrated in the system. If it is
decided to modify the existing software
using the same structure, the overall
intelligibility of the structure will
decrease.
 Because of the eroding of the design
structure the overall performance will
get worse. In general, modifications of
the requirements will increase the
number of lines in the code. Changing
requirements often causes the program
to allocate more memory. New code will
also bring new bugs. The overall result
of many modifications is a program with
a feeble performance and a structure that
is not understandable for both the
original designers and the maintenance
engineers.

52

Figure 1: spiral model of the software
life cycle

figure 2: graph showing degree of
erosion in relation to increasing
versions of software product

A software product evolves in time.
Before the adjusted and additional
requirements can be implemented, these
requirements must be specified. The
system can be used again after approved
testing and validation phases. The spiral
model [1] is a good way to represent this
continuation of development activities.

The final result over many years with
many modifications can be improved (in
the next chapter we will discuss
preventing design erosion and software
aging) by restructuring the code and

rewriting some parts of the software. For
retaining a good structure it is the best
option to rewrite the total software at
every change. Due to lack of financial
and human resources this is (of course)
not possible. The decision whether parts
of the software must be rewritten and/or
the structure must be improved depends
on the current position in the software
life cycle [1]. When it is for instance
expected that a package will not be used
in two years, probably a fast
modification of the software will be the
best choice.

Figure 3: a typical call graph [5]

NIOC 2004 proceedings

53

2. Measureability of design erosion.

Intuitively it is not difficult to know
what design erosion is. But when a
company must decide to rewrite certain
parts of the code, it is preferable this
decision can be made on basis of hard
numbers. It would be nice if design
erosion could be expressed in a figure
similar to figure 2, in which the critical
erosion boundary is yet to be determined
by erosion factors. In each version the
‘design erosion number' is calculated all
these numbers can be put in a graph and
the managers board know exactly how
the design erosion has evolved as a
function of a particular version. At a
certain degree of erosion the software
has reached the point where the
maintenance costs and time are no
longer acceptable by any standards.

Before the quantification of design
erosion is discussed we will assume that
the use of a program can be represented
by a call graph [2]. This call graph
consists of N components (nodes) and E
calls (edges). A component can be
considered as one single source file.
Calls between these files can be drawn
as directed edges between the nodes
representing the files. A path - with
length n - in the described call graph is a
set of Edges {Ei ... En} where every
edge connects two connected nodes. The
level of call graph is the maximum
length of a path in the call graph. So four
properties in a call graph can be
measured.

N : Number Of Components
E : Number Of Calls
P : Number Of Paths
L : Number Of Levels

The measurements can be used to
calculate the so called architectural
measurements [2]. Table 1 show the
measurements that are derived from the

before mentioned measurements. These
results can be used to plot several figures
to indicate the level of design erosion as
function of the version number of the
software.

Hierarchical complexity N/L
Structural complexity E/N
Average Components/path N/P
Average Paths/Component P/N

Table 1: Derived Architectural
Measures

If the signs of the design erosion are
validated by several software developers
the design of the software in question
can be gradually assigned the status of
eroded and maybe drastic decisions have
to be made.

3. How to deal with design erosion

Design erosion and software aging
exist and one needs to deal with the
situation. The software aging can lead to
design changes, which leads to design
erosion. It may well be that there is no
time or willingness in the current
software company to take actions to
improve the situation due to
misunderstanding by lack of knowledge,
short term politics regarding the
software life cycle or simply not enough
financial backup to deal with the
problems.

Besides the company culture though,
it would be preferable to know if we can
do anything to prevent software aging
from occurring in future projects.

3.1 Can we prevent software aging?

It is not clear yet if we can prevent
software aging. Some researchers say it
is impossible to prevent it [3] and they
mention 2 major causes for rapid decline
in the value of a software product:

Software Aging and Design Erosion – D.S.C. Ruiter, K. Werkman

54

Failure of the products’ owners
to modify to meet changing
needs, which is unpredictable.
Results of the changes that are
made, which result in the
software aging causes we already
mentioned.

3.1.1 How to prevent software aging

 If software aging cannot be
prevented, we may be able to partly
prevent or delay the aging process.
There are so many things to be
considered if we want to try to prevent
software aging. Let’s begin with the
design of the software.

3.1.2 Designing software for change

 “Designing software for change” is
an expression used to indicate that
software should be made ready for the
future changes, which is nearly
impossible.
 Many other terms come in mind when
taking this subject into consideration,
like “information hiding”, “abstraction”,
“separation of concerns”, “data hiding”,
“object orientation” etc. The evolution of
new software design principles will
continue and henceforth the software
made by those design principles will be
no better than the model is able to
provide. Design erosion follows
naturally from the aging stage in the
evolution of the design methods. The
future changes in software applications
are unpredictable and it is impossible to
make everything equally easy for
change.
 Programmers are too eager to get to
the first release or to meet deadlines that
make them inconsiderate towards
programming for future changes. Often
management is more concerned with
delivering the product in time than future

maintenance. Hence programmers are
not likely to design for future changes.
Also many programmers do not have the
appropriate education for the job and are
unfamiliar with many design principles
and topics like information hiding.
Software engineers talk too much and
write too many papers about the subject,
ignoring what is happening in the
fieldwork. “Design for change” is
something from the past for them. [3]
 Information hiding design is rare to
find in software products. The found
code is often programmed to just work,
often very clever, but rarely designed for
future change.
 The reason why this is still the case is
not that the software engineers do not
lack the knowledge, but that they simply
do not do it. Programmers tend to think
too highly of their own code, that the
software they write simply will not have
to be changed. This is pure ignorance,
since the only programs never changed
are the very bad ones nobody wants to
use. [3]

3.1.3 Documentation

 Documentation should be made for
the future maintenance people who are
going to read it, not the current writers
of the documentation, especially the
design principles and decisions
(philosophy). Too often programmers
say that the code is its own
documentation. [3] Mostly the code is
written in a specific version of a
programming language, hence liable to
aging when the language version
changes. A good example of this is
Visual Basic from version 6 to 7.
Version 7 got object oriented design
philosophy as a reaction to the success
of the Java language and the code in
version 6 is simply not compatible
without rewriting nearly every class/
procedure/ function. So design principles

NIOC 2004 proceedings

55

specific written in version 6 is quite
useless when not written in abstracted
form.
 The reason documentation is not
being done properly is that it is not
found interesting and has no status in the
programming community. Making
programs that work is regarded far more
important and gives more status to the
programmer. Documentation is regarded
as the necessary obligatory evil part of
the job. The documentation part of the
programmers job has to be made very
important in the programmers function.
But, as stated earlier, often due to
deadlines and ignorant management the
programmer is not rewarded to write
documentation, hence the negative
image of documentation continues to
exist.

3.1.4 Reviewing

 In many other professions, reviewing
designs is a very normal part of the job,
like designing buildings and ships. There
are very precise design prints and
documents before the project is even
started and it is reviewed very carefully
by other experts too. For companies that
want their products to last a long time
reviewing is a must. However, reviewing
in software engineering is known, but
not practiced in commercial projects.
Some reasons for this are :

Unqualified programmers with no
professional software engineering
education.
Even computer science degree
programmers neglect the need for
design documentation and reviews,
and focus too much on
mathematics and science.
Many “documenters” do not know
how to write a readable and precise
document.

Not enough funding for qualified
reviewers.
Time pressure (deadlines) that
makes designers think they have no
time for proper reviews.
Programming is regarded as “art”
and therefore thinking that others
are not fit to or should not review
the code.

 Designs should be reviewed by others
who are responsible for the long-term
future of the product. Then maintenance
crew should review the code when the
design is proposed for the first time too.
Sometimes this option is not practical
because it is not known if the
maintenance crew will be around for that
long, as programmers switch often to
other projects after the job is done.

3.2 How to deal with changing
requirements in existing
applications

 When software aging has become
inevitable and the original designs have
been violated the documentation cannot
be perfect. Reviewers will miss
something eventually and therefore
cannot prevent design erosion. In order
to deal with changing requirements two
strategies can be used. In one strategy
the modifications are added in such a
way not much time is used. This is
called the minimal effort strategy. The
optimal design strategy can be applied to
create an optimal system. In most
application a compromise is used, since
it is not possible to use one single
strategy.

3.2.1 Minimal effort strategy

 Writing updates for versions to meet
the demands to keep the software
useable and wanted is a very common
aspect seeing in nearly all the software

Software Aging and Design Erosion – D.S.C. Ruiter, K. Werkman

56

applications. But during this process the
deteriorating could be slowed down by
recreating structure when changes are
made in such a way that future changes
are made more easily. Documentation
and reviewing regarding the design
changes should be made to let others
know the current state of development.
The benefits of this strategy are the
relatively low costs.

3.2.2 Optimal design strategy

 Sometimes it is more efficient and
less time consuming or much cheaper to
begin redesign all the necessary
components. The design philosophy can
be done to meet the needs of the current
time. No more time consuming tangling
with deprecated and incomprehensible
code and documentation. Of course this
method is only beneficial when done
properly and there is always the chance
the same mistakes or even newer ones
are made in the new project. If the
original design is preferred then the
persons involved in the original design
could add their knowledge to the project,
but this is not always possible for
unforeseen reasons. Reusability of
working code should be considered since
it can be very time saving if it is not
tangled up in the code. If the original
design has some not yet detected flaw
that was part of the cause of the software
erosion, the same problem will likely
occur in the future and the problem is
only delayed, not improves in any way.

3.2.3 Compromise

Because of financial and time limited
circumstances it is not always possible to
rewrite code completely. In this case one
has to reuse some of the old code and
rewrite the most urgent parts. Using this
strategy will probably not lead to an
optimal design.

4. Discussion/Conclusion

 We found documentation is the key
word in slowing down the software
erosion process. In our opinion it would
be an option not only to review the
design of a software product, but also to
review the documentation. If the
reviewers find the software is not
documented well, the documentation
must be adjusted. On the short term this
action can be very costly when
documentation must be rewritten, but
when having a good documentation
the maintenance costs will decrease
dramatically.
 The discussed measurements give an
indication of the degree of erosion. But
it makes no sense to strictly hang on to
the so-called critical erosion boundary.
The decision to redesign the software
depends on many more factors. For
example the current position in the life
cycle is an important factor too. The
final decision will be made by common
sense, but the measurements can back up
this decision.
 Although we have seen how to try
and deal with design erosion, we must
acknowledge that is it unavoidable. We
will have to deal with the phenomenon
sooner or later and can try to reduce the
time, effort and costs by optimizing the
different phases of the software life
cycle. Especially, good design and
maintenance documentation of the
software projects by educated
professionals are mandatory.

NIOC 2004 proceedings

57

5. References

[1] “Software Engineering”, I.
Sommerville, 6th Edition, 2001, Addison
Wesley, ISBN 0-201-39815-X

[2] “Structural Analysis of the Software
Architecture – A Maintenance
Assessment Case Study”, Catherine
Blake Jaktman, John Leaney & Ming
Liu, Computer Systems Engineering,
Faculty of Engineering, University of
Technology, Sydney, Australia

[3] “Software Aging”, Invited Plenary
Talk, D. L. Parnas, Communications
Research Laboratory Department of
Electrical and Computer Engineering,

McMaster University, Hamilton,
Ontario, Canada L8S 4K1, 1994

[4] “Design Erosion: Problems &
Causes”, Jilles van Gurp & Jan Bosch
Dept. of Mathematics and Computing
Science, University of Groningen
PO Box 800, 9700 AV Groningen, The
Netherlands
[jilles|Jan.Bosch]@cs.rug.nl,
http://www.cs.rug.nl/Research/SE

[5] “Call graph of the Dhrystone
benchmark application for the
C16x/ST10 family of microcontrollers “,
http://www.aisee.com/graph_of_the_mo
nth/aicall

.htm

Software Aging and Design Erosion – D.S.C. Ruiter, K. Werkman

58

Evaluation of Methods for Area Openings by Connected Set Operators

Marten Pijl (s1277200), Gideon Laugs (s1303104)
Department of Computer Science

RijksUniversiteit Groningen
c/o Blauwborgje 3

Groningen, The Netherlands
gideonlaugs@gmail.com, martenpijl@hotmail.com

Abstract
In this paper, several algorithms related to the field of morphological connected set operators are
discussed and compared. Algorithms featured in this paper are Vincent’s pixel-queue,
Salembier’s max-tree as computed by Hesselink and finally, Meijster & Wilkinson’s ‘union find’
algorithm. These algorithm’s technical details will be explained briefly. Conclusions are drawn
based on analysis of computational complexity and memory usage.

Keywords: Connected Set Operators, Union-Find, Max-Tree, Area Opening, Pattern
Recognition, Image Filtering

1 Introduction
Connected set operators (or simply connected

operators) form a very interesting class in
mathematical morphology. This class of operators
is different from other operators in that it operates
on connected components rather than individual
pixels, as is the case with most operators currently
used. As a result hereof, connected set operators
possess a number of very useful properties, most
important of these the preservation of shape in an
image. Connected operators may remove image
details completely, but will never remove only part
of it and thereby alter the detail’s shape.

Important notions in the terminology of
connected operators are erosions and dilations.
Both these operators work with the aid of a
structuring element, which generally consists of a
set of foreground pixels in some configuration with
some origin. Erosions, basically, work by removing
any foreground pixel from an image which
neighborhood does not match the structuring
element when its origin is placed over said pixel. In
contrast, dilations are obtained by placing the
structuring element with the origin over all
foreground pixels, and adding any foreground
pixels in the structuring element to the image. As
can be concluded from the above, neither erosions
nor dilations are connected operators themselves.

However, many connected operators make use of
either or both.
Another important notion is that of connected
components. Connected components are parts of an
image consisting of foreground pixels, which are in
some way connected. The most common ways to
define connectivity in a two-dimensional image are
4-connectivity and 8-connectivity. In the former
case, a foreground pixel is considered to be
connected to all foreground pixels immediately to
the top, bottom, left and right to it. In the case of 8-
connectivity, a foreground pixel is also considered
to be connected to any foreground pixel top-left,
top-right, bottom-left and bottom-right of it. For
the grayscale case, a connected component can be
defined thus: two pixels are said to belong to the
same connected component if and only if they can
be connected by means of a path of constant
grayscale value in which every two consecutive
pixels are neighbors with respect to 4-connectivity
or 8-connectivity, depending on the chosen
connectivity. The general idea behind connected
components is illustrated in (Fig. 1).

The earliest connected operators known in
literature were the opening by reconstruction for
binary images, and the corresponding closing by
reconstruction. The opening by reconstruction
works by performing an erosion with some

59

 A B

Fig. 1: A visual explanation of the connected
component concept. In block A is shown what 4-
connectivity means with regard to an image. In block B
the same image is used again, this time using 8-
connectivity. In both blocks, three steps are done. Step 1
is the original image. In step 2, the concept of 4- and 8-
connectivity is applied. Step 3 then shows the resulting
connected components using either 4- or 8-connectivity.
When comparing the leftmost columns of both block A
and B, one can clearly see the difference 4- and 8
connectivity can make. Using 4-connectivity, two
separate components are created, whereas when using 8-
connectivity, the two components are considered
connected and thus one components instead of two.

structuring element, and then restoring all
foreground components not completely removed
by the erosion. At a later stage, more connected
operators have been devised, such as area
openings, dynamics filters, and complexity,
volumetric, motion and motion-oriented operators.
These operators provide additional selection
criteria, such as selection on shape, contrast, or
size, for example.

Apart from functioning on binary images, these
operators can also be adjusted to function on gray-
scale images. Rather than using strictly connected
components (i.e. where all pixels have the exact
same gray-level), flat zones are generally used. A
flat zone is different from the basic definition of a
connected component in that it may be composed
of pixels with a low gray-level fluctuation. This
means that in the case of flat zones, image details
are considered connected as long as the change in
gray-level is a subtle one. Converting an image to
flat zones is sometimes known as soft binarization.
The ‘softer’ the binarization, the fiercer gray-level
transitions may be. In contrast, a very ‘hard’
binarization is similar to using classic connected
components. Flat zones are generally useful in
realistic images, where small fluctuations in gray-
level are very common, and noise is generally a
factor. In such a case, using connected components

would yield a very large number of very small
connected components.

Area openings and closings:

Area openings and closings have proven to be
an important development for connected operators,
finding their uses in a multitude of pattern
recognition applications, as well as proving useful
in image processing applications, for instance, the
removal of background noise from an image. In
this paper, several algorithms for computing them
will be described later on. First, a description of
these connected operators may be in order. In the
simpler binary case, area openings remove all
connected foreground components with an area
smaller than some threshold . This means that area
openings (as well as closings) have component area
as their selection criteria (as opposed to, for
example, openings by reconstruction, which have
shape as their selection criteria). Area openings and
closings have been defined thus, according to [1]:

Definition 1: Let X M and 0 , where M
is the domain of the image X. The binary area
opening of image X with scale parameter (the
minimum area size allowed) is given by:

() { | (()) }a
xX x X A X

Here, the function A defines the combined area
of the pixels. The binary area closing can be
defined by duality, where C is used to indicate the
complement

() [()]a aX X C C

The definition of an area opening of a gray-
scale image f is usually derived from binary images

 obtained by thresholding f at h. These are
defined as

()hT f

() { | () }hT f x M f x h

At a later date, area openings and closings have
been extended to a greater class of attribute
openings and closings, as well as thickenings and
thinnings. These extended connected operators can
use any size property as selection criteria, not just
area (such properties may include moment of
inertia or smallest diagonal, for instance).
However, the algorithms in this paper will be
restricted to the traditional area openings and
closings.

Evaluation of Methods for Area Openings by Connected Set Operators – Marten Pijl, Gideon Laugs

60

Fig. 2: Pseudocode of the core of Vincent’s area
opening algorithm. The parameter lambda in the
pseudocode represents the area threshold .

2 Explanation of techniques

2.1 The Pixel-Queue algorithm

The pixel-queue algorithm described below is
the first of several algorithms described in this
paper, which are able to perform area opening.
First, it is important to define several conventions.
First off, a flat zone Lh at intensity level h of some
gray-scale image I is defined as a connected
component of the pixel set {p M | I(p) = h}. A
regional maximum Mh is a component such that it
contains no members, which have a neighbor with
a grayscale value larger than h. A peak component
Ph is a connected component of the thresholded
image Th(I) at level h. Note that there may be more
such components per level. In this case, they will
be indexed like Ph

j, indicating a component at level
h with some index j. Also note that any regional
component is also a peak component, though the
reverse is not necessarily true. An impression of
the algorithm is alternatively provided by some
pseudocode in (Fig. 2).

The algorithm works by first constructing an
array of all regional maxima in the image. Next, all
regional maxima acquired this way are processed
individually to form a peak component with an
intensity level at least equal to that of the
corresponding regional maximum. This is done by
taking a random pixel within the regional maxima,
and then expanding it to include the remaining
pixels of the peak component.

To do this, a queue is created, containing all
neighbor pixels of the random point. Of this queue,
the pixel with the highest intensity value is
obtained. If the intensity level of the pixel is not
higher than the level of the last pixel (more on this
later), it is added to the component, and any yet to
be processed neighbors are added to the pixel

queue. Obviously, once processed, the pixel is
removed from the queue. Again, the highest level
pixel is chosen from the queue.

This process continues until the total number of
pixels equals or exceeds the minimum area size ,
or until a pixel is found with an intensity level
higher than the level of the last selected pixel. In
either case, the intensity level of all pixels in the
component is set to that of the last pixel processed,
and the regional maximum is removed from the list
of regional maxima yet to be processed, and the
next regional maximum is chosen to be processed.

So what does a round in this algorithm
accomplish? There are two cases in which such a
round may terminate. First, the case where the total
pixel area of the component starts to exceed . In
this event, another two cases are possible. If the
peak component had an area larger than or equal to
, all pixels processed must be of the same level as

the peak component, since there are no pixels with
a higher intensity level in or neighboring the level
component, by definition of a regional maximum.
Also, the algorithm always picks the pixels with
the highest level available. This means the level of
all processed pixels remains the same, so the
component is unaltered.

However, in the case where the peak
component had an area less than , some pixels of
an intensity level less than that of the peak
component must have been selected to reach the
required number of pixels. Also, any pixels
processed later cannot have an intensity level
which rises again, because of the second
termination condition. This makes sense, as pixels
with a higher intensity level than the last would
have to come from a different peak component (all
pixels belonging to the original component were
selected first). This means that, as the level of all
pixels in the component is set to the level of the
last component, the peak component is deleted.

Note that this means that several ‘layers’ may
be removed in the same step. If the area of the peak
component, plus that of the underlying component
is still insufficient, both may be removed.

Another cause for termination of the processing
step is the case where a pixel is found with an
intensity level higher than the last pixel processed.
In this case, another peak component has been
encountered. This means further processing now is
not needed. All pixels in the component are set to
the appropriate level, and the next regional
maximum is selected. Note that it is possible that
the region is processed once more when the
encountered component is itself evaluated,
however.

NIOC 2004 proceedings

61

2.2 The Max-Tree approach

Unlike the pixel-queue, a max-tree is a data-
structure rather than an algorithm. However, once a
max-tree is constructed, performing an opening is
nearly trivial. Therefore, most of the effort consists
of creating the max-tree. For a pseudocode
impression of the algorithm, refer to (Fig. 3).

Fig. 3: Pseudocode of the max-tree algorithm

Fig. 4: A visual explanation of the max tree structure

The max-tree (which has a dual, called the min-
tree) takes the shape of a tree with each of its nodes
Ch

j corresponding to a peak component Ph
j at a

certain threshold level h, where the node only
contains pixels of gray-level h. In addition, each
node except the root points to a parent with an
intensity level lower than the node. The root of the
tree is formed by the background of the image. It is

also important to note that not all nodes at every
gray-level need be occupied. Perhaps the best way
to come to terms with the concept is by means of
an illustration: see (Fig. 4).

Once the tree is constructed, performing an area
opening is simply a matter of checking each node’s
pixel area against the required threshold . If the
area equals or exceeds , nothing needs to be done.
Otherwise, the node is simply removed, and its
pixels are merged into the parent node. One of the
disadvantages of the max-tree approach is that
problems may occur when some node is accepted,
but its parent rejected. Fortunately, this will not
occur in this case: if a node has large enough area,
any parent node (which must enclose the pixels of
said node) will also have sufficient area.

