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Abstract

In this paper we study the coarse-grained bifurcation analysis approach proposed by I.G. Kevrekidis and collaborators in
PNAS [C. Theodoropoulos, Y.H. Qian, I.G. Kevrekidis, “Coarse” stability and bifurcation analysis using time-steppers: a
reaction-diffusion example, Proc. Natl. Acad. Sci. 97 (18) (2000) 9840–9843]. We extend the results obtained in that paper
for a one-dimensional FitzHugh–Nagumo lattice Boltzmann (LB) model in several ways. First, we extend the coarse-grained
time stepper concept to enable the computation of periodic solutions and we use the more versatile Newton–Picard method
rather than the Recursive Projection Method (RPM) for the numerical bifurcation analysis. Second, we compare the obtained
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ifurcation diagram with the bifurcation diagrams of the corresponding macroscopic PDE and of the lattice Boltzman
ost importantly, we perform an extensive study of the influence of the lifting or reconstruction step on the minimal su

ime step of the coarse-grained time stepper and the accuracy of the results. It is shown experimentally that this time
ften be much larger than the time it takes for the higher-order moments to become slaved by the lowest-order mom
omewhat contradicts earlier claims.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Arguably the most common approach to study dy-
amical systems starts from the derivation of some sort
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of macroscopic description of the system, often in
form of a set of partial differential equations (PDE
For a reaction-diffusion system withS species on
one-dimensional domain and with space-indepen
isotropic diffusion, these equations take the form

ρst = Dsρsxx + Fs(ρ1, . . . , ρS), s = 1, . . . , S, (1)

167-2789/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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where the subscriptst andxdenote differentiation with
respect to time and space, respectively. In many cases,
an evolution equation for the macroscopic quantities
(here, the densities or concentrationsρs(x, t)) is
already known. There are however cases where an
appropriate macroscopic description of a system
is not yet known but a microscopic description is
available. At the most detailed level one has molecular
dynamics simulations that model all interactions
between all individual particles (atoms or molecules).
Kinetic Monte Carlo methods provide a higher level
of abstraction by modeling the statistics of the various
interactions between particles. Even more coarse-
grained are lattice gas cellular automata (LGCA) and
lattice Boltzmann methods (LBMs). These models do
no longer model individual microscopic particles and
are therefore often calledmesoscopic models. Instead,
they model the behavior of an idealized particle limited
to move in certain directions with particular velocities
only. While LGCA track the evolution of individual
idealized particles, LBMs evolve the distributions of
such particles characterized by position and speed.

In many applications one is not interested in the
detailed microscopic behavior of a system but only in
its macroscopic behavior, i.e., the evolution of macro-
scopic variables over a large domain and relatively long
time interval. These variables are typically the first few
moments of a microscopic distribution, e.g., the con-
centration of the various species. Kevrekidis et al.[1–3]
proposed an approach to realize a macroscopic time
s rip-
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to the macroscopic variables) i.e., it is assumed that
the long-term dynamics of the microscopic model
take place on or very near to a lower-dimensional
manifold which can be parametrized adequately by the
macroscopic variables, and that any orbit started away
from this manifold is very quickly attracted to it (at a
time scale much smaller than the typical macroscopic
time scales). This lower-dimensional manifold is
related to the slow manifold in multiple time scale
systems and to inertial manifolds. It is expected that
this coarse-grained time stepper can replace a time
integrator for the (unknown) macroscopic equations
in many applications such as bifurcation analysis and
control.

Simulating the microscopic models over the whole
domain and time interval of interest is often impossible.
To cope with this problem, schemes that fully exploit
the range of temporal and spatial scales are proposed in
[2,4,5], such as the so-called “projective integrators”,
“gap-tooth scheme”, “patch dynamics” and the hetero-
geneous multiscale method. However, as the number
of variables in our lattice Boltzmann (LB) simulations
remains limited, we will only use the most basic vari-
ant of the coarse-grained time integrator, i.e., we will
simulate over the full physical space.

In this article, we will study the application of the
coarse-grained time stepper for bifurcation analysis.
Bifurcation theory studies the possible transitions
between various stable and unstable static and dy-
namic equilibria in parameter-dependent systems as
t tion
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o . In
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tep for a system for which only a microscopic desc
ion is available. The crucial assumption is that a clo
acroscopic description in terms of those varia

onceptually exists. A macroscopic time step is t
erformed by first constructing one or more mic
copic initial states corresponding to the macrosc
nitial condition, then evolving those microsco
nitial states using the microscopic evolution laws
nally computing a new macroscopic state. The ma
copic initial state does not contain enough informa
o initialize the microscopic simulator and the miss
nformation has to be filled in. Using a multiple tim
cales argument, Kevrekidis et al. argue that the e
f the errors from the initializations will disappear ve

ast (compared to the macroscopic time step) as
igher-order moments of the microscopic distribu
uickly become slaved by (or equivalently, beco

unctionals of) the lower-order ones (correspond
he parameters are varied. In numerical bifurca
nalysis one computes a branch of solutions obta
y varying one parameter of the system and detec
omputes points along the branch where the sta
f the solutions changes (the bifurcation points)
uch points, other branches of solutions often inte
r branches of solutions of a different type emerg
nd. Numerical bifurcation analysis is well establis

or small systems with several software packa
vailable. e.g., AUTO[6] and MATCONT[7]. More
ecently, several methods have been proposed
arge-scale systems. Of particular interest for this p
re methods that operate on top of an existing time
ration code such as the Recursive Projection Me
RPM) [8] or the Newton–Picard method[9,10]. We
ave chosen to use the latter since it is more ro
nd better suited to compute branches of peri
olutions.
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The macroscopic model in this article is the
FitzHugh–Nagumo PDE system, while the “micro-
scopic” model is an equivalent lattice Boltzmann (LB)
model[11] (which, strictly speaking, is a mesoscopic
model), designed to reproduce the behavior of the PDE
accurately. The steady states and periodic solutions of
this LBM can be analyzed with numerical bifurcation
analysis techniques for maps. As such, it is the ideal
benchmark to compare the coarse-grained bifurcation
results with. Indeed, as we shall argue later, if the mi-
croscopic model has a steady state, the best one can
hope for is to compute the same steady state using the
coarse-grained time stepper (and similarly for periodic
solutions). These states may be slightly different from
those of an equivalent macroscopic model since every
macroscopic model is only an approximation and thus
involves modeling errors. Our LBM is fully determin-
istic and has no chaotic dynamics. Our initialization of
the LBM at each coarse-grained time step is also fully
deterministic. Therefore, this model is an ideal example
to study the errors caused by the imperfect initializa-
tion of the “microscopic” state in the coarse-grained
time stepper.

