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The Effects of Cartelization on Product Design

Marco A. Haan Linda A. Toolsema∗

December 31, 2004

Abstract

We consider the following model. First, two firms choose locations on a Hotelling
line. Second, they play a repeated price-setting game, in which they may be able
to collude. Transportation costs are quadratic. We show that if firms collude in the
location stage, they choose locations that coincide with the social optimum, provided
that the discount factor is high enough. If the discount factor is lower, the firms locate
further apart. Furthermore, we show that if firms choose locations non-cooperatively,
they both locate in the middle of the line, again provided that the discount factor
is high enough. If the discount factor is lower, the firms locate further apart. Thus,
with the possibility of a price cartel and a discount rate that is sufficiently high,
Hotelling’s principle of minimum differentiation is restored.

jel Classification Codes: D43; L13; L41.

Keywords: Collusion; Product differentiation.

1 Introduction

In a seminal paper, Hotelling (1929) argued that firms tend to supply products that bear a

close resemblance to each other. Hotelling considered a two-stage duopoly model in which

consumers are uniformly distributed on a line of unit length, and firms first choose locations

and then set prices. Using linear transportation costs for consumers, he solved for the
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subgame perfect equilibrium1 of this game and concluded that both firms choose to locate

exactly in the middle of the line. Firms thus choose to produce identical products. This

result was coined the principle of minimum differentiation by Boulding (1966). Hotelling

argued that this principle readily follows from casual observation as well:

”Buyers are confronted everywhere with an excessive sameness. [...] The

tremendous standardisation of our furniture, our houses, our clothing, our au-

tomobiles and our education we due in part to the economies of large-scale

production, in part to fashion and imitation. But over and above these forces

is [...] the tendency to make only slight deviations in order to have for the new

commodity as many buyers of the old as possible, to get, so to speak, between

one’s competitors and a mass of customers.” (Hotelling 1929, pp. 54).

Exactly 50 years later, however, d’Aspremont et al. (1979) noted that there is a mistake

in Hotelling’s analysis. When locations are relatively close, a pure strategy equilibrium in

prices does not exist. Firms then have an incentive to undercut their rival and capture

the entire market, a possibility that Hotelling did not take into account.2 To be able to

find a clear-cut solution, these authors employ quadratic rather than linear transportation

costs. Yet, under this assumption, they find that firms choose to locate at the endpoints

of the line. Hence, we have maximum rather than minimum differentiation. This not only

contradicts Hotelling’s analysis, but also his casual observation.

1Although, of course, the concept of subgame perfectness was only introduced almost half a century
later (Selten, 1975).

2For a more technical discussion regarding the exact reason as to why an equilibrium in pure strategies
in the price-setting stage of Hotelling’s model does not always exist, see e.g. Economides (1984).
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These models, and most of the subsequent literature, do assume however that firms will

compete in prices after locations have been chosen. We introduce the possibility of a cartel

to be formed after the location stage. In our model, we use quadratic transportation costs.

Firms first choose locations, and then play a repeated price setting game. We show that

when firms choose locations noncooperatively, the principle of minimum differentiation

re-emerges, provided that the discount factor is high enough. Interestingly, this seems to

imply that if Hotelling’s casual observation was correct, we may conclude that the markets

he referred to could be characterized as being collusive rather than competitive.

Admittedly, our paper is not the first to study the possibility of tacit collusion in a

Hotelling framework. Yet, to the best of our knowledge, we are the first to study how

the possibility of collusion affects the irreversible location choices of two firms that choose

those locations noncooperatively. Chang (1991) and Ross (1992) study the stability of price

collusion in the Hotelling model for given locations. They use quadratic transportation

costs and delivered pricing, and employ grim trigger strategies. Hence, in these models, in

equilibrium a firm sticks to an implicit cartel agreement if and only if both firms have always

done so in the past. Häckner (1996) analyzes a similar model, but instead uses optimal

punishment strategies in the sense of Abreu (1986). The case of linear transportation costs

is studied by Rath (1998). Gupta and Venkatu (2002) use delivered pricing rather than

mill pricing. A few papers endogenize the choice of location or product design. Häckner

(1995) does so in a framework where firms can redesign in every period at negligible costs.

In Chang (1992), relocation may also occur in every period, but in his model relocation is

costly. The paper that perhaps is closest to ours is Gill (2002). In his model, firms make
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an irreversible location choice at the beginning of the game, as they do in our model. Yet,

Gill only considers the collusive location choice when a repeated price setting game follows.

He does not consider noncollusive location choices, which is the main contribution of our

paper.

The remainder of this paper is structured as follows. In section 2, we describe our

model. Section 3 solves for the case in which firms explicitly collude in the location stage.

This model merely serves as a benchmark that aides in the analysis of section 4. There,

we consider the case of noncooperative location choices. We consider this to be the more

interesting case; as location is a one-shot decision, it is not possible to tacitly collude in

location choices, whereas it may be possible to tacitly collude in the price-setting stage.

Section 5 concludes.

