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Abstract

In this paper we study the coarse-grained bifurcation analysis approach proposed by I.G. Kevrekidis and collaborators in
PNAS [C. Theodoropoulos, Y.H. Qian, I.G. Kevrekidis, “Coarse” stability and bifurcation analysis using time-steppers: a
reaction-diffusion example, Proc. Natl. Acad. Sci. 97 (18) (2000) 9840-9843]. We extend the results obtained in that paper
for a one-dimensional FitzHugh—Nagumo lattice Boltzmann (LB) model in several ways. First, we extend the coarse-grained
time stepper concept to enable the computation of periodic solutions and we use the more versatile Newton—Picard methoc
rather than the Recursive Projection Method (RPM) for the numerical bifurcation analysis. Second, we compare the obtained
bifurcation diagram with the bifurcation diagrams of the corresponding macroscopic PDE and of the lattice Boltzmann model.
Most importantly, we perform an extensive study of the influence of the lifting or reconstruction step on the minimal successful
time step of the coarse-grained time stepper and the accuracy of the results. It is shown experimentally that this time step mus
often be much larger than the time it takes for the higher-order moments to become slaved by the lowest-order moment, which
somewhat contradicts earlier claims.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Coarse-grained modeling; Lattice Boltzmann method; Newton—Picard method; Numerical bifurcation analysis; Reaction-diffusion
systems

1. Introduction of macroscopic description of the system, often in the
form of a set of partial differential equations (PDES).
Arguably the most common approach to study dy- For a reaction-diffusion system witB species on a
namical systems starts from the derivation of some sort one-dimensional domain and with space-independent

isotropic diffusion, these equations take the form
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where the subscriptandx denote differentiation with ~ to the macroscopic variables) i.e., it is assumed that
respect to time and space, respectively. In many casesthe long-term dynamics of the microscopic model
an evolution equation for the macroscopic quantities take place on or very near to a lower-dimensional
(here, the densities or concentratiopd(x, 1)) is manifold which can be parametrized adequately by the
already known. There are however cases where anmacroscopic variables, and that any orbit started away
appropriate  macroscopic description of a system from this manifold is very quickly attracted to it (at a
is not yet known but a microscopic description is time scale much smaller than the typical macroscopic
available. At the most detailed level one has molecular time scales). This lower-dimensional manifold is
dynamics simulations that model all interactions related to the slow manifold in multiple time scale
between all individual particles (atoms or molecules). systems and to inertial manifolds. It is expected that
Kinetic Monte Carlo methods provide a higher level this coarse-grained time stepper can replace a time
of abstraction by modeling the statistics of the various integrator for the (unknown) macroscopic equations
interactions between particles. Even more coarse-in many applications such as bifurcation analysis and
grained are lattice gas cellular automata (LGCA) and control.
lattice Boltzmann methods (LBMs). These models do Simulating the microscopic models over the whole
no longer model individual microscopic particles and domain and time interval of interest is often impossible.
are therefore often calledesoscopic modelmstead, To cope with this problem, schemes that fully exploit
they model the behavior of an idealized particle limited the range of temporal and spatial scales are proposed in
to move in certain directions with particular velocities [2,4,5], such as the so-called “projective integrators”,
only. While LGCA track the evolution of individual  “gap-tooth scheme”, “patch dynamics” and the hetero-
idealized particles, LBMs evolve the distributions of geneous multiscale method. However, as the number
such particles characterized by position and speed.  of variables in our lattice Boltzmann (LB) simulations
In many applications one is not interested in the remains limited, we will only use the most basic vari-
detailed microscopic behavior of a system but only in ant of the coarse-grained time integrator, i.e., we will
its macroscopic behavior, i.e., the evolution of macro- simulate over the full physical space.
scopic variables over alarge domain and relativelylong  In this article, we will study the application of the
time interval. These variables are typically the first few coarse-grained time stepper for bifurcation analysis.
moments of a microscopic distribution, e.g., the con- Bifurcation theory studies the possible transitions
centration of the various species. Kevrekidis eiat3] between various stable and unstable static and dy-
proposed an approach to realize a macroscopic timenamic equilibria in parameter-dependent systems as
step for a system for which only a microscopic descrip- the parameters are varied. In numerical bifurcation
tionis available. The crucial assumption is that a closed analysis one computes a branch of solutions obtained
macroscopic description in terms of those variables by varying one parameter of the system and detects or
conceptually exists. A macroscopic time step is then computes points along the branch where the stability
performed by first constructing one or more micro- of the solutions changes (the bifurcation points). In
scopic initial states corresponding to the macroscopic such points, other branches of solutions often intersect
initial condition, then evolving those microscopic or branches of solutions of a different type emerge or
initial states using the microscopic evolution laws and end. Numerical bifurcation analysis is well established
finally computing a new macroscopic state. The macro- for small systems with several software packages
scopic initial state does not contain enough information available. e.g., AUTQ6] and MATCONT[7]. More
to initialize the microscopic simulator and the missing recently, several methods have been proposed for
information has to be filled in. Using a multiple time large-scale systems. Of particular interest for this paper
scales argument, Kevrekidis et al. argue that the effect are methods that operate on top of an existing time inte-
of the errors from the initializations will disappear very gration code such as the Recursive Projection Method
fast (compared to the macroscopic time step) as the (RPM) [8] or the Newton—Picard methd8,10]. We
higher-order moments of the microscopic distribution have chosen to use the latter since it is more robust
quickly become slaved by (or equivalently, become and better suited to compute branches of periodic
functionals of) the lower-order ones (corresponding solutions.
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The macroscopic model in this article is the
FitzHugh—Nagumo PDE system, while the “micro-

and inhibitor “concentration”, respectively. (Strictly
speaking, these are no concentrations in the physi-
scopic” model is an equivalent lattice Boltzmann (LB) cal sense; the values can also be negative.) In all our
model[11] (which, strictly speaking, is a mesoscopic computations, we fix = 4, ap = —0.03 anda; =
model), designed to reproduce the behavior of the PDE 2 and varye € [0, 1]. For this choice of parame-
accurately. The steady states and periodic solutions ofters, we computed a branch of steady states and a
this LBM can be analyzed with numerical bifurcation branch of periodic solutions. In our numerical exper-
analysis techniques for maps. As such, it is the ideal iments in Section$ and 7, (2 was discretized us-
benchmark to compare the coarse-grained bifurcation ing a second-order spatial discretization at the mid-
results with. Indeed, as we shall argue later, if the mi- points of 200 grid intervals and the trapezoidal rule
croscopic model has a steady state, the best one carfor time integration. The time step is fixed during
hope for is to compute the same steady state using thethe computation of a single trajectory but varied be-
coarse-grained time stepper (and similarly for periodic tween 0.02 and 0.47 for different computations in the
solutions). These states may be slightly different from paper.