The plan of the paper is as follows. We discuss the
macroscopic PDE model, the LBM and the coarse-
grained time integrator in Sections2–4, respectively.
The Newton–Picard scheme is discussed in Section
5. In Section6, we compute the bifurcation diagrams
for the PDE, the LBM and the coarse-grained time
stepper. We also make a careful study of the effects
o on
t he
d e
t

2

he
F ion
e

w s on
a
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and inhibitor “concentration”, respectively. (Strictly
speaking, these are no concentrations in the physi-
cal sense; the values can also be negative.) In all our
computations, we fixδ = 4, a0 = −0.03 and a1 =
2 and vary ε ∈ [0,1]. For this choice of parame-
ters, we computed a branch of steady states and a
branch of periodic solutions. In our numerical exper-
iments in Sections6 and 7, (2) was discretized us-
ing a second-order spatial discretization at the mid-
points of 200 grid intervals and the trapezoidal rule
for time integration. The time step is fixed during
the computation of a single trajectory but varied be-
tween 0.02 and 0.47 for different computations in the
paper.

3. The lattice Boltzmann model

3.1. Model structure

Lattice Boltzmann models are inherently discrete
in space and in time. They model the evolution of
a distribution function for each species (activator
and inhibitor in our case). The distribution function
depends on space, time and velocity and is defined
on a space-time lattice with grid spacing�x in space
and�t in time. We use a D1Q3-type model, i.e., only
three values are considered for the velocity:

v
�x �x

L c-
t
t g
c
d

ρ

i nc-
t fied
u and
v nits
o -
f so-
s s the
f the initialization of the microscopic simulator
he results. In Section7, we study the spectra for t
ifferent models. Finally, in Section8 we summariz

he main conclusions of this paper.

. The macroscopic model

Our macroscopic model in this article is t
itzHugh–Nagumo system of two reaction-diffus
quations{
ρac
t = ρac

xx + ρac − (ρac)3 − ρin,

ρin
t = δρin

xx + ε(ρac − a1ρ
in − a0),

(2)

ith homogeneous Neumann boundary condition
one-dimensional domain of lengthL = 20. The

ariablesρac(x, t) and ρin(x, t) denote the activato
−1 = −
�t

, v0 = 0 and v1 =
�t

.

etf s
i (xj, tk) denote the value of the distribution fun

ion for speciess ∈ {ac, in} at grid pointxj and time
k for particles with velocityvi. The correspondin
oncentrations (the macroscopic variables in(2)) are
efined as

s(xj, tk) =
1∑

i=−1

f s
i (xj, tk), (3)

.e., the zeroth-order moment of the distribution fu
ion. Lattice Boltzmann models are often speci
sing the dimensionless variables for space, time
elocity obtained by rescaling space and time in u
f grid spacing�x and�t, respectively. To avoid con

usion in our notation when moving between the me
copic and macroscopic space, we will only expres
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higher-order moments in dimensionless form. The di-
mensionless first- and second-order velocity moments
(up to the factor 1/2 for the second-order moment) are

φs(xj, tk) =
1∑

i=−1

i f s
i (xj, tk)

= f s
1(xj, tk) − f s

−1(xj, tk), (4)

ξs(xj, tk) = 1

2

1∑
i=−1

i2 f s
i (xj, tk)

= 1

2
(f s

1(xj, tk) + f s
−1(xj, tk)). (5)

We will refer to these moments as respectively the
“momentum”φs and (kinetic) “energy”ξs (although
these are non-conserved quantities in a diffusive
system). The state of our one-dimensional LBM at
time tk is fully determined by specifying, for each
species and at all lattice points, either the distribu-
tion functionsf s

i (xj, tk), i ∈ {−1,0,1} or the three
momentsρs(xj, tk), φs(xj, tk) andξs(xj, tk).

The evolution law for the distribution functions is

f s
i (xj+i, tk+1) − f s

i (xj, tk)

= Ωs
i (xj, tk) + Rs

i (xj, tk), i ∈ I := {−1,0,1}. (6)

Thecollision termΩs
i models the diffusion while the

reaction termRs
i models the chemical reactions. A LB

time step is usually executed in two phases. In the
collision phase, the termsΩs

i and Rs
i are evaluated

a
i to a
n on.
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3
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more general expression for the equilibrium distribu-
tion in [14,16,17]simplifies to

f
s,eq
i (xj, tk) = νiρ

s(xj, tk), i ∈ I (8)

with νi, i ∈ I, satisfying the constraints

1∑
i=−1

νi = 1 and ν−1 = ν1.

This still leaves one degree of freedom for the choice
of νi. In a reaction-diffusion system, all weights are
usually chosen equal[11,18], i.e.,

νi = 1

3
, (9)

which is also the choice we made in all our experiments.
Notice that for this choice of weights,

φs,eq = f
s,eq
1 − f

s,eq
−1 = 0 and

ξs,eq = 1

2
(f s,eq

1 + f
s,eq
−1 ) = 1

3
ρs.

The BGK relaxation coefficientωs is related to the dif-
fusion coefficient in(1). In [11] it is shown that

ωs = 2

1 + 3Ds �t
�x2

(10)

for a one-dimensional model with rest particles and the
choice(9) of weights in(8).

3

H local
d
t

3

ic
s dic
nd added tof s
i (xj, tk). In thepropagationor stream-

ng phase, the distributions at a lattice site hop
eighbouring site according to their velocity directi
q.(6) is augmented with no-flux boundary conditio
hich we implemented using the halfway bounce-b
cheme[12,13]. This puts the lattice points at the sa
ocation as in our PDE discretization.

.2. The collision operator

For the collision operator we use the Bhatnag
ross–Krook (BGK) approximation[14,15]

s
i (xj, tk) = −ωs[f s

i (xj, tk) − f
s,eq
i (xj, tk)], i ∈ I

(7)

hich expresses relaxation to the local equilibr
s,eq
i (xj, tk). Since the macroscopic mean flow of
eactants in a reaction-diffusion system is zero,
.3. The reaction term

The reaction term is modeled according to[11,18]:

Rac
i (xj, tk) = νi�t(ρac(xj, tk) − (ρac)3(xj, tk)

−ρin(xj, tk)),

Rin
i (xj, tk) = νi�tε(ρac(xj, tk)

−a1ρ
in(xj, tk) − a0), i ∈ I.

(11)

ere it is assumed that the reactions occur at the
iffusive equilibrium[19]. Hence, the weightsνi are

he same as for the equilibrium distribution.