To compute the max-tree, the breadth-first
approach devised by Hesselink [3] can be used.
The algorithm works by picking a random pixel
from the image, which is marked as processed, and
starts working from there. The algorithm iterates
itself until the root (where the gray-level equals an
arbitrary -1) is reached. Like pixel-queue, the
algorithm defines a queue containing pixels, from
which it continues to draw until it is emptied
(unlike pixel-queue, the ordering is chosen
randomly). Initially, this queue is filled with the
neighbors of the initial pixel. Whilst there are still
pixels in the queue, the algorithm calls ‘encounter’,
otherwise it calls ‘down’. On a final note, the
queue is gray-level specific: every gray-level has
its own queue.

In the case of an ‘encounter’, an unprocessed
pixel (previously processed pixels are ignored) are
checked for any corresponding component of the
same gray-level. This is done by an array storing
the first pixel encountered at that gray-level. If no
such component exists, it is created. Otherwise, the
pixel is added to the component. In either case, the
pixel’s neighbors are added to the queue. Then
comes the tricky bit. If the chosen pixel has a gray-
level higher than the current component, the new
gray-level will be processed first. The old
component is abandoned for now, along with its
queue, the new queue just containing the pixel’s
neighbors. Note that the algorithm will not switch
to a lower gray-level: it will create a queue and
necessary components, though.

Once all pixels in the queue of the current gray-
level have been exhausted, the algorithm calls the
‘down’ procedure. Here, the largest possible gray-
level smaller than the current component’s is
selected, such that a component is known, or the
gray-level is –1, the ‘root’ of the whole image (this
won’t happen unless all pixels have been
processed). Then, the new component is set as the
parent of the previous component. Also, with the
previous component completed, a possible new
component of that gray-level can be selected.

Evaluation of Methods for Area Openings by Connected Set Operators – Marten Pijl, Gideon Laugs

62

It may require several reads to understand this
fairly complex algorithm. In basic terms, it starts at
some pixel, and tries to find a local maximum.
Once it has found this, it gathers all pixels, which
form a part of it, and labels it as a component.
Next, it tries to find the parent of this component,
and complete it, moving down the gray-level scale.
This continues until it has processed all pixels, or
until it encounters a new local maximum, in which
case it starts to pursue this, before tracking back
down again.

Fig. 5: Pseudocode for the basic operations of area
openings and closings

Fig. 6: Pseudocode showing how to perform an
area opening using the operations of (Fig. 5).

2.3 The Union-Find algorithm

The union-find algorithm works slightly
different from the previous two described
algorithms, in that it is able to process multiple

peak components at a time. These peak
components are grown until the required area size
is reached, new components being created and
merged along the way. Pseudocode of this
algorithm is given in (Fig. 5) and (Fig. 6).

The algorithm’s heart consists of two data-
structures, the first of which being an array
containing all pixels in the image (unsorted). This
data-structure is named ‘parent’, and actually
combines two types of data. In case a positive
value is found, the value refers to the pixel which is
nominated as the root of the component which the
pixel is part of. If a negative value is found, this
indicates that the pixel is a root itself, and the value
represents the area of the component discovered so
far (though the minus sign obviously needs to be
ignored in this case). The second data-structure is
an ordered queue containing all pixels in the image.
The queue is ordered on gray-level, and any pixels
of the same gray-level intensity are ordered in a
scan-line fashion. This means ordered on lowest y-
coordinate first, and then on lowest x-coordinate,
in a sense traversing the image horizontally from
the top-left to the bottom-right.

The algorithm works in two steps. First, it
determines the connected components in the image.
Once this has been done, the image intensities will
be re-evaluated. For the first part of the algorithm,
the pixels are sequentially removed from the queue,
and processed individually. First, a new set is
created with the pixel as its only member, and its
‘parent’ value is set to –1 (this represents a
component of a single pixel, with area 1). Then, all
neighbors of the pixel are evaluated. All of these
which have been already processed themselves are
tested to see if they need to be merged with the
newly created set. This is attempted if the intensity
of the currently processed pixel is less than the
intensity of the neighbor in question, or when both
the intensities match and neighbor’s area exceeds
or equals the current pixel’s area.

To perform this merging, the root of the
neighboring pixel is determined first (the processed
pixel is its own root). If the roots match, there is no
need to merge the sets. Otherwise, yet another,
final criterion is imposed. If the pixel intensity of
the pixel and the neighbor’s root match, or if the
area of the neighbor’s root is still less than , the
sets are merged. Note that in the first case, the sets
belong together. However, in the second case
(when the first is false), the neighbor’s component
is removed, as will become clear later. This is
because the current pixel must have a lower
intensity than its neighbor’s component (because of
the previous tests), and the neighbor’s component
already includes all pixels of the same intensity
(because of the way the queue is ordered).

When the sets are merged, the processed pixel
is taken as the new root, and the new area is

NIOC 2004 proceedings

63

computed. The ‘parent’ of the neighbor is set to the
processed pixel. However, if the final criterion is
false, the sets are not merged. Instead, the ‘parent’
of the currently processed pixel is set to – , as it is
known that there is a neighbor with a higher gray-
level intensity, and that it has a sufficiently large
area. This must mean that the current pixel can be
accepted as well. In any of the other cases, no
action is taken.

As mentioned, in the second step of the
algorithm the intensities of the pixels are
recomputed. This is done by traversing the queue
in reverse order, and by investigating the ‘parent’
attribute of each pixel. If the pixel is not a root (in
other words, it has a value greater or equal to 0),
the intensity is set to the intensity value of its root.
It is important here to remember that because of the
order in which both steps are executed, a root value
will always be evaluated before any other members
of it’s component.

3 Comparison of techniques
In the previous section, several techniques have

been discussed. In this section, the focus will shift
more towards the differences and similarities
between these techniques, as well as their
computing complexity.

3.1 Technical Comparisons
First of all, of the techniques discussed, one is

clearly distinct from the other three: the pixel-
queue algorithm. The other three algorithms all can
be seen as tree-based algorithms. Both the union-
find and the breadth-first algorithms are mere
variations and improvements of Salembier’s max-
tree algorithm.

Historically speaking, the pixel-queue
algorithm is the oldest algorithm to be discussed
here, introduced by L. Vincent in 1993 [4] [5].
What makes this algorithm significantly different
to the other three algorithms discussed above is
that instead of using a tree-based approach to
compute area openings and closings, the pixel-
queue algorithm uses a technique based on a
priority queue to obtain a solution. The specific
details to this technique have been discussed in
section 2, so there is no need to reproduce those
here. However, it is important to note that the use
of a priority queue and the ordering with which the
pixels are retrieved from it, result in large
complexity. This will be discussed in more detail in
section 3.2.

Although the priority queue based approach
clearly sets the pixel-queue algorithm apart from
the other three algorithms, there are two key
properties shared by both the pixel-queue as well
as the max-tree algorithms. First, both algorithms
use a method based on flooding. Second, the two

algorithms process an image one peak component
at a time. Although the max-tree algorithm proved
much more interesting than the pixel-queue
algorithm, its major downside was in the latter
characteristic shared with the pixel-queue
algorithm. In order to resolve this, Meijster &
Wilkinson devised a slightly modified version of
the max-tree algorithm, called the union-find
method [1]. Tarjan’s union-find algorithm [6] for
keeping track of disjoined sets is incorporated into
Salembier’s max-tree algorithm, which enables the
method devised by Meijster & Wilkinson to handle
multiple peak components simultaneously by
creating and merging peak components as needed
while keeping track of their area. Merging peak
components and thereby increasing its area ceases
as soon as a certain area threshold is reached,
after which the merged peak components can be
handled as one. As will be shown in Section 3.2,
this modification did not do the time complexity
any good, but did improve its usability by
eliminating the need to handle each peak
component individually.

Another modification to Salembier’s max-tree
construction algorithm is devised by Hesselink, in
which breadth-first search is incorporated to
simplify the original structure [3]. This breadth-
first version characteristically differs from other
versions of the max-tree construction algorithms in
the way it builds up the tree structure. Whereas
Salembier uses a recursive procedure containing
three nested loops to set up the tree structure,
Hesselink creates the tree in a single repetition. For
the technical details to this algorithm, as well as
those behind the union-find modification, please
refer to sections 2.2 and 2.3 respectively.

 3.2 Efficiency Comparisons
After having shortly evaluated the main

differences in characteristics between the four
algorithms described in section 2, we can focus on
the difference in complexity concerning these
algorithms.

Whenever several different algorithms are all
suitable for performing a certain task, it is
primarily the efficiency with which an algorithm
performs this task that is the key factor. Although
usually efficiency scales are defined through
analysis of the number of operations needed in a
worst-case scenario, there are situations in which
this technique is not capable of delivering a
suitable decision factor. Such a situation is
encountered when regarding algorithms for set
openings and closings, as will be shown later in
this section.

Meijster & Wilkinson did extensive research to
the time complexity and computational behavior of
the pixel-queue, the max-tree and the union-find

Evaluation of Methods for Area Openings by Connected Set Operators – Marten Pijl, Gideon Laugs

64

algorithms [1]. All three algorithms were tested on
both synthetic images as well as natural images.

With regard to the synthetic images, four
different types were used: one pair of images
focusing on the difference in image content and
another pair focusing on image size. The results of
these tests are graphically shown in (Fig. 7).

Fig. 7: Graphical display of results obtained from
testing the pixel queue (dashed), max-tree (dash-
dot) and union-find (solid) algorithm’s
performance. The upper two graphs show the
timing results for distance maps, whereas the lower
two graphs show the dependence of computing
time on the image size.

From the top two graphs in (Fig. 7), it can be
clearly seen that the pixel-queue algorithm is
heavily dependent on both the image content as
well as the . In contrast, the union-find and max-
tree algorithms appear to be independent of and
to have only a minor dependency on the image
content. When looking at the lower two graphs in
(Fig. 7), it shows that only the union-find and the
max-tree algorithms are independent of the density
of local minima, but all three algorithms are
linearly dependent on the image size.

The above conclusions are drawn from practical
experiments. But how do these algorithms compare
to one another on a theoretical basis? First of all,
characteristic to the complexity of the pixel-queue
algorithms is the use of a priority queue. Accessing
a pixel in a priority queue takes O(logN)
computational complexity.

Apart from this, a worst-case scenario has to be
considered, in which is chosen in such a way,
that only the entire image (consisting of N pixels)
satisfies the criterion. As shown by Wilkinson &

Roerdink [7], the worst-case computational
complexity of the pixel-queue algorithm becomes
O(N2logN).

As far as the max-tree algorithm is concerned, it
is important to realize that the computational
complexity is dominated by its most complex
component. For the max-tree algorithm this is the
flood filling process, which - as experimentally
shown above - is linear with respect to the
connectivity and in the number of pixels. The
algorithm has a worst-case complexity of O(N).

The same also holds for the breadth-first
version of the max-tree algorithms [3]. Although
the removal of the recursive procedure makes the
breadth-first version a lot simpler than its original,
the algorithm is still dominated by its most
complex part, the flood filling process. As has been
discussed above, flood filling has a worst-case
complexity of O(N). Thus, the worst-case
complexity of the breadth-first modification is still
O(N).

Finally, the complexity of the union-find
method can be assessed in a similar way. Most
important is the argument that it is the most
complex component of an algorithm, which
dominates and thus defines the entire algorithms
complexity. Now, assuming that the most complex
part of the union-find method is the union-find
itself, i.e. the construction of the tree, Meijster &
Wilkinson state that although less complex
algorithms could be used, the best algorithm to use
in the union-find method is of complexity
O(NlogN). Moreover, Tarjan [6] provided
theoretical backup to the above assessment by
deriving a worst-case complexity of O(NlogN) in
situations like the union-find algorithm.

One of the most obvious conclusions that can
be drawn from the complexity analysis above is
that the pixel-queue algorithm is deemed obsolete
compared to the efficiency achieved by tree-based
algorithms. Next on, one’s attention is easily drawn
towards the difference in complexity between
Salembier’s max-tree algorithm and the union-find
modification of it by Meijster & Wilkinson. From a
historical perspective, it is easily seen that although
the union-find algorithm is of a more recent
release, it actually performs worse than its original.
One could be easily tempted to conclude that
devising the union-find modification was
unnecessary due to its non-improvement in
complexity. However, instead of just focusing on
the computational complexity, the union-find
algorithm is a case in which special attention has to
be paid to other factors, primarily being the
memory usage. From analyses done by Meijster &
Wilkinson [1], it appears the union-find algorithm
uses a significantly less amount of memory than
the original max-tree algorithm. In fact, using a
three-dimensional test volume measuring

NIOC 2004 proceedings

65

128*128*62, the difference in memory usage was
experimentally shown. The max-tree algorithm
performed worst with 57.5 MB and second came
the pixel-queue algorithm using 45 MB. The
union-find algorithm needed less than half the
memory needed for the max-tree algorithm, with
only 25 MB. Now one can only imagine the
difference this makes when considering enormous
datasets.

5 References
[1] A. Meijster, M.H.F. Wilkinson, A comparison

of algorithms for connected set openings and
closings, IEEE Trans. Pattern Analysis and
Machine Intelligence (2002)

[2] P. Salembier, A. Oliveras, L. Garrido, Anti-
extensive connected operators for image and
sequence processing, IEEE Transactions on
Image Processing (1998)

4 Conclusions
[3] W.H. Hesselink, Salembier’s min-tree

algorithm turned into breadth first search,
Elsevier Information Processing Letters (2003)

All algorithms discussed in this paper all have
their advantages as well as their disadvantages. Be
it their ease of implementation or their
computational complexity, in one way or another
each of these algorithms once proved or still proves
to be of significant importance to the are of pattern
analysis. However, as time passes new ideas rise.
With regard to the algorithms related to connected
set openings and closings, Salembier’s idea of
using a tree-based approach made for significant
improvement in computational complexity. But the
creation of the union-find and the breadth-first
modifications proved it could still be done better.

[4] L. Vincent, Morphological area openings and
closings for grayscale images, Shape in Picture:
Mathematical Description of Shape in Grey-
level images, NATO (1992)

[5] L. Vincent, Grayscale area openings and
closings: their efficient implementation and
applications, Proc. EURASIP Workshop on
Mathematical Morphology and its Application
to Signal Processing (1993) As far as the algorithms discussed in this paper

are considered, Meijster & Wilkinson state that the
union-find algorithms outperform the pixel-queue
and the max-tree algorithms. As shown in section
3.2, the complexity of the breadth-first algorithm is
equal to that of the max-tree, implying the union-
find method also outperforms the breadth-first
algorithm. Although situations might exist in which
the three more complex algorithms would be a
more sensible choice than the union-find algorithm,
judging from their performance compared to that of
the union-find, the pixel-queue, max-tree and
breadth-first algorithms can generally be regarded
as being rendered obsolete by the union-find
algorithm.

[6] R.E. Tarjan, Efficiency of a good but not linear
set union algorithm, Journal of the ACM
(1975)

[7] M.H.F. Wilkinson, J.B.T.M. Roerdink Fast
morphological attribute operations using
Tarjan’s union-find algorithm, Proc. Int’l
Symp. Memory Management 2000 (2000)

[8] M.H.F. Wilkinson, Connectivity preserving
filters in morphological image analysis,
Undergraduate Student Colloquium, Institute
for Mathematics and Computing Science,
University of Groningen (02-12-2004)

Evaluation of Methods for Area Openings by Connected Set Operators – Marten Pijl, Gideon Laugs

66

A look at Programming Methods for solving problems of current
Software Development

Kenneth Rohde Christiansen, Niek Oost
k.r.christiansen@student.rug.nl, h.oost@student.rug.nl

Department of Mathematics and Computing Science
Rijksuniversiteit Groningen

Blauwborgje 3
NL-9747 AC Groningen

Abstract
In this paper we will look at the problems of application development that are not directly
solved by using standard programming methods like imperative, object-oriented or func-
tional programming. We will introduce four proposals for alternative programming methods
developed to solve some of these problems. This text evaluates the different proposals on
practical applicability of these methods in the near future. The document assumes that the
reader has basic knowledge of object-oriented programming.

Keywords: Programming Methods, Subject-Oriented Programming, Aspect-Oriented Pro-
gramming, Separation of Concern, Computer Science.

Version of Februari 27th 2005; revised form of January 9th 2005.

1 Introduction

The main objective of software engineering is to
improve software quality, reduce costs and also to
facilitate easy maintenance of the software prod-
uct. Over the last few years many new techniques
have been introduced to support this. High-level
languages such as C proved to be a major step
forward from programming in assembly and today
most people value the use of Object-Oriented lan-
guages with garbage collectors such as Java or C#.
Unfortunately, Object-Oriented languages do not
solve all of the software development problems.

The main objective of this paper is to look into
the various problems of application development
that are not solved by common programming lan-
guages in use today. The biggest problems of
software development relates to code understand-
ing, maintenance, extendibility and reuse. Object-
Oriented Programming has been suggested to solve

some of these problems by decomposing the code
into small reusable objects, and has proven highly
successful. Unfortunately, artifacts as for instance
new features often decompose the product in a dif-
ferent way, so the different decomposition methods
tend to scatter or tangle the code. Adding a new
feature might require changes to multiple objects,
this will make it harder to understand and main-
tain the code. The different ways a product can be
decomposed are often referred to as the separations
of concern. Each concern leads to a different kind
of separation/decomposition.

1.1 Discussed techniques

In this text the following proposed techniques are
discussed :

Subject-Oriented Programming [Harrison
and Ossher, 1993] tries decomposing the code

67

into subjects that deal with the same objects,
separating the extrinsic properties from the actual
objects and their intrinsic properties.

Aspect-Oriented Programming [Kiczales...,
June 1997] looks at the non-functional concerns to
be separated from the functional concerns.

Hyper modules and -slices are introduced in
[Harrison..., 1999] as a general way to satisfy the
separation of concern for functional dependencies.

Superimposition [Bosch, 1998] proposes a
technique for component adaptation for reusable
components.

2 Subject-Oriented Programming

Object-Oriented programming tries modeling the
world as objects. Trees, birds, cars, etc. are all
examples of objects. This has proven to be a suc-
cessful approach and has revolutionized the soft-
ware industry. Unfortunately, different subjects
consider different properties of an object as im-
portant. Where a tree has intrinsic properties like
height and age, a subject can also be interested in
other properties. A bird, for instance is also in-
terested in the possibilities to build a nest in the
tree.

In the software developing community a growing
suite of applications manipulate the same objects.
During the development of these objects, program-
mers need to anticipate which properties that could
be used in future applications, so that it is easier to
reuse their code. This is an almost impossible task,
since it is almost impossible to know what extrin-
sic values will be used in future applications. An
extensive interface on the other hand also creates
problems for programmers using these objects: dif-
ferent applications will only use part of the object
interface, while they are forced to also consider the
rest of the interface (with possibly state modifiers).

If object-oriented programming is to scale from
the development of independent applications to the
development of highly integrated application suites
it has to relax the dependency of objects and in-
stead concentrate more on how these objects are
tied together. A technique that emphasizes on the
subject view is known under the name Subject-

Oriented Programming and is described in [Harri-
son and Ossher, 1993]

2.1 The idea

Subject-Oriented Programming builds on Object-
Oriented programming, in that there exist ob-
jects containing intrinsic properties (often known
as fields) and behavior (often known as methods).
Each subject contains a library of the classes of ob-
jects known to the subject. The subject addition-
ally contains extrinsic properties for each of these
objects reflecting how the subject sees the given
object.

By following this idea it is possible to develop
subjects independent of other subjects, while they
can still deal with the same objects. An application
is then considered as a subject or a composition of
subjects.

2.2 Subject composition

When a subject interacts with an object it might
influence the objects’ intrinsic properties, but this
might, in effect, also influence the extrinsic prop-
erties of different other subjects. If, for instance,
a bird subject builds a nest in a tree this might
mean that the woodman is not allowed to cut down
the tree, thus the can-cut property owned by the
woodman has to be changed.

To make a subjects’ action on an object affect the
extrinsic properties of another subject, the subjects
need to be composed. This can only work if a sub-
ject implements the same behavior/methods as the
behavior of the subject that it wants to respond to.
If the woodman wants to track the building of nests
in a tree, which are controlled by the build-nest
and abandon-nest behavior of the bird subject, the
woodman subject will have to implement these as
well.

2.3 Class matching

The subjects do not necessarily have to in-
clude the same class library. For instance, a
pine might be derived from object->nestable
in the bird subject or it can be derived from
object->tree->softwood in the woodman sub-
ject. This means that the composition rule also
needs to specify some kind of class matching. Ad-
ditionally, some subjects might know objects that

A look at Programming Methods for solving problems of current Software Development – Kenneth Rohde
Christiansen, Niek Oost

68

other subjects don’t know about. For instance the
bird might know about a tree (a locust for instance)
that the woodman doesn’t know about. The com-
position rule can then be used for concluding that
a locust can be treated by the woodman as being a
tree.

2.4 Subject activation

When a subject gets instantiated - or activated -
to follow the terminology in the paper, all objects
in the subject have to be created as well as the ex-
tra extrinsic properties reflecting the subjects view
of the objects. In a subject composition there is
more than one subject dealing with the same ob-
jects. This means that the other subjects need to
instantiate their extrinsic properties for the objects
as well. This can be done in different ways, for in-
stance all extrinsic properties for all subjects will
be instantiated when one of the subjects is acti-
vated. A better and more effective way may be to
first instantiate these properties when needed.

2.5 Our Conclusion

Subject-Oriented Programming introduces some
nice concepts for modeling the interaction of sub-
jects in the real world. Whether this would work for
modeling applications is a good question. We think
it sounds very complicated to design - maybe huge
- different class libraries for each subject. The idea
is that these can be designed independently, but
for class matching to work properly the developer
probably needs to know about the class libraries in
the other subjects. Another problem that we see,
is the problem of saving/serializing objects. Lets
consider a document to be an object and a word
processor and a spreadsheet to be subjects imple-
menting extrinsic properties for this document. If
we now want to save the document the question is
how we make sure that all extrinsic properties for
all subjects are saved. We don’t see an easy way to
do this with the current model.

3 Aspect-Oriented Programming

When code has to be optimized (for example for
performance), these optimizations often cross-cut
the different components that the application con-
sists of. During the optimization of a piece of code,

one often reduces the number of procedure calls,
creating code that is much harder to understand
and maintain, than the original code, but faster. To
get the best of two worlds : easy maintainable code
and highly optimized software, aspect oriented pro-
gramming is proposed. In this technique, ’aspects’
are introduced as issues cross-cutting components,
dealing with things like performance and memory
usage.

