

 University of Groningen

Design and verification of lock-free parallel algorithms
Gao, Hui

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gao, H. (2005). Design and verification of lock-free parallel algorithms. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/68ae85e9-11ce-4081-b1c5-8d0fc341e35d

RIJKSUNIVERSITEIT GRONINGEN

Design and Verification of Lock-free

Parallel Algorithms

Proefschrift

ter verkrijging van het doctoraat in de

Wiskunde en Natuurwetenschappen

aan de Rijksuniversiteit Groningen

op gezag van de

Rector Magnificus, dr. F. Zwarts,

in het openbaar te verdedigen op

vrijdag 15 april 2005

om 16.15 uur

door

Hui Gao

geboren op 8 september 1969

te Jiangsu, China

Promotores: Prof. dr. W.H. Hesselink

Prof. dr. ir. J.F. Groote

Beoordelingscommissie: Prof. dr. M. Herlihy

Prof. dr. W. Fokkink

Prof. dr. S.D. Swierstra

ISBN 90-367-2231-4

The work in this thesis has been carried out under the auspices of the research school

IPA (Institute for Programming research and Algorithmics).

iii

Acknowledgements

Finally, I wish to express my gratitude to all persons who gave me the possibility to finish

this thesis, though there are so many people that I can’t mention all of them right here.

First, I would like to express my thanks to my former advisors Prof. Dr. H.G. Dehling

and Prof. Dr. A.C. Hoffmann, and Prof. W. Schaafsma for creating the job opportunity

for me to start the research as a Ph.D candidate in University of Groningen, in February

2000.

Then I would like to thank my present advisor Prof. Dr. Wim H. Hesselink for taking me

over in February 2001, after both of my former advisors left the university of Groningen. In

the following four years, he kept an eye on the progress of my work and was always available

when I needed his advice. He has always been a great source of wisdom, knowledge and

experience. My second advisor, Prof. Dr. Jan Friso Groote came to direct my research

one year later. His critical comments, valuable hints and creative suggestions helped me

to overcome many obstacles in my research. I am deeply indebted to my two advisors.

The combination of their technical and editorial advice substantially contributed to the

completion of this thesis. I am really glad and lucky that I have them both as my mentors.

I am very grateful to the members of the reading committee, Prof. Dr. Maurice Herlihy,

Prof. Dr. Wan Fokkink, and Prof. Dr. Doaitse Swierstra, for reviewing the manuscript of

my thesis and giving me many valuable comments.

Thanks also go to the chairman of Fundamental Computing Science group, Prof. Dr.

Gerard R. Renardel de Lavalette, who was always willing to provide a solid financial support

for me to attend summer schools and conferences.

I am grateful to all the members in our reading club, Wim H. Hesselink, Jan Eppo

Jonker, Jan H. Jongejan, Hendrik Wietze de Haan and Roland Veen, for innumerable dis-

cussions, and valuable comments on all the drafts of the papers presented in this thesis.

iv

I also want to extend my thanks to my former and present office mates, Daniel Strau-

mann, Nico Kruithof, Hendrik Wietze de Haan and Marek Burza, for providing a good

working atmosphere and sharing of tips, teas, cookies, and etc. Especially, I want to thank

Hendrik Wietze de Haan for helping me to translate the summary of this thesis into Dutch.

Big thanks to our secretaries, E.D. Elshof, D.J. Hansen and Y.G.M. Vergnes, for their kind

assistance with various practical problems.

Many thanks goes to all my friends who’ve stood by me through all the years.

Last, but not least, I would like to give my special thanks to my family. It was my

wife, Lixia Tang, who inspired me to study in the Netherlands five years ago. It was my

son, Shenghan Gao, who frequently corrected the pronunciation of my English. My wife

and my son’s unconditional and endless love as well as their steady and substantial support

are the main source of my life. My warm thanks go to my two elder sisters, Bi Gao and

Hua Gao, for their kind concern and having taken care of my parents for so many years.

My parents, Zhongnan Gao and Juru He, receive my deepest gratitude and love for always

being there for me. Indeed, without love, inspiration, encouragement, and optimism from

them, I would never have been able to finish this work.