those of an equivalent macroscopic model since every
macroscopic model is only an approximation and thus
involves modeling errors. Our LBM is fully determin-
istic and has no chaotic dynamics. Our initialization of
the LBM at each coarse-grained time step is also fully
deterministic. Therefore, this model is an ideal example
to study the errors caused by the imperfect initializa-

3. The lattice Boltzmann model
3.1. Model structure

Lattice Boltzmann models are inherently discrete

tion of the “microscopic” state in the coarse-grained
time stepper.

The plan of the paper is as follows. We discuss the
macroscopic PDE model, the LBM and the coarse-
grained time integrator in Sectiors-4, respectively.

in space and in time. They model the evolution of
a distribution function for each species (activator
and inhibitor in our case). The distribution function
depends on space, time and velocity and is defined
on a space-time lattice with grid spacing in space

The Newton—Picard scheme is discussed in SectionandA: in time. We use a D1Q3-type model, i.e., only

5. In Section6, we compute the bifurcation diagrams
for the PDE, the LBM and the coarse-grained time
stepper. We also make a careful study of the effects
of the initialization of the microscopic simulator on
the results. In Sectiom, we study the spectra for the
different models. Finally, in Sectio® we summarize
the main conclusions of this paper.

2. The macroscopic model

Our macroscopic model in this article is the
FitzHugh—Nagumo system of two reaction-diffusion
equations

{

with homogeneous Neumann boundary conditions on
a one-dimensional domain of length = 20. The
variables p@%(x, r) and p"(x, r) denote the activator

p?c — p?)? 4 pac_ (pa0)3 _ pin’

in in ac in (2)
Py = 5pxx + 8(/) —aip — ao)’

three values are considered for the velocity:

Ax
At’

Ax
At

V-1 = — vo=0 and V] =

Let f7(x;, &) denote the value of the distribution func-
tion for species € {ac in} at grid pointx; and time
1, for particles with velocityv;. The corresponding
concentrations (the macroscopic variablegd)) are
defined as

1
Pl ) =Y fe, 1),

i=—1

®)

i.e., the zeroth-order moment of the distribution func-
tion. Lattice Boltzmann models are often specified
using the dimensionless variables for space, time and
velocity obtained by rescaling space and time in units
of grid spacingAx andAt, respectively. To avoid con-
fusion in our notation when moving between the meso-
scopic and macroscopic space, we will only express the
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higher-order moments in dimensionless form. The di-

61

more general expression for the equilibrium distribu-

mensionless first- and second-order velocity moments tion in [14,16,17]simplifies to

(up to the factor 1/2 for the second-order moment) are
1

(. t) = > i fix). 1)

i=—1

= filxj, i) — f1a0xj, 1), 4)
1 1
E0jt) =5 D 2 f 0 1)
i=—1
1 \) s
= E(fj_(xjv ) + f11(xj, 1)) %)

We will refer to these moments as respectively the
“momentum” ¢® and (kinetic) “energy’s® (although
these are non-conserved quantities in a diffusive
system). The state of our one-dimensional LBM at
time 1 is fully determined by specifying, for each
species and at all lattice points, either the distribu-
tion functions f(x;, %), i € {—1,0, 1} or the three
momentso®(x;, t), ¢*(x;, tx) and&®(x;, #).

The evolution law for the distribution functions is

JP (i 1) — f (xjo 1)

= Q(xj ) + Ri(xj,11),i € [ :={—~1,0,1}. (6)

The collision term 2] models the diffusion while the
reaction termR; models the chemical reactions. A LB
time step is usually executed in two phases. In the
collision phase the termsg2] and R} are evaluated
and added tgf’(x;, #). In thepropagationor stream-

ing phase, the distributions at a lattice site hop to a
neighbouring site according to their velocity direction.
Eq.(6) is augmented with no-flux boundary conditions
which we implemented using the halfway bounce-back
schemd12,13] This puts the lattice points at the same
location as in our PDE discretization.

3.2. The collision operator

For the collision operator we use the Bhatnagar—
Gross—Krook (BGK) approximatiofi4,15]

20, 1) = = Lffxj ) — %% )], i€ 1
(7)

which expresses relaxation to the local equilibrium
f7%%(x;, ). Since the macroscopic mean flow of the
reactants in a reaction-diffusion system is zero, the

iel (8)

s5,e
%%, 1) = vin*(xj, 1),

with v;, i € I, satisfying the constraints

1
Z vy=1 and v_1=v1.
i=—1

This still leaves one degree of freedom for the choice
of v;. In a reaction-diffusion system, all weights are
usually chosen equfl1,18] i.e.,

1
é ) (9)

whichis also the choice we made in all our experiments.
Notice that for this choice of weights,

eq _ 5,eq
"= fi

V;, =

- f9=0 and

1 1
= (%4 27 = 2ot
2 3
The BGK relaxation coefficient® is related to the dif-
fusion coefficient in(1). In [11] it is shown that
2
= —— (10)
Y
1+3 DVA—)62
for a one-dimensional model with rest particles and the
choice(9) of weights in(8).
3.3. The reaction term

The reaction term is modeled accordind1,18].
Rxj, tr) = v A(02%(x . tr) — (0°93(x;. 1)
_pln(xjv tk)),
RN(x;, tx) = v; Ate(03(x , tx)

—a10™(x;}, 1) — ag), i € I.

(11)

Here it is assumed that the reactions occur at the local
diffusive equilibrium[19]. Hence, the weights; are
the same as for the equilibrium distribution.