The paper [Kiczales..., June 1997] uses a good
example to show what Aspect-Oriented Program-
ming is all about. When dealing with images, like
for instance developing an OCR application, you
often have to put the image through various fil-
ters. Each of these filters produces a new image
which might live shortly before it is copied to a
second filter, discarding the copy of the previous
filter. Since this results in excessive memory refer-
ences, which can result in cache misses, page faults,
etc. it should be avoided. In this particular case
developers often try to merge these different filters
into one big procedure, reusing as much memory
as possible. This merge is done by hand, and of-
ten results in buggy, tangled code that is hard to
understand, hard to extend and hard to maintain.
The authors of the paper implemented an ineffec-
tive subpart of an OCR application in as little as
768 lines of code. The effective, tangled version
on the other hand consisted of 35213 lines of hard
maintainable code.

3.1 How it works

In the example described earlier, the optimization
is done by merging filters, which is in fact done
by merging loops. Aspect-Oriented Programming
can do this automatically, and does it by introduc-
ing a component language, an aspect language and
an aspect weaver. It is also noted that the actual
weaving can be done at runtime or at compile-time.

The idea is that you write your components in
a language similar to what you are used to, but
for the above example, the language will have to
support a high-level looping construct so that the
weaver can detect, analyze and fuse loops more eas-
ily. In the paper they introduce a pixelwise con-
struct to do this.

Additionally, you will have to write a merging
condition in the aspect language, which will then
be used to compare nodes in the data flow of the

NIOC 2004 proceedings

69

application. If two of the filters fulfill the condition,
like for instance that they are both pixel wise, then
they can be merged. This exact merging is done by
the weaver.

The weaver uses unfolding to generate the data
flow graph, which then is processed by the aspect
rules which will look for nodes to merge. As the
last step the code generated walks though the data
flow graph and generates the actual code.

With this method the authors implemented an
easy maintainable version of the OCR subroutine,
that was almost as effective as the tangled version
and in as little as 1039 lines of code. With an im-
proved code generator it should be possible to make
the new version practically as effective as the tan-
gled version.

3.2 Our Conclusion

There are many different kinds of aspects, that can-
not cleanly be encapsulated in a generalized com-
ponent. Loop fusion is just one of these. Others in-
clude, minimizing network traffic, synchronization
constrains, error handling etc.

We find Aspect-Oriented programming to be an
interesting new idea that can actually easily solve
some of the problems that developers are dealing
with today. Unfortunately, Aspect-Oriented pro-
gramming is a very young idea and there has to
be researched how it can help solving other aspects
than loop-fusion, and what are good structures for
use in aspect programs. There is also the question
if people can easily learn to analyze and identify
aspects in their programs, and if it can be made
easy to debug these applications when the gener-
ated code will be very different from the actual im-
plementation.

4 Hyper modules and -slices

Hyper modules and hyper slices is a recent idea
for solving the separation of concern. It builds on
Subject-Oriented Programming and the people be-
hind Subject-Oriented Programming are also co-
authors of this paper, [Harrison..., 1999].

The idea roots in Object-Oriented programming,
and facilitated methods for easily adding new fea-
tures that span multiple classes. A hyper slice re-
sembles a subject in the Subject-Oriented method.
The difference is that a hyper slice only implements

extra ’extrinsic’ properties and methods for the
classes in the program. This means that we don’t
have the class matching problems as in the Subject-
Oriented idea. This makes it possible to easily add
new features without changing and polluting the
existing classes with implementation details of this
feature. This way the code for the feature addi-
tion will be kept together and code readability and
maintainability will be maintained.

As with subjects, hyper slices can be combined
by a composition rule. A composition of hyper
slices is called a hyperplane, and it contains approx-
imately the same problems as we noted in the sec-
tion about Subject-Oriented Programming. There
are fewer problems, as the slices build on top of an
already defined class library. Because the slices do
not implement different class libraries, class match-
ing is much easier than with Subject Oriented pro-
gramming.

4.1 Our Conclusion

Hyper modules sounds like a powerful new method
to solve some of the separation of concern problems
currently present in most development projects. It
takes the best of Subject-Oriented Programming
and makes it usable. It builds on top of Object-
Oriented programming and is thus optional. Since
it is in its early stages it is hard to tell if it will
be over-used and thus complicate the code against
the intention. There might also be some problems
with class inheritance; what if I want/need to in-
herit from a class after it has been combined with a
hyper slice? Also some research needs to be done in
how to easily compose hyper slices. Hyper modules
helps dealing with functional concerns, but not nec-
essarily with non-functional concerns as those dealt
with in Aspect-Oriented Programming.

5 Superimposition

As stated earlier, the main objective of software
engineering is to improve software quality, reduce
costs, facilitate easy maintenance and evolution of
the software product. One way of doing this it
to develop re-usable components. The components
are often used in many projects and thus they are
often very complete and well tested, which helps
insuring low costs and improved software quality.
Unfortunately, components are not the holy grail,

A look at Programming Methods for solving problems of current Software Development – Kenneth Rohde
Christiansen, Niek Oost

70

as they often have to be adapted to the system re-
quirements - which often requires understanding of
how the components are implemented.

In the paper that we have examined, five criteria
are used for classifying various ways of adapting
components. These are:

• Transparency; the adaptation between the
component and the user should be as trans-
parent as possible, thus the components should
not feel alien to the product.

• Black-box; the user shouldn’t need to know
about the internal structure of the component,
only its interface.

• Composability; the adaption technique
should be composable with the component
without changes to the component; the com-
posed component should have the same com-
posability as the original; it should be possible
to compose the adaptions.

• Configurability; it should be possible to con-
figure the adaptation technique to fit the users
needs.

• Re-usability; the adapted components
should be re-usable, which is often not
the case since the configuration is often
intertwined in the generic adaptation.

There are three often used methods for compo-
nent adaption; copy-paste, inheritance and wrap-
ping, all with there advantages and disadvantages.
With copy-pasting the component into the project
or inheriting from the component, only the trans-
parency requirement is fulfilled. Wrapping the ob-
ject, on the other hand, doesn’t help transparency,
but somewhat fulfills the black-box, composibility
and re-usability requirements. The reasoning be-
hind this can be found in [Bosch, 1998], though
it should be quite obvious if you have worked with
any of these techniques.

5.1 The idea

Superimposition is a way of describing an adapta-
tion as some kind of mapping. This makes it quite
easy to compose different adaptations and satisfy
the requirements stated above. Each object is de-
scribed as an interface, a set of methods, a set of

states (instance variables) and a mapping from the
interface to the methods. The adaptation is per-
formed by modifying these by standard mathemat-
ical operators. Instead of going into details with
these, we recommend the interested reader to read
the actual paper.

As simple example to demonstrate the idea, is
a restriction of an interface: A restriction can be
described as a set of interface methods that we want
to keep, plus a function that actually performs this
operation.

Similar rules can be made for other types of adap-
tations. We mentioned that these adaptations can
be categorized in three different types: Changes to
component interface (like function renaming), com-
ponent composition (like delegation of request), and
component monitoring (reacting on certain condi-
tions in the state of a component).

5.2 Our Conclusion

Superimposition sounds like a good way to im-
prove component adaptation and it also makes it
possible to reduce the overhead when composing
adapted components. This is because the binding
can be done directly (only one wrapping) instead of
a wrapping of a wrapping. It still requires, though,
that you fully understand the interface of the com-
ponent before you do the adaptation. If the com-
ponents doesn’t export enough in its interface you
will still have to deal with the internals of the com-
ponent, and if the component exports too much, it
will be hard understanding the interface. Whether
the method works well in practice is hard to say,
but it sound promising.

When reusing components in a project one of-
ten has to write a wrapper to make the compo-
nents compatible with the components already in
the project. Sometimes this is also necessary to
make data types compatible (like different repre-
sentations for strings). We do not see how super-
imposition can solve this often-occurring problem.

6 Further reading

If there is interest to read more about the suggested
methods, we suggest reading the actual papers, as
well as some of the papers referred from these. We
suggest reading the papers in the same order as we
have dealt with them. This way you will gain the

NIOC 2004 proceedings

71

background for the later papers and you will also
get a good idea how the theories are progressing.

7 Conclusion

After reading the four proposals on improving soft-
ware development techniques, as described in this
text, we come to the following conclusion: While
all texts provide interesting new ideas, the stage
in which the development of the ideas are, differ
a lot. The proposed ideas are not all usable in
their current form. Subject-oriented programming,
for instance, is a nice idea, but it seems virtually
impossible to make it usable in the near future.
Hyper modules, seen as a weak version of Subject-
Oriented programming, on the other hand seems
like a technique that could be introduced in pro-
gramming languages in a foreseeable future. Su-
perimposition and Aspect-Oriented programming
seem like techniques that are created as solutions
for practical problems that the authors experi-
enced. Both techniques could be useful and could
be implementing in some application-specific tools.
After some experience is gained with these tech-
niques, we think they are good candidates for being
introduced into current programming languages.

8 Acknowledgements

We want to thank our teachers Rein Smedinga and
Jan Terlouw for their course and for further reviews
of this paper.

References

Bosch, J. (1998). Superimposition: A component
adaptation technique.

Harrison..., W. (1999). N degrees of separation:
Multi-dimensional separation of concerns.

Harrison, W. and Ossher, H. (1993). Subject-
oriented programming (a critique of pure ob-
jects). OOPSLA, 411–428.

Kiczales..., G. (June 1997). Aspect-oriented
programming. Proc. European conference on
Object-Oriented Programming (ECOOP), Fin-
land, Springer Verlag , LNCS 1241.

A look at Programming Methods for solving problems of current Software Development – Kenneth Rohde
Christiansen, Niek Oost

72

Image Segmentation: Problems, Techniques and Evaluation

Criteria

Timo Laman and Martijn Bodewes

{timo|bodewes}@fmf.nl
Abstract

A little over ten years ago [6] started a discussion that addressed severe prob-
lems within the field of Computer Vision. The main problem stated was how
the research in the field should continue. Image segmentation techniques and
how to use them correctly were named as a key subject which has been ne-
glected. This paper discusses the problem stated, focusing on the field of image
segmentation. It also gives a short overview of the state nowadays. A few pa-
pers on segmentation techniques and their evaluation are discussed and their
relevance to the problem stated is determined.

1 Introduction

1.1 Problems in computer vision

A little over ten years ago, [6] signalled a
lapse in the scientific development of the
Computer Vision research field. The au-
thors felt that Computer Vision, though po-
tentially a powerful tool with a great many
possible applications in a variety of fields,
failed to become a mature science. The
problems are attributed to the preoccupa-
tion of researchers with theory, neglecting
the experimental aspects.

According to the authors, the entire re-
search field suffers from three general prob-
lems:

ignorance in many algorithms, no at-

tempt is made to use higher level
knowledge of the scene or represent this
knowledge in a way that is useful

myopia often, algorithms rely on proper-
ties that hold only in specific areas of
the image, and fail to look at the “big
picture”. The authors call this spa-
tial myopia (or short-sightedness). An-
other problem specific to computer vi-
sion involving motion is temporal my-
opia, the failure to make full use of all
data in the sequence of input frames

naiveté the inclination of some researchers
is to accept statements about the use-
fulness of algorithms without proper
experimental justification

In the ensuing dialogue about the future

73

of computer vision as a science, other re-
searchers in the field gave their opinion. [10]
focuses on the “naiveté” problem, saying
that in order to become a mature science,
rigorous experimental methodologies need
to be developed based on error analysis and
that in order to achieve this, the tendency
to develop algorithms with a large number
of parameters needs to be stopped.

[1] and [5] disagree with [6], stating that in
their opinion computer vision is continuing
to grow into a mature science and that the
problems signalled by [6] are inevitable in a
science that is relatively young. This vision
is shared more or less by [3].

Finally, [7] states that the problems might
also be caused by computer vision being a
rather “closed” area of research, in which
fresh ideas get little chance to blossom be-
cause they are simply never picked up by
other researchers.

1.2 Relation to image segmentation

One of the subtopics of the computer vi-
sion research area which the [6] mention as
a neglected problem is image segmentation.
The stated problems of ignorance, myopia
and naiveté are all applicable to this area
in some way.

This paper will explain why image segmen-
tation is important for almost all applica-
tions of computer vision systems. Also, it
will show how the problems [6] mentions ap-
ply to this particular research field. Finally,
it will try to give on overview of possible im-
provements and research conducted in the
area over time.

2 Image segmentation in Computer

Vision applications

In order for a computer program to derive
useful information from an image, it is im-
portant that the image be divided into the
objects that are of interest to the particu-
lar application, and parts which are of no
consequence and can therefore be ruled out
from the rest of the processing. For exam-
ple, to count the number of coffee beans in
a picture of coffee beans, the image has to
be divided into the beans (the objects of in-
terest) and the background (the surface on
which the beans lie). The subsequent pro-
cessing would consist of counting the sepa-
rate (unconnected) objects in the image.

The importance of good segmentation re-
sults is evident. Even in this simple exam-
ple, a bad segmentation algorithm would
lead to incorrect results. If, for example,
two coffee beans lying close to each other –
or even on top of each other in a pile – would
be considered as one object, the result of
the count would come out too low. This is
clearly visible in figure 2: the number of dif-
ferent regions is lower than the number of
beans, simply because beans close to each
other cannot be distinguished.

Image segmentation thus involves classify-
ing pixels in the input image according to
in which object/region they are located.

One of the difficulties in image segmenta-
tion is that a unique segmentation usually
does not exist. Pixels in the input image
can be grouped in different configurations
depending on the application, and the ob-
jects that are to be expected. This means
that no “general” image segmentation tech-

Image Segmentation: Problems, Techniques and Evaluation Criteria – Timo Laman, Martijn Bodewes

74

The image The regions identified in the image

Figure 1: An image of coffee beans segmented using thresholding and watersheds

nique can be constructed, and that the seg-
mentation method used has to be tuned to
the specific application. In this respect, [1]
disagrees with [6], stating that effort spent
on coming up with a general way to solve
the problem is wasted and that concentrat-
ing on segmentation for a particular pur-
pose would be more fruitful; according to
this article, general image segmentation is
too ill-defined a problem to find a solution
for.

3 Identified problems in image seg-

mentation research

In [6], image segmentation is recognized as
one of the most important issues of com-
puter vision. The main concerns expressed
in the dialogue are the following:

• A lot of research has been done that
assumes either that a good image
segmentation technique is available –
which is, unfortunately, rarely the case
– or that image segmentation is not a
necessary at all – which results in solu-
tions working only on images with no
background, which are rare. Therefore,

this research has no immediate practi-
cal value, and can’t be tested on real-
world example images. Instead, syn-
thesized and unrealistic test input im-
ages have to be used.

• There is a lack of objective and au-
tomated evaluation criteria for image
segmentation. It is hard to tell if a par-
ticular segmentation is “good”. This is
a result of the lack of experimentation
in the research, which makes it unnec-
essary to define evaluation measures,
and thus to think about quality criteria
for the segmentation technique.

• Image segmentation techniques fre-
quently rely on local intensity proper-
ties in the image, like sudden contrast
differences (in the case of edge detec-
tion) or connected regions of approxi-
mately the same intensity value; com-
plex objects however might contain a
large range of intensities due to light-
ing or texturing of the scene.

• Researchers are too preoccupied with
low-level filters and operators, and fail
to incorporate higher level knowledge

NIOC 2004 proceedings

75

of the application domain in the seg-
mentation phase of the process.

The first problem is not a problem of im-
age segmentation per se, but it affects al-
gorithms that rely on an image being seg-
mented correctly. It is highly related to the
second problem: the lack of evaluation cri-
teria for segmentation techniques prevents
experimenting with the techniques, which
makes it hard to test higher level vision al-
gorithms on real images (because no robust
and tested image segmentation techniques
are available). Thus, the naiveté in image
segmentation area causes naiveté in other
vision areas of research as well.

The last two problems, which might be con-
sidered forms of myopia and ignorance re-
spectively, are also related to each other.
Whereas in the image itself no information
is contained other than the intensities at
different pixels in the image, higher level
knowledge might help to identify objects
in the image with differences in intensity
if that particular object is expected to have
these differences and is likely to be in the
image.

4 Research in image segmentation

In this section, an overview of research
into some aspects of image segmentation is
given.

4.1 Segmentation techniques

A lot of different criteria and approaches
can be used to achieve image segmentation.
Pixels can be assigned to a region because of

a common property in intensity: examples
of this region-based approach are threshold-
ing, where simply all pixels with an inten-
sity between to threshold values are consid-
ered to be the “foreground”, or watershed
segmentation, where regions are “grown”
from a certain point within the region and
separated at the places where the borders
of the region touch.

An edge-based approach can also be used:
in this case, regions are defined by enclos-
ing boundaries composed of pixels with a
particular property.

Finally, a boundary-based approach, where
the boundaries between two regions are lo-
cated by some transition of properties of
the pixels at that boundary, can be used
to identify regions.

The above methods can be applied to
achieve an initial segmentation of the im-
age. In [9] a framework for image segmen-
tation is given which can refine such an ini-
tial segmentation using rules based on the
knowledge about the application domain,
for example in order to merge regions which
actually belong to the same object.

4.2 Segmentation evaluation

Of the problems described in the previous
section, the problem about a lack of eval-
uation criteria is probably the most inter-
esting. Defining a set of evaluation criteria
for segmentation techniques allows for ex-
perimenting on images and fine-tuning al-
gorithms to specific application areas. Also,
evaluation criteria can serve as a guideline
to follow when designing new segmentation
algorithms.

Image Segmentation: Problems, Techniques and Evaluation Criteria – Timo Laman, Martijn Bodewes

76

Empirical evaluation strategies can be di-
vided in two classes ([4]): “goodness” and
“discrepancy”. The first strategy involves a
measure that can be taken from the image
directly, like for example the deviation of
contrast inside each region in the segmen-
tation. This way one is able to determine
whether all pixels in the region really have
a common property. For this strategy, no a
priori knowledge of the image is necessary,
so it can be used within a working applica-
tion to actively monitor the correctness of
segmentations.

The “discrepancy” strategy on the other
hand does require a priori knowledge. In
this strategy, the discrepancy between a
precalculated segmentation (made, for ex-
ample, manually by an expert in the partic-
ular application area), and the output of the
algorithm run on the same image is deter-
mined. The less the discrepancy, the better
the segmentation algorithm performs.

4.2.1 Goodness measures

Goodness measures can be calculated with-
out having a reference segmentation. Be-
cause a lot of different criteria for image
properties can be used to segment an im-
age, different measures will have to be de-
fined for different kinds of images or appli-
cations.

An example of a measure that is defined in
[8] is the Inter-region contrast measure I.
In this criterium, the total contrast of all
regions in the segmentation is divided by
the total area of the image, as follows:

I =

∑
Ri

Aici∑
Ri

Ai

where

ci =
∑

Rj

lij
li

|mi − mj|
mi + mj

In these equations, the Ri are the different
regions in the segmentation, Ai are the ar-
eas of the regions, mi the mean intensity of
the pixels in region Ri, li the perimeter of
Ri and lij the length of the border between
regions Ri and Rj.

I increases when the contrasts of neigh-
bouring regions increase, and because it is
normalized, it takes a value between zero
and one inclusive. Thus, a higher contrast
between neighbouring regions is considered
better, and low contrast might mean that
the boundary between two regions should
be moved or that two regions should be split
or merged.

In [8] a few different criteria are evaluated
on the segmentation of a number of different
images, and the performance is measured
by comparing the goodness measure to the
goodness measure computed for a reference
segmentation.

The example above is just one of the mea-
sures described. The fact that different
measures have to be used for different kinds
of images can be seen as follows: sup-
pose you create a segmentation of a tex-
tured image, consisting of two adjacent
checkerboard patterns, one consisting of
2x2 pixel squares and the other of 4x4 pixel
squares. The expected segmentation then
would identify the two patterns as differ-

NIOC 2004 proceedings

77

ent regions. However, since the mean inten-
sity of both patterns is the same, the Inter-
region measure would characterize this ideal
segmentation as a bad one.

4.2.2 Discrepancy measures

Empirical discrepancy measures were
around as early as 1982 ([9]) and are used
for example in [11].

The measure described in [9] compares the
output of a particular segmentation algo-
rithm, consisting of regions τi, 1 ≤ i ≤ M ,
to a reference segmentation consisting of re-
gions Rj, 1 ≤ j ≤ N . Let A(r) denote the
area of a region r. An under-merging error
U can be calculated as

U =
M∑

j=1

(A(Rk) − A(τj ∩ Rk))A(τj ∩ Rk)

A(Rk)

Here, a∩ b denotes the overlap of (the part
of the image shared by) regions a and b.

Rk in the above formula is defined, for every
τj, to be the region in the reference segmen-
tation which fits best to the region τj, i.e.,

A(τj ∩ Rk) = Max1≤i≤N A(τj ∩ Ri)

The under-merging error thus increases
with the amount of area contained regions
that do not correspond to regions in the ref-
erence segmentations.

Similarly, an over-merging error O is de-
fined as

O =
M∑

j=1

A(τj) − A(τj ∩ Rk)

This increases with the amount of area con-
tained in regions that overlap multiple re-
gions in the reference segmentation.

Both measures have zero as a lower bound
(consider, for example, a segmentation
which corresponds exactly to the reference
segmentation: then A(Rk) = A(τj ∩Rk) for
every j), and an upper bound of the area of
the entire image, Ai.

A composite error value can be determined
by combining the normalized values of the
error measures, for example by taking the
value 1/Ai

√
O2 + U2.

4.2.3 Combinations

In [4], an approach is described combining
different empirical strategies with other, an-
alytical, measures like running time, mem-
ory requirements and analyzed behaviour of
algorithms to specific input types to yield
a measure that can be used to find an ac-
ceptable trade-off between different quality
measures. To this end a function H is used
to compute a weighted average of various
evaluation criteria:

H(a�p, I) = Φ(f1(a�p, I), . . . , fn(a�p, I))

Here Φ combines the output of some evalu-
ation functions fi into a single value. a�p is
an image segmentation algorithm a with a
list of parameters �p, and I is a set of refer-
ence segmentations (i.e., ground truths) to
be used for discrepancy measures.

Image Segmentation: Problems, Techniques and Evaluation Criteria – Timo Laman, Martijn Bodewes

78

4.3 Use of higher level knowledge in

segmentation techniques

A subject which still seems not very well
researched is the use of higher level knowl-
edge of the image in segmenting it. Usually,
some higher level knowledge is inherently
used (for example, when segmenting an im-
age using a fixed intensity threshold).