v

Contents

Acknowledgements iv

1 Introduction 1

1.1 Shared memory architectures . 2

1.1.1 The programming model . 3

1.1.2 Synchronization . 4

1.2 Correctness . 8

1.2.1 The temporal logic . 8

1.2.2 Safety property . 9

1.2.3 Liveness property . 10

1.3 Verification . 11

1.3.1 Model checking . 11

1.3.2 Theorem proving . 12

1.4 Introduction to PVS . 14

1.4.1 The PVS specification language . 14

1.4.2 The PVS prover . 17

1.4.3 Experiences with PVS . 17

1.5 Overview of the thesis . 19

2 Lock-free dynamic hash tables with open addressing 21

2.1 Introduction . 22

2.2 The interface . 25

2.3 The algorithm . 28

2.3.1 Hashing . 29

2.3.2 Tagging of values . 30

vi

2.3.3 Data structure . 30

2.3.4 Primary procedures . 32

2.3.5 Memory management and concurrent migration 38

2.4 Correctness (Safety) . 47

2.4.1 Main properties . 48

2.4.2 Intuitive proof . 49

2.4.3 The model in PVS . 50

2.5 Correctness (Progress) . 53

2.5.1 The easy part of progress . 54

2.5.2 Progress of newTable . 54

2.5.3 The failure of wait-freedom . 55

2.6 Conclusions . 56

3 A formal reduction for lock-free parallel algorithms 57

3.1 Introduction . 58

3.2 Lock-free transformation . 59

3.3 Reduction . 60

3.3.1 Observed Specification . 61

3.3.2 Refinement mappings . 61

3.3.3 Correctness . 62

3.4 A lock-free pattern . 63

3.4.1 Simulation . 65

3.4.2 Refinement . 67

3.5 Large object . 68

3.6 Conclusions . 70

4 A general lock-free algorithm using compare-and-swap 72

4.1 Introduction . 73

4.2 Synchronization primitives . 75

4.3 The lock-free implementation using CAS . 76

4.4 Correctness . 78

4.4.1 Invariants . 79

4.4.2 Refinement . 80

4.4.3 Progress . 81

vii

4.5 Conclusions . 83

5 Lock-free parallel garbage collection by mark&sweep 84

5.1 Introduction . 85

5.2 Specification . 88

5.3 A higher-level implementation . 93

5.3.1 Data Structure . 94

5.3.2 Algorithm . 96

5.4 Correctness . 105

5.4.1 The main loop . 105

5.4.2 Safety properties . 106

5.4.3 Liveness . 108

5.5 The low-level lock-free implementation . 113

5.6 Practical experiment . 114

5.7 Conclusions . 116

A For lock-free dynamic hash tables 118

A.1 Invariants . 118

A.2 Dependencies between invariants . 129

B For lock-free parallel GC 137

B.1 Invariants . 137

B.2 Dependencies between invariants . 141

B.3 The low-level lock-free algorithm . 143

B.3.1 Data Structure . 143

B.3.2 Algorithm . 144

Bibliography 151

Summary 157

Samenvatting 162

viii

Chapter 1

Introduction

Computer programs tell the computer what specific operations to perform and in what

specific order to carry out specified tasks. Algorithms are the essential parts of computer

programs. Computer applications are often based on several algorithms. An algorithm is

usually applicable in many applications and is to a large extent independent of the particular

programming language used for the applications. An error in the design of an algorithm for

solving a problem can lead to failures in the implementing program.

The basic unit of execution in many operating systems is called a process. In some cases,

what you think of as a single program (e.g., a web or database server) actually consists of

multiple processes communicating with each other. On uniprocessor systems, the processes

rely on the operating system to frequently switch from one process to another so that it

appears as if all the processes are executing at the same time. Many modern computers

are multiprocessor systems, which have specialized hardware capable of executing several

programs simultaneously. The main goals of the use of multiprocessor systems are to speed

up the computations by using multiple processors, to perform large computations that

are not possible on a uniprocessor system, and to allow subtasks of a larger job to run

concurrently.

Algorithms that allow a computer performing more than one task concurrently are

called parallel algorithms. To avoid chaos, likely to occur when multiple tasks or processes

compete for scarce shared resources, we need some form of synchronization. The classical

synchronization paradigms using locks can lead to many problems, including the waste of

some time that we have won by parallelization. These are the reasons to strive for lock-free

parallel algorithms. In section 1.1, we explain this in more detail.

1

2 Chapter 1. Introduction

Hardware and software are widely used in applications where failure is unacceptable.

Since parallel algorithms are executed by letting the processors perform their actions con-

currently, with steps interleaved in a nondeterministic way, it is generally impossible to

understand the algorithms by predicting exactly how they will execute. Therefore, it is

much harder to design correct parallel algorithms than their sequential counterparts. Fur-

thermore, since different executions of them may use a different order and the number of

combinations is exponential, it is usually impossible to test them well enough to trust them.

Indeed, many published parallel algorithms are wrong or have wrong correctness proofs.

Lock-free algorithms are among the most difficult parallel algorithms. When testing is

not enough or even impossible, we have to verify the correctness of them by using mathe-

matical proof techniques. Nobody can avoid making mistakes, and it is important to verify

the design as early as possible to exclude incorrectness. Ideally, the design and its proof

are developed hand in hand. This explains why the words “design and verification” are

combined in the title of this thesis.

In section 1.2, the concept of “correctness” is worked out. In section 1.3, we go deeper

into the concept of “verification”. Since verification with a complete hand-written proof is

too much work for the algorithms we are dealing with, we use the proof checker PVS for

this purpose, as explained in section 1.4. We give an overview of the remainder of the thesis

in section 1.5.

