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1. Introduction

The strategic Asset Liability Management (ALM) problem fmnsion funds is aly-
namic decision problem undewncertainty Management of assets involves decisions
on the strategic portfolio mix, and the liabilities — coisig of (future) pension pay-
ments — depend on indexation policies. Because of the lomg tiorizon over which
the liabilities range, typically in the order of 30 yearse throblem is inherently dy-
namic. Moreover, uncertainty plays a major role becauseasggt investments yield
unknown pay-offs; by way of the valuation of future liab#és at market value, this is
also a source of uncertainty on the liability side.

The goal of the ALM process is to enable payment of current fahure pensions.
This should be done at minimal funding costs, consistingasftiibutions by active
participants of the fund and the sponsor (e.g., the compakihg the fund), and
subject to laws and the rules specified by the regulationoaitytfor pension funds. In
addition, the outcome has to confirm to the long-term polidgs of the pension fund.

Thus, in general terms the ALM problem is to seleetcisionson allocation of the
assets, the contributions, indexation of future paymemtative to e.g. wage inflation),
etcetera, which areptimalin some sense, subject to a number of constraints and taking
care of uncertainty in an explicit way. All these aspectstaken care of in a so-called
multistage recourse modewhich is a model for decision making under uncertainty
belonging to the field of stochastic programming. Indeedltistage recourse models
have been applied successfully to a wide range of financihbtrer problems, see e.g.
[13] and [10].

As detailed below, multistage recourse models compriséiadal decisions which
allow to react conditionally on new information, becomingiéable as the future un-
folds. The corresponding additional or recourse variabt@se at certain unit costs,
so that the risk associated with a current decision is mddeyeassigning additional
costs due to uncertainty. Alternatively, one may simphaliisv decisions which are
too risky (in some well-defined sense). We will use the lasigproach to explicitly
modelshort-term riskwithin a multistage recourse setting.

For the pension fund problem that we study in this paper,-teng solvency goals go
together with short-term constraints on thuading ratig defined as the ratio of assets
over (discounted) future liabilities. Due to the unceraiimvolved, such a constraint
has to be stated in probabilistic terms. For example, itatdnd formulated as: The
probability that the funding ratio one year from now fallddve 105% should be at
most 5%. In stochastic programming terminology, such ii&ins on the feasible de-



cisions are called probabilistic @hance constraintdhey are closely related to the
well-known Value-at-Riskconcept used in financial applications.

The inclusion of chance constraints in multistage recoummsélels for pension fund
ALM problems was pioneered by Dert [1]. In this paper we foomsan alternative
formulation of short-term risk constraints in ALM modelsidwn asintegrated chance
constraint{ICC). As detailed below, our motivation to advocate theefd€Cs comes
both from modeling as well as computational considerations

The remainder of this paper is organized as follows. Firsbuténe the environment in
which the problem is set. In Section 2 we then formalize an Adedision problem for
pension funds, arriving at a multistage recourse modelektin 2.2 we motivate and
describe in some detail the role and implementation of natiegl chance constraints
in this model. In Section 3 we present numerical results famall example problem.
Finally, in Section 4 we outline a possible approach to miadahid-term risk in such
a multistage recourse model.

1.1 Dutch pension funds and regulation

Before entering upon these detailed issues, we first prasemé general background
information on Dutch pension funds, since this is the sgttihour ALM application.
In The Netherlands, as in several other countries, old-a&gsipns consist of a state
allowance complemented by payments out of pension saviiigse savings are accu-
mulated during each worker’s active career by paying couations (a fraction of the
wages) to a pension fund, both by the employee and the emplypension fund may
be related to or owned by a single company, a branch of ingusta specific group of
professionals.

Currently, there are about 830 pension funds in The Nethaslal heir total asset value
is of the same order of magnitude as the Dutch GDP, see Tahl&\hile these data
suggest that Dutch pension savings are at a relatively leigtl,Ithe more recent ab-
solute numbers of Table 1.2 indicate that there is ampleores concern: following
a period of very rapid growth, total asset value has beeririeglsince 2000. On the
other hand, liabilities are forecasted to grow steadilysfreral more years, mainly due
to demographic developments. Indeed, although no recéntabftatistics are avail-
able, current estimates indicate that the funding ratid®b ®f the Dutch pension funds
is too low, and that the accumulated funding shortage ofgtasip of funds amounts
to 23 billion Euros.