.4. Extension to continuous time

In Section6, we will compute a branch of period
olutions of the LB model. Strictly speaking, a perio
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orbit is a phenomenon in a continuous time model while
an invariant circle is the corresponding phenomenon
in maps and thus in discrete time systems. However,
since the (discrete time) LB model clearly models a
continuous time system and since the LB time step is so
small compared to the period of the limit cycle, it makes
sense to consider a continuous time extension of the LB
model and to use numerical techniques developed for
such models.

To evaluate the LB state at an arbitrary timeT,
we use the same strategy as many time integration
codes for ordinary differential equations (ODEs)
(e.g., LSODE[20]). We first determinek such that
tk−1 < T ≤ tk and then use a linear interpolation be-
tween the results at timetk−1 andtk. Because there is
a linear transformation between the distribution func-
tions and the moments, it does not matter whether we
interpolate the distribution functions or corresponding
moments.

4. The coarse-grained time integrator

4.1. Performing a single coarse-grained time step

In [1–3], a procedure is proposed to perform
a macroscopic-level (or coarse-grained) time step
for an unknown macroscopic equation using only a
microscopic simulator. It is important to first select an
appropriate set of macroscopic variables. For the pro-
c ust
c bles,
i wn
a all
t bles
o t be
k opic
v f the
“ ly
a .
W uld
v her
h opic
d pic
b no
l ions
t ted
d the

LBM has well-defined steady states and periodic solu-
tions. The existence of a macroscopic PDE in our case
confirms that a macroscopic description using only
the zeroth-order momentρs of the LB distribution is
possible.

A time step of length�T with the coarse-grained
time stepper consists of three substeps. First, one needs
to construct an initial condition for the microscopic
simulator which corresponds to the macroscopic state.
This step is called thelifting (in [2]) or reconstruction
step (in [5]). Since the microscopic simulator needs
more information than provided by the macroscopic
variables, the missing information has to be re-
constructed. Since a macroscopic model is really a
description for the dynamics on the lower-dimensional
“slow” manifold mentioned above, it is clear that the
best initial condition for the microscopic simulator
is the point on the manifoldcorresponding to the
particular initial values of the macroscopic variables.
However, in [1–3], Kevrekidis et al. argue that the
errors caused by the initialization of the missing
higher-order moments away from this manifold
disappear as the higher-order moments get slaved.
According to this argument, the initialization should
not matter too much. However, in Section6, we will
show that the fast slaving of the higher-order moments
does not imply that all influences of the deviation
of the reconstructed initial condition from the corre-
sponding correctly slaved initial condition, disappear
quickly, and that a good reconstruction scheme is
i

the
m
m ,
a ree
v

f

w
f the
m

i

T ld be
u the
edure to work well, a macroscopic description m
onceptually exist and close using only those varia
.e., in principle it should be possible to write do
n evolution equation for those variables in which

erms can be expressed in function of those varia
nly, though the precise relationships may not ye
nown. This also implies that the chosen macrosc
ariables should be a suitable parametrization o
slow” manifold to which all initial states are quick
ttracted (see the discussion in Section1 of the paper)
hen using too few variables, the procedure wo

ery likely fail or produce wrong results. On the ot
and, using too many moments of the microsc
istribution might reveal too much of the microsco
ehavior, and our “macroscopic” model might

onger exhibit the steady states or periodic solut
hat we expect to find, but much more complica
ynamics. This will not happen in our case since
mportant.
In our particular case, we need to initialize

issing momentum(4) and energy(5). Given the
acroscopic initial conditionρs(xj,0), we distribute
s in[3], the particles at each grid point over the th
elocities using

s
i (xj,0) = wiρ

s(xj,0), i ∈ I, (12)

here the only constraint on the weightswi needed
or correspondence of the microscopic state with
acroscopic state is

1∑
=−1

wi = 1.

his leaves two degrees of freedom. These shou
sed to initialize the LBM as close as possible to
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“slow” manifold. A very reasonable first choice are
the weights of the local diffusive equilibrium distri-
bution, i.e.,

wi = 1

3
, (13)

which corresponds to φs(xj,0) = 0 and
ξs(xj,0) = (1/3)ρs(xj,0).

In the second step, the microscopic initial condition
is evolved over the macroscopic time step�T using
the microscopic simulator (the LB model in our case).
Finally, the macroscopic variables at the end of the time
step are computed from the final microscopic state. This
step is called therestriction stepin [2]. For our LB
model, this is done using(3).

When the underlying microscopic model is a stocha-
stic model or when the lifting scheme is stochastic, the
result of a coarse-grained time step is again a stochastic
variable, characterized by an average, a variance, etc.
To get a sufficiently small variance, which is needed for
our numerical bifurcation techniques but also for other
methods such as the projective integration mentioned
in the introduction, one should run many microscopic
simulations from the same (if the simulator itself is
stochastic) or equivalent initial conditions. In the re-
striction step, the result for all the simulations must
then be averaged. A similar problem occurs for deter-
ministic microscopic models with chaotic dynamics.
In this case, a lot of nearby initial conditions have to
be used. These difficulties do not occur in our LBM.
I e,
i ime
s e
s

pic
t
s her-
o rder
o oach
t ed
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h d
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o
s the
c odel
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b ase

information. The latter is not a problem for our LB
model.

In this paper, we will show that the claim made in
previous papers that the initialization of the higher-
order moments does not matter much, is not always
right. Our numerical experiments will demonstrate that
if the initialization of the higher-order moments is too
far from the unknown correctly slaved state, the ef-
fects of this deviation might decay very slowly (on a
much longer time scale than the healing time, in fact,
on a time scale comparable to the slowest macroscopic
time scales) and sufficiently accurate results might only
be obtained using a coarse-grained time step which
is several orders of magnitude larger than the healing
time.

4.2. Extension to continuous time

In applications, one often has to integrate over a
time intervalT much larger than the maximal allow-
able macroscopic time step�T . The above scheme
is then repeated until the end timeT is reached. In this
procedure, the restriction followed immediately by lift-
ing from the end point to generate microscopic initial
conditions for the next integrations is essential. Since
we remove state information at every restriction step
and add slightly different information again to the sys-
tem in the following reconstruction step, performing
k coarse-grained time steps with time step�T is not
equivalent to performing a single coarse-grained time
s n
u se
t re is
n the
t e
t and
t con-
c ver
t copic
t

If
� s of
t e
t ical
i ere
k h as
f ast
s Let
t is sufficient to evolve a single initial condition onc
nterpolating as explained before between two LB t
teps at the end if�T is not a multiple of the LB tim
tep�t.