In [9] a technique is described to refine a
segmentation using a system of rules that
can act on different properties of regions,
which are calculated in an earlier step. By
acting on specific conditions in the seg-
mented data, regions can be merged or
split. Higher level knowledge can be used
to control the way regions are merged or
split. The technique essentially consists of
a framework to let the merge or split actions
be governed by knowledge about what kind
of regions might be available in the input
image.

This way of refining the segmentation can
be used to propagate knowledge obtained
in a higher level of the algorithm to the
segmentation phase. However, since it is a
framework rather than a segmentation tech-
nique in itself, it needs quite a lot of ad-
ditional work to incorporate it in a vision
system satisfactorily.

In [2], use of a priori high level knowledge of
a particular application domain is demon-
strated in combination with active contour
image segmentation, an edge-based segmen-
tation technique that is based on fitting a
curve around the region of interest by using
some kind of energy minimizing function.

The technique is used on medical data ob-
tained by CT, MRI or PET scans. In these

kinds of images, different objects are fre-
quently hard to identify automatically be-
cause often there is little variation of inten-
sity between different objects.

Active contour segmentation relies on cer-
tain parameters for the fitting function. In
semi-automatic systems, these parameters
have to be chosen by a (human) expert
monitoring the system. The system pro-
posed in [2] automatically configures these
parameters based on a semantic network
containing anatomical information, such as
size, intensity and relative location of or-
gans or parts of them. A crude initial seg-
mentation is used to choose a candidate for
each region, after which active contours are
used to reach the final segmentation.

This example again shows that knowledge-
based segmentation is very specific to par-
ticular application domains, and that a gen-
eral segmentation system is not readily de-
vised.

5 Conclusion

In the past twenty years a lot of research has
been done in the field of image segmenta-
tion. New segmentation techniques are be-
ing developed in great numbers. The claim
in [6] that there are no evaluation criteria
to determine if a technique is good enough
seems to be obsolete; [9] already proposed
a measure that is useable and as seen in
[4] and [8], the research in this field is far
from inactive. Naiveté is therefore not such
a problem anymore, at least, from the per-
spective of image segmentation.

The existence of these measures allow for
experiments with segmentation algorithms

NIOC 2004 proceedings

79

to find better techniques, and to tune ex-
isting techniques to specific applications.
Of course, data to experiment on is also
needed, as well as willingness from re-
searchers to engage in experiments.

The problem of myopia is not quite as out-
spoken in image segmentation as perhaps
in other fields of computer vision; it is diffi-
cult to be able to say anything about global
properties of an image at such an early
stage. Perhaps it should just be accepted as
in [1] and [5] that the available data is usu-
ally myopic and that relying on local prop-
erties in images is inevitable. Also, the use
of high-level knowledge may help in this re-
spect to relate regions to each other.

On the problem of ignorance, and the use of
higher level knowledge in vision and image
segmentation in particular, not much infor-
mation is available. A lot more research
can and should probably be done in this
area. However, it should be kept in mind
here that higher level knowledge usually is
very specific to the application, and there-
fore it is difficult if not impossible to devise
a segmentation algorithm using high level
knowledge that can be generally used.

References

[1] Y. Aloimonos and A. Rosenfeld. A
response to “ignorance, myopia, and
naivete in computer vision systems” by
r. c. jain and t. o. binford. CVGIP,
53(1):120–124, January 1991.

[2] Riccardo Boscolo, Matthew S. Brown,
and Michael F. McNitt-Gray. Medical
Image Segmentation with Knowledge-

guided Robust Active Contours. Ra-
diographics, 22(2):437–448, 2002.

[3] K.W. Bowyer and J.P. Jones. Revo-
lutions and experimental computer vi-
sion. CVGIP, 53(1):127–128, January
1991.

[4] Mark Everingham, Henk Muller, and
Barry Thomas. Evaluating im-
age segmentation algorithms using
monotonic hulls in fitness/cost space.
In Tim Cootes and Chris Tay-
lor, editors, Proceedings of the 12th
British Machine Vision Conference
(BMVC2001), pages 363–372. BMVA,
2001.

[5] T.S. Huang. Computer vision needs
more experiments and applications.
CVGIP, 53(1):125–126, January 1991.

[6] R.C. Jain and T.O. Binford. Dia-
logue: Ignorance, myopia, and naivete
in computer vision systems. CVGIP,
53(1):112–117, January 1991.

[7] M. Kunt. Comments on dialogue, a
series of articles generated by the pa-
per entitled ”ignorance, myopia, and
naivete in computer vision”. CVGIP,
54(3):428–429, November 1991.

[8] Hélène Laurent, Sébastien Chabrier,
Christophe Rosenberger, Bruno Emile,
and Pierre Marché. Etude comparative
de critères d’évaluation de la segmen-
tation. 2003.

[9] M.D. Levine and A.M. Nazif. An ex-
perimental rule-based system for test-
ing low level segmentation strategies.
Multicomputers and Image Processing

Image Segmentation: Problems, Techniques and Evaluation Criteria – Timo Laman, Martijn Bodewes

80

Algorithms and Programs, pages 149–
160, 1982.

[10] M.A. Snyder. A commentary on the
paper by jain and binford. CVGIP,
53(1):118–119, January 1991.

[11] M.H.F. Wilkinson. Digital Image
Analysis of Microbes, chapter Au-
tomated and Manual Segmentation
Techniques in Image Analysis of Mi-
crobes. John Wiley & Sons, 1998.

NIOC 2004 proceedings

81

Using Force-Directed Methods For Drawing Graphs

Michiel Koning and Maarten Everts

Department of Computer Science
Rijksuniversiteit Groningen

Blauwborgje 3
9747 AC Groningen

{m.g.koning, m.h.everts}@student.rug.nl
Abstract
For many problems in information visualization, a well laid out graph can provide insight
into the data. This paper discusses one family of algorithms to find an aesthetically pleasing
drawing for a graph: force-directed layout algorithms. The basic force-directed algorithm is
fairly slow and some algorithms which improve this performance are presented. The paper
is concluded with an overview of which algorithm to use for which type of graph.

Keywords: Graph drawing, layout algorithms, force-directed layout algorithms, perfor-
mance improvement

1 Introduction

In the field of information visualization, there are
many types of data that can be represented as
graphs. In order to obtain insight into this data, the
elements of the graph must be properly positioned
in a two- (or three-) dimensional space. There are
many algorithms available that try to achieve this
goal, by, for example:

• minimizing edge crossing

• minimizing edge lengths

• minimizing link bends

• maximizing symmetries

The aesthetic properties they try to achieve can
sometimes be contradictory.

There are several types of graph layout algo-
rithms, all having their own merits and applica-
tion areas. For example, directed graphs are very
suitable to be laid out by hierarchical layout algo-
rithms. The most widely used hierarchical algo-
rithms are based on [Sugiyama and Tagawa, 1981].

For an overview of existing algorithms for graph
drawing, see [Battista et al., 1999].

In this paper, we will focus on one type of graph
layout algorithms: force-directed methods. We will
first discuss the simplest type of force-directed lay-
out, and will then discuss several enhancements to
the basic algorithm that improve upon it in differ-
ent ways, mostly to speed up the algorithm.

2 Force-directed layout

Force-directed layout algorithms are a class of lay-
out algorithms that try to obtain an aesthetically
pleasing layout by representing the vertices of a
graph as physical objects subject to various forces.
The forces used differ from implementation to im-
plementation. All have their particular aesthetic
properties.

In an iterative manner the vertices are moved
toward the direction the sum of forces exerted on
them until the system reaches a stable configura-
tion. A stable configuration often shows symme-
tries in the graph even though the algorithm does
not specifically search for symmetries. This is one

82

of the reasons why force-directed layouts are quite
popular. Another reason is that the basic idea is
simple and thus easy to implement.

2.1 Basic spring-embedder

The simplest force-directed algorithm uses a combi-
nation of electrical and spring forces. This is called
a spring-embedder model, and was first introduced
by Eades in [Eades, 1984]. Nodes are considered
to have mutually repulsive charges and edges are
modeled as springs that attract connected nodes.

Say ∆(v, w) is the distance vector between two
nodes v and w and ‖∆(v, w)‖ the Euclidean dis-
tance. The repulsive (electrical) forces between
each pair of nodes are inversely proportional to the
distance, so the force vector is:

Felec(v, w) = −λelec
∆(v, w)

‖∆(v, w)‖2

Between nodes connected by edge (v, w), there
is an attractive (spring) force directly proportional
to the difference between the distance and the zero-
energy length of the spring (Hooke’s law):

Fspring(v, w) = λspring
∆(v, w)
‖∆(v, w)‖ (‖∆(v, w)‖ − l)

Here λelec, λspring and l are parameters: λelec

denotes the strength of the electrical repulsion,
λspring represents the stiffness of the spring and
l is the natural (zero energy) length of the spring.

2.2 Magnetic-spring model

One advantage force-directed layout algorithms
have over other algorithms, is that they work well
with undirected graphs. They also work for di-
rected graphs, but for directed graphs it is desir-
able that the edges point in uniform directions.
Sugiyama and Misue [Sugiyama and Misue, 1994]
proposed an extention of the basic model that tries
to enforce this. In this extension the edges are, be-
sides springs, modelled as magnetized needles and
a magnetic field is present that acts on the needles.
We will discuss this algorithm here, because it is
an interesting modification and is a good example
of using a different set of forces for a force-directed
layout algorithm.

The magnetic force is orthogonal to the edge and
depends on the angle α between the edge and the

Fmag

Fmag

needle
magnetized

α

magnetic field

Figure 1: The force on a magnetized needle

magnetic field (see fig. 1). The result is that the
edges rotate to align with the magnetic field. The
formula for the force is:

Fmag = λmagα
c‖∆(v, w)‖2⊥(v, w)

Again, (v, w) is an edge between nodes v and w,
∆(v, w) is the distance vector between v and w
and ⊥(v, w) denotes the unit vector orthogonal to
(v, w). The parameters λmag and c allow to tune
the force.

Figure 2 shows some of the possible magnetic
fields. Each has different purpose, for example a
concentric magnetic field can be used to emphasize
cycles in a directed graph and a vertical parallel
field results in in a hierarchical-like tree layout.

Parallel

Concentric Radial

Orthogonal

Figure 2: Types of magnetic fields

NIOC 2004 proceedings

83

3 Fruchterman-Reingold

In [Fruchterman and Reingold, 1991], Fruchter-
man and Reingold discuss two enhancements of
the basic force-directed layout algorithm. First,
they introduce cooling (similar to, but different
from simulated annealing1) and second, to speed
up the spring-embedder algorithm, they introduce
the grid-square algorithm.

3.1 Cooling

It is possible for the normal spring-embedder to get
stuck in a local optimum, because of the fact that
it always moves in the direction of the forces ex-
erted on it. To make the spring-embedder able to
get out of these local minima, a certain degree of
randomness is needed when moving the vertices.
The degree of randomness in movement should de-
crease over time, since the layout then steadily ap-
proaches the real optimum. The parameter which
controls the randomness of the moment is called
temperature, and the process of decreasing ran-
domness is therefore called cooling. This technique
is taken from simulated annealing, but was adapted
to spring-embedders with respect to the direction
of movement. Movement is random in simulated
annealing, and movement which increases the to-
tal energy (energy is minimized) is rejected with
a certain probability. Fruchterman and Reingold
calculate the direction in which a vertex should
go, but add a random displacement. The temper-
ature they use only controls the maximum amount
of displacement. The idea is that the layout slowly
approaches the ideal one, and movement can be
restricted during later iterations of the algorithm.
This is faster than simulated annealing, because
less time is spent on going in directions that do not
improve the global energy total.

3.2 Grid-square

Another adaption Fruchterman and Reingold made
to the spring-embedder, to speed the algorithm up,

1Optimisation technique introduced by Kirkpatrick in
1983 [Kirkpatrick et al., 1983] which applies statistical me-
chanics methods to find an approximate optimal solution to
a problem. Typically a thermodynamic analogy is used for
the model system under study and the task of finding an
optimal solution is mapped to that of finding the energy-
neutral state of the thermodynamic system.

is the grid-square algorithm. In this algorithm, the
total area for the graph is divided into squares with
a certain width. When calculating the repulsive
forces on a vertex v in a certain square, only ver-
tices in adjacent squares are considered. For each
vertex in the adjacent squares, their distance to p
is calculated. Vertices only influence each other
within a circle with a certain radius. When a ver-
tex is outside the influence radius of v, it is too far
away from v and the repulsive force it contributes
to the movement of v is neglected.

The idea is illustrated in figure 3. v is the vertex
in consideration. q, s and r are other vertices. Since
r is not in one of the adjacent squares, it is not
considered. q and s are considered; however, only q
is within the influence radius. So, only q influences
the movement of v.

This addition can significantly speed up the algo-
rithm, since the complexity of the repulsive force-
phase of the algorithm is no longer O(n2), where n
is the total number of vertices.

Figure 3: The grid-square algorithm

4 FADE

Using electrical repulsion in the model for the force-
directed algorithm has the consequence that the
complexity of one (!) iteration is O(n2), where n is
the number of vertices (the position of every node
has to be compared with each other node). As a
result, simple force-directed layout algorithms are
not very suitable for graphs with a large number of

Using Force-Directed Methods For Drawing Graphs – Michiel Koning, Maarten Everts

84

vertices. In [Quigley and Eades, 2001] an algorithm
called FADE is presented that aims to cure this.

The idea is to approximate the repulsive forces
on a node by considering the influence of groups of
other (more distant) nodes instead of every other
node. To determine which nodes are close to the
node under consideration and which nodes are more
distant (and should be grouped together) the nodes
are placed in a tree structure using recursive space
decomposition.

4.1 The algorithm

To determine the electrical repulsion force on a
node, the space decomposition tree is recursively
visited. A treenode with children is called a
pseudonode or supernode. The closeness of a
pseudonode is determined by using a tolerance cri-
terion. For a pseudonode we test s/d ≤ θ, where
s is the width of the area for the pseudonode, d
is the distance between the current node and the
center of mass of the pseudonode and θ is the fixed-
tolerance parameter. If s/d ≤ θ, then the internal
nodes are ignored and the force contribution of the
pseudonode is added to the cumulative force for
that node. Otherwise, the pseudonode is resolved
into its daughter pseudo-nodes (sub-trees), each of
which is recursively examined.

Figure 4 shows an example. In this example
a quad-tree space decomposition is used and the
parameter θ has the value 1.0. Node 5 is com-
pared with the pseudo-node p1. The weight of the
pseudonode is the cumulative weight of the leaves
in its sub-tree, in this case 4. The d1 value is the
distance between the node and the pseudonode.
In this case s/d = 0.80. As this is smaller than
the value 1.0 for θ the non-edge force between this
node and the pseudo-node p1 are calculated. But
for node 6, when comparing it with pseudonode
p1, s/d = 1.46 and it does not fulfill the criterion
s/d ≤ θ.

4.2 Results

In their paper, the authors claim that it is much
faster than the basic spring-embedder and that
they were able to use it on very large graphs (in
the neighbourhood of 100000 nodes). However, in
the results they present in the paper it is not clear
whether building the quad-tree is included in the

computation times. Building this tree will proba-
bly introduce some overhead, especially for small
to medium sized graphs.

d1

10

6

5
10

6

1

3 7

8

9

5

2 4

s

d2

p1 p2

Figure 4: Space decomposition using quadtrees

5 Multi-scale approach

As mentioned earlier, a simple force-directed ap-
proach is unsuitable for drawing large graphs. The
method proposed in [Harel and Koren, 2002] tries
to address this by looking at the graph at different
scales.

The idea is to iteratively update (beautify) the
layout at different scales of the graph, starting at a
coarse scale. This way both the global properties as
the details of the layout are being considered. How
to actually find these multi-scale representations is
discussed next.

5.1 Finding a multi-scale representation

In a coarser representation of a graph G = (V, E)
the vertices that are drawn near each other in a
nice layout should be grouped together. Add to
this the observation that vertices that are closely
related in the graph (i.e., the graph theoretic dis-
tance is small) should be drawn close together. So
the problem of finding a multi-scale representa-
tion can be approximated by the k-clustering prob-
lem: partition V in k clusters so that the longest
graph-theoretic distance betweeen two vertices in
the same cluster is minimized.

Because it is useful for the algorithm to be able
to identify clusters by a certain vertex in the clus-
ter a solution for the k-center problem is used in-
stead: choose k vertices of V , such that the longest
distance from V to these k centers is minimized.

NIOC 2004 proceedings

85

This problem is NP-hard2, but fortunately there
are heuristic solutions available.

We now have a method to find multi-scale rep-
resentations of the graph. Note that a lower k will
give a coarser representation of the graph. The
next phase of the iteration is the beautification of
the new representation.

5.2 Local beautification

For the local beautification step the Kamada and
Kawai method is used. It is very appropriate be-
cause it relates every pair of vertices, so, when con-
structing a new coarse representation of the graph,
it is not necessary to define which pairs of ver-
tices are connected by an edge. This advantage
has a price: Θ(|V |2) memory is used, even when
the graph is sparse.

As with all other force-directed-based algo-
rithms, to find an aesthetically pleasing drawing, a
certain energy function must be minimized. Since
the objective of this layout algorithm is to draw
nodes which are closely related near each other.
The energy function should reflect this objective.
Therefore, this function considers both Euclidean
distance and the graph theoretic distance and tries
to minimize energy for a neighbourhood of at most
radius k (where k is determined by a constant). A
vertex u is considered to be in the k-neighbourhood
of a vertex v if the length of the path from v to u
is at most k.

A (local) minimum for this energy is found if the
derivative of the energy function is 0 with respect
to both x and y:

∂Ek

∂xv
=

∂Ek

∂yv
= 0, ∀v ∈ V

To achieve this condition, the vertex with the
highest sum of derivatives in both directions, and
move this vertex towards the local minimum (sim-
ilar to gradient-descent). This is done iteratively.

5.3 Algorithm overview

The algorithm by Harel and Koren for displaying
large graphs can be summarized as follows:

2An optimization problem that relies upon the solution of
an NP-complete problem. In that sense, NP-hard problems
are at least as hard as NP-complete problems.

1. Compute All-Pairs Shortest Path (needed for
both finding multi-scale representations and
local beautification)

2. Setup a random layout

3. Define the coarsest level representation of the
graph and do iteratively:

(a) Determine vertices of current level repre-
sentation

(b) Perform local beautification
(c) For each vertex, find the cluster to

which it belongs and displace it randomly
around the center vertex of this cluster

(d) Define the next level representation for
which local beautification will be per-
formed

5.4 Results

With this algorithm, the authors were able to visu-
alize very large graphs, within the neighbourhood
of 1600 vertices and 2133 edges within 2 seconds
on a Pentium III 1 GHz PC. They were also able
to visualize much larger graphs (15606 vertices and
45878 edges), but this took slightly less than 5 min-
utes on the same system. The execution time also
depended on the size of the k-neighbourhoods: the
larger those neighbourhoods, the longer the execu-
tion time.

In figures 6 and 5, some results are displayed with
different sizes for the k-neighbourhoods.

Figure 5: Multi-scale method applied to partial grid
with (left) larger k-neighbourhoods than normal and

(right) normal size neighbourhoods

Using Force-Directed Methods For Drawing Graphs – Michiel Koning, Maarten Everts

86

Figure 6: Multi-scale method applied to full binary trees with (left) entire graph as k-neighbourhood and
(right) limited size neighbourhood

6 Conclusion and discussion

In this paper, we have first discussed the basic
force-directed layout algorithm, followed by a dis-
cussion of several newer algorithms that try to im-
prove performance over this basic algorithm. These
algorithms were the Fruchterman-Reingold model,
the FADE algorithm and the multi-scale method.

We cannot pick one of these algorithms to be
applicable to all possible graph layout problems,
because the choice of which force-directed layout
algorithm to use largely depends on the properties
of the graph one wants to display. These proper-
ties include size, edge-density and symmetry. For
simple (smaller) graphs a normal force-directed lay-
out algorithm will probably be suitable, mostly be-
cause it is so easy to implement. When the ba-
sic variant is not fast enough, one might consider
the Fruchterman-Reingold model, but for very large
graphs one would choose either FADE or the multi-
scale method. Both claim to be much faster for
very large graphs. However, comparing the the-
oretic complexity of these algorithms is difficult,
since execution time depends largely on the chosen
values of the parameters for these algorithms, such
as the number of iterations or the coarseness. Also,
quantifying the aesthetics of the results is very hard
and very subjective.

Of course, comparing these algorithms based

only on the contents of the papers in which they
are presented is very difficult. It would be very
interesting to compare the performance of these al-
gorithms using real-world graph data (such as data
sets from biology) with respect to execution time,
aesthetic properties and, not to be underestimated,
the amount of time spent on fine-tuning the param-
eters for these algorithms to get satisfactory results.

This paper only discussed determining layouts of
graphs. However, displaying and exploring graphs
is an entirely different field of research. See [Her-
man et al., 2000] for an overview of graph visual-
ization and navigation techniques.

References

Battista, G. D., Eades, P., Tamassia, R., and Tollis,
I. G. (1999). Graph Drawing, Algorithms for the
Visualization of Graphs. Prentice Hall. ISBN
0-13-301615-3.

Eades, P. (1984). A heuristic for graph drawing.
Congressus Nutnerantiunt , 42, 149–160.

Fruchterman, T. M. J. and Reingold, E. M.
(1991). Graph drawing by force-directed place-
ment. Software - Practice and Experience,
21(11), 1129–1164.

NIOC 2004 proceedings

87

Harel, D. and Koren, Y. (2002). A fast multi-
scale method for drawing large graphs. Journal
of graph algorithms and applications, 6(3), 179–
202.

Herman, Melançon, G., and Marshall, M. S. (2000).
Graph visualization and navigation in informa-
tion visualization: A survey. IEEE Transactions
on Visualization and Computer Graphics, 6(1),
24–43.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.
(1983). Optimization by simulated annealing.
Science, 220, 4598, 671–680.

Quigley, A. and Eades, P. (2001). Fade: Graph
drawing, clustering and visual abstraction. In
Graph Drawing, 8th International Symposium,
GD 2000, Colonial Williamsburg, VA, USA,
September 20-23, 2000, Proceedings, vol. 1984
of Lecture Notes in Computer Science. Springer.
ISBN 3-540-41554-8.

