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1. Obliterative bronchiolitis and obliterative airway disease 
 

1.1. Obliterative Bronchiolitis 
  

Lung transplantation is currently the only available treatment for end-
stage lung disease patients. Despite the success of improved modern 
lung transplantation with the introduction of new surgical techniques, 
improved immunosuppressive agents and innovations in managing of 
acute rejection and infection, the survival rate of recipients is 75% at 1 
year and less than 50% at 5 years. (1) One of the most severe 
complications after lung transplantation is obliterative bronchiolitis (OB) 
which affect over 40% of the recipients within 5 years during the post-
transplantation period.(1). 

OB is a chronic disease that develops from months and mostly 
years after lung transplantation (2-4). It is characterized by 
progressive bronchial inflammation, epithelial injury and luminal 
fibrosis.(5-7). There is no treatment for human OB and insight into the 
understandings of its mechanism is still lacking. Presently, all clinical 
efforts are directed at slowing down the process. These efforts include 
pre-transplant treatment to the donor lung to reduce inflammatory 
inducing factors, employment of aggressive peri-transplant 
administration with antibiotics (3;8-11) and improved 
immunosuppressive regimens. Only re-transplantation appears to be 
a curable solution, but is mostly not possible due to the limited 
availability of donor organs. Clinical investigation of OB in humans is 
restricted by the limited amount of patient material available for 
research. This makes the development of new treatments a difficult 
and time consuming task (12). Thus, a simple animal model that 
resembles the development of OB in human is a desirable goal. 
  

1.2. Animal transplant models of obliterative airway disease (OAD) for 
human OB 
 
As pointed out above an animal model is needed for studying the 
pathophysiology and possible treatment of OB. A rat lung 
transplantation model was developed in Groningen and described by 
Jochum Prop and colleagues in 1984 (13). Using this technique they 
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were the first to show that OB was secondary to acute pulmonary 
rejection (14). Also, OB-like airway damage was seen during chronic 
rejection and viral infections in this rat lung transplantation model. (15) 
Hertz and his colleagues published a much simpler model in 1993, 
where they transplanted murine heterotopic tracheas subcutaneously 
(16), and found that allogeneic tracheas were rejected with massive 
cellular infiltration and epithelium loss as opposed to isografts which 
did not show these changes. This led by day 21 to obliteration of the 
transplanted trachea lumen by the fibroproliferation. This pathological 
process is called the obliterative airway disease (OAD) and is 
supposed to reflect the changes seen in OB. Large animal OAD 
models have also been studied in the past decades. Porcine, canine 
or even primate tracheas (17) and lungs (18-21) were transplanted 
and shown to mimic the human OB, since similar histological findings 
such as graft infiltration, epithelium loss and fibrotic luminal occlusion 
were observed. Although large animals may be close to humans in 
size and body structure, the limitations of these large animal models 
are also obvious: the lack of inbred strains, the cost of purchasing 
large animals and the peri-transplantation management. The biggest 
obstacle, however, is the unstable results (22). In summary, OAD in 
small animal models share histopathological similarities to human OB 
and is presently the most useful tool for human OB study. 
 

1.3. The histopathology and immunology of OB/OAD  
 

Clinical OB is a chronic inflammatory disease of the airways, involving 
the bronchial epithelium and leading to the gradual obliteration of 
small and large airways by inflammatory infiltrates, proliferating 
fibroblasts, mature collagen and extracellular matrix (3). Although the 
mechanisms underlying the development of OB are not clear yet, the 
syndrome may be divided into two distinct phases; an acute 
alloimmune phase with lymphocytic infiltration of the bronchiolar 
structures followed by a chronic fibroproliferative phase leading to 
partial or total occlusion of the airway lumen (3;4;10). These 
pathogenic phases appear to mimic a tissue 'injury-repair' type of 
pattern in which episodes of potentially reversible acute rejection 
(injury) lead to the irreversible chronic state of rejection (insufficient 
repair leading to scar tissue formation). 
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Transplant injury is caused by the repeated immune-mediated 
damage inflicted to the airways through allorecognition during acute 
rejection involving activation of inflammatory mediators (23). Both the 
humoral and cellular arm of the immune system may be involved. 
Donor-HLA-specific alloantibodies can be present in the recipient 
serum as evidence of a humoral response (24;25). More importantly, 
allo-specific T cells and a plethora of other immune cells observed in 
the donor lung indicating a cellular response (26-29). These immune 
processes may lead to the injury of airways. If the injury is not properly 
balanced by repair processes, excessive migration and proliferation of 
pulmonary mesenchymal cells, smooth muscle cells and fibroblasts 
may occur. These processes are driven, at least in part, by the growth 
factors platelet-derived growth factor (PDGF) and basic fibroblast 
growth factor (bFGF). PDGF and bFGF have been shown to be 
upregulated in bronchoalveolar lavage fluid from OB patients in the 
clinic (30). Fibroproliferation indicates a repair phase of the injured 
grafts, though it may eventually lead to an overgrowth of fibrotic tissue.  

