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1. Introduction

The strategic Asset Liability Management (ALM) problem forpension funds is ady-
namic decision problem underuncertainty. Management of assets involves decisions
on the strategic portfolio mix, and the liabilities – consisting of (future) pension pay-
ments – depend on indexation policies. Because of the long time horizon over which
the liabilities range, typically in the order of 30 years, the problem is inherently dy-
namic. Moreover, uncertainty plays a major role because e.g. asset investments yield
unknown pay-offs; by way of the valuation of future liabilities at market value, this is
also a source of uncertainty on the liability side.

The goal of the ALM process is to enable payment of current andfuture pensions.
This should be done at minimal funding costs, consisting of contributions by active
participants of the fund and the sponsor (e.g., the company backing the fund), and
subject to laws and the rules specified by the regulation authority for pension funds. In
addition, the outcome has to confirm to the long-term policy rules of the pension fund.

Thus, in general terms the ALM problem is to selectdecisionson allocation of the
assets, the contributions, indexation of future payments (relative to e.g. wage inflation),
etcetera, which areoptimal in some sense, subject to a number of constraints and taking
care of uncertainty in an explicit way. All these aspects aretaken care of in a so-called
multistage recourse model, which is a model for decision making under uncertainty
belonging to the field of stochastic programming. Indeed, multistage recourse models
have been applied successfully to a wide range of financial and other problems, see e.g.
[13] and [10].

As detailed below, multistage recourse models comprise additional decisions which
allow to react conditionally on new information, becoming available as the future un-
folds. The corresponding additional or recourse variablescome at certain unit costs,
so that the risk associated with a current decision is modeled by assigning additional
costs due to uncertainty. Alternatively, one may simply disallow decisions which are
too risky (in some well-defined sense). We will use the latterapproach to explicitly
modelshort-term riskwithin a multistage recourse setting.

For the pension fund problem that we study in this paper, long-term solvency goals go
together with short-term constraints on thefunding ratio, defined as the ratio of assets
over (discounted) future liabilities. Due to the uncertainty involved, such a constraint
has to be stated in probabilistic terms. For example, it could be formulated as: The
probability that the funding ratio one year from now falls below 105% should be at
most 5%. In stochastic programming terminology, such restrictions on the feasible de-
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cisions are called probabilistic orchance constraints. They are closely related to the
well-knownValue-at-Riskconcept used in financial applications.

The inclusion of chance constraints in multistage recoursemodels for pension fund
ALM problems was pioneered by Dert [1]. In this paper we focuson an alternative
formulation of short-term risk constraints in ALM models, known asintegrated chance
constraints(ICC). As detailed below, our motivation to advocate the useof ICCs comes
both from modeling as well as computational considerations.

The remainder of this paper is organized as follows. First weoutline the environment in
which the problem is set. In Section 2 we then formalize an ALMdecision problem for
pension funds, arriving at a multistage recourse model. In Section 2.2 we motivate and
describe in some detail the role and implementation of integrated chance constraints
in this model. In Section 3 we present numerical results for asmall example problem.
Finally, in Section 4 we outline a possible approach to modeling mid-term risk in such
a multistage recourse model.

1.1 Dutch pension funds and regulation

Before entering upon these detailed issues, we first presentsome general background
information on Dutch pension funds, since this is the setting of our ALM application.
In The Netherlands, as in several other countries, old-age pensions consist of a state
allowance complemented by payments out of pension savings.These savings are accu-
mulated during each worker’s active career by paying contributions (a fraction of the
wages) to a pension fund, both by the employee and the employer. A pension fund may
be related to or owned by a single company, a branch of industry, or a specific group of
professionals.

Currently, there are about 830 pension funds in The Netherlands. Their total asset value
is of the same order of magnitude as the Dutch GDP, see Table 1.1. While these data
suggest that Dutch pension savings are at a relatively high level, the more recent ab-
solute numbers of Table 1.2 indicate that there is ample reason for concern: following
a period of very rapid growth, total asset value has been declining since 2000. On the
other hand, liabilities are forecasted to grow steadily forseveral more years, mainly due
to demographic developments. Indeed, although no recent official statistics are avail-
able, current estimates indicate that the funding ratio of 25% of the Dutch pension funds
is too low, and that the accumulated funding shortage of thisgroup of funds amounts
to 23 billion Euros.