Sugiyama, K. and Misue, K. (1994). Graph drawing
by magnetic-spring model. Tech. Rep. ISIS-RR-
94-14E, Institute for Social Information Science.

Sugiyama, K. and Tagawa, S. (1981). Methods
for visual understanding of hierarchical systems.
IEEE Trans. Sys., Man, and Cybernetics, SMC
11(2), 109–125.

Using Force-Directed Methods For Drawing Graphs – Michiel Koning, Maarten Everts

88

FRIENDSHIP - FRIEND OR FOE: A RESEARCH INTO THE
STRUCTURES OF FRIENDSHIP AND THEIR EFFECTS ON

PRODUCTIVITY

RICK OOST
rickoost-NOSPAM@gmail.com

NIELS HAGEMAN
nielshageman-NOSPAM@gmail.com

This article will document our research on how to improve productivity through the
use of friendship relations within R&D teams and advise managers in this matter.
The first phase focussed on investigating the influence of friendship on productivity;
the second part focussed on the attributes the management should take into consider-
ation when structuring R&D teams to maximize the positive influence of friendship,
thereby increasing productivity. The research was conducted using data from exten-
sive questionnaires, filled in by about 200 members of R&D teams.

INTRODUCTION

It is always the goal of companies with an R&D
department to improve the efficiency of their project
teams because this is critical to keep up with busi-
ness competitors. It is shown that of the con-
temporary medium to large sized companies, over
eighty percent use a team-based approach. This
percentage is even higher in companies where the
focus lies on R&D (Cohen and Bailey, 1997). Dur-
ing the life cycle of a team, certain structures
of friendship relations will form and evolve, even
if the members of the team do not know each
other beforehand. Most managers try to encour-
age friendship, because they feel this has a posi-
tive effect on communication and on productivity
(Berman, West, and Richter Jr, 2002). Our re-
search into this matter has had two goals. The
first was to investigate if there was a relation be-
tween various structures of friendship relations
and productivity; the second was to establish how
these could be manipulated to make their effect
on productivity as positive as possible.
There has been previous research into this mat-

The authors would like to thank Jan Kratzer for his
assistance with our research, research report and this ar-
ticle. We would also like to thank John Kizito and Jens
Rasmussen for their feedback on this article.

ter, but their results have proven contradictory.
Some research shows that friendship has an ad-
verse effect on the productivity of a team, because
the focus changes to social interaction, instead
of the team’s task. Other research shows that
friendship has a positive effect (Kratzer, Leen-
ders, and van Engelen, 2004), for example be-
cause the team members are more committed and
more cooperative, which increases performance
(Jehn and Shah, 1997), or because cooperation
between friends results in tasks being completed
more quickly (Shirase, Nagafune, Wakamatsu, and
Arai, 2000).

OBJECTIVE

The objective of this study has been to formu-
late an advice to the management of the organi-
zations participating in this study on how to use
friendship bonds within R&D teams to improve
their productivity. In order to achieve this objec-
tive, we have used the results of extensive ques-
tionnaires filled out by the R&D employees of the
participating companies.
We started by analyzing the problem and finding
the relevant factors and variables.

• There is insufficient productivity.

89

This problem description is rather abstract and
broad and is not citing a possible solution.
Like any relationship, friendship can be modeled
using a graph and has certain properties.

• Friendship

– Structures
Cohesion, Centralization, Segmentation

We have chosen the above three properties be-
cause of their use in prior research (Kratzer et al.,
2004). The first step in our research was to see
if these properties exerted an influence over the
team productivity. We will now give a brief ex-
planation of each of the properties.

• The cohesion of friendship bonds within an
R&D team refers to the number of actual
bonds in comparison with the total number
of possible friendships.

• The degree of centralization is an indica-
tor of to what degree a network is revolv-
ing around a single node. An example of a
highly centralized network would be a situ-
ation where the only friendship relations are
between a single person and all other per-
sons (a “star” network with one person cen-
tral and no relationships between the oth-
ers).

• Segmentation refers to the formation of groups
within a team that share close friendship
bonds internally, but much less so to the
“outside world”. Such a subgroup is also
known as a clique.

Having finished the first step, we shifted our at-
tention to the factors that influenced the forma-
tion of friendships. In this second stage, we looked
for correlations between various properties such
as age and both the number of friendship bonds
in the team (The friendship score) and the av-
erage strength of these bonds. From all the at-
tributes available for investigation, we decided to
focus on the ones that described personal prop-
erties such as age. Some of these properties had

to be dropped. Gender could not be used be-
cause there were only a few women among the
nearly 200 participants. This made it impossi-
ble to draw statistically significant conclusions.
Properties like specialization could not be consid-
ered because their values were not on an ordinal
scale. After this process of selection and elimi-
nation, we were left with six suitable ones: Age,
Degree, Fraction on team, Members, Number of
teams and Time on team. These properties will
be discussed in further detail in the section about
the methodology used.

RESEARCH QUESTIONS

For this research, we posed two primary questions
and one secondary question. The first primary
question, corresponding to the first stage of the
research was:

“What is the influence of cohesion, cen-
tralization and segmentation of friend-
ship relations on the productivity of
R&D teams?”

The second one, corresponding to the second stage
was:

“What is the influence of age, degree,
fraction on team, members, number of
teams and time on team on friendship
relations?”

These questions were broken up into smaller par-
tial questions, each focussing on a certain aspect,
to make them easily answerable. The hypotheses
were based on these questions and are discussed
further below. The secondary question we posed
was:

“How can the effect of friendship re-
lations between members of the R&D
staff be used optimally in the structur-
ing or restructuring of R&D teams to
improve their productivity?”

The answers to the primary questions will be the
basis for the answer to this question, that will
form the advice to managers.

Friendship - friend or foe: a research into the structures of friendship and their effects on productivity – Rick Oost,
Niels Hageman

90

HYPOTHESES

First primary question
Cohesion. As described above, cohesion

is the ratio between the actual number of friend-
ships and the number of friendships that are the-
oretically possible. Research indicates that infor-
mation flows more freely between people who are
friends (Zaccaro and Lowe, 1986). This is because
of more contact and greater trust between them
(Roloff, 1987; Danowski, 1980; Rawlins, 1983).
We expect that if the ratio increases, the ability
of the members of the team to work together will
increase as well. We do not expect this increase
to be linear, but instead level off and possibly
decrease a little at very high levels of cohesion,
because the focus of the team will be shifting to
social interaction instead of the team’s task (Jehn
and Shah, 1997).

Hypothesis 1: The larger the cohesion
in a team, the higher the productivity.

Centralization. Since a high degree of
centralization means that there are one or a few
nodes that play a central role, we expect this to
have a detrimental effect on efficiency for a few
reasons. One is that it is possible that communi-
cation will run through such a central point, in-
stead of immediately to the destination. Another
reason is that when the central player temporarily
or permanently vanishes, for example due to ill-
ness or reassignment, cooperation and communi-
cation structures within the team may fall apart.

Hypothesis 2: A high degree of cen-
tralization will lead to a decrease in
productivity.

Segmentation. Subgroups within a team
tend to develop very efficient communication struc-
tures (Dearborn and Simon, 1958; Wilensky, 1967),
however, communication with the members out-
side the group degrade usually (Kratzer et al.,
2004). In some ways this can increase productiv-
ity, in other ways it can decrease, depending on

the type of task these teams are working on. If
the task is well partitionable for example, there
may not be a negative effect or even a small pos-
itive effect, but if the task requires the whole
team or large (clique-spanning) portions thereof
to work together, there may be a negative effect
because the communication between segments is
inherently less then the communication within. If
there is a high specialization within a team this
view is supported (Kratzer et al., 2004). Unfortu-
nately we do not have data on the type of work.

Hypothesis 3: The degree of segmen-
tation will not have a clear positive
or negative effect on productivity. In-
stead, the effects will vary from team
to team.

Second primary question
Age difference. We expect that if the dif-

ference in age is lower, more and stronger friend-
ships will form. This because people of roughly
the same age can be expected to have similar in-
terests etc., giving a more fertile soil for a friend-
ship to sprout in.

Hypothesis 4a: The lower the age dif-
ference, the stronger the friendship bonds
become.

Hypothesis 4b: The lower the aver-
age age difference of all members, the
higher the friendship score for the team.

Difference in education level. We do
not expect the difference in age to make much
difference in the formation of friendships. Despite
having had different educations, people may still
find common grounds between them.

Hypothesis 5a: The difference in edu-
cation level will have no noticeable ef-
fect on the strength of the friendship
bonds.

NIOC 2004 proceedings

91

Hypothesis 5b: The average difference
in education level will have no influ-
ence on the friendship score of the team.

Fraction on team score. We expect the
strength and number of friendships to increase if
people spend a greater portion of their time on a
team they both work in. More frequent contact
should allow for more opportunities for friend-
ships to bloom.

Hypothesis 6a: The higher the frac-
tion on team score, the stronger the
bonds are.

Hypothesis 6b: The higher the average
fraction on team score, the higher the
friendship score of the team.

Number of members on a team. We
expect that the smaller the number of members
a team has, the more easily friendships will form
and strengthen within them. A smaller team cre-
ates a more personable environment where more
people know each other.

Hypothesis 7a: The fewer members the
team has, the stronger the friendships
bonds.

Hypothesis 7b: The fewer members the
team has, the higher the friendship
score.

Number of teams people work on. We
expect that if the number of teams people work on
increases, friendships will form less easily. If one
works on more teams, on average one spends less
time on each one of them. Although the number
of people they are in contact with increases, the
contacts themselves will become more fleeting.

Hypothesis 8a: The higher the num-
ber of teams, the lower the strength
of the friendship bonds.

Hypothesis 8b: The higher the aver-
age number of teams, the lower the
friendship score.

Time on team. We expect that if people
spend longer on a team, the number and strength
of the friendships will increase. A longer period of
being exposed to each other increases the chances
that a friendship will be formed.

Hypothesis 9a: The longer they have
worked on the team, the closer the
bonds.

Hypothesis 9b: The longer they have
worked on the team on average, the
higher the friendship score.

METHOD

As stated before, we will base our research on
the data from the questionnaires filled out by the
R&D employees. One of the questions asked was
for each employee to specify whom of the other
team members he considered to be his friend1.
This yields an n x n matrix for a team consisting
of n persons. When person A considers person B
as one of his friends, the cell in row A, column
B will have the value 1. If he does not consider
him a friend, the value will be 0. All the values
on the main diagonal (corresponding to a possi-
ble friendship of a person with his- or herself) are
defined as zero (no friendship). An example of a
possible friendship matrix of a five person team is
this: (The matrix presented here does not repre-
sent any actual team, the data is purely fictitious)

1 2 3 4 5
1 0 1 1 0 0
2 1 0 0 0 0
3 1 0 0 0 1
4 0 1 0 0 0
5 0 0 1 0 0

1Since each employee was asked individually, the friend-
ship relation is not necessarily symmetric. If person A
considers person B his friend, the inverse is not necessar-
ily true.

Friendship - friend or foe: a research into the structures of friendship and their effects on productivity – Rick Oost,
Niels Hageman

92

Because this expresses the abstract friendship no-
tation as numerical data, it clears the way for
the use of statistical analysis on the data sets. It
also allows us to give more formal definitions of
the hitherto informally specified properties. We
will first define the properties of the first primary
question.

Properties
Cohesion. We are defining the cohesion of

a group as the number of friendship ties in the
group divided by the total number of possible
friendship ties. For a group of size n, the latter
number is n(n − 1). This gives a cohesion factor
on the scale of 0 to 1, where 0 denotes a group
with no friendship relations at all and 1 a group
where everyone is a friend to everyone.

cof =
#edges

n(n − 1)

Centralization. To define centrality, we will
look at the data as a graph, with the different
employees being represented as vertices and the
friendship relations as directed edges. To define
centrality we will be looking at the indegree of the
vertices. The indegree of a vertex is the number of
incoming edges at that vertex. This corresponds
to the number of people that consider the person
represented by said vertex as a friend. To calcu-
late the indegree dv of vertex v by taking the sum
of the values in the column corresponding to v.
We then calculate the average indegree of all ver-
tices. The next step is to calculate the quadratic
difference of the indegree of each vertex with the
average. The final step of the calculation is to sum
all of the values obtained in the previous step and
divide that value by n−1, where n is the number
of employees in the team. This gives the following
formula for the centralization factor:

d =

n∑
v=1

dv

n

cef =

n∑
v=1

(dv − d)2

n − 1

The higher the factor obtained by this formula,
the higher the centralization in the team is.

Segmentation. For the definition of segmen-
tation, we will again be looking at the data as a
graph, just like with centralization. To measure
the segmentation, we will count the number of
cliques within the graph, where a clique is defined
as a complete sub graph of at least three nodes
and having maximum size. Complete means that
every pair of distinct vertices is connected by an
edge, maximum means that we will consider a
complete sub graph with four nodes as 1 clique
(we could also consider it as four cliques with
three nodes). To obtain the degree of segmen-
tation, we divide the number of cliques by the
number of maximum possible cliques, which for a
graph with n vertices is:

(
n
3

)

This gives as a formula for segmentation:

sef =
#cliques(

n
3

)

The higher the factor obtained by this formula,
the higher the segmentation.

The three properties above could be directly cal-
culated from the existing datafile. Because of the
nature of the datafile, the six properties of the
second primary question could not be directly ex-
tracted. The original dataset contains one record
for each employee, listing its attributes. Because
the second primary question is friendship bond
oriented instead of person oriented, we need the
properties per friendship bond instead of per per-
son. For this goal, we created a simple program to
parse the original person oriented and create two
friendship bond oriented ones. The first gener-
ated dataset contained a record for each potential
friendship bond, the second one the same data,

NIOC 2004 proceedings

93

but then averaged per team2. Since a friendship
bond is a relation between two persons, it has two
sets of attributes connected to it (one from each
person). The way to calculate the value of the
attributes per the bond differed per attribute:

• Age: The absolute difference of the ages of
both persons. This value is an indicator for
the age difference in the bond.

• Degree: The absolute difference of the de-
grees of both persons. This value is an in-
dicator of the difference in education levels.

• Fraction on team: This attribute indicates
the time a person works on this project as
a fraction of the total time he works on all
projects. For each bond, this is the sum of
the values for both persons. This value is
an indicator how much both persons work
together.

• Members: The number of members the team
has. This attribute is the same for both par-
ties, so no additional arithmetic necessary.

• Number of teams: The sum of the values
for both persons. This value is an indicator
on how many different teams both persons
work,

• Time on team: This attribute indicates how
long a person has been a member of the
team. For each bond, this is the sum of the
values for both persons. This value is an-
other indicator how much time both parties
spend together.

Another conversion that was carried out on the
dataset was the symmetrization of the friendship
matrix. This was necessary to deal with the prob-
lem that A could consider himself a friend of B,
but not vice versa. The symmetrization means
that a friendship bond was considered to exist

2Instead of calculating a “real” average of the values,
the sum of the values was multiplied by 1,000 prior to
being divided by the number of members in the team.
This was necessary for increased resolution of the average,
since the datasets consist solely of integral values.

if one or both of the participants considered the
other as a friend. The downside of this is that in-
formation is destroyed. To mitigate this problem,
each potential bond in the new dataset was as-
signed a weight. If both persons of the bond con-
sidered each other friends (i.e., a mutual friend-
ship), the bond was assigned a weight of two. If
the friendship was one way, the potential bond
was assigned weight one and if neither participant
considered the other his friend, the potential bond
was given a weight of zero.
In both stages of the investigation, we have per-
formed a quantitative analysis of the data, using
a fixed design.

Descriptives
There were three dependent variables (Produc-
tivity3 in the first phase and friendship strength
and friendship score in the second) and nine inde-
pendent variables (Cohesion, centralization and
segmentation in the first phase, team members,
education level, time on team, fraction on team,
number of teams and age in the second phase) in-
volved in our research. Table 1, Table 2 and Table
3 show the respective tables of descriptives.
In several cases, missing data was encountered.
Records that missed values for attributes that
were under consideration in our study were ex-
cluded from the research.

RESULTS

In order to determine if a correlation existed be-
tween variables, linear regressions were used of
the independent variables against the dependents.
For this, we defined α = 0.05 as a threshold to
compare with the significance of the regression. If
the significance exceeded our threshold, we con-
cluded that there was no linear correspondence.

Cohesion
Linear regression shows that the degree of cohe-
sion of friendship relations in a team has a positive
effect on the productivity. Since the significance

3The productivity for a team was calculated by aver-
aging the values of all the employees of the team.

Friendship - friend or foe: a research into the structures of friendship and their effects on productivity – Rick Oost,
Niels Hageman

94

Variable Minimum Maximum Mean Std. Dev. N
Dependant variable

Productivity 3.4 6.4 4.544 0.868 31

Friendship
Cohesion 0 0.6 0.260 0.209 31
Centralization 0 1.3 0.560 0.420 31
Segmentation 0 0.3 0.070 0.093 31

Table 1: The variables and their properties for productivity

Variable Minimum Maximum Mean Std. Dev. N
Dependant variable

Friendship strength 0 2 0.377 0.674 494

Attributes
Team members 5 10 6.949 1.881 494
Education level 0 3 0.545 0.681 494
Time on team 2 20 4.597 3.096 494
Fraction on team 2 8 5.692 1.880 494
Number of teams 2 30 4.472 4.544 494
Age 0 4 0.765 0.744 494

Table 2: The variables and their properties for friendship strength.

is also within the established boundaries, we will
accept hypothesis 1 as valid.

Centralization
The value for the significance that was yielded by
testing hypothesis 2 is far above our defined max-
imum, which leads to the conclusion that there is
no linear correspondence between centralization
and productivity. This therefore invalidates hy-
pothesis 2. It is possible that a nonlinear regres-
sion would yield a better fitting formula, possibly
one within the bounds of significance. However,
several non-linear curve fittings were applied to
the data set, none of them yielding an acceptable
match.

Segmentation
Our analysis shows that there is a positive ef-
fect between segmentation and productivity. This
leads us to reject hypothesis 3 as invalid since
we postulated that no clear trend would be visi-
ble. This can be caused by a lot of specialization
within the team (Kratzer et al., 2004), and the
work is partitioned with the partitions assigned
to the subgroups.

Age difference
Linear regression of friendship score and strength
against this variable yielded significance values far
exceeding our established alpha threshold. From
this we conclude that age difference has no signifi-
cant influence on the formation of friendships. We
therefore reject both hypotheses pertaining to age
that postulated a significant influence. The lack

NIOC 2004 proceedings

95

Variable Minimum Maximum Mean Std. Dev. N
Dependant variable

Friendship score 5 10 6.030 1.571 33

Attributes
Team members 0 1500 553 450 33
Education level 0 1666 592 403 33
Time on team 2000 11142 4295 2630 33
Fraction on team 2000 7333 5218 1877 33
Number of teams 2000 15600 5421 4518 33
Age 0 1800 803 420 33

Table 3: The variables and their properties for friendship score.

of a relation can possibly be attributed to the fact
that in workplace friendships age does not mat-
ter as much as in traditional friendship (Simon-
etti and Ariss, 1999; Crampton and Mishra, 1999;
Matheson, 1999).

Difference in education level
Our analysis of this factor showed that no linear
correspondence can be assumed because of the
high significance value. Both hypotheses corre-
sponding to the difference in education level are
therefore validated, since they already postulated
the absence of a relation.

Fraction on team score
Our analysis here found the lowest possible signif-
icance values for both regressions. We can there-
fore safely assume that there is a linear relation
between the percentage of time one spends work-
ing on a team and the formation of friendships
therein. However, the coefficients of the relation
were found to be negative: The lower the value,
the higher scores. Since this is the diametric op-
posite of what we postulated in the hypotheses,
they are rejected.

Number of members on a team
Our analysis of this factor again shows very low
values for the significance with .000 and .009, indi-
cating a plausible linear relation. The coefficients
are sub zero, showing a negative line. This means

that the more members a team have, the weaker
and fewer the bonds become. The hypotheses are
verified by these results, since this is exactly the
relation we postulated. This therefore validates
the hypotheses.

Number of teams people work on
Yet again a clear linear correlation was found here
between the independents and the dependent. How-
ever, we see the same effect we saw with the “Frac-
tion on team” independent variable. The relation
is the diametric opposite of the one we postulated.
We postulated that participating in more teams
would lead to weaker bonds and a lower friend-
ship score, but the opposite is true. We therefore
reject the hypotheses. As with the fraction on
team, we see the exact opposite of the expected
effect. If we take that outcome into account, this
outcome isn’t surprising, considering the relation
between both attributes.

Time on team
Our analysis here showed significance values ex-
ceeding the alpha threshold, although not as ex-
treme as some of the other values for significance
we encountered in these regressions. This means
that no linear relationship exists between the time
people worked on a team and the strength and
number of friendships. Since the hypotheses pos-
tulated the existence of such a relation, we are
forced to consider them invalid.

Friendship - friend or foe: a research into the structures of friendship and their effects on productivity – Rick Oost,
Niels Hageman

96

ADVICE

The first part of this research shows that to in-
crease productivity, it is useful to put friends in
the same team. This can be done in two ways, by
influencing cohesion, or by influencing segmenta-
tion.
By putting as many friends as possible in the team
the cohesion is maximized. Another approach to
increase cohesion is to schedule activities aimed at
the formation and tightening of friendship bonds
within the team.
A manager can also select friends with the same
kind of specialization and put them in one team,
to maximize segmentation. This approach only
works when the type of work is suitable for par-
titioning, as stated above.
Since the friendship structures within a team are
not static but in a state of constant flux (generally
the number of friendship bonds within a team will
increase), it is also useful to periodically reevalu-
ate and if necessary rearrange teams.
In order to aid in the formation of teams, the sec-
ond part of our research has focussed on the prop-
erties of persons and teams that are likely to foster
strong and numerous friendships. Out of the six
attributes tested for influence, only three showed
a clear linear relation with the strength and num-
ber of the friendship bonds. All attributes that
had influence either influenced both (strength and
count) or neither; no attribute influenced one but
not the other. In addition, when there was a lin-
ear correspondence, the effect was the same on
both dependents, i.e. there is not an attribute
that positively influences bond strength, but neg-
atively influences bond count or vice versa. This
is a very good characteristic, because it means
there will be no trade-offs between both.
The three characteristics that do not show a re-
lation (being age, education level and the time
spent on working on a team) can be safely left out
of consideration when forming or changing project

teams. The clear negative relation between group
size and friendships means that whenever possi-
ble smaller groups should be preferred over larger
ones. The research also clearly shows an improve-
ment in friendships when team members are a
member of multiple teams and do not spend all
their time on a single team. This means that
whenever possible workers should be assigned to
multiple teams simultaneously. Where possible,
both recommendations could be combined by split-
ting up a larger team into smaller ones and have
part of the staff working on both teams.
Following these recommendations will likely lead
to more and stronger friendships between employ-
ees and as a consequence, increased productivity.

