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Structural Stability of Boundary Equilibria in a class of hybrid
systems: Analysis and Use for Control System Design

Mario di Bernardo and Kanat Camlibel

Abstract— This paper is concerned with the structural sta-
bility of boundary equilibria in a class of hybrid systems,
that of piecewise linear continuous systems. Specifically, we
study the structural stability under parameter variations of
equilibria lying on discontinuity boundaries in phase space
dividing regions where the system under investigation is smooth.
We show that it is possible to give a set of conditions to account
for the possible dynamical scenarios that can be observed.
We present a novel scenario where under perturbations, the
equilibrium of interest does not persist and a family of stable
limit cycles is generated with amplitudes increasing linearly
under parameter perturbations. We propose a novel switching
control strategy based on the use of the results presented in the
paper.

I. INTRODUCTION

In recent years, much research effort in applied science and
engineering has focussed on piecewise smooth dynamical
systems, a class of hybrid systems that can be described by
sets of ordinary differential equations (ODEs) of the form:

ẋ = f(x, µ); (I.1)

where f : R
n+1 → R

n is a piecewise smooth function,
µ ∈ R is a parameter and x ∈ R

n.
The phase space of a general piecewise-smooth (PWS)

system, such as (I.1), can be split into countably many
regions Gi, i = 1, 2, . . . , N where f has a different smooth
functional form, i.e. f = fi if x ∈ Gi for i = 1, ..., N .
Such regions are closed, connected subsets of phase space.
Smoothness is lost as trajectories cross the boundaries, Σij ,
between adjacent regions. We will refer to such boundaries
as nonsmoothness sets or switching manifolds. Across these
manifolds, a PWS system can be characterised by a different
relative degree, r, or discontinuity type. Namely, we can have
systems with discontinuos states x; discontinuous vector
fields (i.e. fi �= f2); discontinuos Jacobian, i.e. fi = fj but
∂fi

∂x �= ∂fj

∂x ; higher order discontinuities, i.e. fi = fj , ∂fi

∂x =
∂fj

∂x , but ∂nfi

∂xn �= ∂nfj

∂xn . Examples include, to mention just
a few, vibro-impacting machines in mechanical engineering
and systems with friction [1], switching circuits in power
electronics [2], [3] physiological models [4], internal com-
bustion engines [5], walking machines [6]; more generally,
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all those systems which are intrinsically non-smooth on
macroscopic time-scales.

In control engineering, the benefits of switching control
actions have often been exploited in applications. Variable
structure control [7], relay feedback [8], pulse width modu-
lation [9] and hybrid control [10] are all examples of theories
which exploit control actions, giving rise to closed-loop
systems which are nonsmooth. Despite their widespread use,
there does not yet seem to be an effective systematic theory
of such systems. While the last decades have witnessed an
explosive development in the theory of smooth dynamical
systems, many fundamental problems remain open for hy-
brid and switched ones. These include, for example, well-
posedness, stability and numerical analysis (see for example
[1]).

An important open problem from a control viewpoint,
often neglected in the current literature, is the lack of a
consistent theory of structural stability and robustness of
hybrid and switched dynamical systems. In fact, as the
system parameters are varied, novel transitions have been
observed in a number of real-world nonsmooth systems
leading to the loss of their structural stability [3], [11]–[17].
These phenomena cannot be explained in terms of well-
known standard bifurcations for smooth systems. For in-
stance, pulse-width-modulated feedback systems were shown
to exhibit sudden transitions from periodic oscillations to
irregular chaotic motion which were left unexplained for
a long time (see [11] or [2] for a chronological literature
review).

The aim of this paper is to present a set of conditions
to analyse the structural stability of boundary equilibria, i.e.
equilibria of piecewise linear systems which are located on
one of the phase space discontinuity boundary. In this paper,
we will consider the case of piecewise linear continuous
systems which are described by sets of smooth equations in
each of the phase space regions and are such that the state
trajectories are continuous across the switching manifolds.
These systems are used in many domains of applications.
An example is the origin of a switching control system
designed to guarantee its stability by switching whenever a
manifold passing through zero is crossed. We will discuss
the most relevant novel scenarios leading to the loss of
structural stability of such equilibria in piecewise smooth
control systems. After introducing appropriate notation and
terminology, conditions will be derived to predict the asymp-
totic behaviour of the system under parameter variations. The
topological implications of these events will be discussed
and related with the observed dynamical scenarios in the
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system of interest. We will show that the conditions derived
to analyse the structural stability of the equilibria of interest
and characterise the ensuing dynamics, can be used to design
a simple but effective switching control strategy to generate
limit cycles of desired amplitude.