Thus, the situation has changed dramatically over the last few years. The Dutch regu-
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Total assets/GDP(in %)

France 6.87
Germany 14.51
Italy 2.14
Netherlands 113.02
Spain 3.97
UK 79.06

US 104.95

Table 1.1: Total asset value of pension funds as a percentage of GDP (in 1997, source:
OECD).

lating authority for pension funds (DNB, seehttp://www.dnb.nl) has reacted by
adapting the rules by which pension funds have to operate. The technical details have
been in progress for quite some time. In our model, we proposeimplementations of the
following three conceptual criteria:

(i) Short term:With high reliability, the funding ratio in the next year should be at
least at some level specified by the regulating authority.

(ii) Mid term: Seen over a number of years, the funding ratio may fall short occa-
sionally, but if this happens too often or if the shortage is too large (as defined
by the regulating authority), some remedial action is required.

(iii) Long term:The solvency of the pension fund should be sufficiently high,from
a going-concern and/or liquidation perspective.

Next we will see that all three criteria are covered in the multistage recourse ALM
model that is outlined below. In particular, we will focus onthe representation of the
short-term criterion by means of integrated chance constraints.

2. Multistage recourse ALM for pension funds: a reference model

As explained in the introduction, our strategic ALM problemis a dynamic decision
problem under uncertainty. We are asked to come up with decisions such as the con-
tribution rate and the portfolio mix, and possibly a remedial action in case the funding
ratio is insufficient. These decisions need to be taken rightnow, in the face of uncer-
tainty about investment yields and other problem parameters.
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Year Total asset value

1997 333
1998 387
1999 451
2000 464
2001 456

Table 1.2: Total asset value (×109 e) of Dutch pension funds (source: DNB).

We consider a large Dutch company which has its own pension fund. It will be as-
sumed that the pension plan is benefit defined, and that the company acts assponsor
of the fund: if the funding ratio is too low, the company may beobliged to provide (or
guarantee) additional money. Thus, the pension fund has three sources of funding its
liabilities: revenues from its asset portfolio, regular contributions made by the company
and the participants of the fund, and remedial contributions made by the company. The
pension fund has to decide periodically how to distribute the investments over different
asset classes and what the contribution rate should be in order to meet all its obligations.

Within a pension fund, there are typically different groupsof participants, who all have
their own interests. For example, active participants (workers) prefer to pay a low con-
tribution rate, whereas passive participants (retirees) are concerned about the level of
current payments (indexation). The company (also called the sponsor) prefers low con-
tribution rates, and wishes to avoid remedial contributions. The ALM model should ad-
equately reflect the - often conflicting - objectives of all interest groups. This is achieved
by means of constraints and/or penalty terms in the objective function.

In addition, as already mentioned in the Introduction, there are a number of regulatory
rules which further restrict the decisions of the pension fund. The long-term solvency
requirements are reflected by the multi-stage character of the model. How to model
the short-term criterion is discussed in detail in Section 2.2, and an approach to mod-
eling the mid-term criterion (not considered in the numerical example of Section 3) is
outlined in Section 4.

In the following we will look at a multi-stage recourse modelrepresenting this problem.
We will focus on the asset side of the problem, so the indexation policies are left out of
consideration.
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2.1 Basic model

We split the planning horizon inT subperiods of one year each, and denote the resulting
time stages by an indext . Time t = 0 is the current time andt = T is the length of the
horizon. By yeart (t = 1, . . . , T ), we mean the span of time[t − 1, t).

The uncertainty is modelled through a large but finite numberS of scenarios. Each
scenario represents a possible realization of all uncertain parameters in the model. Let
ωt represent the vector of random parameters whose values are revealed in yeart . Then
the set of all scenarios is the set of all realizations(ωs

1, . . . , ω
s
T ), s ∈ S := {1, . . . , S},

of (ω1, . . . , ωT ). Each scenarios has a probabilityps, whereps > 0 and
∑S

s=1 ps = 1.
Since in a dynamic model information on the actual values of the uncertain parameters
is revealed in stages, a suitable representation of the set of scenarios is given by a
scenario tree. An example of a scenario tree is given in Figure 1. Each path fromt = 0
to t = T represents one scenario.

t=3t=2t=1t=0

Figure 1: Example of a scenario tree, withT = 3 andS = 17.