1.1 Shared memory architectures

We are interested in parallelism based on modern shared-memory multiprocessor that can

access a common shared address space. These shared-memory multiprocessor systems

tightly couple multiple microprocessors (with high speed communications between them),

memory and I/O, and provide more computing power in a single machine. On a multipro-

cessor system, the programmer is expected to enable the efficient sharing of these resources,

and take care that the different processors help each other rather than hinder each other.

A shared-memory multiprocessor system shows only a single memory image to the user

even though the memory is physically distributed over the processors. Each processor is

allowed to read from and write into each memory location. Sometimes the collaboration of

different processors requires them to wait for each other. More than one processor may read

the same memory location at the same time. However, on this architecture, to ensure the

1.1 Shared memory architectures 3

coherent contents of the various processor caches, simultaneous writing of the same memory

location and simultaneous reading and writing of the same memory location cannot take

place. Such simultaneous read and write actions are sequentialized, meaning that they take

place in an arbitrary order.

1.1.1 The programming model

An atomic action is a sequence of one or more statements that appear to be executed as

a single, indivisible action without interruption. There are two kinds of atomic actions,

namely fine-grained and coarse-grained atomic actions. A fine-grained atomic action is one

that can be implemented directly by a single machine instruction. A coarse-grained atomic

action consists of a sequence of fine-grained atomic actions that are (thought to be) executed

atomically. Each sequential process consists of a series of atomic instructions, and can be

viewed as a sequence of events or actions.

The programming model for shared-memory multiprocessor machines is a non-deterministic

interleaving model. On the model, a concurrent program can be considered as a nonempty

collection of sequential processes. These sequential processes communicate and/or synchro-

nize with each other. The choice of the process from which the next atomic statement is

selected is arbitrary, except for the synchronization statements.

A concurrent program consists of a declaration of variables, their initial values, and a

set of atomic statements. Some of these variables represent data variables (e.g., global or

local variables), which are explicitly manipulated by the program text. Some are control

variables, which represent, for example, the location of control for each process in a concur-

rent program. Others are auxiliary variables, which are only used for the verification. The

state of a program at any point in time consists of the values of all its variables, which can

be characterized by a predicate called an assertion. A concurrent program can be modeled

as a transition system S : (Σ,Θ,N) where

1. Σ is the state space.

2. Θ, a predicate on Σ that determines the initial states.

3. N , the next-state relation, is a reflexive relation on Σ × Σ.

The next-state relation N describes all the state transitions, and is required to be reflexive in

order to allow stutterings (or idlings) [49, 53]. An execution sequence of S is a nonempty list

4 Chapter 1. Introduction

over Σ, in which every pair of consecutive elements corresponds to executing one program

step and belongs to N . Each program corresponds to the set of all possible execution

sequences starting from the initial states. A state is called reachable iff it occurs in an

execution starting from the initial states. The program is terminated when there are no

further state changes.

As is well-known, a next-state relation N can be described by a Hoare triple: {ϕ}N{ψ},

where ϕ and ψ are predicates on the state. This Hoare triple expresses that, if an atomic

action represented by the next-state relation N is executed in a state where ϕ holds, and if

the execution terminates, then it terminates in a state where ψ holds.

1.1.2 Synchronization

On shared-memory architectures, processes coordinate with each other via shared data

structures, called concurrent objects. The order of execution of multiple processes can

alter the meaning of programs. A concurrent program must be correct under all possible

interleavings. There is no assumption on relative process speeds, synchronized clocks, etc.

However, to ensure the consistency of these concurrent objects, there are often critical

sections, sequences of actions on one or more data objects, that must be executed by

one process at a time. Data sharing is the main reason that concurrent programming is so

difficult. When different processes are working on the same critical section, they may disturb

each other’s work, leading to a chaotic behavior or an undesired computation result. This

problem is often called a synchronization problem. Typically, synchronization primitives are

used to avoid such interference between the processes.

Hardware primitives

Standard hardware instructions, e.g. load and store, are atomic with respect to each other.

Each of them involves only at most one memory access. E.g. an assignment statement

appears to execute as an atomic action if it satisfies the at-most-once property: an attribute

of an assignment statement x = e in which either (1) x is not read by another process and

e contains at most one reference to a variable changed by another process, or (2) e contains

no reference to variables changed by other processes.

Many machines provide special hardware primitives that allow the processes to perform

several standard instructions atomically. They can be used to build blocks (i.e., software

primitives) to solve versatile synchronization problems. The commonly available special

1.1 Shared memory architectures 5

hardware primitives are test-and-set(TAS), compare-and-swap(CAS), fetch-and-increment

(FAI), fetch-and-decrement(FAD) and load-linked/store-conditional(LL/SC).

Hardware primitives do not block. However, using special hardware primitives directly

may result in non-portable code.