The last difficulty is the choice of the macrosco
ime step�T . According to [2,21], this time step
hould be larger than the time it takes for the hig
rder moments to become slaved by the lower-o
nes, i.e., the time that the solution takes to appr

he lower-dimensional “slow” manifold mention
efore. The latter time interval is also called
ealing timein [22] and is typically small compare

o the relevant macroscopic time scales. On
ther hand, as is clearly demonstrated in[21], �T

hould not be too large either, in particular in
ase of a stochastic or chaotic microscopic m
ecause the various realizations might diffuse irrep
ly over a large part of the attractor, losing ph
tep with time stepk�T , in particular when there is a
pper limit to�T . Though it is not needed in our ca

o use multiple coarse-grained time steps since the
o maximum to the allowable time step contrary to

est cases in[21,22], we will still use this procedur
o experiment with small macroscopic time steps
o test the concept. We believe that many of the
lusions we draw from this experiment will carry o
o systems where the maximal successful macros
ime step is limited.

If T is not a multiple of�T , we have two choices.
T is small compared to the dominant time scale

he macroscopic dynamics, i.e., if�T is comparabl
o what a time step would be in a typical numer
ntegrator for the macroscopic model if the latter w
nown explicitly, we can use the same approac
or the LBM and interpolate between the two l
tates. If�T is larger, we need another approach.
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�Tmin and �Tmax be the minimum and maximum
allowed macroscopic time step, estimated according
to the criteria specified in Section4.1. Varying �T

between these limits should have very little influence
on the result at timeT. Therefore, we change�T such
that T is an integer multiple of�T . This approach
may fail however ifT is not sufficiently larger than
�Tmax and the time step limits are too close to
each other. We used the second approach in our
experiments.

5. Numerical bifurcation analysis

To perform a numerical bifurcation analysis of a
system of autonomous PDEs, the PDEs are first space-
discretized. In many cases, this leads to a large system
of ordinary differential equations (ODEs)

du

dt
= f (u, γ), f : R

N × R
Γ 
→ R

N, (14)

though in some cases, a system of differential-algebraic
equations is obtained. In(14), γ denotes the param-
eters of the system. For most discretization schemes,
the Jacobian matrix∂f (u, γ)/∂u is a large but very
sparse matrix. In bifurcation analysis, steady states
are usually computed by applying some version of
Newton’s method tof (u, γ) = 0. The stability of the
resulting steady state is determined by the eigenvalues
λl of ∂f (u, γ)/∂u. A steady state is asymptotically
s

R

F lues
w s of
t isely
t ca-
t the
i

( es
γ p

u

f
fi
( e

studied by analyzing fixed points of(15) instead. The
stability of a fixed point of(15) is determined by the
eigenvaluesµl of

M := ∂ϕT (u, γ)

∂u
.

The fixed point is stable if all eigenvalues have modulus
smaller than one. Ifu is a steady state of(14) then

M = ∂ϕT (u, γ)

∂u
= exp

(
T
∂f (u, γ)

∂u

)

and hence

µl = exp(λlT ). (16)

Consequently, the stability information obtained with
both approaches is equivalent. In practice, we have to
use a numerical time integrator. Most classical time
integration schemes preserve steady states of(14).
However, (16) will only be satisfied approximately.
If the step size is sufficiently small, the dominant
eigenvalues of the numerical time integrator will be
very good approximations to the eigenvaluesµl of
the exact time integrator and can be used to judge the
stability of the computed fixed points. One can then
still use(16) to compute approximations to the eigen-
valuesλl.

A LBM defines a map. Since a LBM is determin-
istic, one can use the same techniques to analyze this
m ics
o the
d
a
t sfy
( in
c ator
t med
t heir
s

lly
c eady
s eter
o
t nch
t on-
t ints
o f the
table if

e(λl) < 0, l = 1, . . . , N.

or a discretized PDE, only the rightmost eigenva
ill be good approximations to the true eigenvalue

he continuous PDE problem, but these are prec
he eigenvalues which determine stability. Bifur
ions occur when one or more eigenvalues cross
maginary axis as the parameter is changed.

AssumeϕT (u(0), γ) is the solutionu(T ) at timeTof
14)with initial conditionu(0) at the parameter valu
. A steady state of(14)is also a fixed point of the ma


→ ϕT (u, γ) (15)

or any value ofT. A periodic solution of(14) is a
xed point of (15) only whenT is a multiple of the
unknown) period. Solutions of(14) can therefore b
ap as for the time integrator map. If the dynam
f the LBM are equivalent to those of a PDE,
ominant eigenvaluesµl computed from the LBM
nd the rightmost eigenvaluesλl computed from

he equivalent PDE will also approximately sati
16). The same framework can also be used
ombination with the coarse-grained time integr
o compute steady states of the unknown but assu
o exist macroscopic description and to analyze t
tability.

In numerical bifurcation analysis, one typica
omputes a discrete set of points on a branch of st
tates or fixed points obtained by varying one param
f the ODE system(14)or map(15)while monitoring

he stability-determining eigenvalues along the bra
o detect bifurcation points. The tool for this is a c
inuation method. Given the already computed po
n a branch, a prediction is made for the position o
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next point and that point is then computed by solving
the nonlinear system{

ϕT (u, γ) − u = 0,

n(u, γ; η) = 0.
(17)

The vectoru and one of the components of the pa-
rameter vectorγ are the unknowns. The last equa-
tion,n(u, γ; η) = 0 is a scalar equation that determines
the position of the point along the branch through a
reparametrization with parameterη. In our experiments
we used pseudo-arclength continuation[23].

When computing a branch of isolated periodic so-
lutions, the periodT is also unknown. We use single
shooting to compute a point on the branch. This point is
computed by adding a phase conditionp(u, T, γ) = 0
to (17) which fixes the starting point for integration
along the periodic orbit, i.e., the phase condition effec-
tively defines a Poincaré section. The resulting system


ϕT (u, γ) − u = 0,

p(u, T, γ) = 0,

n(u, T, γ; η) = 0,

(18)

is solved for the vectoru, T and one component ofγ.
The stability is determined by the eigenvalues (now
calledFloquet multipliers) of M evaluated at the so-
lution. One of the multipliers will be one and should
not be taken into account. The others determine the
stability of the periodic orbit. Instead of a numerical
t se-
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methods are based on the assumption thatM has only
few eigenvalues close to or outside the unit circle. The
Newton–Picard method starts from Newton’s method,
but computes only an approximate solution to each
linearized system. At each step, the low-dimensional
dominant subspaceU of M (i.e., the subspace of all
eigenvalues larger than some user-determined thresh-
old θ, with 0 < θ < 1) is determined using orthogo-
nal subspace iteration[24], the linearized system is
projected on this space and its orthogonal comple-
mentU⊥, and the resulting system is solved approx-
imately by combining fixed-point (or Picard) iterations
in U⊥ with a direct solver inU. The dominant eigen-
values are easily computed from the projection ofM
ontoU.