Thus, the situation has changed dramatically over the éastykars. The Dutch regu-



Total assets/GDBn %)

France 6.87
Germany 14,51
Italy 2.14
Netherlands 113.02
Spain 3.97
UK 79.06
us 104.95

Table 1.1: Total asset value of pension funds as a percentage of GDP (in 1997, source:
OECD).

lating authority for pension funds (DNB, saét p: / / www. dnb. nl ) has reacted by
adapting the rules by which pension funds have to operate td¢hnical details have
been in progress for quite some time. In our model, we propopkementations of the
following three conceptual criteria:

(i) Short termWith high reliability, the funding ratio in the next year siid be at
least at some level specified by the regulating authority.

(i) Mid term: Seen over a number of years, the funding ratio may fall shaoé-o
sionally, but if this happens too often or if the shortagenis large (as defined
by the regulating authority), some remedial action is resli

(i) Long term:The solvency of the pension fund should be sufficiently highm
a going-concern and/or liquidation perspective.

Next we will see that all three criteria are covered in the tistige recourse ALM
model that is outlined below. In particular, we will focus tive representation of the
short-term criterion by means of integrated chance canssta

2. Multistage recourse ALM for pension funds: a reference mdel

As explained in the introduction, our strategic ALM problésna dynamic decision
problem under uncertainty. We are asked to come up with idesisuch as the con-
tribution rate and the portfolio mix, and possibly a reméedgtion in case the funding
ratio is insufficient. These decisions need to be taken right, in the face of uncer-
tainty about investment yields and other problem pararaeter



Year Total asset value

1997 333
1998 387
1999 451
2000 464
2001 456

Table 1.2: Total asset value (x 10° €) of Dutch pension funds (source: DNB).

We consider a large Dutch company which has its own pensiod. fli will be as-
sumed that the pension plan is benefit defined, and that thpaioacts asponsor
of the fund: if the funding ratio is too low, the company maydidiged to provide (or
guarantee) additional money. Thus, the pension fund hag twurces of funding its
liabilities: revenues from its asset portfolio, regulanttdbutions made by the company
and the participants of the fund, and remedial contribstiorade by the company. The
pension fund has to decide periodically how to distributeitivestments over different
asset classes and what the contribution rate should beén tarcheet all its obligations.

Within a pension fund, there are typically different grombgarticipants, who all have
their own interests. For example, active participants kews) prefer to pay a low con-
tribution rate, whereas passive participants (retirees)ancerned about the level of
current payments (indexation). The company (also callegionsor) prefers low con-
tribution rates, and wishes to avoid remedial contribwgiorhe ALM model should ad-
equately reflect the - often conflicting - objectives of aléirest groups. This is achieved
by means of constraints and/or penalty terms in the objedtiaction.

In addition, as already mentioned in the Introduction, ¢here a number of regulatory
rules which further restrict the decisions of the pensiamdfurhe long-term solvency
requirements are reflected by the multi-stage characteneofrtodel. How to model

the short-term criterion is discussed in detail in Sectidh and an approach to mod-
eling the mid-term criterion (not considered in the nurmariexample of Section 3) is
outlined in Section 4.

In the following we will look at a multi-stage recourse modepresenting this problem.
We will focus on the asset side of the problem, so the inderaiblicies are left out of
consideration.



2.1 Basic model

We split the planning horizon ifi subperiods of one year each, and denote the resulting
time stages by an index Timet = 0 is the current time and= T is the length of the
horizon. By year (r =1, ..., T), we mean the span of tinje— 1, 1).