At every node(t, s) of the tree, decisions are to be made which are optimal given the
history up to then and under uncertainty about the remainingfuture. In the correspond-
ing scenario representation of the problem, explicit constraints are added to enforce
nonanticipativity of the decisions.
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2.2 Integrated chance constraints

The short-term criterion proposed in Section 1.1 reads thatnext years funding ratio
should be on or above a given levelα, sayα = 105%, withhigh reliability. The formu-
lation of this criterion clearly indicates its stochastic nature, which should be reflected
in the way it is modeled. Starting from traditional chance constraints, we will arrive at
our implementation of an adapted short-term criterion by means of integrated chance
constraints.

2.2.1 Conceptual motivation

In our ALM model, a direct translation of the short-term criterion would be thechance
constraint

Pr{F ∗

t+1 ≥ α|(t, s)} ≥ γt ,

whereF ∗

t+1 is the funding ratio just before a possible remedial contribution by the
sponsor,γt is the required reliability at timet (e.g.γt = 0.95), and the notation indicates
that probability is measured conditional on(t, s) being the current node. Using that the
funding ratio is defined as the ratio of the assetsA∗

t+1 over liabilitiesLt+1, an equivalent
formulation is

Pr{A∗

t+1 − αLt+1 ≥ 0|(t, s)} ≥ γt . (1)

Note that the risk measure underlying such a chance constraint is qualitative, in the
sense that it measures the probability of a shortfall of the funding ratio, but the magni-
tude of the shortage is not taken into account. In other applications this may be justified
or even preferable, but in an ALM model the size of the fundingshortage is obviously
relevant.

Of course, this criticism actually applies to the underlying short-term criterion sug-
gested the DNB, which should take the magnitude of funding shortages into account.
Thus, we propose to replace the current criterion by aquantitativeone-year risk mea-
sure. In our ALM model described below, this role is played byintegrated chance con-
straints. To introduce this concept, we return to the chance constraint, and will see that
it comes up in a natural way when we look at computational issues.
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2.2.2 Computational motivation and definition

In the chance constraint (1), bothA∗

t+1 andLt+1 are random quantities because they
depend on underlying random parameters such as asset yields. Moreover, they depend
linearly on the current decisionsxs

t which involve asset allocation and contributions. To
stress these relations and in order to simplify the notation, for the time being we will
use the generic representation of an (individual) chance constraint

Pr{Bx − d ≥ 0} ≥ γ,

wherex is ann-vector of decision variables and then-vectorB and the scalard are
both random parameters. As in our ALM model, we assume that(B, d) follow a finite
discrete distribution with realizations(Bs, ds) and corresponding probabilitiesps, s ∈

S := {1, . . . , S}.

All other constraints in our ALM model are linear, and also the chance constraint can
be represented by linear constraints, as follows.

Bsx + δsM ≥ ds, s ∈ S

∑

s∈S

psδs ≤ 1 − γ

δs ∈ {0, 1}, s ∈ S,

whereM is a sufficiently large number. Note however, that this formulation necessarily
usesbinary variablesδs, s ∈ S, to indicate realizations(Bs, ds) which are unfavorable
for x, e.g., which would result in underfunding in the ALM model. The probability
weighted average of these binary variables then equals the risk of underfunding asso-
ciated with the decisionx, which should be at most 1− γ . Because of these binary
variables, the requested inclusion of a chance constraint at every node(t, s) (except at
the end nodes) of our multistage recourse model would have severe consequences for
the computational tractability of the model.