II. STRUCTURAL STABILITY OF BOUNDARY-EQUILIBRIA

A. Piecewise-smooth Continuous Systems

We focus on piecewise linear continuous systems. We
restrict our attention to a region of phase space, say D, where
the system under investigation can be described as follows
in terms of a local set of coordinates. Namely, we have

ẋ =

{
F1(x, µ), if H(x, µ) < 0
F2(x, µ), if H(x, µ) > 0

(II.1)

where x ∈ R
n, F1, F2 : R

n+1 �→ R
n are supposed to be

sufficiently smooth and H : R
n+1 �→ R is a sufficiently

smooth scalar function of the system states. Because of the
continuity assumption we must have

F2(x, µ) = F1(x, µ) + G(x, µ)H(x, µ), (II.2)

so that when H(x, µ) = 0 then F1 = F2 as required.
According to (II.1), H defines the switching manifold

Σ := {x ∈ R
n : H(x, µ) = 0}

Locally, Σ divides D in the two regions G1 and G2 where
the system is smooth and defined by the vector fields F1 and
F2 respectively; namely:

G1 = {x ∈ D : H(x, µ) < 0},
G2 = {x ∈ D : H(x, µ) > 0}.

We assume that both the vector fields F1 and F2 are
defined over the entire local region of phase space under
consideration, i.e., on both sides of Σ.

We can identify different types of equilibria of system
(II.1). Namely, it is possible to give the following definitions.

Definition II.1 We term a point x ∈ D as an admissible
equilibrium of (II.1) if, for a given µ, x is such that either

F1(x, µ) = 0 and H(x, µ) < 0

or
F2(x, µ) = 0 and H(x, µ) > 0

Alternatively, we say that a point y ∈ D is a virtual
equilibrium of (II.1) if either

F1(y, µ) = 0 but H(y, µ) > 0

or
F2(y, µ) = 0 but H(y, µ) < 0

For some value of the system parameters, it is possible for
an equilibrium to lie on the discontinuity boundary.

Definition II.2 We say that a point z ∈ D is a boundary
equilibrium of (II.1) if, for a given µ,

F1(z, µ) = F2(z, µ) = 0 and H(z, µ) = 0

Note that under parameter variations the system might ex-
hibit a boundary equilibrium for some value of its parameters
µ. Without loss of generality let’s assume that x = 0 is a
boundary equilibrium for µ = 0. We shall seek to unfold
the bifurcation scenarios that can occur when µ is perturbed
away from the origin. Namely, we shall seek to identify the
possible branches of asymptotic solutions exhibited by the
system of interest under parameter variations.

Definition II.3 An admissible equilibrium x∗ = x∗(µ),
which we assume depends smoothly on µ, is said to undergo
a boundary equilibrium transition at µ = µ∗ if, for i = 1 or
i = 2,

• F1(x∗, µ∗) = 0,
• H(x∗, µ∗) = 0,
• F1x(x∗, µ∗) is invertible (or equivalently det(F1x) �=

0).

While the first two conditions state that x∗ is a boundary
equilibrium when µ = µ∗, the third condition ensures that the
branch of admissible equilibria undergoing the bifurcation is
isolated.

B. Persistence or Annihilation

The existence of different types of bifurcation scenarios
following this type of nonsmooth transitions was discussed
in [18], [19] and illustrated through some one-dimensional
and two-dimensional examples. It was shown, for example,
that nonsmooth transitions of equilibria can be associated,
in the simplest cases, to the persistence of the bifurcating
equilibrium or its annihilation through a saddle-node like
scenario. Namely, it was conjectured that a boundary equilib-
rium bifurcation can lead to the following simplest scenarios:

1) Persistence: under any parameter variation, the bound-
ary equilibrium is turned into an admissible equilib-
rium lying either in region G1 or region G2. In terms of
collision of equilibria with the boundary, this scenario
describes how the only admissible equilibrium point
x− for µ < 0 hits the boundary when µ = 0 and
turns smoothly into the admissible equilibrium x+ for
µ > 0.

2) Nonsmooth Saddle-Node: the boundary equilibrium
gives rise to a branch of admissible equilibria for some
parameter variations or is annihilated. Here the two
equilibria are both admissible for µ < 0 turning into
two virtual equilibria past the border-collision point
(leaving the system with no regular equilibrium either
in region G1 or region G2).