2 The Model

Our model has two stages. In the first stage, which we denote as τ = 0, two firms choose

locations on a Hotelling line of unit length. We denote the location of firm 1 by a1, and

that of firm 2 by 1 − a2, with a1, a2 ∈ [0, 1]. Without loss of generality, we assume that

firm 1 is located to the left of firm 2, so 1−a1−a2 ≥ 0. In the case of symmetric locations,

we will write a1 = a2 = a. In our model, location choices are irreversible. We thus assume

that once a firm has chosen a location, or more generally, once a firm has designed its

product, it becomes prohibitively expensive to change that design.

Consumers are uniformly distributed along the line and have unit demand. The firms

(and their products) are ex ante identical. Transportation costs are quadratic: a consumer
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located at x who chooses to buy from a firm located at a incurs transportation costs that

equal t(x − a)2. Marginal costs of production are denoted c, and are constant and equal

among firms. The consumers’ willingness-to-pay for the product equals v. We assume

that v is sufficiently high, such that the market is always covered. For our purposes, it is

sufficient to have v > c+ 4t.

The second stage of the model is an infinitely repeated price-setting game, and consists

of the periods τ = 1, . . . ,∞. Firms employ a common discount factor δ ∈ (0, 1). The price

set by firm i in period τ is denoted piτ . The profits of firm i in period τ are denoted

πi(p1τ , p2τ ; a1, a2). Where this cannot yield confusion, we will often drop arguments and

subscripts. The indifferent consumer is now located at z implicitly given by

p1 + t (z − a1)
2 = p2 + t (1− a2 − z)2 .

Solving yields

z =
1

2
(a1 + 1− a2) +

p2 − p1
2t (1− a1 − a2)

. (1)

Firm profits are given by

π1(p1, p2; a1, a2) = z (p1 − c) ,

π2(p1, p2; a1, a2) = (1− z) (p2 − c) . (2)

For the price setting stage, we use the canonical tacit collusion model with grim trigger

strategies (see e.g. Tirole 1988, pp. 245-6). Thus, if there is an implicit cartel agreement,

a firm sticks to that agreement if and only if both firms have always done so in the past.

Otherwise, both firms will choose to compete forever.
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For the collusive agreement, we assume that firms choose prices that maximize joint

profits. Thus, tacit collusion has firms setting monopoly prices pm1 and pm2 with

{pm1 (a1, a2), pm2 (a1, a2)} ∈ argmax
p1,p2

{π1 (p1, p2; a1, a2) + π2(p1, p2; a1, a2)} . (3)

Denote the per-period profits of firm i of sticking to this cartel agreement, and given the

locations, as πki . In what follows, we will show that, given a1 and a2, the prices p
m
1 and

pm2 are uniquely determined. We can thus write πki (a1, a2) ≡ πi(p
m
1 (a1, a2), p

m
2 (a1, a2)).

Competitive profits are denoted by πci (a1, a2). The maximum one-shot profits a firm can

earn when defecting from the collusive agreement are denoted πdi (a1, a2). Firm i will thus

stick to the cartel agreement if and only if

δ ≥ πdi (a1, a2)− πki (a1, a2)

πdi (a1, a2)− πci (a1, a2)
≡ δ∗i (a1, a2). (4)

When this condition is satisfied for both firm 1 and firm 2, we have a stable cartel. We

refer to such a cartel as one of full collusion. We thus have

Definition 1 A fully collusive outcome consists of the prices (pm1 , p
m
2 ) that satisfy (3). A

cartel with full collusion is stable if (4) is satisfied for i = 1, 2.

Yet, even when a cartel with full collusion is not stable, we may still have a stable

cartel, but one at prices that do not maximize joint per-period profits. We will refer to

such a situation as one of constrained collusion. The one-shot profits a firm can earn at

most when defecting from the agreement are denoted πdi (p1, p2, a1, a2). Firm i will stick to

the cartel agreement if and only if
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δ ≥ πdi (p1, p2; a1, a2)− πi(p1, p2; a1, a2)

πdi (p1, p2; a1, a2)− πci (a1, a2)
. (5)

We thus have

Definition 2 There is a constrained collusive outcome if full collusion is not a stable cartel,

but there is some (p̃1, p̃2) such that (5) is satisfied for i = 1, 2, and moreover πi (p̃1, p̃2) > πci

for i = 1, 2.

As a benchmark, we will first solve our model for the case in which firms explicitly

collude in the location stage. Then, taking the analysis of collusion in the location stage

as a starting point, we solve our model for the case in which locations are chosen nonco-

operatively. Throughout our analysis, we will restrict attention to symmetric equilibria.

For ease of exposition, we will write profits as a function of a in cases where locations

are symmetric. For example, we will write πki (a) rather than πki (a1, a2) for cases in which

a1 = a2 = a.

3 Model I: Collusion in the location stage

We first solve for the case in which firms choose their locations cooperatively. Hence, apart

from tacit collusion in the repeated price-setting stage, we assume here that there is also

explicit collusion in the location stage. Firms then choose locations as to maximize their

profits in the price-setting game that follows.

We proceed as follows. First, for given symmetric locations a, we derive the competitive

outcome, which allows us to determine πc(a). Second, we solve for the fully collusive cartel
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prices (pm1 , p
m
2 ). Then we derive the optimal defection from that cartel. This allows us to

derive the cartel stability condition. Finally, given these results, we solve for the symmetric

location a that maximizes joint profits, while also taking into account the possibility of

constrained collusion.