FURTHER RESEARCH

Some interesting points have come up during this
research project that may warrant further study.
There are also a lot of factors that may contribute
to productivity that were not covered in this study
to keep the scope manageable. Some study into
their effects may also be warranted.
Examples of subjects that may be further looked
into are:

• This research failed to show a concrete cor-
respondence between centralization and pro-
ductivity. Further research might look into
the possibility that centralization exerts some
other influence on either productivity.

• Other aspects of the friendship graphs other
than the three above might be looked into,
for example the connectivity of the friend-
ship graphs.

• Other attributes than the six investigated
in the second part of the study may be in-
vestigated.

NIOC 2004 proceedings

97

REFERENCES

Berman, E. M., West, J. P. and Richter Jr,
M. N. 2002. Workplace relations: Friendship
patterns and consequences (according to man-
agers). Public Administration Review ,
62(2):217–230.

Cohen, S. G. and Bailey, D. E. 1997. What makes
teams work: Group effectiveness research from
the shop floor to the executive suite. Journal
of Management , 23(3):239–290.

Crampton, S. and Mishra, J. 1999. Women in
management. Public Personnel Manage-
ment , 28(1):87–107.

Danowski, J. A. 1980. Group attitude uniformity
and connectivity of organizational communica-
tion networks for production, innovation, and
maintenance content. Human Communica-
tion Research , 12:251–270.

Dearborn, R. and Simon, H. 1958. Selective per-
ceptions in executives. Sociometry , 21:140–
144.

Jehn, K. A. and Shah, P. P. 1997. Informal rela-
tions and task performance: An examination of
mediating processes in friendship and acquain-
tance groups. Journal of Personality and
Social Psychology , 72(4):775–790.

Kratzer, J., Leenders, R. T. A. J. and van Enge-
len, J. M. L. 2004. Informal contacts and per-
formance in innovation teams: The important

role of ’family ties’. International Journal
of Manpower , Accepted for publishing.

Matheson, C. 1999. The source of upward mo-
bility within public sector organizations. Ad-
ministration and Society , 31(4):495–525.

Rawlins, W. K. 1983. Negotiating close
friendship: The dialectic of conjunctive free-
doms. Human Communication Research ,
9:255–266.

Roloff, M. E. 1987. Communication and reci-
procity within intimate relationships. Inter-
personal Processes: New directions in
Communication Research .

Shirase, K., Nagafune, N., Wakamatsu, H. and
Arai, E. 2000. Human oriented production
management considering working satisfaction.
Proceedings of Pacific Conference on
Manufacturing , 9:733–738.

Simonetti, J. and Ariss, S. 1999. Through the top
with mentoring. Business Horizons, 42(6):
56–63.

Wilensky, H. 1967. Organizational intelli-
gence . New York: Basic Books.

Zaccaro, S. J. and Lowe, C. A. 1986. Cohesiveness
and performance on an additive task: Evidence
for multidimensionality. Journal of Social
Psychology , 128:547–558.

Friendship - friend or foe: a research into the structures of friendship and their effects on productivity – Rick Oost,
Niels Hageman

98

The Effects of Age, Experience and Tenure on Team Creative
Performance

Tjaard de Vries and Mark Bastiaans (University of Groningen)
t.de.vries.9@student.rug.nl, m.bastiaans@student.rug.nl

This study focuses on the effects of different age, experience and tenure factors on
creative team performance. After quantitive single-level and multi-level regression
analysis of data collected on a multitude of teams in different organisations with a
strong research and development focus, we arrive at some interesting conclusions,
one of which is that a higher average team age leads to a higher creative level. We
argue that a well-mixed research and development team in terms of these factors
generally leads to improved creativity.

Everyone respects the elders in a

community. Everyone respects and

admires their wisdom and insights.

Elders let us see things in a way we

wouldn’t have thought of ourselves.

Why? They have vast amounts of

experience in their field through years

and years of practice. Older, more

experienced people form the

foundation of any team, relieving their

team members of the burden that one

encounters when exploring new

territories in one’s career.

But is this the only factor in deciding a

team’s success? A Research and

Development Team in a corporate

environment does not exclusively rely

on experience to achieve the greatest of

results. Performance relies heavily on

creative capabilities. To beat all the

competitors and to even stay one step

ahead of them all, a team must be

creative as well, in order to deliver new

and innovative products, greatly

exceeding the market’s imagination.

Experience and age on the one side,

creativity on the other. Do these two

sides mix? Today’s managers and

corporate executives are extremely

interested in how the average age, the

amount of service years with the

company, and the number of

experience years affect a team’s

creativity. In this world of decreasing

time-to-market and ever increasing

competition and consumer demands,

one must maximize team performance

in every possible way. Ensuring that a

team’s creativity level is high is one

way to assure that ideas that appeal to

the masses are implemented

efficiently.

The goal of our research is to help

managers effectively base their

Research and Development teams’

composition on experience and age. In

order to do this, we have acquired data

on a large amount of innovation team

members and project teams in

corporate environments.

Theory and Hypotheses
Our analysis focused on four main

factors on the team level: a team’s

creativity level, measured by several

sub-factors such as how team members

experience creativity, and the average

age, the average team member’s

experience in his or her field of

expertise, and the average amount of

years the team members have worked

for their current employer. We will use

quantitative based analysis methods to

try to make accurate statements about

our research question.

First of all, we will provide the

variables that are relevant to our

99

research question and that may

mutually influence each other. We

need to do so because otherwise no

meaningful conclusions can be made

from the research. The variables are:

• Age of team members

• Age diversity within a team

• Age of the team (i.e. how long

the members have been

together)

• Experience of team members in

the field

• Tenure

Our main research question is:

“How do a team’s age, experience and
service years affect a team’s creativity
level?”

Together with the list of variables, this

question leads to the following

hypotheses:

H1: The younger the average team
member, the more creative the team is.

Though it may sound trivial, this

hypothesis surely needs checking

because it may be just scratching the

surface of the actual problem. Our

society is quite general in dividing the

masses into age groups. Society’s view

of age is that younger people tend to be

more enthusiastic and display a more

adventurous way of getting to their

goals. Young adults are prominent in

war, revolution, immigration,

urbanisation and technological change

(The cohort as a concept of social
change, N.B. Ryder, 1965). Older

people tend to have a more

conservative view of things and are

trapped within their own routines.

However, since older people tend to

think that they are behind on their

career track, they could put more effort

into their work and thus increase their

creative output (Age Grading: The
Implicit Organizational Timetable, B.S.
Lawrence, 1984).

H2: A high age variance within a team
increases the team’s creativity level.

Reading The cohort as a concept in the
study of social change (N.B. Ryder,
1965), one might expect that this

hypothesis partially depends on H1. In

fact, it probably does, as (according to

this article) older persons tend to be at

the top of a social hierarchy, which

may enhance their presumed creativity

inhibiting tendencies. However, one

shouldn’t forget that people learn from

each other and that the younger

members may be an inspiration to their

older peers which in essence could lead

to an efficient environment, in which

the experienced members provide a

playground in which the younger ones

can fully expose their ideas.

H3: The creativity of a team decreases
with the time the team is together.

Again, this hypothesis resembles H1

quite a lot, but this time the team as a

whole is viewed. There are quite a lot

of parallels that can be seen between

the behaviour of an individual and the

behaviour of groups. Despite the

diversity of a group, the group as a

whole can be said to have an opinion

on things, to have a favourite pastime,

etc. One of these things is the age of a

group and the ways of acting that have

evolved during the team’s existence.

This can vary from communication to

working routines, and we suspect the

latter to have a negative effect on the

team’s creativity, for reasons similar to

those mentioned in H1. (Also see: The
black box of organizational
demography, B.S. Lawrence, 1997).

H4: Experience of team members
improves team creativity.
H5: Experience of team members
inhibits team creativity.

Experience is a factor that bears a

certain duality; hence these two

The Effects of Age, Experience and Tenure on Team Creative Performance – Tjaard de Vries, Mark Bastiaans

100

hypotheses will be explained together.

On one hand, one can view experience

as an ever expanding thing that grows

during one’s life. Experience alters

one’s way of thinking and may

stimulate one’s imagination. On the

other hand however, experience has

quite a few resemblances to age,

especially the way in which daily

routine can be devastating one’s will to

explore; at least an experienced person

is expected to display a certain

arrogance which narrows his view and

thus has a negative effect on his

creativity.

H6: Greater tenure inhibits team
creativity.

Although this may seem a copy of H3,

it isn’t. Of course it depends on the

company’s size, but companies usually

have standardized work ethics and

ways of dealing with various things.

One can shift teams as much as one

likes, chances are that the employees

will still have the same boss, still look

at the same kind of computer screens

in the same kind of rooms and eat with

the same people in the same canteen as

the did before.

Though a new team may inspire an

employee, the boredom that comes

with the years and years of working in

the same company surely will affect

creativity, as these employees may be

greatly inspired with renewed energy

and creativity as soon as they apply to

a new job at the competitor. Though it

is beyond the scope of this paper,

corporate executives may consider

diversifying the company structure

among different locations to encourage

employers not to leave if this

hypothesis is accepted.

The Data
The data set, acquired from

Communication and Performance: An
Empirical Study in Innovation Teams
(J. Kratzer, 2001), contains data

acquired over 5 periods of data

gathering over 44 Research and

Development teams from a total of 11

companies. The data consists of

answers from individual team members

on a questionnaire adapted from the

well-known Stanford questionnaire

described in The Stanford Health
Assessment Questionnaire: Dimensions
and Practical Applications (B. Bruce,

J. F. Fries, 1978). We only require

specific parts of the data, namely:

• TNR: Team Number

Identification. We use this

number to distinguish between

different teams, since the

research is on the team level,

not on the individual level,

• V1: Number of team members.

We use this to calculate

averages for other data fields.

• V10: Perceived Team

Creativity. Team members

were asked about their view on

their team’s creativity level.

This level has a scale from 1 to

7, 1 being worse than average

and 7 much better than average.

In general, teams have a pretty

good idea about how they

themselves are functioning, so

this piece of data is a good

indicator of team creativity.

• V15: Years working in field of

specialization.

• V16: Tenure in current

company (in years).

• V17: Tenure in current team (in

years).

• V21: Age. The age is measured

in five groups, group 1 being

under 30, 2 being 30-39, 3

being 40-49, 4 being 50 to 59

and 5 being 60 and up.

Methods
We used the data described to prove or

disprove our hypotheses. Each

hypothesis requires different data, so

we will describe the data used for

every hypothesis we postulated. In

NIOC 2004 proceedings

101

addition to this, we will describe the

way we will use the data to prove or

disprove the hypotheses using single-

level regression analysis.

H1
We defined H1 as: “The younger the

average team member, the more

creative the team is”. This obviously

points to age (V21) and perceived

creativity (V10) as the main variables.

In addition, we need to calculate the

mean age and perceived creativity,

which we will do for each team using

their TNR and V1. We will then

compare the mean age per team and

the mean creativity level per team

using a scatter plot.

H2
We defined H2 as: “A high age

variance within a team increases the

team’s creativity level”. For this, we

calculate the age variance in each team

and again the mean perceived

creativity level per team. We then

compare these using the same methods

as those for H1.

H3
H3 is defined as: “The creativity of a

team decreases with the time the team

is together”. In this case, we first need

to calculate the average team tenure for

each team (V17) and plot this together

with the creativity level in a manner

similar to the method used in H1 and

H2.

H4, H5
H4 and H5 are defined as “Experience

of team members improves/inhibits

team creativity”. These hypotheses will

be tested at once and depending on the

results one of these will be accepted

(or both will be rejected if no

correlation is found at all). The

variables used are the mean experience

for each team (V15) together with the

perceived creativity. Again, things will

be analyzed using a scatter plot.

H6
This hypothesis is defined as “More

service years at the company inhibits

team creativity”. This is our last

hypothesis to test and we will be using

the company tenure (V16) and the

perceived creativity. As in the previous

hypotheses, these data will be plotted

in a scatter plot.

Now that we have described in which

way we have analyzed the actual data,

we analyze the actual data itself. We

will do this using simple regression

analysis. In addition, we will use a

multi-level analysis to prove

relationships between the different

factors.

Results
For doing simple regression analysis

on the data, we used Microsoft Excel,

the spreadsheet part of Microsoft

Office, which can perform basic

statistical tasks and generate basic

tables and charts.

H1
The scatter plot for H1 shows a lightly

growing linear correlation between the

average age group and average

perceived creativity. This actually

signifies that H1 is not true.

H1

.00
1.00

2.00
3.00
4.00
5.00
6.00
7.00

.00 1.00 2.00 3.00 4.00

Age Group

P
er

ce
iv

ed
C

re
at

iv
ity

Figure 1: Scatter Plot for H1

H2
There seems to be a constant

relationship between age group

variance and average perceived

creativity. This means that H2 is not

The Effects of Age, Experience and Tenure on Team Creative Performance – Tjaard de Vries, Mark Bastiaans

102

true, although age variance seems to be

low in general.

H2

.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

.00 .50 1.00 1.50 2.00 2.50

Age Group Variance

P
er

ce
iv

ed
C

re
at

iv
ity

Figure 2: Scatter Plot for H2

This means that our chosen test leaves

some accuracy to be desired. A larger

sample will undoubtedly be more

accurate and provide for smaller error

margins.

H3
As expected, a clear negative linear

correlation exists between team tenure

and perceived creativity. This proves

H3.

H3

.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

.00 2.00 4.00 6.00

Team Tenure

P
er

ce
iv

ed
C

re
at

iv
ity

Figure 3: Scatter Plot for H3

H4, H5
There seems to be a constant relation

between team experience and

perceived creativity. Therefore, neither

H4 nor H5 hold.

H4 and H5

.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

.00 5.00 10.00 15.00 20.00

Team Experience

P
er

ce
iv

ed
C

re
at

iv
ity

Figure 4: Scatter Plot for H4, H5

H6
The scatter plot for H6 shows a slightly

negative correlation between average

company tenure and perceived

creativity. Therefore, H6 holds.

H6

.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

.00 5.00 10.00 15.00 20.00

Company Tenure

P
er

ce
iv

ed
C

re
at

iv
ity

Figure 5: Scatter Plot for H6

Multi-Level Analysis
A single-level analysis of the data is

usually not sufficient to show the

relative influence of the different

factors. Put differently, we wish to

show if, for instance, age, has a greater

effect on team creativity than team

tenure. Therefore, we decided to try the

hypotheses by doing a multi-level

analysis (Multivariate Analysis
Techniques in Social Science
Research, Tacq, J. J. A., 1997).

Such an analysis will provide for a

regression formula which, in addition

to providing information on the

influence of the individual factors on

average team creativity, accounts for

correlation between the different

factors.

NIOC 2004 proceedings

103

This analysis was done by using

MLWin, a program tailored for doing

such tasks. After entering the data and

calculating the team averages, the

following formula was estimated:

yijkl = 4.150(0.197)

- 0.008(0.021) iijkl

- 0.049(0.012) jijkl

- 0.250(0.031) kijkl

+ 0.654(0.136) lijkl

+ eijkl

e ijkl ~ N(0, e
2
)

e
2

~ - 0.255(0.026)

The independent variables i, j, k and l
represent the averages of the years in

field, company tenure, team tenure and

age, respectively. The dependent

variable y denotes the average team

creativity and e the error rate. The

numbers noted before the independent

variables are their standardized beta

coefficients and standard deviations.

The above numbers show the relative

importance of the different

independent variables. Age seems to be

the biggest contributor to the

dependent variable. The runner-up is

team tenure, while the first two factors

contribute only minimally.

For the results to actually have some

meaning, we take an error margin of 10

percent into account. We take such

liberties because of the size of the data

set: a mere 192 cases were taken into

account for the formula. The is an

indicator for the error rate: by dividing

the beta coefficient (0.255) with the

standard deviation (0.026), an error

rate of less than 10 percent is derived.

The results again disprove H1, because

age has a relatively high influence on

team creativity. H2 is not examined.

H3 is proven also, while H4 and H5

again do not hold due to the very slight

influence of team experience. H6 holds

again because of the relative influence

of company tenure. However, this

influence seems to be very slight.

Now that we have performed both

analyses and examined the results, we

can arrive to conclusions.

Conclusions and Recommendations
After simple data analysis, H3 and H6

were proven true, while he other

hypotheses were not so lucky and

proved false. We therefore arrive to the

following conclusions:

1. The creativity of a team does

not decrease as the average age

increases. More to the opposite:

it actually increases! It seems

that older team members have a

positive influence on team

creativity.

2. In terms of creativity, it does

not matter if the age of team

members differs greatly.

Therefore, this isn’t really an

issue to worry about when

composing project teams.

3. Teams that are together for an

extended period of time seem

to be less creative than teams

that just got together. This

could be an incentive for

management to change team

composition once in a while.

4. The average team experience

does not affect creative

performance at all.

5. Opposed to age, company

tenure does decrease team

creativity.

From these conclusions, some

recommendations to managers of

research teams can be made. First of

all, a well-mixed team in terms of age,

tenure and experience is generally a

good idea to begin with. But for

elaboration, the results of the multi-

level analysis should be used.

The Effects of Age, Experience and Tenure on Team Creative Performance – Tjaard de Vries, Mark Bastiaans

104

Multi-level analysis showed the

relative influence of all the factors on

creative team performance. By using

these relative factors, we conclude that:

1. Average team age is the most

important factor in the total

equation for team creative

performance,

2. Team tenure is, in effect, the

second most important factor,

and

3. Average company tenure and

years in the field of

specialization do not influence

team creativity greatly.

Therefore, the ideal innovation team is

a team with a high age average for

boosting the team’s creative output.

Furthermore, one should change team

composition often to keep people

innovating, and to encourage creativity

in one’s company.

Any further recommendations that can

be made depend on what is expected of

the teams. Should one want one

outstanding team for a particular

prioritized project, one should make a

fresh team of somewhat older team

members for the task, both because of

the increase of creativity with age and

because of the slight decrease with age

variance. The teams composed of the

remaining employees might suffer a bit

though, and if the company doesn’t

hire and/or fire many employees the

effect of this trick might wear off after

a while because increasing team

tenure. However, it might be a good

idea to prioritize older applicants if any

vacancies within the company occur.

These conclusions and their derived

recommendations are beneficial for

managers and team members alike.

Managers can compose their teams for

better creative results by using the

results of this study, while older

employees will find it comforting that

one argument used for laying off older

employees, namely that of that older

people have less creative influence on

a team than younger people, appears to

be a persistent urban legend that needs

urgent revision.

We note that the scope of this study

was on a team level. Since teams are

composed of quite a few individuals,

some more elaboration on the effect of

those individuals would be in order.

We leave this analysis to a following

study.

NIOC 2004 proceedings

105

References

1. The cohort as a concept of
social change, N.B. Ryder,

1965

2. Age Grading: The Implicit
Organizational Timetable, B.S.

Lawrence, 1984

3. The black box of organizational
demography, B.S. Lawrence,

1997

4. Communication and
Performance: An Empirical
Study in Innovation Teams, J.

Kratzer, 2001

5. The Stanford Health
Assessment Questionnaire:
Dimensions and Practical
Applications, B. Bruce, J. F.

Fries, 1978

6. Multivariate Analysis
Techniques in Social Science
Research, Tacq, J. J. A., 1997

The Effects of Age, Experience and Tenure on Team Creative Performance – Tjaard de Vries, Mark Bastiaans

106

TEAM CREATIVITY: INFLUENCE OF
HETEROGENEITY IN AGE, SEX, EDUCATION

AND SERVICE YEARS ON CREATIVITY OF R&D
TEAMS

FRANK VAN DEN NIEUWBOER

frankie@fmf.nl

KLAAS-JAN STOL

kjs@fmf.nl

Department of Computing Science

University of Groningen

The purpose of this study was to examine the relationship
between team diversity and experienced team creativity. In
order to measure team diversity, we looked at four types of
diversity. These were diversity of sex, diversity of education
level, diversity of age and diversity of the number of service
years. Data was gathered from 33 R&D teams.
The results showed that diversity of sex has a slight positive
effect on the team creativity. The other attributes showed
there could have been a relation, but this was not significant.

In order to survive the always present competition, a company should distinguish
itself, so it can offer unique services or products. If a company is not able to
distinguish itself among the numerous other companies offering the same services or
products, it is not unlikely the company will be put out of business.

Therefore, innovation and creative minds are very important to a company. This
is especially true for companies with R&D teams. The purpose of an R&D team is,
after all, to innovate.

How an R&D team is functioning depends on a number of factors. A very
important one is, of course, what persons the team consists of. If the members of a
team all have creative mind sets, then this team is likely to function better than a
team consisting of members who are not as creative. However, it is not as easy as
calling one team ”creative” and yet another as not being creative. This creativity
of a team is of course, dependent on the individual members, but also on the team
as a whole. Creativity is just one aspect of a member’s personality. It may well be
that she1 feels not comfortable to express her ideas. This way, the team as a whole
does not take advantage of the creativity of all members.

In order to prevent this, all team members should be comfortable being a member
of the team. However, it is not clear in advance when this will be the case. So, the
question for a manager is how to compose her team, so that it will exploit the

1she should be read as he or she.

107

creative minds of all individual members. When creativity is higher, solutions to
problems will be thought of faster and more easily. This in effect reduces the costs of
development of products, and therefore is very important to a company as a whole.

Of course, it is interesting to know what makes a team more creative. In recent
years, some research has been done on the influences on team performance. Tim-
merman (2000) researched the influence of racial diversity and age diversity on team
performance. Cady and Valentine (1999) investigated the influence of team diversity
on quality and quantity of innovation. This diversity was measured in diversity of
age, sex, race and function.

Other researchers concentrate on a specific property, such as sex of team members
(Schruijer & Mostert, 1997). However, that was measured on an individual level. In
this article, we take a broader view on diversity, and we will compare diversity at
team level. We will consider heterogeneity of age, sex, the number of service years
and the level of education of the members of an R&D team.

RESEARCH

Some project teams show a higher level of creativity than others. The question
is, how one can influence the creativity of project teams, so managers can compose
teams that will be more creative. Therefore, we propose the following research ques-
tion:

What is the effect of team heterogeneity on creativity of R&D teams?