Classical software primitives

Rather than relying on assumptions about the granularity of hardware primitives, it is

preferable to use software primitives that are built on the hardware primitives to provide

higher-level synchronization support. Classical software solutions are spin-locks, mutexes,

semaphores, condition variables and monitors, which are so common that they are often

embedded into programming languages.

A spin-lock (also known as busy waiting) is an implementation of synchronization in

which a process repeatedly executes a loop waiting for a boolean condition to be true.

Though spin-locks are very efficient, one of the most serious drawbacks of spin-locks is that

they can consume all the available CPU cycles without performing a useful task.

When several processes want to access a critical section, mutually exclusive locks (or

mutexes) form a protection mechanism that serializes their accesses to the critical section

by assuring a single, exclusive owner at any time. Mutexes have two basic operations for

each critical section, namely lock and unlock. If a process calls lock on an unlocked

critical section, then the critical section is locked and the process is enabled to continue its

execution. If, on the other hand, the critical section is locked by some process, then the

other processes that want to access that critical section will be blocked until the process

calls unlock to release the resource.

Conceptually, a semaphore is a simple atomical counter. Semaphores are typically used

to coordinate access to resources. A process calls up to atomically increment the counter

when resources are added or released by the process, and calls down to decrement the

counter when resources are removed or occupied by the process. When the semaphore

becomes zero, which indicates that no more resources are available, processes trying to

decrement the semaphore will be blocked until the counter becomes positive. The initial

value of a semaphore indicates the number of identical instances of a critical resource. A

semaphore initialized to 1 serves as a mutex.

Sometimes we want to check a condition in a critical section and then wait for it to

be valid. A condition variable allows processes to synchronize on the value of data. It

6 Chapter 1. Introduction

provides a logical abstraction for suspending a process’s execution until the data reaches

some particular state or until some particular event occurs. The condition is tested under

the protection of a mutex. When the condition is false, a process usually calls wait to block

on a condition variable and atomically releases the mutex. When another process changes

the condition, it can call signal to wake up one or more processes waiting on the associated

condition variable. If several processes are waiting on a condition variable, a broadcast

awakens all of them.

A concurrent object is an abstract data type that permits concurrent operations that

appear to be atomic [27, 52, 69]. Essentially a monitor is a high level primitive with a

mutex and several condition variables. This encapsulation of synchronization allows users

of the resource to assume it to be properly synchronized (only one process can be active

inside the monitor at a time). No extra synchronization code is needed at each entry point

of the resource. A monitor provides a program scope, local variables, and multiple entry

points. On behalf of its calling process, any operation may suspend itself by starting to

wait on a condition, and thereby releasing the control of the monitor.

Disadvantages of lock-based synchronization

In multiprogrammed systems, synchronization often turns out a performance bottle neck,

due to preemptions. Most lock-based synchronization algorithms perform poorly in the face

of such delays, because a delayed process holding a lock can impede the progress of other

processes waiting for that lock. Furthermore, due to blocking and waiting for a resource,

the classical synchronization paradigms using locks can lead to many problems such as

convoying, priority inversion, deadlock and livelock. Many algorithms have been developed

to limit the effects of these problems.

Convoying occurs when a process holding a lock is delayed and blocks all other pro-

cesses. Sources of these delays include cache misses, remote memory accesses, page faults,

scheduling preemptions and interrupts. Priority inversion occurs when a high-priority task

is blocked and is waiting for a lock, but the lock holder does not make progress due to its low

priority. Deadlock means that no process can make progress; this can occur when processes

hold locks while waiting for locks held by other processes, so that no process can make

progress. Livelock is the busy-waiting analog of deadlock. It occurs when every process is

spinning while waiting for a condition that will never become true.

An important property of a lock is its granularity . The granularity is the size of the

1.1 Shared memory architectures 7

object that is locked. Generally, using coarser granularity of the locks simplifies program-

ming, but hampers the performance when many processes are needing concurrent access to

the protected object. Conversely, using a finer granularity increases both the overhead of

the locks and the risk of deadlock, but reduces lock contentions.

Lock-free and wait-free objects

The easiest way to implement concurrent objects is by means of classical software solutions,

but this leads to blocking when the process that holds exclusive access to the object is

delayed or stops functioning.

The object is said to be lock-free if any process can be delayed at any point without

forcing any other process to block and when, moreover, it is guaranteed that always some

process will complete its operation in a finite number of steps, regardless of the execution

speeds of the processes and possible adversarial scheduling [6, 28, 48, 64, 69]. However,

some process might always lose to some faster process, but this is often unlikely in practice.

We regard “non-blocking” as synonymous to “lock-free”. In several recent papers, e.g.

[67], the term “non-blocking” is used for the first conjunct in the above definition of lock-free.

Note that this weaker concept does not in itself guarantee progress. Indeed, without real

blocking, processes might delay each other arbitrarily without getting closer to completion

of their respective operations. The older literature [2, 6, 30] seems to suggest that originally

“non-blocking” was used for the stronger concept, and lock-free for the weaker one. Be this

as it may, we use lock-free for the stronger concept.