¿From a control perspective, it is clear that persistence is
desirable as in the latter scenario the boundary equilibrium
can disappear under perturbations. In this case the system
might exhibit other asymptotic solutions such as limit cycles
or aperiodic attractors as discussed later in the paper.

Here we wish to derive simple conditions to assess
whether the boundary equilibrium will persist or not. The aim
is to classify the simplest possible scenarios associated with a
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boundary equilibrium transition in n-dimensional nonsmooth
continuous flows.

We will now give conditions to distinguish between these
two fundamental cases in the case of n-dimensional contin-
uous nonsmooth flows. Namely, in order for x+ and x− to
be two admissible equilibria of the system, we must have

F1(x−, µ) = 0,
H(x−, µ) := λ− < 0 (II.3)

and, using (II.2),

F2(x+, µ) = F1(x+, µ) + G(x+, µ)H(x+, µ),
H(x+, µ) := λ+ > 0 (II.4)

Now, linearizing about the the boundary equilibrium bi-
furcation point, x = 0, µ = 0 we have:

Ax− + Bµ = 0 (II.5)

Cx− + Dµ = λ− (II.6)

and

Ax+ + Bµ + Eλ+ = 0 (II.7)

Cx+ + Dµ = λ+ (II.8)

where A = F1x, B = F1µ, C = Hx,D = Hµ and E = G
all evaluated at x = 0, µ = 0.

Then, from (II.5) we get:

x− = −A−1Bµ

and, substituting in (II.6), we obtain

λ− = (D − CA−1B)µ. (II.9)

Moreover from (II.7) we can write

x+ = −A−1Bµ − A−1Eλ+

that substituted in (II.8) yields

λ+ =
D − CA−1B

1 + CA−1E
µ. (II.10)

Finally, substituting (II.9) into (II.10), we get

λ+ =
1

1 + CA−1E
λ− (II.11)

Hence under variations of µ, the two equilibria, x− and
x+, will be both admissible for the same value of µ (i.e.
λ+ > 0 and λ− < 0) if 1 + CA−1E < 0 while they will be
existing for opposite values of µ otherwise.

Therefore we can state the following theorem.

Theorem II.4 For the systems of interest, assuming

det(A) �= 0 (II.12)

D − CA−1B �= 0 (II.13)

1 + CA−1E �= 0 (II.14)

• a Persistence scenario is observed at the boundary
equilibrium bifurcation point if

1 + CA−1E > 0; (II.15)

• a Nonsmooth Saddle-Node is instead observed if

1 + CA−1E < 0; (II.16)

Note that the asymptotic stability of the admissible equilibria
existing on one or both sides of the bifurcation point can be
assessed by looking at the eigenvalues of matrices A and
A + EC.

III. HOPF-LIKE TRANSITION

An important issue is to assess what happens to trajectories
of a piecewise smooth continuous systems if under perturba-
tions a stable boundary equilibrium undergoes a nonsmooth
saddle node or becomes unstable. Here we wish to prove the
following result.

Theorem III.1 For the systems of interest if:
1) A + EC is unstable and 1 + CA−1E > 0
2) the boundary equilibrium is asymptotically stable for

µ = 0
then under perturbations of µ the system will exhibit in
the simplest case a family of stable limit cycles originating
locally from the boundary equilibrium point.

In fact, under these hypotheses, according to Theorem II.4,
parameter perturbations will cause the boundary equilibrium
to persist as 1 + CA−1E > 0. Moreover, as A + EC is
unstable, at least one of the equilibria existing for oppo-
site values of µ will be unstable. Now, as the boundary
equilibrium is assumed to be asymptotically stable for µ =
0, by continuity with respect to parameter variations, for
µ �= 0 a local neighborhood, say B(0), of the boundary
equilibrium exists where trajectories continue to be attracted
to. As under variations of µ, under the hypotheses stated,
no stable equilibrium can exist (at least when µ is varied in
one direction), then B(0) must contain some other attracting
invariant set. In the simplest case, this will be a limit cycle
(it must be in the case of two-dimensional systems). Note
that in general B(0) might also contain a strange attractor in
the case of higher-dimensional systems.

The problem of assessing the asymptotic stability of a
piecewise linear system is still an open problem and no
general conditions can be given to guarantee for the boundary
equilibrium of a given system to be asymptotically stable.
It is shown in [20] that this problem is computationally
challenging in general. In what follows, we review available
stability results for some special cases.