The uncertainty is modelled through a large but finite numbef scenarios. Each
scenario represents a possible realization of all uncepaiameters in the model. Let
w, represent the vector of random parameters whose valuesvaa@ed in year. Then
the set of all scenarios is the set of all realizations, ..., »}),s € S :={1,..., S5},

of (w1, ..., wr). Each scenarie has a probabilityy®, wherep® > 0 andz‘f:l pf =1
Since in a dynamic model information on the actual values®efuncertain parameters
is revealed in stages, a suitable representation of thefs&tenarios is given by a
scenario tree. An example of a scenario tree is given in EiguEach path from=0
tor = T represents one scenario.

R

t=0 t=1 t=2 t=3

Figure 1: Example of a scenario tree, with= 3 andS = 17.

At every node(z, s) of the tree, decisions are to be made which are optimal given t
history up to then and under uncertainty about the remaifuinge. In the correspond-
ing scenario representation of the problem, explicit aanmsts are added to enforce
nonanticipativity of the decisions.



2.2 Integrated chance constraints

The short-term criterion proposed in Section 1.1 reads ikat years funding ratio
should be on or above a given levelsaya = 105%, withhigh reliability. The formu-
lation of this criterion clearly indicates its stochastature, which should be reflected
in the way it is modeled. Starting from traditional chancesteints, we will arrive at
our implementation of an adapted short-term criterion bymseof integrated chance
constraints.

2.2.1 Conceptual motivation

In our ALM model, a direct translation of the short-term erion would be thehance
constraint

PHF . > al|(t, )} >y,

where F;,, is the funding ratio just before a possible remedial contidn by the
sponsory; is the required reliability at time(e.g.y; = 0.95), and the notation indicates
that probability is measured conditional @ns) being the current node. Using that the
funding ratio is defined as the ratio of the assgts, over liabilitiesZ, 1, an equivalent
formulation is

PrA},; —aLiy1 > 0[(t,9)} > . 1)

Note that the risk measure underlying such a chance comstsagualitative in the
sense that it measures the probability of a shortfall of timeling ratio, but the magni-
tude of the shortage is not taken into account. In other eajptins this may be justified
or even preferable, but in an ALM model the size of the fundihgrtage is obviously
relevant.

Of course, this criticism actually applies to the underyishort-term criterion sug-
gested the DNB, which should take the magnitude of fundiraytages into account.
Thus, we propose to replace the current criterion lggantitativeone-year risk mea-

sure. In our ALM model described below, this role is playediiggrated chance con-
straints To introduce this concept, we return to the chance coms$trand will see that

it comes up in a natural way when we look at computationaleissu



2.2.2 Computational motivation and definition

In the chance constraint (1), bot#}, , and L,,; are random quantities because they
depend on underlying random parameters such as asset Weldsover, they depend
linearly on the current decision$ which involve asset allocation and contributions. To
stress these relations and in order to simplify the notafionthe time being we will
use the generic representation of an (individual) chanostcaint

P{Bx —d = 0} > v,

wherex is ann-vector of decision variables and thevector B and the scala# are
both random parameters. As in our ALM model, we assume(ihat) follow a finite
discrete distribution with realization®*, d°) and corresponding probabilitigs, s €
S=1{1...,8}.

All other constraints in our ALM model are linear, and alse thance constraint can
be represented by linear constraints, as follows.

Bx+8M=>d°, seS§

Yoy <il-y

seS
8 e€{0,1}, seS,

whereM is a sufficiently large number. Note however, that this fdatian necessarily
useshinary variabless®, s € S, to indicate realizationéB*, d*) which are unfavorable
for x, e.g., which would result in underfunding in the ALM modehéTl probability
weighted average of these binary variables then equalsskefrunderfunding asso-
ciated with the decisiorr, which should be at most & y. Because of these binary
variables, the requested inclusion of a chance constragveay nodez, s) (except at
the end nodes) of our multistage recourse model would haxegeseonsequences for
the computational tractability of the model.