3.4. Extension to continuous time

In Section6, we will compute a branch of periodic
solutions of the LB model. Strictly speaking, a periodic
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orbitis aphenomenoninacontinuous time model while LBM has well-defined steady states and periodic solu-
an invariant circle is the corresponding phenomenon tions. The existence of a macroscopic PDE in our case
in maps and thus in discrete time systems. However, confirms that a macroscopic description using only
since the (discrete time) LB model clearly models a the zeroth-order moment of the LB distribution is
continuous time system and since the LB time step is so possible.
small compared to the period of the limit cycle, it makes A time step of lengthAT with the coarse-grained
sense to consider a continuous time extension of the LB time stepper consists of three substeps. First, one needs
model and to use numerical techniques developed for to construct an initial condition for the microscopic
such models. simulator which corresponds to the macroscopic state.

To evaluate the LB state at an arbitrary tirffie This step is called thifting (in [2]) or reconstruction
we use the same strategy as many time integration step (in[5]). Since the microscopic simulator needs
codes for ordinary differential equations (ODEs) more information than provided by the macroscopic
(e.g., LSODEJ[20]). We first determinek such that variables, the missing information has to be re-
-1 < T < t; and then use a linear interpolation be- constructed. Since a macroscopic model is really a
tween the results at timg_1 andr,.. Because there is  description for the dynamics on the lower-dimensional
a linear transformation between the distribution func- “slow” manifold mentioned above, it is clear that the
tions and the moments, it does not matter whether we best initial condition for the microscopic simulator
interpolate the distribution functions or corresponding is the pointon the manifoldcorresponding to the
moments. particular initial values of the macroscopic variables.
However, in[1-3], Kevrekidis et al. argue that the
errors caused by the initialization of the missing
higher-order moments away from this manifold
disappear as the higher-order moments get slaved.
According to this argument, the initialization should
not matter too much. However, in Secti6nwe will

In [1-3], a procedure is proposed to perform show thatthe fast slaving of the higher-order moments
a macroscopic-level (or coarse-grained) time step does not imply that all influences of the deviation
for an unknown macroscopic equation using only a of the reconstructed initial condition from the corre-
microscopic simulator. It is important to first select an sponding correctly slaved initial condition, disappear
appropriate set of macroscopic variables. For the pro- quickly, and that a good reconstruction scheme is
cedure to work well, a macroscopic description must important.
conceptually exist and close using only those variables, In our particular case, we need to initialize the
i.e., in principle it should be possible to write down missing momentum(4) and energy(5). Given the
an evolution equation for those variables in which all macroscopic initial conditiop®(x;, 0), we distribute,
terms can be expressed in function of those variables as in[3], the particles at each grid point over the three
only, though the precise relationships may not yet be velocities using
known. This also implies that the chosen macroscopic s )
variables should be a suitable parametrization of the /i (xj» 0) = wip’(x;j, 0), i € I,

“slow” rganifoldhto(\j/yhich a” in'itiaSLI stg;s sre quickly where the only constraint on the weights needed
attracte _(seet € discussion In Sec the paper). for correspondence of the microscopic state with the
When using too few variables, the procedure would macroscopic state is

very likely fail or produce wrong results. On the other

4. The coarse-grained time integrator

4.1. Performing a single coarse-grained time step

12)

hand, using too many moments of the microscopic
distribution might reveal too much of the microscopic
behavior, and our “macroscopic” model might no
longer exhibit the steady states or periodic solutions
that we expect to find, but much more complicated
dynamics. This will not happen in our case since the

1
w; = 1.
i=—1

This leaves two degrees of freedom. These should be
used to initialize the LBM as close as possible to the
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“slow” manifold. A very reasonable first choice are information. The latter is not a problem for our LB

the weights of the local diffusive equilibrium distri- model.
bution, i.e., In this paper, we will show that the claim made in
1 previous papers that the initialization of the higher-
W = 7, (13) order moments does not matter much, is not always
3 ! . . .
right. Our numerical experiments will demonstrate that
which  corresponds to ¢°(x;,0)=0 and if the initialization of the higher-order moments is too

far from the unknown correctly slaved state, the ef-
In the second step, the microscopic initial condition fects of this deviation might decay very slowly (on a
is evolved over the macroscopic time st&@ using much longer time scale than the healing time, in fact,
the microscopic simulator (the LB model in our case). on atime scale comparable to the slowest macroscopic
Finally, the macroscopic variables at the end of the time time scales) and sufficiently accurate results might only
step are computed from the final microscopic state. This be obtained using a coarse-grained time step which

§'(xj, 0) = (1/3)p*(x;, 0).

step is called theestriction stepin [2]. For our LB
model, this is done usin@).

When the underlying microscopic modelis a stocha-
stic model or when the lifting scheme is stochastic, the

is several orders of magnitude larger than the healing
time.

4.2. Extension to continuous time

result of a coarse-grained time step is again a stochastic

variable, characterized by an average, a variance, etc.

To get a sufficiently small variance, which is needed for
our numerical bifurcation techniques but also for other

In applications, one often has to integrate over a
time interval T much larger than the maximal allow-
able macroscopic time stepT. The above scheme

methods such as the projective integration mentioned is then repeated until the end tiries reached. In this

in the introduction, one should run many microscopic
simulations from the same (if the simulator itself is
stochastic) or equivalent initial conditions. In the re-
striction step, the result for all the simulations must
then be averaged. A similar problem occurs for deter-
ministic microscopic models with chaotic dynamics.
In this case, a lot of nearby initial conditions have to
be used. These difficulties do not occur in our LBM.
It is sufficient to evolve a single initial condition once,
interpolating as explained before between two LB time
steps at the end AT is not a multiple of the LB time
stepAr.