Because heterogeneity is very broad, we will focus on only four attributes of R&D
teams. We will investigate what the specific effects are of heterogeneity of age, sex,
number of service years and the level of education of members of R&D teams on
creativity. Therefore, we propose the following subquestions:

• What is the effect of diversity of sex on the creativity of R&D teams?

• What is the effect of heterogeneity of age on the creativity of R&D teams?

• What is the effect number of service years on the creativity of R&D teams?

• What is the effect of the level of education on the creativity of R&D teams?

With these subquestions, we inspect four very important attributes of teams.
This way, we can get a good idea of what effect heterogeneity in team composition
has on the creativity of R&D teams.

The second research question will then concern managers, so we propose the
next research question:

How should a team manager compose her R&D team?

THEORY AND HYPOTHESES

Heterogeneity of Sex in R&D Teams

Schruijer and Mostert (1997) showed that diversity of sex in brainstorming groups
had a positive influence on creativity. According to their study, members engaging in
brainstorming in heterogeneous groups generate more ideas, associations and angles
than those in homogeneous groups. Also, individuals in heterogeneous groups rated

Team creativity: influence of heterogeneity in age, sex, education and service years on creativity of r&d teams – Frank
van den Nieuwboer, Klaas-Jan Stol

108

the process as a more positive one. This indicates that members in a heterogeneous
group are more comfortable to express their ideas and propositions. As we suggested
in the introduction of this article, this is important for team creativity as a whole.

Therefore, we propose the following hypothesis:

Hypothesis 1: Diversity of sex has a positive influence on creativity of R&D teams.

Heterogeneity of Age in R&D Teams

Heterogeneity of age is also an important factor when considering creativity of teams.
Although not much research relating to age and creativity has been conducted, a
study relating to age and performance (Pelled et. al., 1999) showed that homo-
geneous groups had more emotional conflict than heterogeneous groups. This was
explained by suggesting that age is used for comparing one’s accomplishments and
career progression. So, one could suggest that when members of a team have more
or less the same age, they try harder to distinguish themselves.

Other research relating to the effects of age on innovation suggests that there
are few significant effects of age heterogeneity (Wiersema & Bantel, 1992; Zenger &
Lawrence, 1989).

Therefore, we present the following hypothesis:

Hypothesis 2: Heterogeneity of age has a negative influence on creativity of R&D
teams.

Heterogeneity of service years in R&D Teams

Not much information can be found on research relating to the number of service
years a person has, and his or her level of creativity. However, while people with a
longer career at a particular company may suffer of boredom, they do have expe-
rience, and know how to solve a great number of problems. They already learned
how to think of solutions.

On the other hand, while people who have less service years at a company do
not have this experience, they will suffer less of boredom because many tasks and
problems may come as new to them. Also, they may be more motivated, because
they do not have the advantage of ”being there too long”. We think a combination
of people with a lot of experience, and people that are still fresh-minded may help
in the level of creativity that an R&D team exposes. Therefore, we propose the
following hypothesis:

Hypothesis 3: Heterogeneity of service years has a positive influence on creativity of
R&D teams.

Heterogeneity of education level in R&D Teams

As with the previous section, not much information on research relating to the level
of education and creativity can be found. However, one could argue that people on a
’different level’ have different mind sets, and thus are likely to have other approaches
to tackle problems. Therefore, we feel that a team with more variety in levels of
education is likely to have more different approaches to find solutions, and thus
the group as a whole has more creative potential. Therefore, we propose our last
hypothesis as follows:

Hypothesis 4: Heterogeneity of education level has a positive influence on creativity
of R&D teams.

NIOC 2004 proceedings

109

METHODS

Participants

All participants in the research are members of Research and Development (R&D)
teams. The participants were asked to ”asses the state of the art of their innovation
teams” (Kratzer, 2001). Data for our research was gathered from 33 R&D teams,
involving 199 team members in total, at 11 companies.
The data was built upon a Stanford University questionnaire, which had been
adapted to better suit the research needs. Data was gathered in five phases. These
are summarized below.

1. In phase one 39 companies were selected based on their innovation methods.

2. In the second phase the directors of these companies were sent an invitation
letter containing a summary of the main questions.

3. In the third phase presentations were given at 21 companies.

4. In the fourth phase the action plan for the questionnaires was composed, and
the questionnaire was done.

5. In the last phase the collected data was processed into a ”team profile” and
suggestions were delivered to these 39 companies.

Measures

Measuring Team creativity Participants were asked to consider the team as a
whole. For measuring the team creativity, the team score was on a seven point scale
of 1 (very bad) to 7 (very good). Then, we take the average score of all members in
a group.

Measuring Sex Heterogeneity For measuring sex heterogeneity, we deter-
mine the number of men and the number of women in each team. Next, we count
the number of heterogeneous pairs. That is, a pair consisting of one man and one
woman. Then, we divide this number by the total number of members divided by
two. This is, of course, the total number of pairs, neglecting the fact that not all
”pairs” are heterogeneous. The outcome is a number between 0 and 1, so multiplying
this by 100% results in a percentage indicating the heterogeneity of sex.

Measuring Age Heterogeneity Participants were asked in which age class
the belonged to. The following age classes were defined:

• under 30

• 30-39

• 40-49

• 50-59

• over 60

Team creativity: influence of heterogeneity in age, sex, education and service years on creativity of r&d teams – Frank
van den Nieuwboer, Klaas-Jan Stol

110

It would not be correct to just measure the average score, because if the team
consisted of two equally sized groups, for example one group in class under 30,
the other in class over 60, then that would result in the same average as when all
members were equally divided over all five classes.

Therefore, it was necessary to come up with an alternative measure. We describe
this alternative measure below.

To determine the age diversity score we first have to calculate the highest devia-
tion of the perfect diversity score (the case when all classes are equally sized). This
can expressed by the following formula:

M =
N

5
× 4 × 2

With M being the maximum deviation, when all members belong to one class;
N being the number of team members.

The constant 5 stands for the number of choices, and the multiplication by 4 is
used because in the case of total homogeneous partition in four classes the absolute
deviation will be N

5 in each class. The multiplication by 2 is performed because the
deviation is accounted for twice. The value of M denotes the maximum number of
diversity.

In the case of perfect partition, one would expect a mean value of N
5 members in

each class. To determine the actual deviation, we calculate for each class the absolute
deviation with respect to the mean value. So, to calculate the actual deviation, we
use the following formula:

D =
5∑

i=1

∣∣∣∣classi − N

5

∣∣∣∣ (1)

Where classi is the number of members in class i.

Finally, to calculate the percentage of age diversity we have to calculate the last
step, as shown in formula (2).

A =
M − D

M
× 100% (2)

With A being the percentage of age diversity in the R&D team.

A percentage of 0 effectively means that M = D. In other words, the actual deviation
equals the maximum deviation, which only occurs when all members belong to one
class. So, in that case, there is no diversity, which mirrors the zero percentage.

On the other hand, a percentage of 100 means that D is 0. This means that
the actual deviation, calculated by formula (1) is 0. This is only the case, when all
classes contain the expected or mean number of members. This is only the case if
there is a perfect partition, in other words, a complete heterogeneous group (when
speaking of age).

Measuring Heterogeneity of service years

Diversity of service years was measured as follows. All participants were asked
what their number of service years with the company was. To express the diversity
of number of service years within a team, we take the standard deviation as a
measure, denoted by σ. If σ is high, then there is more diversity than when σ is low.

NIOC 2004 proceedings

111

Measuring Heterogeneity of education level

Diversity of education level was measured as follows. All participants were asked
what their highest degree they received was. The answers were partitioned into six
classes. These six classes were:

1. elementary education

2. secondary education

3. higher secondary education

4. polytechnic education

5. academic education/university

6. Ph.D.

To calculate the diversity percentage, we used the same formulae as for calculating
the diversity percentage for age. Of course, instead of five classes, we now have six.

Analysis

We used both single-level modeling and two-level modeling. For each hypothesis we
made a separate model, and we tried to find an equation for the regression line. We
did this at both single and multi level.
In our single-level model, observations of the teams members are middled and taken
into account for the determination of the equation.

In our two-level model, observations of the individual team members are the lower
level observations. The observations of the teams are the higher level observations.
This two-level model is necessary because observations within a team are not inde-
pendent.

For each hypothesis we compared results by using the −2 × LogLikelihood both at
single and at multi level. The difference between these two results is compared to a
χ2-distribution with 1 degree of freedom. This was to validate the results found in
the two-level observation for significance.

Missing data

Of course, whenever research is done with use of data gathered from people, there is
the possibility of missing data. That is, on some questions not all participants gave
an answer. For that problem we use a simple solution. When a team member did
not answer the question, then that member was not taken into account. Effectively,
the team consisted only of members who answered all questions. In our opinion, this
solution to the problem of missing data is reasonable, because we do not consider
team size.

RESULTS

All results can be found in appendix A. Based on the results in table (9), one
cannot easily see if there is any correlation whatsoever between the four measures
and the level of creativity. For that purpose, we will now include four different plots,

Team creativity: influence of heterogeneity in age, sex, education and service years on creativity of r&d teams – Frank
van den Nieuwboer, Klaas-Jan Stol

112

to check for any correlation.

Heterogeneity of Sex and Creativity

In figure (1) we can see that there is no correlation between the level of diversity in
sex and the level of creativity that is experienced. On a qualitative level we cannot

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0% 20% 40% 60% 80% 100%

Sex diversity (%)

C
re

at
iv

it
y

Figure 1: The correlation between diversity in sex and creativity.

find any relationship between gender and creativity. This is also due to the fact that
there are only seven teams with one ore more female members. Figure 1 shows a
scatter plot of the results. To further investigate this, we use multi-level analysis.
The results of this can be found in table .

FIXED EFFECTS
baseline team creativity 3.959 (0.334)
Gender 0.566 (0.309)
RANDOM EFFECTS
team-level variance σ2 0.990 (0.101)
-2 ×Log Likelihood model 542.91

Table 1: Results of single level regression on heterogeneity of gender in R&D
teams

The overall mean level of creativity considering sex is a score of 4.557. As we can
see in the resulting model, the mean difference in creativity scores can be ascribed
to sex by 0.460 times the standard deviation. The variance partition coefficient is
calculated as follows:

0.304
0.304 + 0.705

= 0.301

This means that about 30 percent of the variance in creativity considering sex can
be ascribed to variations between teams.
The difference between both −2∗Log Likelihood models can be calculated simply:

542.91 − 518.74 = 24.17

NIOC 2004 proceedings

113

FIXED EFFECTS
baseline team creativity 4.557 (0.116)
Gender 0.460 (0.303)
RANDOM EFFECTS
team-level variance σ2 0.304 (0.107)
member-level variance σ2 0.705 (0.079)
-2 × Log Likelihood model 518.74

Table 2: Results of multi-level regression on heterogeneity of gender in R&D
teams

Using the χ2-test on this results (1 degree of freedom) shows us that this solution is
significant.

This shows us that there is a relation between heterogeneity of sex and the experi-
enced team creativity. At some level, the overall creativity is positively dependent
on heterogeneity. When we use a t-Test with (p = 0.01) we can see this relation is
significant.

Diversity of Age and Creativity

In figure (2) we can see that there is no correlation between the level of diversity of
age and the level of creativity that is experienced. However, it may be interesting to

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0% 20% 40% 60% 80% 100%

Age diversity (%)

C
re

at
iv

it
y

Figure 2: The correlation between diversity age and creativity.

further analyze this data. We do this by means of a box plot diagram. In figure (3)
such a box plot diagram is shown. The data was divided into two classes: one class
containing teams with a low age diversity score, another class containing teams with
a higher age diversity score. If the diversity score of a team is less than 35%, the
team belongs tot the lower class, otherwise the team is counted in the other group.

In figure (3), it can be seen that the class with lower age diversity has a higher
creativity score. On the other hand, the class with a higher age diversity has a

Team creativity: influence of heterogeneity in age, sex, education and service years on creativity of r&d teams – Frank
van den Nieuwboer, Klaas-Jan Stol

114

Figure 3: Partition into a group with low age heterogeneity and a group with
high age heterogeneity.

significant lower creativity score. This confirms our hypothesis, which claimed that
diversity of age in an R&D team has a negative impact on the level of creativity.

It should be kept in mind, that this creativity score was obtained by asking people
about their own experience. That is, a high creativity score does not necessarily
mean that the actual creativity is high.

FIXED EFFECTS
baseline team creativity 4.540 (0.202)
Age 0.008 (0.087)
RANDOM EFFECTS
team-level variance σ2 1.007 (0.103)
-2 × Log Likelihood model 546.229

Table 3: Results of single level regression on heterogeneity of age in R&D
teams

When we use the the same data with multi-level regression both at team and indi-
vidual level, we get the following results:

FIXED EFFECTS
baseline team creativity 4.695 (0.214)
Age -0.049 (0.082)
RANDOM EFFECTS
team-level variance σ2 0.321 (0.111)
member-level variance σ2 0.708 (0.079)
-2 × Log Likelihood model 520.67

Table 4: Results of multilevel regression on heterogeneity of age in R&D teams

The overall mean level of creativity considering age is a score of 4.695. As we can
see in the resulting model, the mean difference in creativity scores can be ascribed
to age by -0.049 times the standard error, which is rather low.

0.321
0.321 + 0.708

= 0.312

NIOC 2004 proceedings

115

This means that about 30 percent of the variance in creativity considering age can
be ascribed to variations between teams.
The difference between both −2×Log Likelihood models can be calculated simply:

546.229 − 520.67 = 25.559

Using the χ2-test on this results (1 degree of freedom) shows us that this solution is
significant.

Although the two-level model is significant, we cannot see that creativity is
dependent of heterogeneity of age. At single level we see there is a very slight
positive impact (+0.008), but at two-level regression we see a negative impact (-
0.049). Using a t−Test we can see this relation is not significant (p = 0.01).

Diversity of Service years and Creativity

In figure (4) we can see that there is no clear correlation between the number of
service years and the level of creativity that is experienced. However, when we draw
the trend line we can see a slight negative relation, this indicates that diversity of
service years has a slight negative impact on the experienced level of creativity.

This might be explained by the behavior of all members. The younger people
may have respect for and expectations from the people with longer service time.
So, they might think that the other members will know better. So, they will not
mention any new or unusual ideas of themselves, because they are afraid not to be
taken seriously.

On the other hand, the members with longer service time may have expectations
of their own. They may have been looking forward to a ’new wave’ of ideas from
the new members. So, they give the new members space to propose their ideas.

This situation could be created by the fact that both ’new’ members as well
as members with longer service time have opposite expectations from ’the other’
members.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
Diversity in service years (std dev)

C
re

at
iv

it
y

Figure 4: The correlation between diversity in the number of service years and
creativity.

Now when we apply multi-level regression we get the following results:

Team creativity: influence of heterogeneity in age, sex, education and service years on creativity of r&d teams – Frank
van den Nieuwboer, Klaas-Jan Stol

116

FIXED EFFECTS
baseline team creativity 4.713 (0.112)
Service years -0.020 (0.011)
RANDOM EFFECTS
team-level variance σ2 0.990 (0.101)
-2 × Log Likelihood model 542.957

Table 5: Results of single level regression on heterogeneity of service years in
R&D teams

FIXED EFFECTS
baseline team creativity 4.715 (0.141)
Service years -0.017 (0.011)
RANDOM EFFECTS
team-level variance σ2 0.302 (0.106)
member-level variance σ2 0.706 (0.079)
-2 × Log Likelihood model 518.68

Table 6: Results of multi-level regression on heterogeneity of service years in
R&D teams

As we can see in the resulting model, the mean difference in creativity scores
can be ascribed to service years by -0.017.

The variance partition coefficient is calculated as follows:

0.302
0.302 + 0.706

= 0.300

This means that about 30 percent of the variance in creativity considering service
years can be ascribed to variations between teams.
The difference between both -2×Log Likelihood models can be calculated simply:

542.957 − 518.68 = 24.295

Using the χ2-test on this results (1 degree of freedom) shows us that this solution
is significant. We can see at both at single-level (-0.020) and at two-level (-0.017)
heterogeneity of Service Years has a slight negative impact on the experienced team
creativity. Using a t−Test we can see this relation is not significant (p = 0.01).

Diversity of Education and Creativity

In figure (5) we can see that there is no correlation between the level of diversity
in education and the level of creativity that is experienced. However, figure (5) we
expect there might be some connection between diversity of education and creativity,
because the number of teams is clustered somehow in the middle of the figure. To
better determine the relation between diversity of education and creativity we could
draw a box plot. This is done in figure (6).

We can make a division into three clusters. The first cluster would contain all
teams with an education diversity score below 25%, the second containing teams
with a score between 25% and 35% and the third cluster containing teams with a
score higher than 35%. In figure (6) this division into three groups is shown by

NIOC 2004 proceedings

117

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0% 20% 40% 60% 80% 100%

Diversity in education level (%)

C
re

at
iv

it
y

c

Figure 5: The correlation between diversity in education and creativity.

means of a box plot diagram. In the box plot figure (figure (6)), we can see that

Figure 6: The correlation between diversity in education and creativity.

the two clusters with a higher level of diversity in education level do in fact have
somewhat higher scores. However, the lower bound is still the same as the lower
cluster.

Considering this, one could say education diversity has to a certain extend a
positive influence on the experienced creativity of a Research and Development
group. But when educational diversity becomes too high, this impact decreases
somewhat.

FIXED EFFECTS
baseline team creativity 3.705 (0.380)
Education 0.195 (0.085)
RANDOM EFFECTS
team-level variance σ2 0.980 (0.100)
-2 × Log Likelihood model 541.084

Table 7: Results of single level regression on heterogeneity of education in
R&D teams

Team creativity: influence of heterogeneity in age, sex, education and service years on creativity of r&d teams – Frank
van den Nieuwboer, Klaas-Jan Stol

118

When we apply multilevel regression both at team and at individual level we get the
following results:
The overall mean level of creativity is a score of 4.407, with a standard error of

FIXED EFFECTS
baseline team creativity 4.407 (0.415)
Education 0.041 (0.091)
RANDOM EFFECTS
team-level variance σ2 0.300 (0.106)
member-level variance σ2 0.715 (0.080)
-2 × Log Likelihood model 520.85

Table 8: Results of multilevel regression on heterogeneity of education in R&D
teams

0.415. As we can see in the resulting model, the mean difference in creativity scores
can be ascribed to education by 0.041 The variance partition coefficient is calculated
as follows:

0.300
0.300 + 0.715

= 0.296

This means that about 30 percent of the variance in creativity considering education
can be ascribed to variations between teams.
The difference between both −2×Log Likelihood models can be calculated simply:

541.084 − 520.85 = 20.234

Using the χ2-test on this results (1 degree of freedom) shows us that this solution
is significant. At single level heterogeneity of Education has a positive impact on
experienced team creativity (+0.195), but at second level regression this is (+0.041).
Using a t−Test we can see this relation is not significant (p = 0.01).

CONCLUSIONS

In order to draw conclusions, we will evaluate each hypothesis, and then give a
short summary of our research.

Hypothesis 1

In hypothesis 1 we tried to argue that heterogeneity of sex has a positive influence on
the experienced level of creativity. We tried to test this hypothesis by considering the
heterogeneity of research and development teams out of a given dataset. However, at
single-level, the number of heterogeneous teams proved to be too small to determine
a relation whatsoever. When we applied two-level regression both at team and at
individual level, we found there was a positive relation between the heterogeneity of
sex and the team creativity. Using this we can conclude mixing up teams sexually
has a positive effect on experienced creativity.

NIOC 2004 proceedings

119

Hypothesis 2

Hypothesis 2 argued that heterogeneity of age has a negative impact on the level
of creativity. On first sight, when drawing a correlation figure, the results were not
very promising. No clear relationship could be established. However, when the box
plot figure was created of the data, it became clear that heterogeneity of age has
a negative impact on the level of creativity. However, this relation is so weak, we
found it was not significant by applying multilevel analysis.

Hypothesis 3

In the third hypothesis we claimed that heterogeneity of service years has a positive
influence on the level of creativity.

To determine the relation between heterogeneity of service years and creativity
in research and development teams we measured the heterogeneity of service years
as a percentage. This percentage was then compared to experienced team creativity.

The result of this comparison first seemed to be undetermined, however, when
a trend line was drawn we could determine a slight negative impact. This negative
trend is totally the opposite of our hypothesis, which is an interesting result.

However, because the trend line is slight negative this relation is not very strong.
To better test the hypothesis one should use a larger dataset. Also multilevel analysis
showed is a very slight negative impact. However, this relation is not significant to
conclude there is a relation between heterogeneity of service years, and creativity.

Hypothesis 4

In our last hypothesis, hypothesis 4, we claimed that diversity of education level has
a positive influence on the level of creativity. On first sight, no correlation can be
found in our results. However, we could find a concentration of teams at a creativity
score of 30%. On both sides of this concentration there are a few results. To better
analyze this data, we created a box plot figure from this data.

This box plot shows us that diversity of education level has a positive influence
on the level of creativity, but when diversity is too high, it has a negative influ-
ence. Again multilevel analysis showed this relation is very weak, but not significant
enough to conclude there is a relation between education level and creativity. This
is also an interesting conclusion which might be researched further.

Summary

Recapitulating, we tried to find out if there is a relation between heterogeneity and
experienced creativity of research and development project teams. To determine
this relation we chose 4 general R&D team aspects education, service years, sex and
age and measured their impact on experienced creativity.

Each of the aspects showed us different results on the experienced level of cre-
ativity. Only a relation between heterogeneity of sex and creativity could be proved.
The other hypotheses showed us a very slight effect, but the result was not signifi-
cant enough to conclude the is a relation. Using the first proven relation we could
say heterogeneity of sex has an impact on the experienced creativity of R&D teams.
This was not obvious at first sight, but better analysis of the data made this clear.

For the other hypotheses we suggest more research should be done.
Using the research results of the 4 attributes of heterogeneity, we conclude het-

erogeneity has a slight effect on the experienced creativity of a R&D team. Some

Team creativity: influence of heterogeneity in age, sex, education and service years on creativity of r&d teams – Frank
van den Nieuwboer, Klaas-Jan Stol

120

attributes of heterogeneity have more effect on experienced creativity than others.
But we depicted there is a relation.