For problems involving binary (or general integer) deaisi@riables, a natural ap-
proach is to relax the integrality restrictions and solve tisulting relaxation. In our
case, such a relaxation transforms the mixed-integerrlmegaesentation of the chance
constraint into a system of linear constraints in contirsueariables, which is equiva-



lent to
B'x+y'>d*, seS§

ijp"y"' <B @)
se
y>0, se€e8,

where the parametgt is non-negative. By the first set of inequalities, each ofrtbie-
negative variables® is not less than the shortfalf — B*x (if any). The next inequality
therefore puts an upper boumdon the expected shortfallThat is, the system (2) is
equivalent to

S0 (B —d') <.

seS
where(a)~ := max{—a, 0} is the negative part af € R, or
E[(Bx—d)] <8 3)

with E denoting expectation with respect to the distributiori®fd). Such constraints,
bounding an expected shortfall, were namietkgrated chance constrairtty Klein
Haneveld [6], since it can be shown that
0
E[(Bx—d)"] = / Pr{Bx —d < u}du. (4)
The integrand in (4) is the complement of the probabilityfRr — d > u}; it appears
in an equivalent risk version

PiBx —d <u} <1—y(u)

of the underlying chance constraint, where the parametet/1u) denotes the maxi-
mum acceptable risk of not meeting the target lexel

Loosely speaking, the identity (4) shows that an integrategihce constraint corre-
sponds to some aggregation of the infinitely many chanceti@onts which — in theory

— could be defined for all possible target levels 0. By indicating, through the cor-
responding risk parameters-1y (), that larger shortages are even less acceptable
than smaller ones, this indeed results in a guantitatikennisasure defined in terms of
traditional, qualitative chance constraints.

In [8] it is shown that integrated chance constraints arsatjorelated to constraints
on theconditional surplus-at-risKCSaR), which is a variant of conditional value-at-
risk, see e.g. [11]. Essentially, the difference is thatid@C constraint the shortage is



measured with respect to some a priori chosen thresholdhedes whereas in a CSaR
constraint the threshold is equal to the surplus-at-riskichvis itself an outcome of the
optimization process.

2.2.3 Implementation as short-term risk constraints

We conclude that integrated chance constraints providéabteiway to model short-
term risk in an ALM model, both from conceptual as well as catagional point of
view. Returning to the specific notation of our ALM model, vieis include an inte-
grated chance constraint

E |:(A;k+l - (XL,+1)7 I(z, S)] <B (5)

in every subproblents, s), t < T, of our multistage recourse model. They reflect our
alternative short-term criterion, stating thagxt years funding ratio should be such that
the expected funding shortfall is at mgst given that the current state(s s).

The parameterg,,r =0, ..., T — 1, giving the maximal acceptable expected funding
shortage, of course need to be specified numerically. ltidimunoted that in general it
is harder to come up with these values than it would be forehehility parameters;,

as required for traditional chance constraints. The Igté@ameters are scale free, and
correspond to a risk notion which is more familiar to e.g. agers of pension funds.

With S denoting the number of possible realizations frans) in years + 1, it fol-
lows from (2) that inclusion of the integrated chance caistr(5) in subproblentz, s)
comes at the price of; additional continuous variables as¢l + 1 additional linear
constraints. In many applications, e.g. in the numericahgxe belowS; is in the or-
der of 5 to 10, so that this extension of the model providesamputational hardship.

In case the number of realizations is substantially larggy, 1000 or more, the linear
programming (LP) representation (2) becomes ineffician{8] it is shown that the
induced feasible se&t(8), corresponding to an integrated chance constraint (3)avith
underlying finite discrete distribution afipoints, is given by

Cp) =) xeR ) p“(d—B'x) <Bt. (6)
KcS kek
Since there are2— 1 non-empty subsets & = {1, ..., S}, it follows that C(B)
is a polyhedral set defined by as many linear constraintsaffpmon-trivial number
of realizationss, it is obviously not sensible (if at all possible) to expligiinclude
all of them in the model. However, the representation (6)eulies a very efficient

10



cutting plane algorithm for solving LP problems with (vania of) integrated chance
constraints. For a small example problem with 1000 reatinat an optimal solution
is found after generating only 9 out of the approximately°d@onstraints defining the
setC(B8). Further numerical evidence shows that the cutting plagerghm is much
faster than the straightforward LP approach on larger prabhstances.