As lock-free synchronizations are built without locks, they are immune from the afore-

mentioned problems. In addition, lock-free synchronizations can offer progress guarantees.

Herlihy [27] has shown that the primitive CAS and the similar LL/SC are universal primi-

tives that solve the consensus problem. A number of researchers [6, 9, 28, 29, 51, 54] have

proposed techniques for designing lock-free implementations. Essential for such implemen-

tations are special hardware instructions such as LL/SC, or CAS.

The object is said to be wait-free when it is guaranteed that any process can complete

any operation in a finite number of steps, regardless of the speeds of the other processes [27].

Observe that this gives a stronger fault tolerance than lock-free, since any number of other

processes can stop at arbitrary points in their executions without stopping the execution of

other processes. However, wait-free objects are much more difficult to construct and usually

less efficient.

8 Chapter 1. Introduction

1.2 Correctness

Concurrent programming is more difficult and error prone than sequential programming.

It is notoriously difficult to ensure absence of runtime errors such as race conditions and

dangling pointers, which may cause unpredictable or irreproducible behavior.

Correctness is essential because of the increasing integration of software in different

kinds of applications such as embedded systems, communication protocols, transportation

systems, etc. Ensuring the correctness of the design at the earliest possible stage is a major

challenge in any responsible system development where the failure could be fatal and very

expensive. A dramatic example of such a failure is the Ariane 5 rocket. Due to a software

error, which was responsible for calculating the rocket’s movement, it exploded on June 4,

1996.

The basic correctness conditions for concurrent systems are functional correctness and

atomicity, say in the sense of [52], chapter 13. In order to verify the functional correctness of

a program, one needs to specify the programming model of the behavior (derived from the

requirements) of the program in a formal language. These specifications are critical since

they can serve in many different applications. They must be correct before the applications

are built upon them.

It may be easy to prove the correctness of an algorithm under assumption of a coarse

grain of atomicity, but this can impose too severe restrictions on the implementation. A fine

grain of atomicity is easier to implement, but it may make it harder to prove the correctness

of the algorithm.

Partial correctness is a property of a program that computes the desired result, assuming

the program terminates. Total correctness means: partial correctness and termination.

Every correctness property a system satisfies can be formulated in terms of two kinds of

properties: safety and liveness.

1.2.1 The temporal logic

Temporal Logic is a well-developed branch of modal logic with a notion for arguing about

the times when assertions are true. It is widely applied to specifications and verifications

of programs.

Time in temporal logic is discrete. A formula for asserting aspects of the state at a

certain point in time, is called a state formula (or simply an assertion). In addition to

1.2 Correctness 9

making a temporal formula out of state formulas by applying the boolean operators (¬, ∧,

∨, and so on), quantifiers ∀ and ∃, in this thesis we use the following temporal operators to

express assertions temporal:

2 : always, meaning “is true now and forever”;

3 : eventually, meaning “is true now or sometime in the future”;

© : next, meaning “is true at the next point in time”.

Quite often, ©x is abbreviated as x′. ϕ → ψ holds if ϕ implies ψ in the current state. We

write ϕ⇒ ψ as an abbreviation for 2(ϕ→ ψ). S |= ϕ denotes that ϕ is logical consequence

of the specification S.

1.2.2 Safety property

Safety properties assert that nothing bad will ever happen, and are falsified when the

program enters a bad state. Partial correctness, mutual exclusion, and absence of deadlock

are examples of safety properties.

An assertion is an invariant iff it holds in every reachable state. It follows that every

reachable state satisfies every invariant, and safety properties can be reduced to invariant

properties. For establishing invariance properties, we use the following standard invariant

rule as the main working tool:

Rule INV1. For assertion ϕ,

Θ → ϕ

{ϕ} N {ϕ}

————————————

S |= 2ϕ

The consequent of the rule, which is below the line, states that program S satisfies 2ϕ,

i.e. always ϕ. So, ϕ is indeed an invariant. The rule allows to infer this from the two

antecedents above the line: by the first antecedent, ϕ holds initially, and by the second

antecedent it is propagated from each state to its next state.

Quite often the invariant property ϕ one wants to verify is not strong enough to be

proven by itself (i.e. not inductive). To prove assertion ϕ to be an invariant, we normally

need to find an inductive invariant ψ, which is stronger than assertion ϕ but weaker than the

initial conditions and is preserved by any computational step of the system. It is important

to realize that if ϕ is an invariant, then there always exists an inductive invariant ψ stronger

than ϕ provided the language is rich enough [53].

10 Chapter 1. Introduction

In general, in order to prove that ϕ is an invariant, it is sufficient to use some already

proved invariant I to prove either of the following two rules:

Rule INV2. For invariant I, assertion ϕ,

I ⇒ ϕ

————————————

S |= 2ϕ

Rule INV3. For invariant I, assertion ϕ,

Θ → ϕ

{I ∧ ϕ} N {ϕ}

————————————

S |= 2ϕ

Since invariant I is usually denoted by a huge formula, we need to use it in an efficient way.