For problems involving binary (or general integer) decision variables, a natural ap-
proach is to relax the integrality restrictions and solve the resulting relaxation. In our
case, such a relaxation transforms the mixed-integer linear representation of the chance
constraint into a system of linear constraints in continuous variables, which is equiva-
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lent to

Bsx + ys ≥ ds, s ∈ S

∑

s∈S

psys ≤ β

ys ≥ 0, s ∈ S,

(2)

where the parameterβ is non-negative. By the first set of inequalities, each of thenon-
negative variablesys is not less than the shortfallds −Bsx (if any). The next inequality
therefore puts an upper boundβ on theexpected shortfall. That is, the system (2) is
equivalent to

∑

s∈S

ps
(

Bsx − ds
)−

≤ β,

where(a)− := max{−a, 0} is the negative part ofa ∈ R, or

E
[

(Bx − d)−
]

≤ β (3)

with E denoting expectation with respect to the distribution of(B, d). Such constraints,
bounding an expected shortfall, were namedintegrated chance constraintsby Klein
Haneveld [6], since it can be shown that

E
[

(Bx − d)−
]

=

∫ 0

−∞

Pr{Bx − d < u}du. (4)

The integrand in (4) is the complement of the probability Pr{Bx − d ≥ u}; it appears
in an equivalent risk version

Pr{Bx − d < u} ≤ 1 − γ (u)

of the underlying chance constraint, where the parameter 1− γ (u) denotes the maxi-
mum acceptable risk of not meeting the target levelu.

Loosely speaking, the identity (4) shows that an integratedchance constraint corre-
sponds to some aggregation of the infinitely many chance constraints which – in theory
– could be defined for all possible target levelsu ≤ 0. By indicating, through the cor-
responding risk parameters 1− γ (u), that larger shortages are even less acceptable
than smaller ones, this indeed results in a quantitative risk measure defined in terms of
traditional, qualitative chance constraints.

In [8] it is shown that integrated chance constraints are closely related to constraints
on theconditional surplus-at-risk(CSaR), which is a variant of conditional value-at-
risk, see e.g. [11]. Essentially, the difference is that in an ICC constraint the shortage is
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measured with respect to some a priori chosen threshold parameter, whereas in a CSaR
constraint the threshold is equal to the surplus-at-risk, which is itself an outcome of the
optimization process.

2.2.3 Implementation as short-term risk constraints

We conclude that integrated chance constraints provide a suitable way to model short-
term risk in an ALM model, both from conceptual as well as computational point of
view. Returning to the specific notation of our ALM model, we thus include an inte-
grated chance constraint

E

[

(

A∗

t+1 − αLt+1
)−

|(t, s)
]

≤ βt (5)

in every subproblem(t, s), t < T , of our multistage recourse model. They reflect our
alternative short-term criterion, stating thatnext years funding ratio should be such that
the expected funding shortfall is at mostβt , given that the current state is(t, s).

The parametersβt , t = 0, . . . , T − 1, giving the maximal acceptable expected funding
shortage, of course need to be specified numerically. It should be noted that in general it
is harder to come up with these values than it would be for the reliability parametersαt ,
as required for traditional chance constraints. The latterparameters are scale free, and
correspond to a risk notion which is more familiar to e.g. managers of pension funds.

With Ss
t denoting the number of possible realizations from(t, s) in year t + 1, it fol-

lows from (2) that inclusion of the integrated chance constraint (5) in subproblem(t, s)
comes at the price ofSs

t additional continuous variables andSs
t + 1 additional linear

constraints. In many applications, e.g. in the numerical example below,Ss
t is in the or-

der of 5 to 10, so that this extension of the model provides no computational hardship.

In case the number of realizations is substantially larger,say 1000 or more, the linear
programming (LP) representation (2) becomes inefficient. In [8] it is shown that the
induced feasible setC(β), corresponding to an integrated chance constraint (3) withan
underlying finite discrete distribution onS points, is given by

C(β) =
⋂

K⊂S

{

x ∈ R
n :

∑

k∈K

pk
(

dk − Bkx
)

≤ β

}

. (6)

Since there are 2S − 1 non-empty subsets ofS = {1, . . . , S}, it follows that C(β)

is a polyhedral set defined by as many linear constraints. Forany non-trivial number
of realizationsS, it is obviously not sensible (if at all possible) to explicitly include
all of them in the model. However, the representation (6) underlies a very efficient
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cutting plane algorithm for solving LP problems with (variants of) integrated chance
constraints. For a small example problem with 1000 realizations, an optimal solution
is found after generating only 9 out of the approximately 10300 constraints defining the
setC(β). Further numerical evidence shows that the cutting plane algorithm is much
faster than the straightforward LP approach on larger problem instances.