3. Numerical illustration

In this section we present numerical results for a smalbims# of a multistage ALM
model. The main purpose is to illustrate the effect of inigdshort-term risk con-
straints, modeled as integrated chance constraints. $red@mple we include such a
constraint only at = 0,

E[(4} - aL) | =8,

thus requiring current decisions which are not too riskyasueed by the expected
shortfall below the target funding level at= 1.

3.1  Model description

We define the following indices, variables, random paramseda@ad deterministic pa-
rameters. (To simplify the notation, we omit the scenariteixs.)

Indices

t timeindex,t=0,1,...,T

i index of asset classes=1,..., N

Variables

Z, remedial contribution by the sponsor at time

X;;  value of investments in asset clasat the beginning of year
c41 contribution rate for year + 1

A, total asset value at tinre

Af total asset value at timejust beforea possible remedial contributiafy,

A} value of assets in clagdought at time

A;;  value of assets in clagssold at timer

Ur  underfunding at time horizon with respect to the originaiding ratioAo/ Lo

Random parameters

11



Tit random return on asset clasi yeart

W, random total wages of active participants in year
P, random total benefit payments in year

L, random value of liabilities after year

Deterministic parameters
k; proportional transaction cost for asset class

w! lower bound on the value of asset class a fraction of the total asset portfolio
w! upper bound on the value of asset claas a fraction of the total asset portfolio
c! lower bound on the contribution rate

" upper bound on the contribution rate

o lower bound on the funding ratio

Yy discount factor for a cash flow in year

Az penalty parameter for a remedial contribution
Au penalty parameter for underfunding at time horizon

The decisions attimee 75:= {0, 1, ..., T — 1} are denoted by the vector

xl‘ - (Zl" le! ceey XNT! cf+l)‘
Atthe time horizorr = T, only the decisiorZy occurs. The variables,, AT, ..., A},
AL, ..., Ay, andUr are state variables. They are determined by the parameters a

the decision variables.

The state variablel?, denoting the value of the assgist beforea possible remedial
paymentZ;, is used to model the short-term risk criterion, and to deiee the size of
the remedial contribution (if any): it must hold that > (A} — o L,)".

The randomness of the asset returns and the total wagesivad patticipants is ob-
vious. The randomness of the liabilities results from theiluation at market value.
Demographic factors cause the randomness in the benefitgqragntorr € 7; :=
{1,2,..., T}, we define the random vectar with realizations

w; =y, ...y, W', P’ L}), seS8.
The constraints in the model can be divided into two type®otraints: actuarial prin-
cipals, and policies. In each scenariand at every time (that is, in each nodg, s)),

the constraints must be satisfied. As before, we omit thexinde our presentation of
the constraints below.

Let us first formulate the constraints based on actuariatipies:
A= vazl(l+rit)xit +eoW,—P+Z, teTl

12



The total value of the assets at timéNote thatd, = AT + Z,.
Xi,l+l = (l+rit)Xit - A; +Aj; _kl(A; + A;i;)!l = 15 ~~-5N7 re 7—6

The value of the investments in asset clasa the beginning of the year+ 1.
YLK+ k(Ay + A = A, 1eTo
All assets should be allocated.
The policies of the pension fund are reflected by the follgndonstraints:
w; Z;\;l Xjo = Xir = wj Zyzl Xj teT
Lower and upper bounds on the value of asset alassa fraction of the total
asset portfolio.
d<e=c, tely
Lower and upper bounds on the contribution rate.
Arzal,, teT;
Lower bound on the funding ratiB; := A,/L;. The levelx is prescribed by the
regulator.
Ar +Ur = FoLt
It is desired that the funding ratio at the time horizon is Inelow the funding
ratio atr = 0.

Finally, the integrated chance constrallh[(A*l‘ — aLl)_] < B, reflecting the short-
term risk criterion, is implemented as a system of linearst@ints analogous to (2).