Competitive outcome Suppose that firms are located at a and 1−a, with 0 ≤ a ≤ 1/2.

We look for the competitive equilibrium prices pc1(a) and pc2(a). From (1), the indifferent

consumer z is located at

z =
1

2
+

p2 − p1
2t (1− 2a) . (6)

Again, firm 1’s profits are given by z (p1 − c) and firm 2’s profits by (1− z) (p2 − c). Taking

firm i’s FOC yields the reaction function for firm i :

pi =
1

2
(c+ pj + t (1− 2a)) . (7)

Imposing symmetry yields

pci(a) = c+ t (1− 2a) .

Corresponding profits are

πci (a) =
1

2
t (1− 2a) . (8)

Full collusion We now solve for fully collusive prices in the case of symmetric locations.

First note that we have effectively assumed that v is large enough such that firms always

choose to cover the entire market. In the case of full collusion with symmetric locations,

firms will thus choose identical prices that are as high as possible, but are such that all
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consumers on the line are still willing to buy. Here, this implies that consumers located

at the endpoints as well as consumers located in the middle are just willing to buy. Firms

will thus set

pmi (a) = v − t ·
µ
max{a, 1

2
− a}

¶2
. (9)

This can be seen as follows. Suppose that firms are located at some a ≥ 1/4. That is,

they are closer the middle of the line than they are to an endpoint of it. In that case, if

firms set a price such that the consumer located at the endpoint is willing to buy, then

consumers located in the middle are willing to buy as well, as their transportation costs

are lower. Hence, the profit-maximizing price then is p = v − ta2. Now suppose that firms

are located at some a < 1/4. In that case, they are closer to the endpoints than they are

to the middle of the line. Now, if they set a price such that consumers in the middle are

just willing to buy, then the consumers located at the endpoint are willing to buy as well.

This involves setting a price p = v − t(1
2
− a)2.

Cartel profits now equal

πki (a) =
1

2

Ã
v − t ·

µ
max{a, 1

2
− a}

¶2
− c

!
. (10)

Optimal defection Now suppose that a firm defects from the tacit cartel agreement

derived above. Without loss of generality, assume that this is firm 1. A defecting firm will

always set a price such that he just captures the entire market, i.e. that the consumer at

the opposite endpoint of the line just prefers purchasing from the defecting firm.3 This

3Suppose this is not the case. The optimal reply to the collusive price set by firm 2 can be found by
plugging pm2 from (9) into the reaction function (7). But this is only the best reply if it yields z ≤ 1, with
z as defined in (6). Otherwise, we have a corner solution, and the best reply for firm 1 is indeed to set a
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implies setting a price pdi such that

pdi + t(1− a)2 = pkj + ta2,

or

pdi = pkj − t (1− 2a) . (11)

The profits from this defection are

πdi (a) = v −
Ãµ

max{a, 1
2
− a}

¶2
+ 1− 2a

!
t− c. (12)

Cartel stability Plugging (8), (10) and (12) into (4), stability of a cartel with full

collusion requires that

δ ≥ 1
2

v −
³¡
max

©
a, 1

2
− a

ª¢2
+ 2− 4a

´
t− c

v −
³¡
max

©
a, 1

2
− a

ª¢2
+ 3

2
− 3a

´
t− c

≡ δ∗ (a) . (13)

Note that δ∗ (a) is continuous and differentiable for all a ∈ [0, 1
2
]. If a < 1

4
, we have

∂δ∗ (a)
∂a

= 2t
4 (v − c) + t (1− 2a)2

(4 (v − c)− t (1− 2a) (7− 2a))2 > 0.

For a ≥ 1
4
, we have

∂δ∗ (a)
∂a

= 2t
v − c− ta (1− a)

(2v − 2c− t (3− 6a+ 2a2))2 > 0.

Hence, δ∗(a) is strictly increasing in a, which implies that the cartel becomes less stable as

firms move closer.4 Intuitively, as firms move closer, it becomes easier to undercut one’s

price such that it captures the entire market. From (7) we have pd1 =
1
2 (c+ pm2 + t (1− 2a)) which yields

z =
1

2
+

pm2 − c− t (1− 2a)
4t (1− 2a) .

We thus have that pd1 as defined above is not an admissible solution if this z is larger than 1, or p
m
2 >

c+ 3t (1− 2a) . Using our assumption that v > c+ 4t, this will always prove to be the case.
4Note that lima↑ 14

∂δ∗(a)
∂a < lima↓ 14

∂δ∗(a)
∂a . Hence the derivative has a discontinuous increase at a = 1

4 ,

which implies that δ∗ is kinked at that point. This, however, has no effect for our analysis.
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rival, as the amount by which one has to undercut ones rival in order to capture the entire

market is now lower. This makes defecting from a cartel more attractive as firms move

closer, and hence makes a cartel less stable.