1.2.3 Liveness property

A liveness property asserts that something good will eventually happen—namely, that the

program must eventually reach a good state. Termination and eventual entry into a critical

section are examples of liveness properties.

In some circumstances, we need to assume that the programming model has some sense

of fairness, by which we mean that in its long-term behavior it does not show undue bias

in favoring some process when making nondeterministic choices. The purpose for fairness

conditions is to rule out executions where the system idles indefinitely with control at some

internal point of a procedure and with some transition of that procedure enabled. The proof

of liveness relies on the fairness conditions associated with a specification.

For any atomic action A, the predicate En(A) is defined to be the predicate that is

true for a state iff it is possible to take an A step starting in that state. The weak fairness

condition WF(A) is the condition that in every execution, action A must eventually be

taken if En(A) remains true. The strong fairness condition SF(A) is the condition that in

every execution, action A must be executed infinitely often if En(A) is infinitely often true.

Liveness properties are often expressed using the “leads-to” relation (denoted as o→).

The leads-to relation is defined by: (ϕ o→ ψ) ≡ 2(ϕ→ 3ψ), which means, whenever ϕ is

true, ψ will be true now or in the future. The following rules (stated in [49]) allow to deduce

a simple leads-to formula from a weak fairness condition and a strong fairness condition,

respectively.

1.3 Verification 11

Rule WF1.

{ϕ} N {ϕ ∨ ψ}

{ϕ} (N ∧A) {ψ}

ϕ ∧ I ⇒ En(A)

————————————————————–

S |= WF(A) ⇒ (ϕ o→ ψ)

Rule SF1.

{ϕ} N {ϕ ∨ ψ}

{ϕ} (N ∧A) {ψ}

2ϕ ∧ 2N ∧ 2I ⇒ 3En(A)

————————————————————–

S |= SF(A) ⇒ (ϕ o→ ψ)

Where ϕ, ψ, and I are predicates, N is the (reflexive) next relation and A is an irreflexive

binary relation on Σ.

The rule WF1 (or SF1) asserts that ϕ o→ ψ holds for a specification with next-state

relation N and weak fairness condition WF(A) (or strong fairness condition SF(A)) for

some non-stuttering action A, provided we can prove the antecedents for every reachable

state characterized by invariant I.

1.3 Verification

When writing a program, we often make mistakes. Syntax errors are easily caught or flagged

by a good compiler. Code inspection by an independent team can normally detect most

obvious errors, but no guarantee of correctness is made. Testing or debugging can often

reveal more errors, but it cannot demonstrate the absence of bad states. Given a program,

how can we determine that it always behaves as expected?

Verifying a program is proving, in a formal mathematical way, that the program has some

desired properties written in logical formulas. There are two formal verification approaches,

namely model checking and theorem proving.

1.3.1 Model checking

Model checking is a usual way of verification. It consists of an automatic exhaustive analysis

of the reachable state space, which often must be finite. In model checking, the design of

12 Chapter 1. Introduction

a model as well as its desired properties are first converted into a formalism accepted by

a model checker. Ideally, model checking can then be performed automatically by model

checkers, which explicitly or implicitly enumerate the reachable state space of a (finite-

state) reactive program, to verify the correctness of the system with respect to these logical

formulas. When model checking fails, the user is often provided with an error trace. This

can be used as a counterexample for the checked property.

Model checking does not aim at being fully general. It can only verify instantiations of

systems. E.g., it can only verify the correctness of a network protocol for particular networks

and not for general networks. It is fairly hard to capture a complete set of properties for all

but the most simplistic designs. Though it is no longer absolutely restricted to finite-state

systems, it is still only applicable to systems whose states have short and easily manipulated

descriptions. This indicates that model checking cannot be used for the verification of data-

intensive applications, where the state space is very large or even infinite.

The main challenge of model checking is how to deal with the so called “state explosion

problem”: if the number of states is too large, the model checker requires unreasonable

amount of time and memory to complete verification. E.g. in the concurrent program

containing n processes, each with m atomic actions, the number of different states is (n ×

m)!/(m!)n. When n = 5 and m = 10, this is a number of 32 digits.

However, model checking is a demonstrated success in the development of hardware

products. Researchers and industrialists have used checkers like SMV, Murphi, COSPAN

and SPIN to find bugs in many published circuit designs for multiprocessor. It has been

adopted by the hardware community to complement the traditional validation method of

hardware simulation.

1.3.2 Theorem proving

In theorem proving (also referred to as deductive verification), the proof of the correctness

is mechanically checked by a theorem prover, such as PVS, Coq, Isabelle, HOL, ACL2 and

Nqthm. The theorem proving tools consist of a powerful collection of inference rules that

can be applied to repeatedly reduce a proof goal to simpler sub-goals until all the final proof

goals can be discharged automatically by the primitive proof steps of the theorem prover.