The pension fund aims to minimize the total expected costindihg, i.e., the contri-

bution rates for the active participants and the compard/tlaeremedial contributions.
Moreover, penalty costs are assigned to the undesirablesevemedial contributions,
and a low funding ratio at the planning horizon. All these poments together consti-
tute the objective function:

T
E [Z yi(eWs + Az Zy) + mUUT} .
t=0

3.2 Data

In this example model we consider four asset clasaesH 4), whose deterministic
properties are described in Table 3.1. All amounts are ifiong of euros.

13



assetclass i w!  w! k; initial investments

1

stocks 1 0.30 0.60 0.00425 7656
bonds 2 0.30 0.60 0.00150 4048
realestate 3 0.10 0.25 0.00425 3080
cash 4 0 0.20 0.00050 1056

Table 3.1: Data on the asset classes.

The values of the other deterministic parameters and paeasnebserved at = 0
shown in Table 3.2.

=0 =1 Wo = 10520
" =021 y;=0.9693 Py = 1115
a=105 y,=0.9308 Lo = 15200
Ay =120 y3=0.8873 co=0.17
Az =125

Table 3.2; Values of some deterministic parameters, and observed random parameters
and contribution rateat r = 0

The model has 4 stages, allowing for decisions &t 0 (now) up to the time horizon

T =3.Foreachyedr — 1,1),t = 1, 2, 3, the asset returns, wages, benefit payments,
and liabilities are modeled by random parameters. Forduteierence, some statistics
on the distribution of the asset returns foe 1 are presented in Table 3.3.

parameter mean standard deviation correlations
i1 r12 r13 14
r 0.068 0.159 1.00 0,50 -0.11 0.13
r12 0.058 0.060 050 1.00 0.17 -0.22
713 0.065 0.112 -0.11 0.17 1.00 -0.31
ria 0.032 0.017 0.13 -0.22 -0.31 1.00

Table 3.3: Summary statistics for the random returnsin year 1.

For further details on the distribution and the constructié the scenario tree for this

14



example, we refer to the forthcoming PhD thesis of S.J. Prijv

In each state of the world before the horizon, uncertainguathe future is represented
by 10 different realizations of the random parameters it addhe remaining years.
Thus, there are§ = 10" = 1000 scenarios in total. In each node, the conditional
probabilities are 0.1, so that each scenar@s probabilityp® = 0.001.

Using the data of the Tables 3.1, we compute that the curssdt araluedq equals
16513.4 million euro. Thus, the initial funding ratiy = Ao/Lo equals 1.09, which is
above the threshold value= 1.05.

3.3 Results

All numerical results were obtained using the model managersystem SLP-IOR
(see e.g. [4, 5]). Because of the small size of the recoursgeinthe equivalent LP
model could be solved by any of the LP codes available in SDR-h negligible time.

B opt.val direct future Xi0 Xo0 X3 Xao a Zo
00 4686 1318 3368 7427 4951 4126 0 0.128 0
600 4687 1418 3268 7427 4951 4126 0 0.138 0
550 4688 1540 3148 7427 4951 4126 0 0.150 0
500 4690 1661 3029 7427 4951 4126 0 0.161 0
450 4694 1782 2911 7427 4951 4126 0 0.173 0
400 4703 1945 2757 7158 5220 4126 0 0.199 0
350 4720 2107 2612 6887 5489 4125 0 0.205 0
300 4767 2268 2498 6949 6465 3183 0 0.210 92
250 4829 2469 2359 6660 7016 3080 0 0.210 252
200 4896 2674 2222 6078 7447 3080 310 0.210 416
150 4998 2937 2060 5477 6713 3080 1855 0.210 626
100 5108 3171 1936 5974 5661 2335 3342 0.210 814
50 5233 3472 1761 5264 6561 2213 3509 0.210 1055
0 5529 4147 1381 5428 5967 3080 3619 0.210 1595

Table 3.4: Results for different values of 8.

Initially, we solved the ALM model without an integrated clta constraint at = 0. It
appears that for the optimal solution, the expected shiooffthe assets with respect to
« times the liabilities at = 1 equals 647 million euro (3.9% afy). Subsequently, we

15



solved the model including the integrated chance constresstricting the expected
shortfall atr = 1 by several values of the right-hand side paramgtefhe resulting
optimal values and first-stage solutions are presentedhile Ba4.