3. Numerical illustration

In this section we present numerical results for a small instance of a multistage ALM
model. The main purpose is to illustrate the effect of including short-term risk con-
straints, modeled as integrated chance constraints. In this example we include such a
constraint only att = 0,

E

[

(

A∗

1 − αL1
)−

]

≤ β,

thus requiring current decisions which are not too risky, measured by the expected
shortfall below the target funding level att = 1.

3.1 Model description

We define the following indices, variables, random parameters and deterministic pa-
rameters. (To simplify the notation, we omit the scenario indexs.)

Indices
t time index,t = 0, 1, . . . , T

i index of asset classes,i = 1, . . . , N

Variables
Zt remedial contribution by the sponsor at timet

Xit value of investments in asset classi, at the beginning of yeart
ct+1 contribution rate for yeart + 1

At total asset value at timet
A∗

t total asset value at timet just beforea possible remedial contributionZt

1+

it value of assets in classi bought at timet
1−

it value of assets in classi sold at timet
UT underfunding at time horizon with respect to the original funding ratioA0/L0

Random parameters
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rit random return on asset classi in yeart
Wt random total wages of active participants in yeart

Pt random total benefit payments in yeart

Lt random value of liabilities after yeart

Deterministic parameters
ki proportional transaction cost for asset classi

wl
i lower bound on the value of asset classi as a fraction of the total asset portfolio

wu
i upper bound on the value of asset classi as a fraction of the total asset portfolio

cl lower bound on the contribution rate
cu upper bound on the contribution rate
α lower bound on the funding ratio
γt discount factor for a cash flow in yeart

λZ penalty parameter for a remedial contribution
λU penalty parameter for underfunding at time horizon

The decisions at timet ∈ T0 := {0, 1, . . . , T − 1} are denoted by the vector

xt = (Zt , X1t , . . . , XNt , ct+1).

At the time horizont = T , only the decisionZT occurs. The variablesAt , 1
+

1t , . . . ,1
+

Nt ,
1−

1t , . . . ,1
−

Nt , andUT are state variables. They are determined by the parameters and
the decision variables.

The state variableA∗

t , denoting the value of the assetsjust beforea possible remedial
paymentZt , is used to model the short-term risk criterion, and to determine the size of
the remedial contribution (if any): it must hold thatZt ≥ (A∗

t − αLt)
−.

The randomness of the asset returns and the total wages of active participants is ob-
vious. The randomness of the liabilities results from theirvaluation at market value.
Demographic factors cause the randomness in the benefit payments. Fort ∈ T1 :=

{1, 2, . . . , T }, we define the random vectorωt with realizations

ωs
t = (rs

1t , . . . , r
s
Nt ,W

s
t , P s

t , Ls
t ), s ∈ S.

The constraints in the model can be divided into two types of constraints: actuarial prin-
cipals, and policies. In each scenarios and at every timet (that is, in each node(t, s)),
the constraints must be satisfied. As before, we omit the index s in our presentation of
the constraints below.

Let us first formulate the constraints based on actuarial principles:

At =
∑N

i=1(1 + rit )Xit + ctWt − Pt + Zt , t ∈ T1

12



The total value of the assets at timet . Note thatAt = A∗

t + Zt .
Xi,t+1 = (1 + rit )Xit − 1−

it + 1+

it − ki(1
−

it + 1+

it ), i = 1, . . . , N, t ∈ T0

The value of the investments in asset classi, at the beginning of the yeart + 1.
∑N

i=1(Xi,t+1 + ki(1
−

it + 1+

it )) = At , t ∈ T0

All assets should be allocated.

The policies of the pension fund are reflected by the following constraints:

wl
i

∑N
j=1 Xj t ≤ Xit ≤ wu

i

∑N
j=1 Xj t , t ∈ T1

Lower and upper bounds on the value of asset classi as a fraction of the total
asset portfolio.
cl ≤ ct ≤ cu, t ∈ T1

Lower and upper bounds on the contribution rate.
At ≥ αLt , t ∈ T1

Lower bound on the funding ratioFt := At/Lt . The levelα is prescribed by the
regulator.
AT + UT ≥ F0LT

It is desired that the funding ratio at the time horizon is notbelow the funding
ratio att = 0.