Most theorem provers give the user a lot more flexibility and control in doing the proofs.

In case of a negative result, the user can derive a scenario. This scenario can give the user

greater insights into the specification. Analyzing the scenario can lead to a modification to

1.3 Verification 13

the system and the verification.

Large systems that cannot be verified by model checking, can still be verified by theorem

proving. Theorem proving can be used for reasoning about an infinite state space. It avoids

state explosion by a compact (or logical) representation of states and state transformations.

Since state space explosion is not a problem, no abstraction techniques need to be applied

and the verification can directly be done on the parameterized (or general) model. Most

theorem provers are highly expressive. Some properties that cannot be easily specified using

model checkers can be easily specified in the languages of most theorem provers.

In principle, human-guided theorem proving can verify any correct design, but doing so

may require considerable effort, time and skill. It can be performed only by experts with

certain logic reasoning and considerable experience. Most theorem provers can be used in a

variety of ways with different amounts of automation. Normally, they require a great degree

of manual intervention. So far, there is no theorem prover that can fully automatically prove

”interesting” theorems. Some experts roughly expect such an intelligent theorem prover in

200 years, but unfortunately, none of us can wait.

The main task in theorem proving is to show that some conjecture is a logical conse-

quence of a set of the axioms, hypotheses and some already proved assertions. In this thesis,

we use theorem proving to verify the correctness of the algorithms. Safety properties can

be reduced to invariant properties, and to prove progress one usually needs to establish

auxiliary invariant properties too.

In order to establish some invariance property, there are two methods used to find out

the appropriate inductive invariant (that implies the property). One method is bottom-up

approach. Using this method, we only need to analyze the given program alone, indepen-

dently of the goal assertion whose invariance we wish to prove. This method is guaranteed

to produce an inductive but maybe useless assertion. The alternative method is top-down

approach, which takes into account both the program and the assertion. Guided by the

given goal assertion being verified, this approach is guaranteed to produce a useful assertion,

which however need not be inductive, and which may even turn out to be false.

Our proof architecture for verifying some invariance property can be described as a

dynamically growing tree in which each node is associated with an assertion. We start

from a tree containing only root node, which characterizes the main property of the system.

We expand the tree by adding some new children via proper analysis of an unproved node

(top-down approach, which requires a good understanding of the system). The validity of

14 Chapter 1. Introduction

that unproved node is then reduced to the validity of its children and the validity of some

less or equally deep nodes.

The main property will not be proved until the proof tree stops growing and all leaf

nodes in the tree have been proved. Normally, simple properties of the system are proved

with appropriate precedence, and then used to help establish more complex ones. It is not

a bad thing that some assumed property turns out to be not valid. Indeed, this may help

to uncover a defect of the algorithm.

1.4 Introduction to PVS

PVS (Prototype Verification System) is a mechanized framework for writing precise spec-

ifications and constructing interactive proofs. PVS uses the text editor Emacs to provide

an integrated interface to its specification language, type checker and theorem prover. It

exploits the synergy between a highly expressive specification language and powerful auto-

mated deduction, and is widely considered to be one of the most powerful theorem provers

in use today.

Our lock-free algorithms presented in this thesis are so complicated that they cannot

be verified by a model checker. Therefore, we have chosen the theorem prover PVS for

mechanical support. In this section, we only provide a glimpse into the usage of PVS

system. More detailed PVS documentation can be found in [63].

1.4.1 The PVS specification language

The PVS specification language is close to “normal” notation. It is based on a strongly

typed higher-order logic with a rich type system. Specifications in PVS are structured

into hierarchies of parameterized theories. A theory is a collection of types, constants,

variables, definitions, assumptions, axioms and theorems. Constraints can be attached to

the parameters and types, and thus contribute to the clarity of the specifications. PVS

has an extensive library of theories of mathematics, called preludes, which provide many

useful types, definitions, lemmas, etc. A theory may import or instantiate predefined or

user-defined theories.

The type system of PVS includes uninterpreted types that may be introduced by the

1.4 Introduction to PVS 15

user, a large number of built-in types (e.g. boolean, natural, integer and real), type-

constructors (e.g. enumerations, tuples, records, functions and sets), subtypes and depen-

dent types that can be used to introduce constraints, and abstract data types (e.g. lists and

binary trees).

Types can be unspecified. The declaration: A : TYPE, defines A to be an uninterpreted

type that is disjoint from other types.