The answer for the second main question follows from the conclusions stated
above. The manager of an R&D team should compose a Research and Development
team of people who are new in the organization.
Using a Research and Development team of mixed sex results in better experienced
creativity. Also diversity in level of education seems to have a positive impact on
the creativity. Using this information, the manager of such a team could balance
the team to maximize team performance.

This research could be used in a various companies where there is a need for
innovative, problem-solving R&D teams. Of course this does not guarantee improved
creativity, but it should be used as a reminder.

NIOC 2004 proceedings

121

Appendix A: Research Results

team nr. age (%) sex (%) service years (σ) education (%) creativity

1 43 0 4.79 39 4.3
2 25 0 10.56 10 5.2
3 46 0 9.72 27 4.7
4 25 0 7.00 27 5.2
5 50 0 2.77 30 4.0
6 75 80 1.34 50 5.0
7 0 40 0.55 10 4.4
8 75 0 1.79 10 3.8
9 25 80 0.55 50 4.8
10 25 40 0.84 30 6.2
11 75 40 3.71 30 5.4
12 25 0 3.42 50 5.4
13 25 0 4.92 50 5.0
14 25 0 4.67 30 4.3
15 25 0 3.63 30 5.8
16 50 0 6.60 70 4.4
17 41 0 6.88 23 4.4
18 63 0 12.34 27 5.3
19 39 0 8.77 30 4.6
20 46 33 6.39 47 5.0
21 50 0 6.72 30 4.4
22 25 0 3.39 39 4.4
23 25 0 3.16 50 5.4
24 50 0 7.27 30 4.3
25 25 0 6.95 70 3.8
26 25 0 2.64 16 4.4
27 50 0 6.88 30 3.8
28 25 33 4.62 10 3.8
29 25 0 0.53 36 5.2
30 25 0 4.16 10 5.6
31 25 0 2.77 30 5.6
32 25 0 1.64 30 6.0
33 25 0 2.63 30 4.0

Table 9: Results

Team creativity: influence of heterogeneity in age, sex, education and service years on creativity of r&d teams – Frank
van den Nieuwboer, Klaas-Jan Stol

122

References

[1] Cady, S.H., and Valentine, J. Team innovation and perceptions of consideration.
Small Group Research, 30(6):730–750, 1999.

[2] Chatman, J.A., & O’Reilly, C.A. Asymmetric reactions to work group sex di-
versity among men and women. Academy of Management Journal, 47:193–208,
2004.

[3] Kratzer, J. Communication and Performance: an empirical study in innovation
teams. PhD thesis, Rijksuniversiteit Groningen, 2001.

[4] Pelled, L.H., Eisenhardt, K.M., and Xin, K.R. Exploring the black box: An
analysis of work group diversity, conflict, and performance. Administrative Sci-
ence Quarterly, 44:1–28, 1999.

[5] Schruijer, S.G.L., and Mostert, I. Creativity and sex composition: An experi-
mental illustration. European Journal of Work and Organizational Psychology,
6(2):175–182, 1997.

[6] Timmerman, T.A. Racial diversity, age diversity, interdependence, and team
performance. Small Group Research, 31(5):592–606, 2000.

[7] Wiersema, M.F., & Bantel, K.A. Top management team demography and cor-
porate strategic change. Academy of Management Journal, 35:91–121, 1992.

[8] Zenger, T.R., & Lawrence, B.S. Organization demography: The differential
effects of age and tenure distributions on technical communication. Academy of
Management Journal, 32:353–376, 1989.

NIOC 2004 proceedings

123

Level of Education, the Diversity of Field of Specialization, Problem-
Solving Communication, and the Productivity of R&D Teams

J. Kizito • D. Tuheirwe

Rijks universiteit Groningen, Department of Mathematics and Computing Science
csg4048@wing.rug.nl • csg4049@wing.rug.nl

Acknowledgement
We would like to thank Dr. Jan Kratzer of the Faculteit Bedrijfskunde, Rijksuniversiteit
Groningen for supporting our efforts with this paper. We would also like to thank the
reviewers of our paper for their contribution.

Abstract
The productivity of Research and Development (R&D) teams is determined by a number
of factors. This paper looks at a few of these factors namely highest degree as a measure
of level of education, the diversity of field of specialization, and problem-solving
communication. We further look at the effect of diversity of field of specialization on
problem-solving communication.
The results showed that high degrees had a small positive impact on team productivity,
diversity of field of specialization proved to have a negative impact on problem-solving
communication, which, in turn, had a negative impact on team productivity. Finally,
based on our research, we could not draw any conclusion regarding the effect of
diversity of field of specialization on team productivity.

Introduction
Teams are the building blocks of many
organizational structures. A team can often
accomplish more than what its members
could achieve when working
independently. Gavish (1997) points out
that tasks are frequently interdependent
and thus, one task cannot be completed
without the cooperation and coordination
of other members within and outside of the
organization. Gerard (1991) argues that
teams are particularly good at combining
talents and providing innovative solutions
to possible unfamiliar problems. In cases
where there is no well�established
approach/procedure, the wider skill and
knowledge set of the team has a distinct
advantage over that of the individual. The
range of skills provided by a team’s
members and the self�monitoring, which
each team performs, makes it a reasonably
safe recipient for delegated responsibility.

Even if a problem could be decided by an
individual, there are two main benefits in
involving the actors in the decision
process. Firstly, the motivational aspect of
participating in the decision will clearly
enhance its implementation. Secondly,
there may well be factors, which the
implementer understands better than the
individual who could supposedly have
decided alone.

To maintain a position in the market,
organizations must continuously develop
new products and business processes. A
large body of research indicates that good
technical communication within the R&D
organization itself is essential for R&D
productivity. As a consequence, the
importance of communication networks in
the R&D environment for successful
innovation and new product development
is already well acknowledged by both

124

practitioners and researchers. More
frequent contact and communication
between team members improves
coordination, such that task objectives are
more likely to be realized.

Communication includes all interaction
and information exchange between parties.
Examples include verbal, written and
electronic information exchange, such as
the transmission of documents. In this
paper we examine communication by
studying the diversity of field of
specialization and relating it to problem�
solving communication and the effect of
the latter on team productivity.

A team can be productive if its members
are knowledgeable. Since one’s knowledge
is a core product of education, team
members with good education can greatly
enhance productivity. In this research we
examine this relation by studying the
highest degree received by the team
members and relating it with productivity.
We consider the variation of degrees at
team level and show how this affects the
productivity of the team.

We also look at how diversity of field of
specialization in a team can enhance
productivity. Combination of different
talents and the synergy it creates can
overcome many difficulties encountered in
organizational life, including production,
planning and problem solving.

We discuss the relationship between the
levels of education, diversity of fields of
specialization, problem�solving
communication and team productivity, and
submit the hypotheses that we test in our
analysis. Thereafter the methodological
design of the research is described. Finally,
results are presented and conclusions
drawn from these results are discussed.

Theory
Impact of level of education on team
productivity
Bynner et al., 2003 states that graduates
are less depressed, healthier, more likely to
vote in elections and help with their
children's education. The advantages
graduates derive from higher education
cover not only better jobs and higher pay,
but also a wide range of other personal and
social benefits. Bynner et al., 2003
continues to state that research has it that
students who dropped out of higher
education before graduation showed a
reduction in the indicators of good health
compared with those who completed their
studies and gained a degree. Higher
education is a key driver in providing
economic and social benefits in an
organization in the sense that the
knowledge, skills and attitudes of
graduates enhance productivity when they
solve problems together as a team.

H1: The higher the number of members
with high degree qualifications in a team,
the higher is the productivity.

Impact of diversity of field of
specialization on team productivity
Ford and Randolph (1992) state that in a
cross�functional structure, individuals have
the opportunity to work on a variety of
projects with a variety of individuals from
across the organization. In sharing ideas,
knowledge, and perspectives, the team
enlarges an individual's experience and
outlook, increases responsibility and
involvement in decision making, and
offers a greater opportunity to display
capabilities and skills. Because greater
demographic diversity entails relationships
among people with different sets of
contacts, skills, information, and
experiences, heterogeneous teams enjoy an
enhanced capacity for creative problem

NIOC 2004 proceedings

125

solving (Reagans and Zuckerman, 2001).
The growing diversities of specialization in
a team may be accompanied by a parallel
increase in attitudinal or cognitive
diversity of the team members. According
to Kilduff et al., 2000, diversity in
specialization signals diversity in
underlying and invisible cognitive
processes. From this perspective, diversity
may have important effects on team and
organizational performance. A
heterogeneous team with members having
diverse specializations can be more
productive since the members will be
knowledgeable in various areas.

H2: The more diverse the fields of
specialization of the team members, the
greater is the productivity.

On the other hand, diversity of
specialization in a team creates an
atmosphere of ambiguity and conflict as
well as additional costs, both for the
organization and for the individual. Ford
and Randolph (1992) point out that the
interaction of people with different work
orientations (e.g., project/task vs.
functional/professional), different
professional affiliations, different time
horizons (e.g., long term vs. short term),
and different values are all potential causes
of conflict. In a cross�functional team,
individuals find themselves working across
various projects under different managers.
This situation creates multiple reporting
relationships (role conflict), conflicting
and confusing expectations (role
ambiguity), and excessive demands (role
overload). Another major disadvantage is
cost. Management can be costly for both
the organization and the individuals in the
organization. According to Ford and
Randolph (1992), a team with diversity of
specialization leads to costs associated
with organizational "heaviness" including

excessive meetings or "groupitis," which
can lead to delayed decision making and
increased information�processing costs.
The costs of unused or underused
resources, both physical and human, are
also likely to increase as well as the costs
for extra training of project/matrix
managers and the costs associated with
monitoring, controlling, and coordinating
the people and project within the team. All
these mentioned disadvantages can lead to
reduction in productivity.

Furthermore, homogeneous groups are
expected to perform at a higher level
because such groups coordinate their
activities more easily than diverse teams,
according to Reagans and Zuckerman
(2001) based on the work of McCain et al.,
1983, O’Reilly et al., 1989, Zenger and
Lawrence 1989. It is further believed that
these groups are more harmonious and
communication between the team
members is effective. Reagans and
Zuckerman
(2001) recognize that diverse teams are
likely to face significant difficulties
because of a lessened capacity for
coordination.

H3: The less diverse the fields of
specialization of the team members, the
greater is the productivity.

Impact of diversity of field of
specialization on problem-solving
communication
Differences in personality, training,
background, departmental culture, and task
priorities and responsibilities, result in
strong language and attitudinal barriers
between R&D and marketing professionals
(Griffin and Hauser 1996). Similar barriers
are often witnessed between marketing and
operations management, and between
R&D and operations. Such barriers imply

Level of Education, the Diversity of Field of Specialization, Problem- Solving Communication, and the Productivity of
R&D Teams – J. Kizito, D. Tuheirwe

126

that intra�functional communication will
be more prevalent than cross functional
communication (Christophe and Rudy
1977). Internal communication is
influenced, e.g., by physical distance
between team members (Allen, 1984), and
the cohesiveness (Keller, 1986) and the
homogeneity of a team (Ancona &
Caldwell, 1992a; Bruce et al., 1995).
Ancona and Caldwell (1992a) further
studied the effects of team diversity on
communication. They found that tenure
homogeneity within a group increased the
communication among team members.

H4: The less diverse the field of
specialization of team members, the higher
is the frequency of problem-solving
communication among the members.

Impact of problem-solving
communication on team productivity
Good communication is all you need to run
a highly competitive, successful business.
In fact good communication is the only
successful way to run a knowledge�based
business (Herrington 2004). Most studies
find that increased internal and external
communication affect a project’s
performance positively (e.g. Allen, 1984).
The empirical findings of Pelz and
Andrews (1966) coupled with the
longitudinal studies of Allen (1970) and
Farris (1969) strongly support the
contention that direct communications
between project group members and other
internal professional colleagues can
enhance project effectiveness.

H5: The higher the frequency of problem-
solving communication, the greater is the
team productivity.

Method
We exploit survey data on 199 team
members in 33 innovation teams, which

was gathered in 11 Dutch companies that
are conducting innovation activities. All 11
companies are engaged in production and
innovation of digital products. The data
were collected using questionnaires
distributed and filled out during team
meetings. Due to this method the response
rate was very high with 95 percent.

Main dependent variables
Team Productivity: This is a measure of
how productive the team, in the sense of
producing information, devices, materials,
etc. to develop a prototype into a fully�
fledged product is. According to the
underlying meaning of the variable ‘team
productivity’, this variable was measured
by asking the team members to rate
themselves on a 7�point scale [from 1
(much worse) to 7 (much better)]. This
was transformed to team level by
computing the average (or mean) of the
individual values.
Problem-Solving Communication: This is a
measure of how often team members talk
to one another concerning the discussion,
development, or evaluation of new ideas or
approaches to technical problems,
technical or scientific help or advise and/or
the distribution of scientific or technical
information (stemming from in and/or
outside the company). For each pair of
members in a team, this variable was
measured using the following possible
values: �

1. Never
2. Less than once a month
3. 1 to 3 times a month
4. 1 to 3 times a week
5. Once daily
6. More than once a day

This variable was transformed to team
level by computing the average of the
individual mean values.

NIOC 2004 proceedings

127

Main independent variables
Highest Degree: This is the highest degree
received by a member with the following
possible values: �

1. Elementary Education
2. Secondary Education
3. Higher Secondary Education
4. Polytechnic Education
5. Academic Education / University
6. PhD

This was transformed to team level by
computing the median of the individual
values.

Field of Specialization: This is a measure
of the area that best represents a member’s
major field of specialisation. This variable
was measured using the following possible
values: �

1. Biological Science
2. Business Administration /

Economics
3. Chemistry / Chemical Engineering
4. Electrical Engineering
5. Mechanical Engineering
6. Mathematics, Statistics or

Computer Science
7. Medical Sciences
8. Physics / Physical Engineering
9. Social Sciences
10. Others

The diversity of field of specialization was
transformed to team level by computing
the paired difference index of the
individual values.

A summary of these computations is given
in table 1.
��

Insert Table 1 about here
��
In some of these computations, there was
missing data. If a team member’s value
was found missing, he/ she was left out of
the computation. If data for the entire team
was missing, the team was ignored.

Analysis
For the analysis of data we used
multivariate regression. Let the function Y
denote the dependent variable. The general
form of multiple regression models is
Y = β0 + β1x1 + β2x2 + … + βkxk + ε
The dependent variable Y is written as a
function of k independent variables x1, x2,
…, xk. ε is a random error term added to
make the model probabilistic rather than
deterministic. We assume that for any
given set of values of x1, x2, …, xk, the
error term has a normal probability
distribution with mean equal to 0 and
variance equal to σ2. The error associated
with any one Y value is independent of the
error associated with any other Y value.
The value of the coefficient βi determines
the contribution of the independent
variable xi, and β0 is the Y intercept
(McClave et al., 2005). For this case,
Y = Team Productivity
x1 = Highest Degree
x2 = Field of Specialization
x3 = Problem�Solving Communication

For the analysis of the relationship
between field of specialization and
problem�solving communication, we used
a bivariate correlation.

Results
Table 2 presents the multivariate
regression coefficients regarding the team
perspectives.
��

Insert Table 2 about here
��
The regression equation now becomes
Team Productivity = 4.584 + .232 Highest
Degree + .164 Field of Specialization + �
.346 Problem-Solving Communication

The intercept (4.584) does not have a
meaningful interpretation since setting the

Level of Education, the Diversity of Field of Specialization, Problem- Solving Communication, and the Productivity of
R&D Teams – J. Kizito, D. Tuheirwe

128

values of all the independent variables to 0
is not practical.
β1 (.232) shows that team productivity
increases by .232 for every unit increase in
highest degree when both field of
specialization and problem�solving
communication are held fixed.
β2 (.164) shows that team productivity
increases by .164 for every unit increase in
field of specialization when both highest
degree and problem�solving
communication are held fixed.
β3 (�.346) shows that team productivity
decreases by .346 for every unit increase in
problem�solving communication when
both highest degree and field of
specialization are held fixed.

Table 3 shows that the correlation
regarding field of specialization and
problem�solving communication is
statistically significant (�.275). This means
that the less diverse the field of
specialization of team members, the higher
is the problem solving communication
among the members.
��

Insert Table 3 about here
��

In summarizing the results it can be stated
that highest degree has a positive impact
on team productivity. Diversity of field of
specialization does not seem to have an
effect and problem�solving communication
has a negative impact on team
productivity. Sometimes an increased
intensity of communication is associated
with increased productivity and improved
performance. Whereas sometimes, there is
no relationship and other times there is a
negative relationship (Kratzer 2000).
Furthermore, diversity of field of
specialization has negative impact on
problem�solving communication.

According to the results, hypotheses 1 and
4 can be partly confirmed. Hypotheses 2
and 3 cannot be confirmed since the
relationship between diversity of field of
specialization and team productivity is
insignificant. We reject hypothesis 5.

Discussion and Conclusion
In this research, we investigated the effect
of highest degree, diversity of field of
specialization, and problem�solving
communication on team productivity. We
also found out the relationship between the
diversity of field of specialization and
problem�solving communication.

In managerial terms, the results imply a
number of things about the composition of
R&D teams. Members with high degree
qualifications are somewhat more
productive. This could be because there are
few teams having members with high
degrees that are more productive and there
are more teams, which are less productive,
having members with lower degrees.
Therefore managers should ensure that
there is a significant number of members
with high degrees.

We realize that if people of similar skills
work together, problem�solving
communication is enhanced. However, if
this communication is too much, it has a
negative impact on team productivity.
Managers should thus keep it at an optimal
level.

We were unable to confirm the
relationship between diversity of field of
specialization and productivity. There was
a positive, though insignificant,
relationship. Future research on this
variable may be carried out to further
investigate the relationship.

NIOC 2004 proceedings

129

References
Allen, T.J. (1970) Communications
networks in R&D labs. R&D Management,
1, 14�21.

Allen, T.J. (1984). Managing the Flow of
Technology: Technology Transfer and the
Dissemination of Technological
Information within the R&D Organization.
Cambridge: The MIT Press.
Ancona, D. & Caldwell, D. (1992a).
Demography and Design: Predictors of
New Product Team Performance.
Organization Science, Vol. 3, No. 3,
August.

Bruce, M., Leverick, F., Litter, D. &
Wilson, D. (1995). Success factors for
collaborative product development: A
study of suppliers of information and
communication technology. R&D
Management, 25, 1, 33�44.

Bynner, J., Dolton, P., Feinstein, F.,
Makepeace, G., Malmberg, L., Woods, L.
(2003). Benefits of higher education reach
far beyond the job market.
Retrieved October 2004, from,
http://www.hefce.ac.uk/News/HEFCE/200
3/benefit.htm.

Christophe, B. (The Pennsylvania State
University) and Rudy, K.M. (Free
University of
Brussels), “The Effects of R&D Team Co�
location on Communication Patterns
Among
R&D, Marketing, and Manufacturing,”
ISBM Report 7�1997.

Farris, G. (1969). Organizational factors
and individual performance. Journal of
Applied
Psychology, 53, 86�92.

Ford, C.R., Randolph, A.W (1992). Cross�
functional structures: a review and
integration of matrix organization and
project management.
Retrieved October 2004, from,
http://www.findarticles.com/p/articles/mi_
m4256/is_n2_v18/ai_12720959/pg_4

Gavish, B. (1997). The Impact of
Information Technology on the
Organization of Teams.
Retrieved October 2004, from,
http://www.beje.decon.ufpe.br/article1.htm

Gerard, B. M. (1991). Groups That Work.
Retrieved October 2004, from,
http://www.ee.ed.ac.uk/~gerard/Managem
ent/art0.html

Griffin, A. and J.R. Hauser (1996).
“Integrating R&D and Marketing: A
Review and
Analysis of the Literature,” Journal of
Product Innovation Management, 13, 191�
215.

Herrington, A. (2004). Communicating is
business effective management.
Retrieved November 2004, from,
http://www.pateo.com/abtpat1.html

Keller, R.T. (1986). “Predictors of the
Performance of Project Groups in R&D
Organizations,” Academy of Management
Journal, 29, 7 15�26.

Kilduff, M., Angelmar, R., & Mehra, A.
2000. Top management team diversity and
firm performance: Examining the role of
cognitions. Organization Science.

Kratzer, J. (2000). Communication and
performance: An Empirical Study in
Innovation
Teams, Thesis Publisher: Amsterdam
(Ph.D).

Level of Education, the Diversity of Field of Specialization, Problem- Solving Communication, and the Productivity of
R&D Teams – J. Kizito, D. Tuheirwe

130

McCain, Bruce E., Charles O’Reilly,
Jeffrey Pfeffer. (1983). The effects of
departmental demography on turnover:
The case of a university. Acad.
Management J. 26 626�641.
McClave, T.J., Benson, P.G., Sincich, T.
(2005). Statistics for Business and
Economics.
London, Pearson Education Inc.

O’Reilly, Charles A. III, David F.
Caldwell, William P. Barnett. (1989).
Work group demography, social
integration, and turnover. Admin. Sci.
Quart. 34 21�37.

Pelz, D. & Andrews, F. (1966). Scientists
in Organizations. New York: Wiley.

Reagans, R., Zuckerman, E.W. (2001).
Networks, Diversity, and Productivity: The
Social
Capital of Corporate R&D Teams. Vol. 12,
No 4, July�August 2001.

Zenger, Todd R., Barbara S. Lawrence.
(1989). Organizational demography: The
differential effects of age and tenure
distributions on technical communication.
Acad.
Management J. 32 353�376.

Table 1: Descriptive statistics of team level variables
Variable Mean Median Variance Minimum Maximum No. of

Teams

Highest Degree � 4.000 � 2.0 6.0 33
Field of
Specialization

� � 0.075 0.0 0.9 33

Problem�Solving
Communication

3.186 � � 1.7 5.0 33

Team Productivity 4.544 � � 3.4 6.4 31

Table 2: Multivariate regression coefficients for highest degree, field of specialization,
problem�solving communication, and team productivity
 Unstandardized

Coefficients
Standardized
Coefficients

t Sig.

Model B Std. Error Beta
1 (Constant) 4.584 1.303 3.517 .002
 Highest Degree .232 .200 .208 1.156 .258
 Field of

Specialization
.164 .568 .052 .288 .776

 Communication �.346 .230 �.276 �1.504 .144

Table 3: Bivariate correlation for field of specialization and problem�solving
Communication
 Communication
Spearman's rho Field of Specialization Correlation Coefficient �.275
 Sig. (2�tailed) .121
 N 33

NIOC 2004 proceedings

131