The last difficulty is the choice of the macroscopic
time step AT. According to[2,21], this time step
should be larger than the time it takes for the higher-

procedure, the restriction followed immediately by lift-
ing from the end point to generate microscopic initial
conditions for the next integrations is essential. Since
we remove state information at every restriction step
and add slightly different information again to the sys-
tem in the following reconstruction step, performing
k coarse-grained time steps with time si&@ is not
equivalent to performing a single coarse-grained time
step with time stepAT, in particular when there is an
upper limit toAT. Though it is not needed in our case
to use multiple coarse-grained time steps since there is
no maximum to the allowable time step contrary to the
test cases iff21,22] we will still use this procedure
to experiment with small macroscopic time steps and
to test the concept. We believe that many of the con-

order moments to become slaved by the lower-order clusions we draw from this experiment will carry over
ones, i.e., the time that the solution takes to approach to systems where the maximal successful macroscopic

the lower-dimensional “slow” manifold mentioned
before. The latter time interval is also called the
healing timein [22] and is typically small compared

time step is limited.
If Tis nota multiple ofAT, we have two choices. If
AT is small compared to the dominant time scales of

to the relevant macroscopic time scales. On the the macroscopic dynamics, i.e., AT is comparable

other hand, as is clearly demonstrated[24], AT

to what a time step would be in a typical numerical

should not be too large either, in particular in the integrator for the macroscopic model if the latter were
case of a stochastic or chaotic microscopic model known explicitly, we can use the same approach as
because the various realizations might diffuse irrepara- for the LBM and interpolate between the two last
bly over a large part of the attractor, losing phase states. IfAT is larger, we need another approach. Let
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ATmin and ATmax be the minimum and maximum  studied by analyzing fixed points ¢f5) instead. The
allowed macroscopic time step, estimated according stability of a fixed point of(15) is determined by the
to the criteria specified in Sectiohl Varying AT eigenvalueg; of

between these limits should have very little influence

on the result at tim&. Therefore, we chang&T such Mo dpr(u, y)

that T is an integer multiple ofAT. This approach o w

may fail however ifT is not sufficiently larger than

ATmax and the time step limits are too close to The fixed pointis stable if all eigenvalues have modulus
each other. We used the second approach in our Smaller than one. Ifi is a steady state ¢l4)then
experiments.

8 3 a k]
p= 1) oo (1)
ou ou
5. Numerical bifurcation analysis
and hence
To perform a numerical bifurcation analysis of a 11 = expuT). (16)

system of autonomous PDEs, the PDEs are first space-
discretized. In many cases, this leads to a large systemConsequently, the stability information obtained with

of ordinary differential equations (ODES) both approaches is equivalent. In practice, we have to
du use a numerical time integrator. Most classical time
&= flu,y), f:RY xR RV, (14) integration schemes preserve steady state§l4.

However, (16) will only be satisfied approximately.
though in some cases, a system of differential-algebraic |f the step size is sufficiently small, the dominant
equations is obtained. I(14), y denotes the param-  ejgenvalues of the numerical time integrator will be
eters of the system. For most discretization schemes,very good approximations to the eigenvalyes of

the Jacobian matriXf(u, y)/ou is a large but very  the exact time integrator and can be used to judge the
sparse matrix. In bifurcation analysis, steady states stability of the computed fixed points. One can then
are usually computed by applying some version of still use(16)to compute approximations to the eigen-
Newton’s method tof («, y) = 0. The stability of the values,.

resulting steady state is determined by the eigenvalues A | BM defines a map. Since a LBM is determin-

A of of(u, y)/ou. A steady state is asymptotically istic, one can use the same techniques to analyze this

stable if map as for the time integrator map. If the dynamics
of the LBM are equivalent to those of a PDE, the
Re(A) <0, [I=1,...,N. dominant eigenvalueg; computed from the LBM

and the rightmost eigenvaluely computed from
For a discretized PDE, only the rightmost eigenvalues the equivalent PDE will also approximately satisfy
will be good approximations to the true eigenvalues of (16). The same framework can also be used in
the continuous PDE problem, but these are precisely combination with the coarse-grained time integrator
the eigenvalues which determine Stabl'lty Bifurca- to compute Steady states of the unknown but assumed
tions occur when one or more eigenvalues cross the to exist macroscopic description and to analyze their
imaginary axis as the parameter is changed. stability.

Assumepr(u(0), y) is the solution:(T') at timeT of In numerical bifurcation analysis, one typically
(14) with initial conditionu(0) at the parameter values  computes a discrete set of points on a branch of steady
y. A steady state dfL4)is also a fixed point of the map  states or fixed points obtained by varying one parameter
of the ODE systen(l4) or map(15) while monitoring
the stability-determining eigenvalues along the branch
for any value ofT. A periodic solution of(14) is a to detect bifurcation points. The tool for this is a con-
fixed point of (15) only whenT is a multiple of the tinuation method. Given the already computed points
(unknown) period. Solutions dfl4) can therefore be  on a branch, a prediction is made for the position of the

u > or(u,y) (15)
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next point and that point is then computed by solving
the nonlinear system

{

The vectoru and one of the components of the pa-
rameter vectory are the unknowns. The last equa-
tion,n(u, y; n) = Ois a scalar equation that determines
the position of the point along the branch through a
reparametrization with parametgin our experiments
we used pseudo-arclength continuatiag).

When computing a branch of isolated periodic so-
lutions, the periodr is also unknown. We use single
shooting to compute a point on the branch. This pointis
computed by adding a phase conditipf, T, y) = 0
to (17) which fixes the starting point for integration
along the periodic orbit, i.e., the phase condition effec-
tively defines a Poincérsection. The resulting system

er(u,y) —u =0,

n(u, yim) = 0. 17)

or(u,y) —u =0,
p(u, T, y) =0,
n(u, T, y;n) =0,

(18)

is solved for the vectou, T and one component of.
The stability is determined by the eigenvalues (now
called Floquet multipliery of M evaluated at the so-
lution. One of the multipliers will be one and should

65

methods are based on the assumption thatas only
few eigenvalues close to or outside the unit circle. The
Newton—Picard method starts from Newton’s method,
but computes only an approximate solution to each
linearized system. At each step, the low-dimensional
dominant subspac¥ of M (i.e., the subspace of all
eigenvalues larger than some user-determined thresh-
old 6, with 0 < 6 < 1) is determined using orthogo-
nal subspace iteratioff4], the linearized system is
projected on this space and its orthogonal comple-
menti*, and the resulting system is solved approx-
imately by combining fixed-point (or Picard) iterations
in 4+ with a direct solver iri{. The dominant eigen-
values are easily computed from the projectiorivbf
onto.