When using time stepper based bifurcation analy-
sis to compute steady state solutions,T can be cho-
sen freely. However,T should not be too large since
the nonlinear behavior of the map(15) may become
more pronounced, causing trouble when solving the
nonlinear system(17). This is especially the case when
computing unstable steady states and is essentially the
same problem as encountered in single shooting meth-
ods for computing periodic solutions[25,26]. As can
be seen from(16), T also influences the eigenvalues
of M and thus the convergence of the Newton–Picard
method. Assuming the thresholdθ is squared so that
the dimension of the subspaceU remains the same,
doublingT will roughly halve the number of orthog-
onal subspace iteration and Picard iteration steps, but
e om-
p alue
o al-
t sub-
s o
s

eed
m -
p trix–
v wise
i
e
b oci-
a pute
t eter-
m her
a re-
q ined
ime integrator for(14), we can also use the coar
rained time integrator or the LBM (with the extens

o a continuous time variable). This approach to
urcation analysis, using the time integrator map,
lso be extended to compute periodic solutions
amiltonian system or to compute traveling wav
tc. The problems that arise in those computat
re similar to those that arise in other continua
ethods.
In [8], Shroff and Keller proposed the Recurs

rojection Method to compute solutions of(17). This
rocedure is essentially a stabilization and acceler
rocedure for iterating with the map. This method
sed in[3]. Though it is possible to extend RPM
ompute periodic solutions also, we used the New
icard method[9,10]. This method tends to be mo

obust and was originally developed for bifurcat
nalysis of periodic solutions of large systems. B
ach step will be twice as expensive. The overall c
utational cost remains roughly the same. The v
f T is not critical for the Newton–Picard method,

hough we did observe some problems with the
pace convergence criterion we used ifT becomes to
mall.

Both RPM and the Newton–Picard method n
atrix–vector products withM. These can be com
uted using finite difference methods. These ma
ector products must be accurate enough, other
t will be impossible to compute a basis forU with
nough accuracy. Note that the subspaceU may be
etter conditioned than individual eigenvalues ass
ted with that subspace. Therefore, in order to com

he eigenvalues with enough accuracy to reliably d
ine the stability and bifurcation points, even hig
ccuracy of the matrix–vector products may be
uired. Problems are possible with the coarse-gra
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time stepper if the underlying microscopic model is
stochastic or has chaotic dynamics. Since differentia-
tion is by itself an ill-conditioned operation, we will
need a very low variance of the result of the coarse-
grained time stepper to compute the matrix–vector
products accurately enough. This may require a lot
of microscopic simulations at each time step as was
experienced in[21] for a system with an ODE-like
one- to three-dimensional macroscopic state. If too
many simulations are needed to obtain a low enough
variance, the numerical bifurcation analysis using the
coarse-grained time stepper may be too expensive and
thus unfeasible. However, in our test case, the “mi-
croscopic” model has clear steady states and periodic
solutions.

We use only a single LB simulation at each coarse-
grained time step, and the initial conditions are pre-
scribed in a deterministic way. Therefore, we have
no problems computing the matrix–vector products.
A stochastic microscopic simulator would be a better
choice to study this aspect of coarse-grained bifurca-
tion analysis. However, by avoiding this problem in our
test case, we are in a much better position to study the
influence of the initialization of the microscopic sim-
ulator and the macroscopic time step�T which is the
subject of Section6.2.

6. Study of the bifurcation diagrams

We will first compare the bifurcation diagrams for
the PDE model, the LBM and the coarse-grained LB
time integrator, using the set of weights(13) in the
reconstruction step and a fairly large macroscopic time
step. Next, we will study how the minimal macroscopic
time step needed for accurate results depends on the
weights used in the reconstruction step. This will show
that the minimal macroscopic time step is often much
larger than the healing time.

6.1. The reference bifurcation diagram

Fig. 1presents the steady state bifurcation diagram
for the LBM, the coarse-grained time integrator and the
PDE model. On the vertical axis, we show

∫ L

0 ρac(x) dx,
computed using the midpoint quadrature rule. This
quantity should be essentially the same for all three
models and is also, up to discretization errors, indepen-
dent of the grid size. For all computations, we used a
grid with 200 grid cells (�x = 0.1). All branches, also
the branch for the PDE model, were computed using
the time stepper based bifurcation approach explained
in Section5, using the publicly available package PDE-
cont [27]. We setT = 5. For this value ofT, we had

F E” den
“ ). Unst resent
o de. The oint. The
b

ig. 1. Bifurcation diagram for the steady state solutions. “PD
CGLB” of the coarse-grained LB time stepper (usingT = �T = 5
nly a subset of the points computed by the continuation co
ifurcation points are marked with a square.
otes the solution branch of the PDE system(2), “LB” of the LBM and
able solutions are plotted using a dotted line. The markers rep

two figures on the right zoom in on the Hopf and the fold p
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no difficulties computing the unstable solutions. Also,
for this T, the eigenvalues are well enough separated
for the robust operation of our Newton–Picard imple-
mentation. Note also that the computed steady states
do not depend on the value ofT. The LB time step�t

was set equal to 0.001. The time step for the trapezoidal
rule was 0.02. Smaller values of�t only led to minor
changes (on the order of the spatial discretization er-
ror) in the bifurcation diagram, while the bifurcation
diagram changed considerably for larger values of�t.
In other words, the LB bifurcation diagram has con-
verged for�t = 0.001. Also, the correspondence with
the PDE bifurcation diagram is very good. To compute
the fixed points of the coarse-grained integrator, we set
�T = 5 and used the weights(13) in the reconstruc-
tion operator. Note that the results do depend on the
choice of�T , see Section6.2.4. With this choice of
parameters, the difference with the PDE results is also
of the order of the discretization error. We will study the
influence of these parameters in more detail in Section
6.2. There is a fold point atε ≈0.945 and a supercritical
Hopf bifurcation atε ≈0.0183 giving rise to stable pe-
riodic orbits at smaller parameter values. The location
of the bifurcation points corresponds very well for all
three approaches.

In Fig. 2, we show the branch of periodic solutions
emanating from the Hopf point. Since the phase
condition was not the same for all simulations, it is
impossible to compare the computed point on the orbit

for all three models. Therefore, we now plot the period
T on the vertical axis. To compute periodic solutions
using the coarse-grained integrator, we set�T ≈ 5,
cf., the second approach in Section4.2. For the trape-
zoidal rule, we used 1000 time steps per period. There
is a fold point atε ≈0.00087. Solutions on the unstable
part of the branch have (at least initially) almost the
same parameter-period dependence as on the stable
part, but the periodic orbit is slightly different. The
amplitude of the temporal oscillations of the inhibitor
is larger for the unstable periodic solution than for the
stable one at the same parameter value. We did not
succeed in computing the unstable branches far past the
fold point. This demonstrates the lack of robustness of
single shooting methods, in particular when computing
unstable solutions[25,26]. The Hopf points for the
three methods are slightly different from those inFig. 1
because they are computed from a different eigenvalue
problem. The results inFig. 2 are less accurate since
the location of the Hopf point is determined by detect-
ing an ill-conditioned algebraically double eigenvalue
at 1.