Consider the piecewise linear system

ẋ =

{
A−x + Bµ if Cx ≤ 0
A+x + Bµ if Cx ≥ 0

(III.1)

where A± ∈ R
n×n, B ∈ R

n×1 and C ∈ R
1×n. We

assume that the overall vector field is continuous across the
hyperplane {x | cT x = 0}. This means that

A− − A+ = EC (III.2)

for some E ∈ R
n. For the planar case, i.e. n = 2, a complete

proof is available where it was shown that, when µ = 0, the
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origin of a piecewise linear system (III.1) is asymptotically
stable.

Proposition III.2 ( [21]) Consider the system (III.1) with
n = 2. Assume that the pair (C,A−) is observable. The
following statements hold for µ = 0.

1) The origin is asymptotically stable if and only if

a) neither A− nor A+ has a real nonnegative eigen-
value, and

b) if both A− and A+ have nonreal eigenvalues then
σ−/ω−+σ+/ω+ < 0 where σ±±iω± (ω± > 0)
are the eigenvalues of A±.

2) The system (III.1) has a nonconstant periodic solution
if and only if both A− and A+ have nonreal eigen-
values, and σ−/ω− + σ+/ω+ = 0 where σ± ± iω±

(ω± > 0) are the eigenvalues of A±. Moreover, if
there is one periodic solution, then all other solutions
are also periodic. And, π/ω− +π/ω+ is the period of
any solution.

For planar systems, it is also possible to show that the am-
plitude of the limit cycle originate under parameter variation
scales linearly with the parameter perturbation (see [22] for
further details).

In higher dimensions, the problem becomes considerably
more difficult. An interesting phenomena that occurs in
higher dimensions is that even though both A± are Hurwitz
matrices (i.e. matrices for which all the eigenvalues lie in
the open left half plane), the overall system can exhibit
instability. Such an example (see [23]) can be obtained by
taking µ = 0,

A− =

⎡
⎣ −1 −1 0

1.28 0 −1
−0.624 0 0

⎤
⎦ A+ =

⎡
⎣ −3.2 −1 0

25.61 0 −1
−75.03 0 0

⎤
⎦

(III.3)
and C =

[
1 0 0

]
.

Carmona et. al. [23] study the stability of the origin for
n = 3. With the help of the notion of invariant cones, they
reach the following result.

Proposition III.3 ( [23]) Consider the system (III.1) with
n = 2. Assume that the pair (C,A−) is observable. Let
A± and c be given by

A± =

⎡
⎣ t± −1 0

m± 0 −1
d± 0 0

⎤
⎦ C =

⎡
⎣1

0
0

⎤
⎦

T

(III.4)

in the so-called observability canonical form. Suppose that
the eigenvalues of the matrices A± are λ± ∈ R and σ±±iω±

where ω± > 0. Also suppose that

(σ− − λ−)(σ+ − λ+) < 0 (III.5)

and
(t+ − t−)(σ+ − λ+) ≤ 0. (III.6)

Then, the origin is an asymptotically stable equilibrium point
if, and only if, λ± are both negative.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 1. Bifurcation diagram of system (III.7). The lines for µ > 0 represent
the Poincaré intersections of the system limit cycle and are therefore
representative of the amplitude of the limit cycles generated at the boundary
equilibrium transition.

Using this result, we can construct a three-dimensional
piecewise linear example where, under parameter variations,
the boundary equilibrium at the origin becomes unstable
giving rise to a family of stable limit cycles whose amplitude
scales linearly with the parameter perturbation. Specifically,
Fig. 1 shows the bifurcation diagram of a three-dimensional
system of the form (III.1) where

A− =

⎡
⎣−5 1 0
−9 0 1
−5 0 0

⎤
⎦ A+ =

⎡
⎣ −5 1 0
−12 0 1
−14 0 0

⎤
⎦ (III.7)

and

B =

⎡
⎣0

0
1

⎤
⎦ , CT =

⎡
⎣1

0
0

⎤
⎦ . (III.8)

Note that A+ = A− +EC with E =
[
0 −3 −9

]T
. As

predicted by Proposition III.3, since λ− = −1, σ−± jω− =
−2 ± j and λ+ = −7, σ+ ± jω+ = 1 ± j, in this case the
boundary equilibrium at the origin is asymptotically stable
when µ = 0. Moreover, we have

1
1 + C (A−)−1

E
= 0.3571 > 0.