When using time stepper based bifurcation analy-
sis to compute steady state solutiomsgan be cho-
sen freely. HowevelT should not be too large since
the nonlinear behavior of the mgh5) may become
more pronounced, causing trouble when solving the
nonlinear syster{iL7). This is especially the case when
computing unstable steady states and is essentially the
same problem as encountered in single shooting meth-
ods for computing periodic solutiorj25,26] As can
be seen fron(16), T also influences the eigenvalues
of M and thus the convergence of the Newton—Picard
method. Assuming the thresholdis squared so that
the dimension of the subspatéremains the same,

not be taken into account. The others determine the doubling T will roughly halve the number of orthog-

stability of the periodic orbit. Instead of a numerical
time integrator for(14), we can also use the coarse-
grained time integrator or the LBM (with the extension
to a continuous time variable). This approach to bi-
furcation analysis, using the time integrator map, can

onal subspace iteration and Picard iteration steps, but
each step will be twice as expensive. The overall com-
putational cost remains roughly the same. The value
of T is not critical for the Newton—Picard method, al-

though we did observe some problems with the sub-

also be extended to compute periodic solutions of a space convergence criterion we used ecomes too

Hamiltonian system or to compute traveling waves,

etc. The problems that arise in those computations

are similar to those that arise in other continuation
methods.

In [8], Shroff and Keller proposed the Recursive
Projection Method to compute solutions(Gf7). This

small.

Both RPM and the Newton—Picard method need
matrix—vector products wittM. These can be com-
puted using finite difference methods. These matrix—
vector products must be accurate enough, otherwise
it will be impossible to compute a basis fof with

procedure is essentially a stabilization and acceleration enough accuracy. Note that the subspacmay be

procedure for iterating with the map. This method was better conditioned than individual eigenvalues associ-
used in[3]. Though it is possible to extend RPM to ated with that subspace. Therefore, in order to compute
compute periodic solutions also, we used the Newton— the eigenvalues with enough accuracy to reliably deter-
Picard method9,10]. This method tends to be more mine the stability and bifurcation points, even higher
robust and was originally developed for bifurcation accuracy of the matrix—vector products may be re-
analysis of periodic solutions of large systems. Both quired. Problems are possible with the coarse-grained
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time stepper if the underlying microscopic model is 6. Study of the bifurcation diagrams
stochastic or has chaotic dynamics. Since differentia-
tion is by itself an ill-conditioned operation, we will We will first compare the bifurcation diagrams for
need a very low variance of the result of the coarse- the PDE model, the LBM and the coarse-grained LB
grained time stepper to compute the matrix—vector time integrator, using the set of weigh3) in the
products accurately enough. This may require a lot reconstruction step and a fairly large macroscopic time
of microscopic simulations at each time step as was step. Next, we will study how the minimal macroscopic
experienced irf21] for a system with an ODE-like  time step needed for accurate results depends on the
one- to three-dimensional macroscopic state. If too weights used in the reconstruction step. This will show
many simulations are needed to obtain a low enough that the minimal macroscopic time step is often much
variance, the numerical bifurcation analysis using the larger than the healing time.
coarse-grained time stepper may be too expensive and
thus unfeasible. However, in our test case, the “mi- 6.1. The reference bifurcation diagram
croscopic” model has clear steady states and periodic
solutions. Fig. 1presents the steady state bifurcation diagram
We use only a single LB simulation at each coarse- forthe LBM, the coarse-grained time integrator and the
grained time step, and the initial conditions are pre- PDE model. Onthe vertical axis, we shgngpaC(x)dx,
scribed in a deterministic way. Therefore, we have computed using the midpoint quadrature rule. This
no problems computing the matrix—vector products. quantity should be essentially the same for all three
A stochastic microscopic simulator would be a better models and is also, up to discretization errors, indepen-
choice to study this aspect of coarse-grained bifurca- dent of the grid size. For all computations, we used a
tion analysis. However, by avoiding this problemin our grid with 200 grid cells Ax = 0.1). All branches, also
test case, we are in a much better position to study the the branch for the PDE model, were computed using
influence of the initialization of the microscopic sim- the time stepper based bifurcation approach explained
ulator and the macroscopic time stag” which is the in Sectiorb, using the publicly available package PDE-
subject of Sectio®.2 cont[27]. We setT = 5. For this value ofT, we had
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no difficulties computing the unstable solutions. Also, for all three models. Therefore, we now plot the period
for this T, the eigenvalues are well enough separated T on the vertical axis. To compute periodic solutions
for the robust operation of our Newton—Picard imple- using the coarse-grained integrator, we aét ~ 5,
mentation. Note also that the computed steady statescf., the second approach in Sectir2. For the trape-
do not depend on the value ®f The LB time stepAr zoidal rule, we used 1000 time steps per period. There
was set equal to 0.001. The time step for the trapezoidal is a fold point at ~0.00087. Solutions on the unstable
rule was 002. Smaller values oAz only led to minor part of the branch have (at least initially) almost the
changes (on the order of the spatial discretization er- same parameter-period dependence as on the stable
ror) in the bifurcation diagram, while the bifurcation part, but the periodic orbit is slightly different. The
diagram changed considerably for larger valueaof amplitude of the temporal oscillations of the inhibitor
In other words, the LB bifurcation diagram has con- is larger for the unstable periodic solution than for the
verged forAr = 0.001. Also, the correspondence with stable one at the same parameter value. We did not
the PDE bifurcation diagram is very good. To compute succeed in computing the unstable branches far past the
the fixed points of the coarse-grained integrator, we set fold point. This demonstrates the lack of robustness of
AT =5 and used the weigh{4.3) in the reconstruc-  single shooting methods, in particular when computing
tion operator. Note that the results do depend on the unstable solution$25,26] The Hopf points for the
choice of AT, see Sectior.2.4 With this choice of three methods are slightly different from thoséig. 1
parameters, the difference with the PDE results is also because they are computed from a different eigenvalue
ofthe order of the discretization error. We will study the problem. The results ifig. 2 are less accurate since
influence of these parameters in more detail in Section the location of the Hopf point is determined by detect-
6.2 Thereisafold point at ~0.945 and a supercritical  ing an ill-conditioned algebraically double eigenvalue
Hopf bifurcation at ~0.0183 giving rise to stable pe- at 1.
riodic orbits at smaller parameter values. The location ~ We can draw two conclusions from this section.
of the bifurcation points corresponds very well for all First, the steady states and periodic solutions of the
three approaches. LBM correspond very well to those of the macroscopic
In Fig. 2, we show the branch of periodic solutions PDE. Second, computing a bifurcation diagram for the
emanating from the Hopf point. Since the phase coarse-grained time integrator does work and produces
condition was not the same for all simulations, it is the expected results (at least for this choicé\@f and
impossible to compare the computed point on the orbit reconstruction scheme).
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6.2. Influence of the reconstruction step and the
macroscopic time step