Location choice We now solve for the collusive location choice of both firms. First,

consider the case in which the condition for cartel stability is always satisfied with full

collusion. Firms will then simply choose the location that maximizes cartel profits, as

given by (10). It is easy to see that this yields locations a = 1/4. But now suppose that

δ < δ∗(1/4).With δ∗(a) increasing in a, the firms may still be able to achieve full collusion

– but only at a lower value of a. Alternatively, firms can also choose to still locate at

a = 1/4 (or any other location, for that matter) and settle for a cartel with constrained

collusion. However, we can show that firms will always strictly prefer to locate where full

collusion is still stable. We thus have the following result:

Theorem 1 In the model with collusion in the location stage, the equilibrium location

choice is given by

a =


0 if δ ≤ δ∗ (0) ,

a∗ if δ∗ (0) < δ < δ∗
¡
1
4

¢
,

1
4

if δ ≥ δ∗
¡
1
4

¢
,

with a∗ the unique solution of δ = δ∗ (a).

Proof. The case δ ≥ δ∗(1/4) follows from the discussion above. For the other cases,

suppose that firms locate at some a where full collusion is not stable. Rewriting (5), we

can still have constrained collusion at symmetric prices p when

(1− δ)πdi (p; a) < πki (p; a)− δπci (a),
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where we have simplified the notation to reflect symmetry. Obviously, πki (p; a) =
1
2
(p− c) .

From (8), we have πci (a) =
1
2
(1− 2a) t. Initially, we assume that defecting entails capturing

the entire market. If that is the case we have using (11) that pdi = p − t (1− 2a) , so

πdi (p; a) = p− t (1− 2a)− c. Using these expressions, the inequality above reduces to

(1− 2δ) p < (2− 3δ) (1− 2a) t+ (1− 2δ) c.

Note from (13) that δ∗(1/2) = 1
2
. With δ∗ increasing, we have that δ < δ∗(1/4) implies

δ < 1/2. We can thus rewrite the inequality above as

p < c+
2− 3δ
1− 2δ (1− 2a) t. (14)

As the fraction is strictly positive for δ < 1/2, the upper bound on p is decreasing in a,

which implies that the highest possible constrained cartel profit is decreasing in a. Hence

when δ = δ∗(a) at some a∗ < 1/4, then the result implies that maximum cartel profits

are increasing in a for a ≤ a∗ (where full collusion is still stable) and decreasing in a for

a > a∗ (where only constrained collusion is feasible). Hence, firms will choose to locate at

a∗. This establishes the theorem.

Interestingly, we thus have that when cartel stability is not an issue, firms choose

locations that are socially optimal. Since the market is covered, prices paid by consumers

to firms are just tranfers that do not affect total welfare. Maximizing welfare then entails

minimizing total transportation costs – which indeed implies having firms located at 1/4

and 3/4. In this set-up, we thus have that full collusion, in both locations and prices, yields

the best possible outcome from a welfare point of view.
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Of course, this policy conclusion is hard to swallow. Indeed, it is largely driven by one

peculiar feature of the Hotelling model. Different from most other competition models,

firms with monopoly power do not restrict output in the Hotelling model, which implies

that there is no welfare loss from monopoly power. In our model, firms that collude in both

stages of the game have an incentive to choose locations such that total transportation costs

are as low as possible. The lower the transportation costs that consumers have, the higher

the price that the cartel can charge. Hence, in the location stage our collusive duopoly has

the exact same incentive as a social planner has.

4 Model II: Noncooperative location choices

We now solve the model for noncooperative location choices. To do so, we generalize our

model and also consider asymmetric locations a1 and a2, where a1 ≤ 1− a2. This section

is structured along the same lines as the previous one. We first solve for the competitive

outcome, then for full collusion. We then solve for the optimal defection and finally we

derive the equilibrium of the location stage.

Competitive outcome Firm is profits are given by (2), using (1). Taking firm is FOC

yields

1

2
(ai + 1− aj) +

pj − 2pi + c

2t (1− ai − aj)
= 0,

Solving this system of two equations for prices we find the competitive outcome

pci = c+ t (1− ai − aj)

µ
1 +

ai − aj
3

¶
,
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for i = 1, 2 and j 6= i. In equilibrium, the indifferent consumer is located at

z =
1

2
+
1

6
(a1 − a2)

and equilibrium profits are

πci =
1

18
(3 + ai − aj)

2 (1− ai − aj) t. (15)

Full collusion Now consider a joint-profit-maximizing cartel. Again, profit maximiza-

tion requires that all consumers are served. Naturally, any profit-maximizing cartel has

both firms serving their own ”backyard”. That is, firm 1 will serve any consumer that is

located in the interval [0, a1], whereas firm 2 will serve any consumer located in [1− a2, 1].

To induce all these consumers to buy, both firms have to set a price that is such that the

consumer located at the closest endpoint is just willing to buy. Thus

pi = v − a2i t. (16)

Given these prices, any consumer located in [0, 2a1] is willing to buy from firm 1, whereas

any consumer located in [0, 1−2a2] is willing to buy from firm 2. Hence, with 2a1 ≥ 1−2a2

the entire market is covered at these prices. Therefore, these prices maximize joint profits.

Profits can be found by plugging prices from (16) into (1) and substituting into (2), which

yields

πki =
1

2
(1− 2aj) v − ta2i − c

1− ai − aj

We refer to this situation as case I.