In animal OAD models, a number of pathophysiology features 
are observed that mimic human OB. A growing body of evidence 
suggests that development of OAD after trachea or lung 
transplantation is caused by the allogeneic immune response against 
cell surface antigens of the allospecific major histocompatablility 
complex (MHC) antigens, expressed on parenchymal cells of the 
allograft (24;29;31;32). In different animal OAD models, T 
lymphocytes, macrophages and granulocytes were found in the 
allografts preceding epithelium loss and complete luminal obliteration 
at day 21-28 were observed (CD4+, CD8+ T cells) (5;33-35). Several 
studies in recent years have indicated that indirect allorecognition of 
donor MHC-derived peptides by CD4 T cells is one of the most 
important factors leading to the development of chronic allograft 
rejection. (36-39) As a result of alloantigen recognition by CD4 (T-
helper) cells, which recognize class II MHC antigens expressed by 
the graft's cells, an alloimmune response is started. Cytotoxic T cells 
(CTLs), mainly CD8+ cells which recognize class I MHC antigens, 
may directly kill target cells (40). But CD4+ cells may be more harmful 
by recruiting also the cells belonging to the innate immune system.   

The airway epithelium has been mentioned several times 
already in the pathogenesis of OB/OAD. We think that it may play a 
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role both in the induction of the injury and in the repair process. In the 
following part we will focus on this aspect. 
   

2. Airway epithelium in transplantation 
 

2.1. Airway epithelium structure and function 
 

ANATOMY Mammalian airways are lined by a pseudostratified layer 
of epithelial cells. These include the highly differentiated ciliated cells 
that cover the airway luminal surface and the less differentiated basal 
cells bearing a high capacity for proliferation and regeneration (41;42). 
Other types of cells in the epithelium layer are present in lower 
number. Some of these are only present at scattered locations, such 
as goblet cells and Clara cells. These epithelial cells are involved in a 
number of critical functions related to normal homeostasis.  

FUNCTION Classically, epithelium was considered to be a 
passive barrier between the external environment and the inner 
tissues of the lung. However, it is now clear that the epithelium plays a 
pivotal role in controlling many airway functions. Its function as a 
barrier is essential through tight junctions (zonula occludens) located 
between the apices of adjacent cells, which restrict paracellular 
diffusion of electrolytes and other molecules. Desmosomes, 
intermediate and gap junctions are also involved in maintaining the 
structural integrity of the epithelium (43-45). The epithelium has also a 
secretory function and can produce a diverse array of lipid mediators, 
growth factors, and bronchoconstricting peptides as well as 
chemokines and cytokines (45). In addition, the epithelium is a major 
source of arachidonic acid metabolites which help to regulate airway 
smooth muscle tone, epithelial mucus secretion, neurotransmitter 
release and, is also involved in inflammation (44-46).   

EPITHELIAL RESPONSE TO INJURY Tissue repair is 
dependent on a structured progression of events that re-establish the 
integrity of the damaged tissue. The precise mechanisms involved in 
regeneration of the airway epithelium are still a matter of debate. 
Much of what is known about epithelium injury and repair (46) either 
comes from in vivo studies in which the epithelium is experimentally 
injured, such as by chemical (47), drugs (48), physical factor (49) and 
repair processes are followed histologically over time, or from cell 
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culture models (50). It is clear that the airway epithelium has a 
tremendous capacity to repair itself after injury. In a recent in vivo 
study, Erjefalt et al. showed that in as little as 15 min after an 800-µm 
wide wound was made in the tracheal epithelium of guinea pigs, 
epithelial cells on the damaged margin (including secretory and 
ciliated cells) began to dedifferentiate, flatten and migrate over the 
denuded area (51). In this study, the denuded area was completely 
covered by a thin layer of flattened undifferentiated epithelium. 
Proliferation of epithelial cells was not observed until about 30 hours 
after the initial stimuli. Within 5 days a fully differentiated epithelium 
was present again. At approximately the same time as cells begin to 
differentiate, a plasma exudate was observed which might be an 
indication of functional repair  (52-55).  