We can draw two conclusions from this section.
First, the steady states and periodic solutions of the
LBM correspond very well to those of the macroscopic
PDE. Second, computing a bifurcation diagram for the
coarse-grained time integrator does work and produces
the expected results (at least for this choice of�T and
reconstruction scheme).

olution
Fig. 2. Bifurcation diagram for the periodic s
 s. The labels and markers are the same as inFig. 1.
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6.2. Influence of the reconstruction step and the
macroscopic time step

6.2.1. The slaved state
In Fig. 3, we study the slaving of momentum and

energy at the stable steady state of the LB model
at ε = 0.05. For both the activator and the inhibitor
(not shown), the momentum is small compared to
the concentration. When investigating the solution
more carefully, one notes that the momentum is in
fact proportional to the gradient of the concentration,
i.e.,

φs ≈ −dsρsx. (19)

We computedds = ‖φs‖/‖ρsx‖, where‖ · ‖ denotes
the two-norm of the discrete state vector. The ra-
tio ds is essentially constant along the solution
branches withdac ≈ 0.04338 andd in ≈ 0.07334.Fig.
3 also clearly shows that the (dimensionless) ki-
netic energyξs is almost perfectly one third of the
concentration.

These relationships can be proven quite easily for a
diffusion problem. In the latter case, the LB variables
can be written up to first order terms as[28]

f s
i = f

s,eq
i + f

s,neq
i = νiρ

s − νii�x

ωs
ρsx,

where f
s,neq is the deviation from the equilib-

r e

corresponding momentum(4) and energy(5) are

φs = 2f s,neq
1 = −2ν1�x

ωs
ρsx,

ξs = f
s,eq
1 = ν1ρ

s.

(20)

Substituting the parameter values of our prob-
lem into (20), we obtain φac = −0.04333ρac

x ,
φin = −0.07333ρin

x andξs = (1/3)ρs. So far, we have
no proof of these relations for reaction-diffusion prob-
lems, but they appear to hold at least for our example.

Eq.(20)enables us to develop an almost perfect re-
construction scheme by first computing the slaved (i.e.,
on-manifold) values ofφs(xj,0) and ξs(xj,0) from
ρs(xj,0) using(20)and numerically approximatingρsx
by finite differences. The corresponding distributions
f s
i (xj,0) can then be obtained from definitions(3)–(5).

However, in the remainder of this paper we will focus
on the behavior of the coarse-grained integrator using
initializations away from the “slow” manifold.

6.2.2. Initialization of the LB model in the
coarse-grained time stepper

We studied several reconstruction schemes in our
experiments. Three schemes are based on(12)but use
different sets of weights. Initialization with the local
diffusive equilibrium distribution, i.e.,

w−1 = w0 = w1 = 1

3
(21)

in (12) is a straightforward choice. For this choice,
t he

F table st
fi

i

ium distribution (the “non-equilibrium part”). Th

ig. 3. Slaving of the activator higher-order moments for the s
gure.
he kinetic energy is almost perfectly slaved. T

eady state atε = 0.05. Note that we plot 25φac rather thanφac in the top
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momentum is identically zero. Though the momentum
is small in the correctly slaved state also, this recon-
struction scheme – as all others based on(12) – does
not satisfy(19). For the second reconstruction scheme,
we chose the symmetric set of weights

w−1 = w1 = 0.01, w0 = 0.98. (22)

The momentum is still zero and thus “close” to the
correctly slaved state, but the kinetic energy (the
second-order velocity moment) is very different from
the correctly slaved state. Our third scheme uses the
asymmetric weights

w−1 = 0.75, w0 = 0.24, w1 = 0.01. (23)

For this choice, both the first-order and second-order
velocity moments, i.e., both momentum and kinetic
energy, differ significantly from the correctly slaved
state.

Though we can initialize the kinetic energy very
well with reconstruction scheme(12), the momentum
cannot be initialized correctly unless a more compli-
cated scheme such as(20)is used. Since this relation is
as yet unproven for our class of problems, and to avoid
any small error resulting from the approximations made
in the derivation of(20)and the computation ofρsx, we
also performed experiments with a coarse-grained time
stepper using both concentration and momentum as the
macroscopic variables. This leaves only one degree of
f itial
s tion
s

f

f

w n,

ξ

W
t

w

the energy differs significantly from the correctly
slaved state. The second choice,

w∗
0 = 1

3
, (26)

provides an (almost) perfect initialization of all velocity
moments.

6.2.3. The healing process
In Fig. 4, we study the healing process. Diagram (a)

shows the difference between the momentum and the
scaled concentration gradient while diagram (b) shows
the difference between the kinetic energy and one third
of the concentration for the activator at the lattice point
x = 9.95 in the first few LB time steps using the three
reconstructions based on(12), i.e., both diagrams show
the deviation from the best available approximation
of the correctly slaved state. The macroscopic initial
state is the stable steady state of the LB model at
ε = 0.05. From this state, we generated microscopic
initial conditions using(12) with weights(21)–(23).
The figures show that both the momentum and kinetic
energy become slaved in about 10 to 15 LB time steps
of �t = 0.001. This claim is further verified by the ex-
periment inFig. 5. If the higher-order moments are cor-
rectly slaved for a given state, the evolution from then
on could be described by a macroscopic model with the
lower-order moments as the unknowns. Since our LB
model is designed to correspond to the (macroscopic)
FitzHugh–Nagumo PDE model(2), it is clear what the
m e we
s LB
t
( -
t -
i ory
a c-
t
l LB
a ent
s -
m rder
m this
i

6
ests

t

reedom per species and per lattice point for the in
tate of the LB model. In this case, the reconstruc
cheme is

s
−1 = 1

2
(1 − w∗

0)ρs − 1

2
φs, f s

0 = w∗
0ρ

s and

s
1 = 1

2
(1 − w∗

0)ρs + 1

2
φs (24)

herew∗
0 can be chosen freely. For this initializatio

s = 1

2
(1 − w∗

0)ρs.

e considered two choices for the parameterw∗
0. For

he first choice,

∗
0 = 0.98, (25)
acroscopic model should be in this case. Henc
tarted time integration of the PDE model from the
rajectory obtained for initialization(12) with weights
23), at t = 0.002= 2�t (i.e., before slaving is ob
ained) and att = 0.02 = 20�t (after obtaining slav
ng). The PDE trajectory started from the LB traject
t t = 0.002 differs significantly from the LB traje

ory, while the PDE trajectory started att = 0.02 fol-
ows the LB trajectory more closely. Note that the
nd PDE trajectories converge to a slightly differ
teady state as discussed in Section6.1. This experi
ent confirms that after 20 time steps, the higher-o
oments are slaved by the lower-order ones, while

s not yet the case after 2 time steps.