Now suppose that the entire market is not covered at prices (16), so we have 2a1 < 1−

2a2. The jointly profit-maximizing solution then has one or both firms setting a lower price.
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The profit-maximizing choice of prices now boils down to a profit-maximizing division of

the market. That is, firms have to decide on some location x ∈ [2a1, 1 − 2a2]. They will

both set a price that is such that the consumer located at x is just willing to buy. They

will then set x such that joint profits are maximized. This implies

p1 = v − t (x− a1)
2 ,

p2 = v − t (1− a2 − x)2 . (17)

Joint profits can be written

π = (p1 − c)x+ (p2 − c) (1− x)

= v − t (x− a1)
2 x− t (1− a2 − x)2 (1− x)− c.

Taking the derivative with respect to x yields

∂π

∂x
= 3 (1− 2x) + 4a1x− 4a2 (1− x) + a22 − a21.

Setting this equal to zero yields

x̂ =
1

2

3− 4a2 − a21 + a22
3− 2a1 − 2a2 . (18)

Two cases can now occur. First, we may have that x̂ as defined above falls strictly

within the interval [2a1, 1−2a2]. If that is the case, then (17) are the prices that maximize

joint profits. Both firms now set a price that is lower than the price such that their backyard

is just served. We refer to this as case II. Second, we may have that the constrained x as

defined in (18) is outside the admissible interval. Suppose that x̂ < 2a1. Given that profits

are strictly concave in x, joint profits are then maximized by setting x = 2a1. Hence, firm
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1 sets a price such that its backyard is just served, whereas firm 2 sets a price such that

the remainder of the market is just covered. Naturally, with x̂ > 1−2a2, we have the exact

opposite. It is then profit-maximizing to set x = 1− 2a2: firm 2 just covers its backyard,

whereas firm 1 serves the remainder of the market. These cases are just mirror images of

each other. We refer to them as case III. More precisely, we refer to the first as case IIIa,

and to the second as case IIIb. Summing up, using the definition of x̂ yields the following

areas in (a1, a2)−space:

• In area I we have 2a1 > 1− 2a2;

• in area IIIa we have

6

7
− 4
7
a2 − 1

7

q
(15− 20a2 + 9a22) < a1 < 1− a2/2;

• in area IIIb we have

6

7
− 4
7
a1 − 1

7

q
(15− 20a1 + 9a21) < a2 < 1− a1/2;

• area II consists of all other (a1, a2) ∈
£
0, 1

2

¤× £0, 1
2

¤
.

– INSERT FIGURE 1 ABOUT HERE –

We have depicted the different areas in figure 1. We now have:
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Result 1 With asymmetric locations, the fully collusive prices (pm1 (a1, a2), p
m
2 (a1, a2)) are

given by

(pm1 , p
m
2 ) =



(v − ta21, v − ta22) in area I¡
v − t (x̂− a1)

2 , v − t (1− a2 − x̂)2
¢
in area II¡

v − ta21, v − t (1− a2 − 2a1)2
¢

in area IIIa¡
v − t (1− a1 − 2a2)2 , v − ta22

¢
in area IIIb.

(19)

Fully collusive profits (πk1(a1, a2), π
k
2(a1, a2)) are given by

(πk1 , π
k
2) =



³
1
2
(1− 2a2) v−ta21−c

1−a1−a2 ,
1
2
(1− 2a1) v−ta22−c

1−a1−a2

´
in area I¡¡

v − t (x̂− a1)
2 − c

¢
x̂,
¡
v − t (1− a2 − x̂)2 − c

¢
(1− x̂)

¢
in area II¡

2a1 (v − ta21 − c) , (1− 2a1)
¡
v − t (1− a2 − 2a1)2 − c

¢¢
in area IIIa¡

(1− 2a2)
¡
v − t (1− a1 − 2a2)2 − c

¢
, 2a2 (v − ta22 − c)

¢
in area IIIb.

In these expressions, x̂ is given by (18), and the areas are as defined above.

Optimal defection Now consider the optimal defection from a fully collusive agreement.

Such a defection has the defecting firm capturing the entire market.5 That implies

pdi = pkj + ta2j − t(1− ai)
2. (20)

Profits from defecting equal

πdi = pdi − c = pkj + ta2j − t(1− ai)
2 − c. (21)

For ease of exposition, and without loss of generality, we only consider the incentive that

firm 1 has to defect.

Result 2 With asymmetric locations, defection profits for firm 1 are given by

πd1(a1, a2) =


v − t (1− ai)

2 − c in areas I and IIIa

v − t (1− a2 − x̂)2 − t(1− a1)
2 − c in area II

v − t (1− 2a2 − a1)
2 + ta21 − t (1− a2)

2 − c in area IIIb.

5See footnote 3.
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Location stage For the case of asymmetric locations, we refrain from explicitly deriving

the cartel stability condition for all possible cases; this yields particularly nasty expressions,

and is not necessary in what follows. We look for a symmetric equilibrium in the location

stage. Thus, we look for symmetric locations (a1, a2) = (a, a) which are such that no firm

has an incentive to defect to some other location. We can therefore draw heavily on the

analysis in section 3.

Theorem 2 Consider the case in which full collusion is stable for every (a1, a2) ∈
£
0, 1

2

¤×£
0, 1

2

¤
. Then the unique symmetric equilibrium has a = 1

2
, that is, we have minimum

differentiation.