Finally, the integrated chance constraintE

[

(

A∗

1 − αL1
)−

]

≤ β, reflecting the short-

term risk criterion, is implemented as a system of linear constraints analogous to (2).

The pension fund aims to minimize the total expected cost of funding, i.e., the contri-
bution rates for the active participants and the company, and the remedial contributions.
Moreover, penalty costs are assigned to the undesirable events: remedial contributions,
and a low funding ratio at the planning horizon. All these components together consti-
tute the objective function:

E

[

T
∑

t=0

γt(ctWt + λZZt) + γT λUUT

]

.

3.2 Data

In this example model we consider four asset classes (N = 4), whose deterministic
properties are described in Table 3.1. All amounts are in millions of euros.
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asset class i wl
i wu

i ki initial investments
stocks 1 0.30 0.60 0.00425 7656
bonds 2 0.30 0.60 0.00150 4048
real estate 3 0.10 0.25 0.00425 3080
cash 4 0 0.20 0.00050 1056

Table 3.1: Data on the asset classes.

The values of the other deterministic parameters and parameters observed att = 0
shown in Table 3.2.

cl = 0 γ0 = 1 W0 = 10520
cu = 0.21 γ1 = 0.9693 P0 = 1115
α = 1.05 γ2 = 0.9308 L0 = 15200
λU = 1.20 γ3 = 0.8873 c0 = 0.17
λZ = 1.25

Table 3.2: Values of some deterministic parameters, and observed random parameters
and contribution rate at t = 0

The model has 4 stages, allowing for decisions att = 0 (now) up to the time horizon
T = 3. For each year[t − 1, t), t = 1, 2, 3, the asset returns, wages, benefit payments,
and liabilities are modeled by random parameters. For future reference, some statistics
on the distribution of the asset returns fort = 1 are presented in Table 3.3.

parameter mean standard deviation correlations
r11 r12 r13 r14

r11 0.068 0.159 1.00 0.50 -0.11 0.13
r12 0.058 0.060 0.50 1.00 0.17 -0.22
r13 0.065 0.112 -0.11 0.17 1.00 -0.31
r14 0.032 0.017 0.13 -0.22 -0.31 1.00

Table 3.3: Summary statistics for the random returns in year 1.

For further details on the distribution and the construction of the scenario tree for this
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example, we refer to the forthcoming PhD thesis of S.J. Drijver.

In each state of the world before the horizon, uncertainty about the future is represented
by 10 different realizations of the random parameters in each of the remaining years.
Thus, there areS = 10T = 1000 scenarios in total. In each node, the conditional
probabilities are 0.1, so that each scenarios has probabilityps = 0.001.

Using the data of the Tables 3.1, we compute that the current asset valueA0 equals
16513.4 million euro. Thus, the initial funding ratioF0 = A0/L0 equals 1.09, which is
above the threshold valueα = 1.05.

3.3 Results

All numerical results were obtained using the model management system SLP-IOR
(see e.g. [4, 5]). Because of the small size of the recourse model, the equivalent LP
model could be solved by any of the LP codes available in SLP-IOR in negligible time.

β opt.val direct future X10 X20 X30 X40 c1 Z0

∞ 4686 1318 3368 7427 4951 4126 0 0.128 0
600 4687 1418 3268 7427 4951 4126 0 0.138 0
550 4688 1540 3148 7427 4951 4126 0 0.150 0
500 4690 1661 3029 7427 4951 4126 0 0.161 0
450 4694 1782 2911 7427 4951 4126 0 0.173 0
400 4703 1945 2757 7158 5220 4126 0 0.199 0
350 4720 2107 2612 6887 5489 4125 0 0.205 0
300 4767 2268 2498 6949 6465 3183 0 0.210 92
250 4829 2469 2359 6660 7016 3080 0 0.210 252
200 4896 2674 2222 6078 7447 3080 310 0.210 416
150 4998 2937 2060 5477 6713 3080 1855 0.210 626
100 5108 3171 1936 5974 5661 2335 3342 0.210 814
50 5233 3472 1761 5264 6561 2213 3509 0.210 1055
0 5529 4147 1381 5428 5967 3080 3619 0.210 1595

Table 3.4: Results for different values of β.