 
2.2. Airway epithelium injury during transplantation 

 
Airway epithelium injury is frequently observed upon transplantation. 
Airway epithelium damage may be already induced before 
transplantation by the donor's brain death (56), and by ischemia-
reperfusion (57-59) during the transplantation procedures. Evidence of 
inflammatory cytokines up-regulation such as interleukin (IL)-1, IL-2, 
IL-6, tumor necrotic factor alpha (TNF-α) and interferon gama (IFN-γ) 
is shown in peripheral organs including lung tissue from brain-dead 
donors shortly after harvesting (60). It is known that TNF-α and IL-1 
are the “early response cytokines” produced by alveolar macrophages 
in acute lung injury through activation of the transcription factor 
nuclear factor-kappa B (NF-kB) (61). Upon transplantation, these 
cytokines induce inflammatory responses towards donor epithelial 
cells by attracting recipient macrophages and other inflammatory cells 
(62). This may contribute to the acute injury seen in donor tissue after 
transplantation. Furthermore, donor tissue that expresses allo MHC 
antigens induces cellular and humoral alloimmunity in the recipient. 
Human epithelial cells are known to continuously express MHC 
antigens in high density (63,64). A recent study shows that the binding 
of MHC alloantibodies to human epithelial cells induces apoptosis of 
these cells (65). Epithelial cells apoptosis was also observed in animal 
airway transplant OAD (66).  
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Clinical pathologic features of OB suggest that in particular, the 
injury of epithelial cells by persistent inflammation in small airways 
hampers epithelium regeneration and stimulates fibroproliferation due 
to aberrant tissue repair. In animal tracheal transplants, airway 
epithelium is involved in the rejection process as one of the targeted 
tissue leading to OAD (67). The loss of airway epithelium by 
transplant rejection in allografts but also by enzymatic removal in 
isografts resulted in OAD (68;69). This stresses the importance of 
epithelium for the development of OB/OAD. 
 
 
Figure 1.  Hypothesis of airway epithelium in OAD/OB occurence  

 

 
In the illustration, airway allograft is transplanted and rejection occurs. There are 
two type of rejecting process: 1. Graft-independent process (left down arrows). It 
is caused by normal grafting surgical procedures and foreign body responses. It 
occurs to every type of grafting and is not dependdent on the type of grafts. 
Epithelium mostly experiences ischemia-reperfusion damage and could quickly 
recover. 2. Graft-dependent process (right down arrows). It is caused by 
alloimmune responses that recognize allo-MHC antigens expressed in allografts. 
It occurs only in the allgraft transplantation and is suggested to be the main cause 
of graft injury and dysfunction. 
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3. Hypothesis and experimental models 
 

3.1. Hypothesis of OB/OAD  
 
Studies in patients and animal models indicate that donor airway 
epithelium injury is playing a role in the process of OB (6;70) and OAD 
(71). We hypothesize that transplant injury causes airway epithelium 
damage and that excessive and persistent loss of epithelium results in 
fibrosis that eventually leads to the occurrence of OB/OAD. 
         Firstly, airway epithelium is one of the primary target tissues 
during alloimmune responses that are graft-dependent. It is also the 
target of graft-independent factors, such as general inflammatory 
response and transplant surgical injury. This type of injury is 
presented among all types of airway tissue (67) and is largely 
dominated by alloimmunity. Loss of epithelium during injury ‘denudes’ 
the transplanted airway, resulting in loss of the defense barrier and, 
generally, epithelium dysfunction. As a result, the submucosa tissue 
may directly encounter foreign pathogens that increase the risk of 
infection. Secondly, damaged airway epithelium may lose its own 
functional role in regulating the airway repair process during injury 
(72). In response to injury, airway epithelial cells are capable to 
dedifferentiate and to regenerate to replace the injured cells, as 
indicated above. In vitro (73;74)and vivo (75) studies have shown that 
airway epithelial cells also regulate fibroblast proliferation. Normal 
epithelial cells inhibit fibroblast proliferation in vitro probably by 
excretion of inhibitory cytokines (72;76). More specific investigation of 
the response of epithelium to transplantaton injury seems justified. At 
the moment, however, we have no good model directly focusing on 
role of airway epithelial cells in the development of OB/OAD.  

 
3.2. Transgenic animal model for epithelium specific immune 

response in OAD study 
 
Trachea transplantation is a convenient technique for investigation of 
epithelial responses. A drawback of studying OAD in an allogeneic 
tracheal transplant is that immune responses are directed against all 
cell types of the graft tissue. This is so, because the recipient’s 
immune system recognizes alloantigens on all cells expressing these 
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antigens. So all cells in the trachea grafts are attacked and is 
impossible to investigate specifically the airway epithelium injury and 
its effects in OAD development after transplantation. 