.2.4. The bifurcation diagram
The fact that slaving is obtained so quickly, sugg

hat a coarse-grained time step�T = 20�t = 0.02
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Fig. 4. Healing of the lifting error. Evolution of (a)−dacρac
x (x, t) − φac(x, t), (b) (1/3)ρac(x, t) − ξac(x, t) and (c) concentrationρac(x, t) at

lattice sitex = 9.95 for the LB trajectories started from the stable steady state atε = 0.05 using the reconstruction schemes(12) and (24). (d) is
a close-up of (c). (e) Steady state bifurcation diagrams for the coarse-grained integrator using�T = 0.02. The steady state bifurcation diagram
for the LBM fromFig. 1 is also shown for comparison.

would be sufficient to compute the bifurcation diagram
accurately. Diagram (e) inFig. 4 shows the bifurca-
tion diagrams near the fold point computed with this
time step. The results for all reconstructions except(24)
with (26)have an unacceptably large error. In fact, the
line for (12)with weights(23)even falls off the figure.
The reason for this can be seen inFig. 4, diagram (c)
and (d). Though slaving is obtained quickly, the LB
simulation does not follow the intended trajectory, i.e.,
the trajectory that would be followed by a macroscopic

model using the same macroscopic initial condition. (In
this experiment, we initialized from a steady state, so
the correct trajectory is constant.) In the healing pro-
cess, the lower-order moments change also and even
at a fairly fast time scale. At the end of the healing
process, these lower-order moments are different from
what they would have been for a “perfect” initializa-
tion, and so the trajectories differ. Since we are in the
neighborhood of a stable steady state, all trajectories ul-
timately converge to the steady state. However, it takes
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Fig. 5. Trajectory ofρs(9.95, t) for a LB simulation started from the
initial condition obtained by reconstruction using the asymmetric
reconstruction scheme, and for two PDE simulations started from
the LB trajectory att = 0.002 andt = 0.02.

about five time units (5000 LB time steps) with most re-
construction schemes to return to the steady state, while
with the reconstruction scheme(12)with the asymmet-
ric weight choice(23)(i.e., both momentum and kinetic
energy are badly initialized), it even takes on the or-
der of 300 time units. Therefore, the coarse-grained
time step�T must be much larger than the heal-
ing time unless an accurate reconstruction scheme is
used.

In Fig. 6we show the bifurcation diagram obtained
with the initialization(12)with weights(21)(the equi-
librium distribution). The left panel shows the bifurca-
tion diagram near the fold point for different values of
�T . In the right diagram, we plot the estimated dis-
cretization error for the stable steady state atε = 0.93,
close to the fold point. The estimate was obtained by

comparing with a LB steady state on a lattice with
16,200 lattice points. As�T increases, the computed
equilibria and bifurcation diagram become more accu-
rate. For�T = 0.5, the error of the activator concen-
tration is on the order of four times the discretization
error and the bifurcation diagram is also acceptable.
For �T = 5, the bifurcation diagram is virtually the
same as for the LB model. This agrees withFig. 4(d),
where it took about five time units for the LB simula-
tor to converge to the correct trajectory. However, near
an unstable solution, the trajectories diverge and one
would expect that the results would only get worse as
�T is increased. This is true when plotting the trajec-
tories, but when computing fixed points, we still notice
an improvement as�T is increased.

In Fig. 7we show the bifurcation diagram obtained
using (12) with the symmetric weight set(22) and
the asymmetric one(23). With the symmetric weight
set, we again obtain sufficiently accurate results for
�T = 5. For the asymmetric weight set, the results also
get better as�T increases, but only become acceptable
when�T = 75. Though we can compute fairly accu-
rate solutions even for this bad initialization, the coarse-
grained time step�T and hence the time integration
intervalT for the Newton–Picard method becomes so
large that it is hard to compute the unstable solutions as
we already pointed out in Section5. The computations
break down atε ≈0.636 for�T = 25 and atε ≈0.928
for �T = 75.

Clearly, obtaining a correctly slaved state by the end
o ned

F ned int
t tizatio
d he diffe
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ig. 6. Left: Steady state solution branches for the coarse-grai
he equilibrium distribution is used. Right: The estimated discre
iscretization points for a steady state atε = 0.93 compared with t
orresponding states using�T = 0.5 or�T = 0.25.
f the microscopic integration in the coarse-grai

egrator using different values of�T . The reconstruction scheme(12)with
n errorE200(x) for the coarse-grained integrator (�T = T = 5) with 200
rence between the coarse-grained steady state using�T = 5 and the
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Fig. 7. The steady state bifurcation diagram for the coarse-grained integrator with both a symmetric (w−1 = 0.01,w0 = 0.98 andw1 = 0.01)
and asymmetric (w−1 = 0.75,w0 = 0.24 andw1 = 0.01) set of reconstruction weights. The diagram for the coarse-grained integrator with
asymmetric reconstruction scheme is computed for three different macroscopic time steps. The steady state branch obtained with the LBM from
Fig. 1 is also shown. The right figure zooms in on the area near the fold point.

time stepper is not sufficient to obtain accurate results.
If the reconstruction is not very good, the microscopic
simulator must be run over a much larger time interval
�T . In this test case, there are no upper limits on
this time interval other than those imposed by the
Newton–Picard procedure. However, as we pointed
out in Section4.1, other microscopic models, and
in particular stochastic simulations, may impose a
more severe upper bound on�T . In these cases it
may be impossible to compute an accurate bifurcation
diagram unless a very good reconstruction scheme
is used. We expect that the quality of the reconstruc-
tion will be even more important when using more
advanced simulation schemes such as the projective
integration and gap-tooth schemes suggested in[2,4].
In fact, unless the higher-order moments are initialized
near-perfectly, it may be impossible to simulate tra-
jectories accurately near unstable equilibria with those
techniques. Correctly initializing the microscopic
simulations is clearly an important area of further
research. As shown in[29,30], ideas from approximate
inertial manifolds may be useful here.

7. The spectra

7.1. Stability analysis

In Section 6.1 we noticed that the bifurcation
diagrams for the PDE model, LB model and coarse-
grained integrator are virtually the same, including
the location of the bifurcation points. The latter fact
indicates that the dominant, stability-determining
eigenvalues will match very well also. We will now
study this in more detail.