Proof. Suppose we have a symmetric candidate equilibrium with a ∈ £1
4
, 1
2

¢
. Using

figure 1, we are then in area I. Within this area, we have

∂πk1(a1, a2)

∂a1
=
1

2
(1− 2a2)

·
v − c+ a1t (2− a1 − 2a2)

(1− a1 − a2)
2

¸
> 0.

Hence, provided that this will still yield a stable cartel in the price-setting stage, firm 1

wants to defect from this candidate equilibrium by choosing a location closer to the middle.

Hence, this is not a Nash equilibrium in locations. Now consider a symmetric candidate

equilibrium with a < 1
4
. We are then in area II. First, note from (18) that in this area

∂x̂

∂a1
=
(a1 + a2)

2 + (3− 4a2 − 3a1)
(3− 2a1 − 2a2)2

> 0

as a1, a2 <
1
4
. Within area II, we have

∂πk1
∂a1

=
¡
v − t (x̂− a1)

2 − c
¢ ∂x̂

∂a1
+ 2t (x̂− a1) x̂ > 0.
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Again, firm 1 wants to defect from this candidate equilibrium by choosing a location closer

to the middle. The only possible symmetric equilibrium thus has a = 1/2. To see that this

is indeed an equilibrium, note from figure 1 that any defection of one firm from a = 1/2

implies that the firms end up in area I. But we already showed that within area I a firm’s

cartel profits are increasing in its location. Hence any defection from a = 1/2 yields lower

cartel profits.

With a high enough discount factor, we thus have that the principle of minimum dif-

ferentiation re-emerges. In that case, when firms make an irreversible location choice, and

then play a repeated price-setting game, they choose to locate as close as possible – as

Hotelling (1929) claimed in his analysis of the one-shot case.

Now consider the case in which the full cartel is not stable at a = 1/2 , but it is at some

a < 1/2. Denote the highest a for which this holds as a∗. Note that δ∗(1/2) = 1/2. Hence,

we must have δ < 1/2. The analysis now becomes much more involved. In the appendix

we prove the following result:

Theorem 3 In the model with noncooperative location stages, the equilibrium location

choices are given by

a =


0 if δ ≤ δ∗ (0) ,

a∗ if δ∗ (0) < δ < δ∗
¡
1
2

¢
,

1
2

if δ ≥ δ∗
¡
1
2

¢
,

with a∗ the unique solution of δ = δ∗ (a).

Hence, both firms locate in the middle, provided that full collusion then yields a stable

cartel. If that is the case, both firms choosing socially optimal locations is no longer an
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equilibrium. Both firms have an incentive to locate closer to the middle, as this yields

higher collusive profits for the defecting firm. The choice of locations is then a prisoners’

dilemma. Now suppose that full collusion with firms located in the middle no longer

constitutes a stable cartel. Consider the case where both firms are located such that a

cartel with full collusion is just stable. Defecting towards the middle then implies that

full collusion is no longer a stable cartel for the other firm. To restore cartel stability, the

defecting firm has to give up so much profits that the defection is not profitable.

Interestingly, we have that if δ > δ∗(1/4), firms are strictly better off when the discount

factor δ decreases to some δ̃ ∈ [δ∗ (1/4) , δ). Such a decrease would commit firms to locate

further apart, which increases equilibrium profits of both. In the standard cartel model, a

decrease in δ can never benefit firms, as it can only weaken cartel stability.

5 Concluding remarks

In this paper, we revisited Hotelling’s (1929) claim that firms will choose to design products

in such a manner that they resemble each other as closely as possible. By now, it has been

widely established that in Hotelling’s original specification with linear transportation costs

this claim does not hold true. With quadratic transportation costs, competing firms will

even choose to design products in such a manner that they resemble each other as little as

possible. In our model, we studied the case in which firms make an irreversible location

choice, but then play a repeated price-setting game in which they may collude. Most

importantly, we showed that if firms are sufficiently patient Hotelling’s original claim holds

true. When firms are able to collude in prices, they will choose to design products in
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such a manner that they resemble each other as closely as possible. When collusion is

more difficult to sustain, firms will choose locations that are further apart, such that full

collusion is just stable. We also showed that if firms are able to collude in the location stage

as well, they will select the socially optimal locations, again provided that the discount

factor is high enough.

Our results have implications for competition policy. When product design is endoge-

nous, our results suggest that antitrust agencies should monitor more closely those in-

dustries where products are close substitutes. To paraphrase Hotelling (1929), whenever

buyers are confronted with an excessive sameness, this may be due in part to the economies

of large-scale production, in part to fashion and imitation. But over and above these forces

is the tendency to try to capture cartel profits that are as high as possible.

Appendix: Proof of Theorem 3

For the analysis that follows, we need the following lemma:

Lemma 1 For given a1 and a2, the cartel stability condition for firm 2 is relaxed if p1

increases or if p2 decreases, provided that p1 and p2 are such that both firms have a strictly

positive market share, and that p1, p2 > t.