6.2.1. The slaved state

In Fig. 3, we study the slaving of momentum and
energy at the stable steady state of the LB model
at ¢ = 0.05. For both the activator and the inhibitor
(not shown), the momentum is small compared to
the concentration. When investigating the solution
more carefully, one notes that the momentum is in
fact proportional to the gradient of the concentration,
ie.,

¢~ —d' .

We computedd® = [¢°||/llpll, where|| - || denotes
the two-norm of the discrete state vector. The ra-
tio d° is essentially constant along the solution
branches withi2® ~ 0.04338 and/™ ~ 0.07334.Fig.
3 also clearly shows that the (dimensionless) ki-
netic energys® is almost perfectly one third of the
concentration.

These relationships can be proven quite easily for a
diffusion problem. In the latter case, the LB variables
can be written up to first order terms [28]

(19)

, el s,ne L VlA.x K
=10 =it = =,
w
where f""® is the deviation from the equilib-

rium distribution (the “non-equilibrium part”). The
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corresponding momentufd) and energy5) are
2v1Ax

P

¢f =2f "= —

s, e
&= f =o'

Substituting the parameter values of our prob-
lem into (20), we obtain ¢3 = —0.04333%,
¢" = —0.07333%" and&* = (1/3)p*. So far, we have
no proof of these relations for reaction-diffusion prob-
lems, but they appear to hold at least for our example.
Eq. (20)enables us to develop an almost perfect re-
construction scheme by first computing the slaved (i.e.,
on-manifold) values of°(x;, 0) and&°(x;, 0) from
0*(x;, 0) using(20) and numerically approximating
by finite differences. The corresponding distributions
f7(x;, 0) can then be obtained from definitio{@—(5).
However, in the remainder of this paper we will focus
on the behavior of the coarse-grained integrator using
initializations away from the “slow” manifold.

(20)

6.2.2. Initialization of the LB model in the
coarse-grained time stepper

We studied several reconstruction schemes in our
experiments. Three schemes are basef @jpbut use
different sets of weights. Initialization with the local
diffusive equilibrium distribution, i.e.,

Wo1=wo=wy=— (21)

3

in (12) is a straightforward choice. For this choice,
the kinetic energy is almost perfectly slaved. The

.. 25 ¢ac
. gac

o ac  ac ac
-d7p -0
(d* = 0.04338)

(13) p** - &%

-5

Fig. 3.
figure.
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Slaving of the activator higher-order moments for the stable steady state @05. Note that we plot 25°° rather thanp?® in the top
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momentum is identically zero. Though the momentum the energy differs significantly from the correctly
is small in the correctly slaved state also, this recon- slaved state. The second choice,
struction scheme — as all others based i) — does

not satisfy(19). For the second reconstruction scheme, w{ = 3 (26)
we chose the symmetric set of weights

provides an (almost) perfectinitialization of all velocity
w—_1=w1 =001 wp=0.98 (22) moments.

The momentum is still zero and thus “close” to the 6.2.3. The healing process

correctly slaved state, but the kinetic energy (the  InFig. 4, we study the healing process. Diagram (a)
second-order velocity moment) is very different from shows the difference between the momentum and the
the correctly slaved state. Our third scheme uses thescaled concentration gradient while diagram (b) shows

asymmetric weights the difference between the kinetic energy and one third
of the concentration for the activator at the lattice point
w1 =075 wo=024 w; =001 (23) x = 9.95 in the first few LB time steps using the three

reconstructions based ¢tR), i.e., both diagrams show
For this choice, both the first-order and second-order {he deviation from the best available approximation
velocity moments, i.e., both momentum and kinetic of the correctly slaved state. The macroscopic initial
energy, differ significantly from the correctly slaved gtate is the stable steady state of the LB model at
state. ¢ = 0.05. From this state, we generated microscopic

Though we can initialize the kinetic energy very jnjtial conditions using(12) with weights (21)—(23)

well with reconstruction schen(@?2), the momentum  The figures show that both the momentum and kinetic
cannot be initialized correctly unless a more compli- energy become slaved in about 10 to 15 LB time steps
cated scheme such @0)is used. Since thisrelationis  of A = 0.001. This claim is further verified by the ex-
as yet unproven for our class of problems, and to avoid periment inFig. 5. If the higher-order moments are cor-
any small error resulting from the approximations made rectly slaved for a given state, the evolution from then
in the derivation 0f20) and the computation of;, we on could be described by a macroscopic model with the
also performed experiments with a coarse-grained time |o\er-order moments as the unknowns. Since our LB
stepper using both concentration and momentum as them el is designed to correspond to the (macroscopic)
macroscopic variables. This leaves only one degree of FitzHugh—Nagumo PDE mod@?), it is clear what the
freedom per species and per lattice point for the initial macroscopic model should be in this case. Hence we
state of the LB model. In this case, the reconstruction started time integration of the PDE model from the LB

scheme is trajectory obtained for initializatiofl2) with weights
1 1 (23), att = 0.002= 2A¢ (i.e., before slaving is ob-
fi= 5(1 —wp)p' — Eqbs, fo =wgp® and tained) and at = 0.02 = 20A¢ (after obtaining slav-
ing). The PDE trajectory started from the LB trajectory
fi= %(1 —wi)p’ + %(ﬁs (24) att = 0.002 differs significantly from the LB trajec-

tory, while the PDE trajectory started at= 0.02 fol-
lows the LB trajectory more closely. Note that the LB
and PDE trajectories converge to a slightly different
steady state as discussed in Sectah This experi-
£ = }(1 —wi)p'. ment confirms that after 20 time steps, the higher-order
2 moments are slaved by the lower-order ones, while this
is not yet the case after 2 time steps.