Transgenic animals expressing a neoantigen on a specific type of 
tissue may provide a new option to investigate the role of epithelium 
specific response in OAD. In a recent study, trachea transplants from 
HLA-class I transgenic mice were shown to induce alloreactive CD4 T 
cells and alloantibodies against the HLA-class I neoantigens (77). 
Although this is clearly an improved model to investigate the role of a 
single alloantigen (HLA-class I) in OAD, it still has a major drawback, 
since all types of tissue cells may express the neoantigen, making it 
not suitable for the study of single type of tissue, such as epithelium. 
To allow investigation of immune injury to be directed against an 
epithelium specific neoantigen in mouse tracheas, we decided to use 
the human epithelial glycoprotein-2 (hEGP-2) transgenic mice as 
donors. In these transgenic mice, hEGP-2 antigens are expressed 
exclusively on epithelial cells. Using hEGP-2 transgenic mice as 
donors, we were able to investigate whether the hEGP-2 antigen 
induces epithelium specific immune response after trachea 
transplantation and whether the response causes epithelial injury in 
the transgenic trachea transplants. This model also gave the 
opportunity to immunize recipients prospectively with the hEGP-2 
antigen before transplantation. In this way, a pre-existing immunity 
directed exclusively to transplanted epithelium was induced. 

 
3.3. Blockade of immune responses and airway epithelium protection 

 
In clinical transplantation, immunosuppressive agents such as 
cyclosporine A (CsA), FK506 and rapamycin have been shown to 
effectively prolong graft survival (78). Using these drugs, alloreactive T 
cell responses are either reduced or blocked. Possible side effects, 
such as the CsA involvement in pro-fibroproliferation (79) or the pro-
inflammatory effect of CsA and FK506 (11), are hampering the full 
exploration of these therapies. Another approach is the treatment by 
(monoclonal) antibodies against T cells, such as Anti-thymocyte 
Globulin (80-82), Anti-Cytotoxic T Lymphocyte Antigen-4 (83) or 
antibodies against CD2 and CD3 T cell common antigens (84). These 
antibodies have been used for depletion of T cells for prolong graft 
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survival. However, all these drugs are not specific for alloreactive T 
cells but modulate other normal T cells as well. This increases the 
recipient sensitivity to infection as the body defense system is 
suppressed. 

Recently, a novel monotherapy using anti-CD45RB monoclonal 
antibodies (mAb) to deplete recipient T cells was investigated to block 
T cell responses and to prolong allograft survival (85). The CD45RB 
molecule belongs to a family of transmembrane protein tyrosine 
phosphatases that is expressed by leukocytes  and play a critical role 
in regulating T-cell activation through modulating the activation status 
of the T cell receptor. In animal studies, mAb MB23G2 against 
CD45RB prolonged allograft survival through T cell depletion. These 
antibodies are T cell specific, easy in management and cause no 
severe side effect in animal models. Prolonged survival has been 
demonstrated after engraftment of islets (86), hearts and kidneys in 
MHC disparate mice after the treatment of recipients with anti-
CD45RB mAb (87;88). Therefore, it seems worthwhile to investigate if 
a protective effect on transplant airway epithelium preventing OAD 
can be found in our mouse trachea transplant model.     

 
4. Main issues addressed and the scope of this thesis 
 

4.1. Epithelium dynamics during injury and its role in OAD 
 

It is essential to know the behavior of airway epithelium upon 
transplantation injury and to establish its role in airway obliteration. 
We transplanted rat tracheas to observe airway changes post 
transplantation in a rat model (chapter 2). Injury was caused by 
rejection of the MHC fully mismatched tracheas and by enzymatic 
denudation of syngeneic transplants. Analyses were focused on 
epithelium integrity, the time point at which fibroproliferation and 
obliteration occurred. A series of experiments was carried out to 
stimulate repair of airway epithelium by isolation and reseeding of 
epithelial cells in trachea transplants. 
  

4.2. Epithelium specific immune responses 
 
In chapter 3, we introduced the hEGP-2 transgenic mouse OAD 
model for the study of epithelium specific immune responses. The 
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recipient immune responses against the transgenic grafts were 
studied in regards of both humoral and cellular reactivity. The effect of 
the immune responses on epithelium and its subsequent effect on 
OAD were analyzed. This is for the first time that the effect of a single 
type of tissue specific immune response is studied in a transplant 
setting.  
 

4.3. OAD development under pre-existing immunity 
 
In chapter 4 the OAD development under pre-existing epithelial cell 
specific immunity was studied further. Recipient mice were immunized 
before transplantation to induce pre-existing immunity for hEGP-2 
grafts. The reasoning is to mimic the immunity in allotransplantation 
where alloantibodies and T cells may directly recognize alloantigens. 
In our model, however, the pre-existing immunity was directed 
exclusively towards epithelium. This allowed us to analyse epithelium 
behavior and its effect on OAD development.   
 

4.4. Anti-CD45RB antibody monotherapy to prevent OAD 
 

The prevention of OAD by blocking allreactive T cells in an allogeneic 
trachea transplantation model is evaluated in chapter 5. To reduce 
the recipient T cells, a leukocytes antibody anti-CD45RB was 
administered in this model and the effect of this antibody on 
epithelium protection and OAD development was evaluated.           
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