Initially, we solved the ALM model without an integrated chance constraint att = 0. It
appears that for the optimal solution, the expected shortfall of the assets with respect to
α times the liabilities att = 1 equals 647 million euro (3.9% ofA0). Subsequently, we
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solved the model including the integrated chance constraint, restricting the expected
shortfall att = 1 by several values of the right-hand side parameterβ. The resulting
optimal values and first-stage solutions are presented in Table 3.4.

Of course, the optimal value increases with decreasing values ofβ. However, as illus-
trated in Figure 3.1, the increase is relatively small (lessthan 2%) for values ofβ as
small as 300 (1.8% ofA0). The influence on the composition of the total costs is much
stronger: over this range, direct costs increase sharply (72%), whereas expected future
costs fall (26%).

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000
total 

future 

direct 

Figure 3.1: Optimal value (direct and expected future costs) as function of β.

Next we consider the effect of the integrated chance constraint on the first-stage de-
cisions, i.e., on the contribution rate, the asset mix, and the remedial contribution at
t = 0. Forβ decreasing to 450, we see that the request for higher short-term reliability
is satisfied by increasing the contribution rate. But then, asβ keeps decreasing, also the
asset mix changes gradually: less is invested in relativelyrisky stocks and real estate,
and more in bonds and eventually also cash. For extremely lowvalues ofβ, this pattern
is less clear due to binding lower and upper bounds on the relative amounts of stocks
and cash, respectively. (See Figure 3.2.)

Forβ lower than 350, remedial contributionsZ0 are part of the optimal solution att =

0. On first sight, they appear to be larger than necessary. Forexample, to accommodate
a decrease ofβ from 300 to 250, one could reason that an increase ofZ0 with 50 should
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Figure 3.2: Asset mix and contribution rate as function of β.

be sufficient. However, due to the penalty parameterλZ = 1.25, this would increase
direct costs by 62.5. In the presented optimal solution, in which Z0 is increased by
160 at additional direct costs of 200, this is (more than) compensated by the resulting
decrease of the expected future costs, since the additionalassets allow for lower funding
costs in later stages. Obviously, other choices for the parameterλZ will result in a
different balance between direct and expected future costs.

We conclude that, at least in this example problem, the integrated chance constraint
on the expected funding shortage appears to be a suitable tool for modeling short-
term risk. In particular, for appropriately chosen values of the parameterβ, it may
lead to a solution which has lower short-term risk in exchange for marginally higher
expected total costs. It should be stressed, however, that selecting a good value forβ
a priori can be difficult in practice. Given the low computational costs of including
integrated chance constraints, it may be feasible to find a reasonable parameter setting
by numerical experiments.

Finally, let us briefly consider the reliability of the optimal solutions in terms of the
probability Pr{A∗

1−αL1 ≥ 0}, i.e., the reliability concept underlying traditional chance
constraints. The solution of the model without integrated chance constraint turns out to
have reliability 0.5, whereas e.g. the solution of the ICC model withβ = 450 is reliable
at the 0.7 level, andβ = 200 yields reliability 0.8. In this example, it appears that the
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Figure 3.3: Funding costs at t = 0 as function of β.

reliability of the solutions increases (step-wise) with decreasingβ. In general, however,
this need not be the case. For example, a solution which yields small shortages for every
realization is feasible with respect to the integrated chance constraint for some smallβ,
whereas it has reliability 0.

In chance-constrained models, the reliability is usually required to be at least 0.9, which
is obtained in this model by settingβ = 72. For the current model, higher aspiration
levels actually imply 100% reliability (corresponding to the extreme settingβ = 0), due
to the fact that each realization att = 1 has probability 0.1. Indeed, this is a general
modeling weakness of chance constraints based on a small number of possible real-
izations, as is often the case for single-period risk constraints in multi-stage recourse
models of realistic size.

4. Modeling mid-term risk in the ALM model

In this final section, we briefly describe how the mid-term risk criterion introduced
in Section 1.1 can be modeled. This approach is implemented in the ALM model de-
scribed in the forthcoming PhD thesis of Drijver. As we will see, the approach involves
binary decision variables after all.