The dominant eigenvalues are computed in the
Newton–Picard code by performing a number of
additional orthogonal subspace iteration steps after the
computation of the fixed point. InTable 1, we list the
dominant eigenvalues for the unstable steady state at
ε = 0.01 on the upper part of the branch inFig. 1. We
usedT = �T = 5 and transformed the eigenvalues to
exponent form using(16). Table 1also lists the trivial
Floquet multiplier and the most dominant non-trivial
multiplier for the stable periodic solution at the same
parameter value. The existence of a trivial multiplier

Table 1
Dominant eigenvalues for the unstable steady state on the upper part of the branch and stable periodic solution atε = 0.01 (using�T ≈ 5 in
the CGLB integrator)

Steady state Periodic solution

λ1,2 λ3 trivial µ1 µ2

LB 0.002010± 0.039461i −0.124867 1.000000 0.514888
C −0.1 52
P −0.1 12
GLB 0.002012± 0.039463i
DE 0.001999± 0.039446i
24863 1.000000 0.5144
24861 1.000000 0.5167
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Fig. 8. Left: The full spectrum for the LB and discretized PDE model for the stable steady state atε = 0.05. Right: Close-up of the most dominant
eigenvalues.

at one is a general property of autonomous systems.
Its computational accuracy is independent of the
spatial discretization error. The remarkable precision
of the computed value indicates that the time integra-
tion and eigenvalue computation are very accurate.
Clearly, the eigenvalues (and also the corresponding
eigenvectors) correspond very well for all three
models.

7.2. Slaving and the spectrum of the lattice
Boltzmann model

To conclude, we study the full spectrum of the LBM
and the discretized PDE model. We computed the Ja-
cobian matrix analytically for both cases. To compare

with the eigenvalues of the LBM, the eigenvaluesλl ob-
tained for the PDE were transformed to multiplier form
using(16)withT = �t = 0.001, the LB time step. The
results for the stable steady state atε = 0.05 are shown
in Fig. 8. The LBM has 400 eigenvalues in the same
zone along the real axis as the discretized PDE. How-
ever, only the dominant eigenvalues correspond well.
This is not surprising. The less dominant eigenvalues
depend very much on the discretization and have little
relationship with the true eigenvalues of the continuous
problem.

At first, one would expect to recognize slaving of
the first- and second-order moment to the zeroth-order
moment of the eigenvectors of those 400 LB eigenval-
ues, while in the other eigenvectors there would clearly

Fig. 9. Slaving of the activator momentum and energy of the (real part of the) full LB eigenvectors for the largest complex pair of eigenvalues and
t eigenv gradient.
R ird of th

he first real eigenvalue fromFig. 8. Left: Difference between the
ight: Difference between the eigenvector’s energy and one th
ector’s momentum and its appropriately scaled concentration
e concentration.
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be no slaving. However, we only observed slaving in
the eigenvectors for the most dominant eigenvalues
that correspond very well to those of the discretized
PDE. Fig. 9 illustrates this slaving for the real part
of the eigenvectors corresponding to the rightmost
complex pair of eigenvalues and for the eigenvector
corresponding to the largest real eigenvalue. The
eigenvector’s momentum is small compared to its
concentration and proportional to its concentration
gradient, and its second-order moment, the energy,
is very nearly one third of the concentration, so we
note the same slaving relationships as for the state
in Section6.2. The discovery of such relationships
between the higher-order and lower-order moments
could be a step towards the development of some kind
of constitutive equation or closure relation.

8. Conclusions

In this paper, we have studied the coarse-grained bi-
furcation analysis procedure proposed in[3], using the
same test case, a FitzHugh–Nagumo lattice Boltzmann
model. We have extended the work of[3] in several
ways. We compared the results of a numerical bifurca-
tion analysis using the coarse-grained time integrator
not only with results for an equivalent PDE, but also
with the bifurcation diagram for the (deterministic)
LB model used in the coarse-grained time stepper. The
results for all three approaches corresponded very well.
W rator
t
e tead
o
u
c d to
p LB
m tudy
t d to
t rary
t on
s this
s hod.
T of
t tion
t be
q ich
c del,

if such a model would be known explicitly, started
from the same initial macroscopic state). Hence, good
reconstruction schemes are clearly problem-dependent
and are an interesting area of further research, see e.g.,
[29,30].

We have also demonstrated that the techniques
developed for time stepper based numerical bifurcation
analysis of PDEs can be used for bifurcation analysis
of steady states and periodic solutions of LB models
using either the coarse-grained integrator or the LB
model itself as the time stepper. As shown in[31],
the amount of work when using the Newton–Picard
method is roughly the same for both approaches, since
this is mostly determined by the dominant eigenvalues.
Since the state vector is lower-dimensional for the
coarse-grained time stepper, the memory requirements
will be less. However, this approach is much more
complicated than bifurcation analysis using the
LB model itself as the time stepper, since a good
choice of the macroscopic variables must be made
and a good reconstruction is needed for accurate
results.

We have also studied the spectrum of the LB model
and showed that the higher-order moments of the full
eigenvectors are slaved in the same way as those of the
corresponding LB solution.

This paper does not claim that numerical bifurca-
tion analysis based on the coarse-grained time stepper
of [2,3] will always work. Indeed, microscopic or
mesoscopic simulations based on stochastic models or
m ill)
p t be
s arch
i that
t m
a opic
d ded
t one
p

m-
b uch
a

A

ral
f ers
e have also extended the coarse-grained integ
o produce results at an (almost) arbitrary timeT. This
nabled the computation of periodic solutions. Ins
f the Recursive Projection Method used in[3], we
sed the Newton–Picard method[9,10]. Though the
oarse-grained time stepper is not really neede
erform a numerical bifurcation analysis of the
odel, this test case did enable us to thoroughly s

he effects of the reconstruction scheme. This le
he most important conclusion of this paper. Cont
o the claim in[3] that the quality of the reconstructi
tep does not really matter, we have shown that
tep can be crucial to the success of the met
hough slaving is quickly obtained irrespective

he reconstruction scheme, with a bad initializa
he trajectory of the microscopic simulator may
uite different from the intended one (the one wh
orresponds to the trajectory of a macroscopic mo
odels with chaotic behavior, may (and likely w
ose additional numerical problems that canno
tudied with this simple test case. Further rese
s needed in this area. However, it does show
he idea of initializing microscopic simulators fro

macroscopic state can produce valid macrosc
ata already after a short time interval, provi

he reconstruction of the microscopic state is d
roperly.

Another possible extension of this work is the co
ination with more efficient simulation techniques s
s the schemes in[2,4,5].
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