wherewg can be chosen freely. For this initialization,

We considered two choices for the parameigr For
the first choice, 6.2.4. The bifurcation diagram

The fact that slaving is obtained so quickly, suggests
wp = 0.98, (25)  that a coarse-grained time stepl’ = 20A¢ = 0.02
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Fig. 4. Healing of the lifting error. Evolution of (a}d2%p2%x, ) — $?%(x, 1), (b) (1/3)p?(x, 1) — £2%x, 1) and (c) concentratiop®“(x, r) at
lattice sitex = 9.95 for the LB trajectories started from the stable steady state-ad.05 using the reconstruction schen&2) and (24)(d) is
a close-up of (c). (e) Steady state bifurcation diagrams for the coarse-grained integrataxTisin@.02. The steady state bifurcation diagram

for the LBM from Fig. 1is also shown for comparison.

would be sufficient to compute the bifurcation diagram
accurately. Diagram (e) ifig. 4 shows the bifurca-
tion diagrams near the fold point computed with this
time step. The results for all reconstructions ex¢2gj
with (26) have an unacceptably large error. In fact, the
line for (12) with weights(23) even falls off the figure.
The reason for this can be seenrfiy. 4, diagram (c)
and (d). Though slaving is obtained quickly, the LB
simulation does not follow the intended trajectory, i.e.,
the trajectory that would be followed by a macroscopic

model using the same macroscopic initial condition. (In
this experiment, we initialized from a steady state, so
the correct trajectory is constant.) In the healing pro-
cess, the lower-order moments change also and even
at a fairly fast time scale. At the end of the healing
process, these lower-order moments are different from
what they would have been for a “perfect” initializa-
tion, and so the trajectories differ. Since we are in the
neighborhood of a stable steady state, all trajectories ul-
timately converge to the steady state. However, it takes
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about five time units (5000 LB time steps) with most re-
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comparing with a LB steady state on a lattice with
16,200 lattice points. AAT increases, the computed
equilibria and bifurcation diagram become more accu-
rate. FOrAT = 0.5, the error of the activator concen-
tration is on the order of four times the discretization
error and the bifurcation diagram is also acceptable.
For AT =5, the bifurcation diagram is virtually the
same as for the LB model. This agrees whily. 4(d),
where it took about five time units for the LB simula-
tor to converge to the correct trajectory. However, near
an unstable solution, the trajectories diverge and one
would expect that the results would only get worse as
AT is increased. This is true when plotting the trajec-
tories, but when computing fixed points, we still notice
an improvement aAT is increased.

In Fig. 7we show the bifurcation diagram obtained

construction schemes to return to the steady state, whileusing (12) with the symmetric weight sef22) and

with the reconstruction scheni®) with the asymmet-
ric weight choic€23)(i.e., both momentum and kinetic
energy are badly initialized), it even takes on the or-

the asymmetric on€3). With the symmetric weight
set, we again obtain sufficiently accurate results for
AT = 5. Forthe asymmetric weight set, the results also

der of 300 time units. Therefore, the coarse-grained get better aa T increases, but only become acceptable

time stepAT must be much larger than the heal-

whenAT = 75. Though we can compute fairly accu-

ing time unless an accurate reconstruction scheme israte solutions even for this bad initialization, the coarse-

used.

In Fig. 6we show the bifurcation diagram obtained
with the initialization(12) with weights(21) (the equi-
librium distribution). The left panel shows the bifurca-
tion diagram near the fold point for different values of
AT. In the right diagram, we plot the estimated dis-
cretization error for the stable steady state at 0.93,

grained time ste@\T and hence the time integration
interval T for the Newton—Picard method becomes so
large that it is hard to compute the unstable solutions as
we already pointed out in Secti@The computations
break down at ~0.636 forAT = 25 and at ~0.928
for AT = 75.

Clearly, obtaining a correctly slaved state by the end

close to the fold point. The estimate was obtained by of the microscopic integration in the coarse-grained

-10.8

-1

It p(x) dx

-11.2

-11.4
0.9

0.91

092 093 0.94
€

— E200
© AT=05
— - AT=0.25

10
X

15 20

Fig. 6. Left: Steady state solution branches for the coarse-grained integrator using different vallied bé reconstruction schen(&2) with
the equilibrium distribution is used. Right: The estimated discretization &%}(x) for the coarse-grained integratax{’ = T' = 5) with 200
discretization points for a steady stateat 0.93 compared with the difference between the coarse-grained steady statA @ising and the

corresponding states usigl” = 0.5 or AT = 0.25.
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Fig. 7. The steady state bifurcation diagram for the coarse-grained integrator with both a symmetee .01, wo = 0.98 andw; = 0.01)

and asymmetricyy_1 = 0.75, wp = 0.24 andwi = 0.01) set of reconstruction weights. The diagram for the coarse-grained integrator with
asymmetric reconstruction scheme is computed for three different macroscopic time steps. The steady state branch obtained with the LBM from
Fig. lis also shown. The right figure zooms in on the area near the fold point.

time stepper is not sufficient to obtain accurate results. 7. The spectra

If the reconstruction is not very good, the microscopic

simulator must be run over a much larger time interval 7.1. Stability analysis

AT. In this test case, there are no upper limits on

this time interval other than those imposed by the In Section 6.1 we noticed that the bifurcation
Newton—Picard procedure. However, as we pointed diagrams for the PDE model, LB model and coarse-
out in Section4.1l, other microscopic models, and grained integrator are virtually the same, including
in particular stochastic simulations, may impose a the location of the bifurcation points. The latter fact
more severe upper bound akT. In these cases it indicates that the dominant, stability-determining
may be impossible to compute an accurate bifurcation eigenvalues will match very well also. We will now
diagram unless a very good reconstruction scheme study this in more detail.

is used. We expect that the quality of the reconstruc- The dominant eigenvalues are computed in the
tion will be even more important when using more Newton—Picard code by performing a number of
advanced simulation schemes such as the projectiveadditional orthogonal subspace iteration steps after the
integration and gap-tooth schemes suggestgd,#]. computation of the fixed point. Ihable 1, we list the