18



Foremost, the introduction of binary variables in the modelis justified by the fact that
they are necessary to include several realistic features inour multistage recourse ALM
model. In addition, we have a long-standing interest in (computational) properties of
recourse models with (mixed-)integer variables, see e.g. [9, 7, 12]. In fact, our interest
in this ALM application was raised initially by the observation that integer variables
appear naturally in these models.

4.1 Modeling remedial action in case of underfunding

According to our interpretation of the mid-term criterion,the funding ratio may oc-
casionally drop below the required levelα, but this should not happen too often nor
should the shortage be too large. Given the long-term character of the liabilities, this
appears to be very reasonable: there is no compelling reasonto react immediately on a
possibly temporary drop in e.g. stock prices. Indeed, such an immediate reaction could
very well turn out to be harmful in the longer run. On the otherhand, if the funding
ratio is too far below the aspired levelα, then immediate action might be necessary to
prevent a further decline.

In the current version of the ALM model, ‘not too often’ is understood as ‘not in two
consecutive years’. However, with only minor modifications, the approach outlined
below also applies to the more general interpretation ‘at most inn out ofm consecutive
years’. To simplify the exposition, we do not account here for immediate action in case
of a very low funding ratio. It is not difficult to see how this refinement can be modeled.

Essentially, the approach is based on keeping track of yearsin which underfunding
occurs. This calls for the use of binaryindicator variablesin the model. In turn, these
indicator variables are used to determine when a remedial action is necessary in order
to restore the funding ratio to the required levelα. In the model, remedial contributions
by the sponsor of the pension fund are used to this end.

With A∗s
t andLs

t denoting assets and liabilities in node(t, s) as before, the constraint

Mδs
t ≥ αLs

t − A∗s
t ,

whereM is again a sufficiently large number, forces the indicator variableδs
t to take on

the value 1 in case of a funding shortage. If this happens in two consecutive years in
the same scenarios, then the constraint

π s
t ≥ δs

t−1 + δs
t − 1

forces the indicator variableπ s
t to become 1, triggering a remedial contributionZs

t ,
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equal to the observed current shortageαLs
t − A∗s

t , which is modeled by the constraint

Zs
t ≥ αLs

t − A∗s
t − M(1 − π s

t ).

In addition, the model contains constraints which ensure that a remedial contribution
is only allowed in case of underfunding. Because both funding shortages and remedial
contributions are undesirable events, corresponding fixedpenalty costs are included in
the objective function. On top of that, proportional costs for remedial contributions are
assigned.

On the opposite side, if the pension fund has a structural funding surplus, a restitu-
tion to the sponsor may be required. This is modeled analogously to the shortage case
above. (Unfortunately, this issue is currently not as relevant as a few years ago, when a
first version of the model was developed.) Further realisticfeatures of the ALM model
include a detailed modeling of indexation of future pensionpayments (again using in-
dicator variables), and the use ofsoft constraints, for example to model a preference
for gradual changes in the contribution rate from one year tothe next. For a detailed
exposition of all features included in this model we refer to[3, 2] and the forthcoming
PhD thesis of Drijver.

5. Summary and concluding remarks

We motivated and described the role played by integrated chance constraints in an
ALM model for Dutch pension funds. To set the stage, we outlined the practical setting
as well as our modeling approach for this dynamic decision problem under uncertainty.

Integrated chance constraints are appropriate for modeling single-period risk constraints,
in particular if a quantitative risk measure is preferable,as is the case here. Moreover,
they are computationally attractive in the given multistage recourse setting, since they
can be formulated in terms of a limited number of linear constraints without the need
to introduce additional binary decision variables.

These claims are supported by the numerical results on a small example problem. No
computational results on (semi-)realistic data are available at this time. However, such
data have been made available to us by a major Dutch pension fund. Initial outcomes
of an ALM model including integrated chance constraints andimplementing the mid-
term risk criterion as described in the previous section, obtained with a special purpose
heuristic, will be reported in the forthcoming PhD thesis ofDrijver, and in other publi-
cations.
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We expect that such multistage recourse models, including implementations of various
risk criteria, will prove to be a useful tool in strategic ALMstudies for pension funds.
Even though we believe that this approach allows to model important aspects in a re-
alistic way, the final judgement on such models will have to come from the analysis of
numerical results for (semi-)realistic problems.
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