Proof. For given a1 and a2, and dropping the arguments referring to locations, the

cartel stability condition for firm 2 can be written

(1− δ) πd2 − π2 (p1, p2) < −δπc2. (22)
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The rhs of this inequality does not depend on prices. For the lhs, we have from (2) and

(21)

∂
¡
(1− δ)πd2 − π2 (p1, p2)

¢
∂p1

= (1− δ)− p2
2t (1− a1 − a2)

.

This expression is negative iff p2 > 2t (1− a1 − a2) (1− δ) . The condition that both firms

have positive market share requires that z < 1. From (1) this implies

p2
2t (1− a1 − a2)

<
p1

2t (1− a1 − a2)
− 1
2
(a1 + 1− a2) + 1.

This implies that indeed p2 > 2t (1− a1 − a2) (1− δ) if

p1
2t (1− a1 − a2)

− 1
2
(a1 + 1− a2) + 1 > 1− δ,

which simplifies to

p1 > t (1− a1 − a2) (a1 − a2 + 1− 2δ) ,

which is always satisfied if p1 > t. Hence, increasing p1 indeed relaxes (22). Similarly

∂
¡
(1− δ)πd2 − π2 (p1, p2)

¢
∂p2

= −1
2
(1 + a2 − a1)− p1 − 2p2

2t (1− a1 − a2)

This expression is positive iff 2p2 > p1+t (1− a1 − a2) (1 + a2 − a1) . But given that p1 > t

and a1, a2 ≤ 1
2
, sufficient for this to hold is that 2p2 > 2t, which is always satisfied since

p2 > t. The result stated in the lemma then holds true.

Note that the restriction that prices have to exceed t is mild: with firms located at the

endpoints, the competitive price has p = c+ t. It will be easy to see that, for our purposes,

the constraint is never binding. We can now establish:

Lemma 2 If 1/2 > a∗ ≥ 1/4, defecting from (a∗, a∗) to some ã > a∗ yields lower cartel

profits for the defector than sticking to (a∗, a∗).
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Proof. Denote full collusion prices at (a∗, a∗) as (p∗, p∗). By construction, the cartel is

just stable at (a∗, a∗) and (p∗, p∗). Consider a defection to some ã > a∗ by firm 1. Since

a∗ > 1/4, the original situation had both firms just covering their backyard. Efficiency

requires that, in the new situation, firm 1 at least serves its backyard as well. Hence the

highest possible price firm 1 will set now equals

p̃1 = v − ã2t.

Cartel stability for firm 2 requires

(1− δ)πd2 (p1, p2; a1, a2) ≤ π2 (p1, p2; a1, a2)− δπc2 (a1, a2) . (23)

Note from (21) that in this case

dπd2
da1

=
∂p1
∂a1

+ 2a1t = 0.

Hence, the lhs of (23) is unaffected if a1 increases. We now consider the effect on the

rhs. Take the prices (p∗, p∗) as a starting point. Consider the direct effect of the change

in a1 on the cartel profits of firm 2, while keeping prices constant. From (2), we then have:

∂π2 (p
∗, p∗; a1, a2)
∂a1

= −1
2
(p∗ − c) .

For the effect on πc2 we have from (15)

∂π2
∂a1

= − 1
18

t (3 + a2 − a1) (5− 3a1 + a2)

Note that this expression is always negative, but strictly bigger than −t. Also note that

p∗ = v − t
¡
1
2
− a∗

¢2
. Hence, with v > c + 4t, we necessarily have that the rhs of (23) is
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decreasing in a1 – even without taking into account that p1 will decrease as well, which

lowers π2 even further. Hence, at prices (p̃1, p
∗) the cartel is not stable for firm 2. To

achieve cartel stability for firm 2, we need to increase p1, or to decrease p2. Increasing p1

cannot be efficient, as it implies firm 1’s backyard is no longer fully covered. Necessarily,

we thus need to decrease p2. By construction, we had

π2 (p
∗; a∗) = (1− δ)πd2 (p

∗; a∗) + δπc2 (a
∗)

Since πc2 is decreasing in a1, while π
d
2 is unaffected, for cartel stability for firm 2 we need,

using (23), that p̃2 decreases so much that

π2(p̃1, p̃2; ã, a
∗) > π2 (p

∗; a∗) .

Firm 2 thus needs to achieve higher profits with a lower price. That implies that its

market share has to increase. In turn this implies that the market share of firm 1 has to

decrease. Since firm 1 also sets a lower price, the defection necessarily lowers its profits,

which establishes the result.

We also have:

Lemma 3 In the case that a∗ < 1/4, defecting from (a∗, a∗) to some ã > a∗ yields lower

cartel profits for the defector than sticking to (a∗, a∗).

Proof. Denote full cartel prices at (a∗, a∗) as (p∗, p∗). By construction, the cartel is just

stable at (a∗, a∗) and (p∗, p∗). Consider a cartel at locations (ã, a∗). This needs to satisfy

π2 (p̃1, p̃2; ã, a
∗) ≥ (1− δ)πd2 (p̃1, p̃2; ã, a

∗) + δπc2 (ã, a
∗) . (24)
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Consider the case in which p̃1 = p̃2 = p∗. We then have

∂

∂a1

¡
(1− δ) πd2 + δπc2

¢
= (1− δ) 2t (1− a1)− δ

18
t (a2 − a1 + 3) (5− 3a1 − a2) .