Of course, the optimal value increases with decreasingesatii3. However, as illus-
trated in Figure 3.1, the increase is relatively small (kss 2%) for values op as
small as 300 (1.8% ahy). The influence on the composition of the total costs is much
stronger: over this range, direct costs increase shar@Bp)7whereas expected future
costs fall (26%).

5000 - -
total

4000

3000

2000

direct

1000 -

(6]

I I I I I I
(o] 100 200 300 400 500 600 700

Figure 3.1: Optimal value (direct and expected future costs) as function of 3.

Next we consider the effect of the integrated chance cadnstoa the first-stage de-
cisions, i.e., on the contribution rate, the asset mix, dwedrémedial contribution at
t = 0. ForB decreasing to 450, we see that the request for higher sirontreliability

is satisfied by increasing the contribution rate. But the keeps decreasing, also the
asset mix changes gradually: less is invested in relatrisky stocks and real estate,
and more in bonds and eventually also cash. For extremelyatwes ofg, this pattern
is less clear due to binding lower and upper bounds on théuwelamounts of stocks
and cash, respectively. (See Figure 3.2.)

For B lower than 350, remedial contributiotd are part of the optimal solution at=
0. On first sight, they appear to be larger than necessarngxaonple, to accommodate
a decrease ¢f from 300 to 250, one could reason that an increaséafith 50 should
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Figure 3.2: Asset mix and contribution rate as function of 8.

be sufficient. However, due to the penalty paramater= 1.25, this would increase
direct costs by 62.5. In the presented optimal solution, frictv Z; is increased by
160 at additional direct costs of 200, this is (more than) pensated by the resulting
decrease of the expected future costs, since the addiassats allow for lower funding
costs in later stages. Obviously, other choices for therpearar 1, will result in a
different balance between direct and expected future .costs

We conclude that, at least in this example problem, the iated chance constraint
on the expected funding shortage appears to be a suitabldotomodeling short-
term risk. In particular, for appropriately chosen valuéghe parametei, it may
lead to a solution which has lower short-term risk in excleafag marginally higher
expected total costs. It should be stressed, however, ¢lettting a good value fof

a priori can be difficult in practice. Given the low computational tsosf including
integrated chance constraints, it may be feasible to findsorgable parameter setting
by numerical experiments.

Finally, let us briefly consider the reliability of the opt@insolutions in terms of the
probability PfA; —a L1 > 0}, i.e., the reliability concept underlying traditional cica
constraints. The solution of the model without integratednze constraint turns out to
have reliability 05, whereas e.g. the solution of the ICC model vitk= 450 is reliable
at the 07 level, ands = 200 yields reliability 08. In this example, it appears that the
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Figure 3.3: Funding costs at + = 0 as function of .

reliability of the solutions increases (step-wise) witlcidasings. In general, however,
this need not be the case. For example, a solution whichsysetahll shortages for every
realization is feasible with respect to the integrated chaionstraint for some small
whereas it has reliability O.

In chance-constrained models, the reliability is usualyuired to be at least 0.9, which
is obtained in this model by setting) = 72. For the current model, higher aspiration
levels actually imply 100% reliability (corresponding teetextreme setting = 0), due

to the fact that each realization at= 1 has probability .. Indeed, this is a general
modeling weakness of chance constraints based on a smalienuwf possible real-
izations, as is often the case for single-period risk cair#ls in multi-stage recourse
models of realistic size.

4. Modeling mid-term risk in the ALM model

In this final section, we briefly describe how the mid-ternk rigiterion introduced
in Section 1.1 can be modeled. This approach is implementéuei ALM model de-
scribed in the forthcoming PhD thesis of Drijver. As we wiks the approach involves
binary decision variables after all.