Hence, according to Theorem II.4 under variations of µ we
expect a branch of stable equilibria for µ < 0 turning into a
branch of unstable equilibria for µ > 0 and, as expected from
Theorem III.1, a family of stable limit cycles is observed
locally to the boundary equilibrium transition (see Fig. 1).

IV. CONTROL SYNTHESIS

We want to discuss a straightforward but effective use of
the results presented above for the synthesis of an innovative
switching control strategy aimed at generating a stable limit
cycle of a given amplitude.
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For instance, let ẋ = Ax + Bu, x ∈ R
3 be some SISO

system we wish to control and assume the problem is to
design a controller u(t) such that the state evolves along a
stable periodic solution of amplitude M . Then, according to
the results presented above the following switching control
strategy will be an effective way of solving the problem.

Specifically, assume a matrix K exists such that a piece-
wise linear dynamical systems of the form (III.1) with
matrices A− := A, A+ := A − BK, C := K fulfills the
hypothesis of theorem III.1, i.e.

1) A−BK is an unstable matrix with a pair of complex
conjugate eigenvalues;

2) 1 − KA−1B > 0;
3) the boundary equilibrium at the origin is asymptoti-

cally stable for µ = 0
then u can be chosen to be the following piecewise linear
feedback law:

u(t) =

{
µ̂, if Kx < 0
−Kx + µ̂, if Kx > 0

(IV.1)

with µ̂ chosen appropriately to obtain a periodic solution of
the desired amplitude (by trial-and-error for example).

Indeed under the action of such a controller, the closed
loop system becomes

ẋ =

{
Ax + Bµ̂, if Kx < 0
(A − BK)x + Bµ̂, if Kx > 0

fulfilling the hypothesis of Theorem III.1.
The detailed investigation of this control strategy is beyond

the scope of this paper and will be detailed elsewhere.
In what follow we give a representative example to better
illustrate the strategy outline above.

A. A representative example

Let ẋ = Ax+Bu be the plant we wish to control. Assume
(A,B) to be controllable. For the sake of clarity, the matrices
A and B are chosen as those of the example in Sec. III;
namely:

A =

⎡
⎣−5 1 0
−9 0 1
−5 0 0

⎤
⎦ , B =

⎡
⎣0

0
1

⎤
⎦

Then according to the strategy outlined we choose u as in
(IV.1) where the gain matrix K = [k1 k2 k3] is chosen so
that

• the eigenvalues of A − BK are placed at −7, 1 ± j as
those of matrix A+ in Sec. III;

• 1 − KA−1B > 0
• the origin is an asymptotically stable equilibrium for

µ̂ = 0.
Using a pole placement strategy K = [114 − 22 0] was
found to fulfill all of the conditions above.

Simulations showing the phase space behaviour of the
closed loop system and its bifurcation diagram µ̂ is varied
are shown in Figs. 2 and 3. As expected, we observe a family
of stable limit cycles for µ̂ > 0 with amplitude increasing
linearly with µ̂.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−8

−6

−4

−2

0

2

4

Fig. 2. Bifurcation diagram of the closed loop system under the action
of the controller described in Sec. V. The lines for µ̂ > 0 represent the x2

components of the Poincaré intersections on the switching line Kx = 0 of
the system limit cycle and are therefore representative of the amplitude of
the limit cycles generated at the boundary equilibrium transition.

−2 −1.5 −1 −0.5 0

−10

−8

−6

−4

−2

0

2

Fig. 3. Representative phase space (x1, x2) projection of the limit cycle
exhibited by the closed loop piecewise linear system for µ̂ = 1. The dashed
line is the switching line Kx = 0.

V. CONCLUSIONS

We have studied the structural stability of so-called bound-
ary equilibria in piecewise smooth continuous systems. We
observed that, under parameter variations, such equilibria
can undergo two major types of transitions leading to their
persistence or annihilation. After deriving analytical condi-
tions to classify each of these scenarios, we discussed the
case of Hopf-like transitions. Namely, when the boundary
equilibrium turns into an unstable equilibrium or disappears
at a boundary equilibrium transition, the possibility is dis-
cussed of a family of stable limit cycles (or strange attractors)
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existing for local parameter variations. Recent stability re-
sults for the stability of piecewise linear continuous systems
are used to construct a three-dimensional example where
such a scenario is observed. The possible use of the results
presented for control system design are briefly discussed.
Further work in this direction is currently under investigation.
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