It can be shown that this expression is decreasing in δ, a1 and a2. The lowest possible

value is thus reached for δ = 1/2, and a1 = a2 = 1/4. In that case, the expression

simplifies to 5t/12. Hence, we have that the rhs of (24) is always increasing in a1. Combined

with the fact that we already established that ∂π2/∂a1 < 0, this implies that at prices

(p∗, p∗) and locations (ã, a∗), the cartel is no longer stable. It also implies that necessarily

π2 (p̃1, p̃2; ã, a
∗) > π2 (p

∗, p∗; a∗, a∗) . Denote the indifferent consumer at the constrained

cartel as z̃. For cartel stability for firm 2, we thus need that (p̃2 − c)(1 − z̃) > 1
2
(p∗2 − c).

There are two ways to achieve this. The first is to increase p1. This hurts firm 1, as its

profits are decreasing in p1 at (p
∗, p∗). The second is to decrease p2. However, as we need

(p̃2−c)(1− z̃) > 1
2
(p∗2−c), this implies that we need z̃ < 1/2. In that case, the market share

of firm 1 decreases, whereas its price does not change. Hence, also in that case, profits of

firm 1 decrease.

The final lemma we need to establish our result is the following:

Lemma 4 In the case that a∗ < 1/2, defecting from (a∗, a∗) to some ã < a∗ yields lower

cartel profits for the defector than sticking to (a∗, a∗).

Proof. By construction, the cartel is just stable at at (a∗, a∗). Suppose that firm 1

defects to some ã < a∗. We will first establish that at locations (ã, a∗), a cartel with full

collusion is stable. From the proof of Theorem 2 we then immediately have the result.
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For cartel stability to be satisfied for firm 1, we need

πk1 (ã, a
∗)− (1− δ)πd1 (ã, a

∗) ≥ δπc2 (ã, a
∗) . (25)

Regardless of the case we are in, firm 1 profits with full collusion can be written πk1 =

(pm1 − c) y, with y the market share of firm 1. We then have

dπk1
da1

= (pm1 − c)
dy

da1
+

∂pm1
∂a1

y.

From (21),

dπd1
da1

=
∂pm2
∂a1

+ 2t (1− a1) .

In area I, we thus have

d

da1

¡
πk1 (a1, a2)− (1− δ)πd1 (a1, a2)

¢
= (pm1 − c)

dy

da1
− 2t (a1 (3− δ)− (1− δ)) .

Here y can be found by plugging monopoly prices from Result into (1). This yields

dy

da1
=

1

2
− p2 − p1
2t (1− a1 − a2)

+
1− a1

1− a1 − a2

=
1

2
− ta21 − ta22
2t (1− a1 − a2)

+
1− a1

1− a1 − a2

=
1

2
+
(1 + a22 − a21) + (1− 2a1)

2 (1− a1 − a2)

For the lhs of (25) to be increasing in a1 we thus need

(pm1 − c)
dy

da1
> 2t (a1 (3− δ)− (1− δ))

or ¡
v − ta21 − c

¢ dy

da1
> 2t (a1 (3− δ)− (1− δ)) .
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Note that from v > c+ 4t, we have

1

2

¡
v − ta21 − c

¢
>
1

2

¡
4t− ta21

¢
.

For the inequality to hold, it is thus sufficient to have

¡
v − ta21 − c

¢µ(1 + a22 − a21) + (1− 2a1)
2 (1− a1 − a2)

¶
> 2t (a1 (3− δ)− (1− δ))− 1

2

¡
4t− ta21

¢
or

¡
a22 − a21 − 2a1 + 2

¢ ¡
v − c+ ta21

¢
> −t ¡−4δa1 + 12a1 + 4δ + a21 − 8

¢
(1− a2 − a1) .

The lhs is decreasing in a1 and increasing in a2. Within area I, the smallest value it can

achieve is thus when a1 =
1
2
and a2 =

1
4
. We then have that the lhs equals at least

13
16
(v − ta21 − c) . Similarly, it can be shown that the rhs is increasing in a1. The highest

value it can reach is if a1 =
1
2
. In that case the rhs equals t

¡
7
4
− 2δ¢ ¡1

2
− a2

¢
< 7

8
t. Thus,

with v > c+ 4t, the lhs is always larger than the rhs, which establishes that the lhs of 25

is increasing in a1. We already have that the rhs is decreasing in a1. That implies that an

increase in a1 makes the inequality stricter. But that implies that a decrease in a1 relaxes

the inequality. Thus, at a∗, when firm 1 defects to some ã < a∗, its condition for cartel

stability is still satisfied. The proof for case II goes along the exact same lines.

For firm 2, cartel stability requires that (24) is satisfied. We established in the proof

of the previous lemma that, given prices (p∗, p∗), an increase in a1 decreases the lhs, and

increases the rhs. Hence, a decrease in a1 weakens the inequality. Thus for firm 2, the

agreement (p∗, p∗) is stable at the new locations. But at the new locations, pm1 will only
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increase, which further relaxes firm 2’s cartel stability condition. Hence, full collusion

yields a stable cartel at the new locations. This establishes the result.

Combining these lemmas establishes theorem 3.
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Figure 1.  
Feasible location choices and corresponding areas for joint profit maximization 
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