18



Foremost, the introduction of binary variables in the madglistified by the fact that
they are necessary to include several realistic featuresrimultistage recourse ALM
model. In addition, we have a long-standing interest in (ootational) properties of
recourse models with (mixed-)integer variables, see 8,d.,[12]. In fact, our interest
in this ALM application was raised initially by the obseneat that integer variables
appear naturally in these models.

4.1  Modeling remedial action in case of underfunding

According to our interpretation of the mid-term criterichg funding ratio may oc-
casionally drop below the required lewe] but this should not happen too often nor
should the shortage be too large. Given the long-term ctaara€ the liabilities, this
appears to be very reasonable: there is no compelling reéaseact immediately on a
possibly temporary drop in e.g. stock prices. Indeed, sndmanediate reaction could
very well turn out to be harmful in the longer run. On the othand, if the funding
ratio is too far below the aspired lewe| then immediate action might be necessary to
prevent a further decline.

In the current version of the ALM model, ‘not too often’ is wwrdtood as ‘not in two
consecutive years’. However, with only minor modificatipttse approach outlined
below also applies to the more general interpretation ‘atrimo: out of m consecutive
years'. To simplify the exposition, we do not account herarfimediate action in case
of a very low funding ratio. It is not difficult to see how thisfinement can be modeled.

Essentially, the approach is based on keeping track of yeamhich underfunding
occurs. This calls for the use of binaiydicator variablesn the model. In turn, these
indicator variables are used to determine when a remedialnais necessary in order
to restore the funding ratio to the required lexeln the model, remedial contributions
by the sponsor of the pension fund are used to this end.

With A¥* andL; denoting assets and liabilities in nodes) as before, the constraint
M§) > aL; — AP,

whereM is again a sufficiently large number, forces the indicatoradde 57 to take on
the value 1 in case of a funding shortage. If this happens indwnsecutive years in
the same scenarig then the constraint

m>68_,+6 -1

forces the indicator variable; to become 1, triggering a remedial contributi@,
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equal to the observed current shortagel — A, which is modeled by the constraint
Z8>alf — A® — M(1— 1),

In addition, the model contains constraints which ensua¢ dhremedial contribution

is only allowed in case of underfunding. Because both fupdimortages and remedial
contributions are undesirable events, corresponding fiee@lty costs are included in
the objective function. On top of that, proportional costisremedial contributions are
assigned.

On the opposite side, if the pension fund has a structuralifignsurplus, a restitu-
tion to the sponsor may be required. This is modeled anaklgdo the shortage case
above. (Unfortunately, this issue is currently not as @ht\as a few years ago, when a
first version of the model was developed.) Further realfstitures of the ALM model
include a detailed modeling of indexation of future pengiayments (again using in-
dicator variables), and the use sdft constraintsfor example to model a preference
for gradual changes in the contribution rate from one yedhéonext. For a detailed
exposition of all features included in this model we refefp2] and the forthcoming
PhD thesis of Drijver.

5. Summary and concluding remarks

We motivated and described the role played by integrateticgh@onstraints in an
ALM model for Dutch pension funds. To set the stage, we oatlithe practical setting
as well as our modeling approach for this dynamic decisioblem under uncertainty.

Integrated chance constraints are appropriate for magisiigle-period risk constraints,
in particular if a quantitative risk measure is preferablejs the case here. Moreover,
they are computationally attractive in the given multistagcourse setting, since they
can be formulated in terms of a limited number of linear caists without the need
to introduce additional binary decision variables.

These claims are supported by the numerical results on d eraathple problem. No
computational results on (semi-)realistic data are avkglat this time. However, such
data have been made available to us by a major Dutch pensioh ffuitial outcomes
of an ALM model including integrated chance constraints mmplementing the mid-
term risk criterion as described in the previous sectiotaiakd with a special purpose
heuristic, will be reported in the forthcoming PhD thesiDwijver, and in other publi-
cations.
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We expect that such multistage recourse models, includipdeimentations of various
risk criteria, will prove to be a useful tool in strategic AL8fudies for pension funds.
Even though we believe that this approach allows to modebitapt aspects in a re-
alistic way, the final judgement on such models will have tmedrom the analysis of
numerical results for (semi-)realistic problems.
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