In fact, unless the higher-order moments are initialized dominant eigenvalues for the unstable steady state at
near-perfectly, it may be impossible to simulate tra- ¢ = 0.01 on the upper part of the branchkig. 1. We
jectories accurately near unstable equilibria with those used7 = AT = 5 and transformed the eigenvalues to
techniques. Correctly initializing the microscopic exponent form usingl6). Table lalso lists the trivial
simulations is clearly an important area of further Floquet multiplier and the most dominant non-trivial
research. As shown [29,30], ideas from approximate  multiplier for the stable periodic solution at the same
inertial manifolds may be useful here. parameter value. The existence of a trivial multiplier

Table 1
Dominant eigenvalues for the unstable steady state on the upper part of the branch and stable periodic sottib@lafusingAT ~ 5 in
the CGLB integrator)

Steady state Periodic solution

r12 A3 trivial g w2
LB 0.0020104 0.03946% —0.124867 1.000000 0.514888
CGLB 0.002012+ 0.039463 —0.124863 1.000000 0.514452

PDE 0001999+ 0.039446 —0.124861 1.000000 0.516712
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Fig. 8. Left: The full spectrum for the LB and discretized PDE model for the stable steady statele®5. Right: Close-up of the most dominant
eigenvalues.

at one is a general property of autonomous systems.with the eigenvalues of the LBM, the eigenvalugsb-

Its computational accuracy is independent of the tained for the PDE were transformed to multiplier form
spatial discretization error. The remarkable precision using(16)with T = Ar = 0.001, the LB time step. The
of the computed value indicates that the time integra- results for the stable steady state at 0.05 are shown
tion and eigenvalue computation are very accurate. in Fig. 8 The LBM has 400 eigenvalues in the same
Clearly, the eigenvalues (and also the corresponding zone along the real axis as the discretized PDE. How-
eigenvectors) correspond very well for all three ever, only the dominant eigenvalues correspond well.

models. This is not surprising. The less dominant eigenvalues

depend very much on the discretization and have little
7.2. Slaving and the spectrum of the lattice relationship with the true eigenvalues of the continuous
Boltzmann model problem.

At first, one would expect to recognize slaving of
To conclude, we study the full spectrum of the LBM  the first- and second-order moment to the zeroth-order
and the discretized PDE model. We computed the Ja- moment of the eigenvectors of those 400 LB eigenval-
cobian matrix analytically for both cases. To compare ues, while in the other eigenvectors there would clearly
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Fig. 9. Slaving of the activator momentum and energy of the (real part of the) full LB eigenvectors for the largest complex pair of eigenvalues and
the first real eigenvalue frofig. 8. Left: Difference between the eigenvector's momentum and its appropriately scaled concentration gradient.
Right: Difference between the eigenvector’s energy and one third of the concentration.
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be no slaving. However, we only observed slaving in if such a model would be known explicitly, started
the eigenvectors for the most dominant eigenvalues from the same initial macroscopic state). Hence, good
that correspond very well to those of the discretized reconstruction schemes are clearly problem-dependent
PDE. Fig. 9 illustrates this slaving for the real part and are an interesting area of further research, see e.g.,
of the eigenvectors corresponding to the rightmost [29,30]
complex pair of eigenvalues and for the eigenvector = We have also demonstrated that the techniques
corresponding to the largest real eigenvalue. The developed for time stepper based numerical bifurcation
eigenvector’'s momentum is small compared to its analysis of PDEs can be used for bifurcation analysis
concentration and proportional to its concentration of steady states and periodic solutions of LB models
gradient, and its second-order moment, the energy, using either the coarse-grained integrator or the LB
is very nearly one third of the concentration, so we model itself as the time stepper. As shown[#1],
note the same slaving relationships as for the statethe amount of work when using the Newton—Picard
in Section6.2 The discovery of such relationships method is roughly the same for both approaches, since
between the higher-order and lower-order moments this is mostly determined by the dominant eigenvalues.
could be a step towards the development of some kind Since the state vector is lower-dimensional for the
of constitutive equation or closure relation. coarse-grained time stepper, the memory requirements
will be less. However, this approach is much more
complicated than bifurcation analysis using the
8. Conclusions LB model itself as the time stepper, since a good
choice of the macroscopic variables must be made
In this paper, we have studied the coarse-grained bi- and a good reconstruction is needed for accurate
furcation analysis procedure proposeddh using the results.
same test case, a FitzHugh—Nagumo lattice Boltzmann  We have also studied the spectrum of the LB model
model. We have extended the work [8 in several and showed that the higher-order moments of the full
ways. We compared the results of a numerical bifurca- eigenvectors are slaved in the same way as those of the
tion analysis using the coarse-grained time integrator corresponding LB solution.
not only with results for an equivalent PDE, but also This paper does not claim that numerical bifurca-
with the bifurcation diagram for the (deterministic) tion analysis based on the coarse-grained time stepper
LB model used in the coarse-grained time stepper. The of [2,3] will always work. Indeed, microscopic or
results for all three approaches corresponded very well. mesoscopic simulations based on stochastic models or
We have also extended the coarse-grained integratormodels with chaotic behavior, may (and likely will)

to produce results at an (almost) arbitrary timé his pose additional numerical problems that cannot be
enabled the computation of periodic solutions. Instead studied with this simple test case. Further research
of the Recursive Projection Method used[8], we is needed in this area. However, it does show that

used the Newton—Picard meth@@10]. Though the the idea of initializing microscopic simulators from
coarse-grained time stepper is not really needed to a macroscopic state can produce valid macroscopic
perform a numerical bifurcation analysis of the LB data already after a short time interval, provided
model, this test case did enable us to thoroughly study the reconstruction of the microscopic state is done
the effects of the reconstruction scheme. This led to properly.

the most important conclusion of this paper. Contrary ~ Another possible extension of this work is the com-
to the claim in[3] that the quality of the reconstruction  bination with more efficient simulation techniques such
step does not really matter, we have shown that this as the schemes [2,4,5].

step can be crucial to the success of the method.

Though slaving is quickly obtained irrespective of
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