The type-constructors are used extensively in the sequel. Enumeration types are used

for defining types whose values can be completely enumerated. A tuple type has the form

[T1, . . . , Tn] where Ti is a type. The ith projection (function) is given by ‘i or proj i

with domain T1 × . . . × Tn and range Ti. A record type is a finite list of fields of the form

R : TYPE = [] a1 : T1, . . . , an : Tn]] where ai is an accessor function. Given a record

r : R, ai(r) or r‘ai is used to access the i-th field of a record r. Record types are similar

to tuple types, except the order of the fields is irrelevant and accessors are used instead

of projections. Function types are declared as F : TYPE = [T1, . . . , Tn → T]. An element

of this type is simply a function whose domain is the sequence of types T1, . . . , Tn, and

range is T. A lambda expression allows writing a function expression without explicitly

introducing the function name. E.g. the function that doubles an integer may be written

as LAMBDA (j : int) : 2*j. Sets are represented as predicates in PVS in the form of pred[T]

and setof [T], which are shorthand for [T → bool].

Much of the expressive power of the language comes from subtypes and dependent

types. The declaration T1 : TYPE from T declares T1 to be a subtype of T. The predicate

subtype {x : T | P (x)} consists of those elements of type T that satisfy the predicate P .

The dependent types are constructed using predicate subtypes. An example of a dependent

type in PVS, is the declaration of an resizable hash table as a record with two fields:

Hashtable : TYPE = [] size : nat, table : [below(size) → Value]]], where size is a natural

number denoting the size of the hash table, and table is a function denoting the values at

each position in the hash table. The domain of table is the predicate subtype of the natural

numbers less than size and thus depends on the actual size of the hash table.

The constraints introduced in predicate subtypes and dependent types may incur the

type-checker to generate proof obligations called type correctness conditions (TCCs). In

general, type checking of PVS specifications is undecidable, and thus requires the theorem

proving capabilities of PVS.

A distinctive feature in the PVS language is that the type system is augmented with

16 Chapter 1. Introduction

abstract datatypes. An example of a datatype is the extended domain of values stored in

our lock-free hash table:

EValue : datatype begin

del : delp

old(val1 : Value) : oldp

nor(val2 : Value) : norp

end EValue

The EValue datatype has three constructors, namely del, old and nor, that allow an ex-

tended value to be constructed. E.g. del denotes a deleted value. The term old(v1) is the

result after tagging value v1 old. The recognizers delp, oldp and norp are predicates over

EValue. They are true when their arguments (of type EValue) are constructed using the

corresponding constructors. E.g. oldp(old(v1)) ≡ true.

The PVS languages offers a close approximation of the standard mathematical notation

such as arithmetic and logical operators, function application and etc. In PVS only total

functions are allowed. For a recursive function a well-founded measure must be provided

to show that it decreases for each recursive call. E.g. we define the j-th ancestor of a node

ranging from 1 to N by the recursive function:

Ancestor(x : range(N), j : nat) : recursive range(N) =

if j = 0 or father(x) ≤ 0 then x

else Ancestor(father(x), j − 1) endif

measure j

However, it is not allowed to define mutual recursion across two or more definitions.

Logical expressions can be used to construct both propositional and predicate calculus

formulas. The logical constants are denoted as true and false. The basic logical constructs

are: not(∼), and(&), or, implies(=>), iff(<=>). The universal and existential quantifiers

are forall and exists, respectively.

Formula declarations introduce axioms, assumptions, theorems and obligations using

keyword AXIOM, ASSUMPTION, THEOREM and OBLIGATION, respectively. The identifier as-

sociated with a declaration can be referenced during proofs. The body of the formula is

a boolean expression. Axioms are boolean formulas taken as true in proofs. Internal to

the theory, assumptions are used exactly as axioms. Externally, for each import of a the-

ory, the assumptions have to be proved with the actual parameters. Theorems are boolean

1.4 Introduction to PVS 17

formulas whose validities need to be established. Theorems may be introduced with other

keywords such as CLAIM and LEMMA. Obligations are generated by the system for TCCs, and

cannot be specified by the user. Judgements are lemmas about subtypes that get applied

automatically during type checking.

A formula declaration may contain free variables, in which case PVS assumes the uni-

versal closure of the formula. E.g. p(x)⇒q(y) is equivalent to (forall x, y : p(x)⇒q(y)).

1.4.2 The PVS prover

PVS prover combines Gentzen’s sequent calculus with a collection of powerful primitive

inference procedures that are applied interactively under user guidance. The primitive

inferences include propositional and quantifier rules, induction, rewriting, simplification

and decision procedures.

The system supports top-down proof exploration and construction. The proof structure

forms a tree, where the theorem to be verified is the root of the tree. The nodes of the

tree are sequents of the form: a1, . . . , an ` c1, . . . , cm, where ai are called antecedents and

ci are called consequents. A sequent is valid if the disjunction of the consequents can be

inferred from the conjunction of all the antecedents. The intuitive interpretation of the

above sequent is that: a1 ∧ . . . ∧ an ⇒ c1 ∨ . . . ∨ cm.

During the proof construction, one of the leaf sequents is the current sequent (i.e. the

current proof state), to which the proof commands are applied. Each proof step results

in child sequents (or sub-goals) that are at least as strong as their parent sequents. The

root sequent (or theorem) is finally proved if the proof tree stops growing and all the leaf

sequents have been proved valid.

The proof commands use combinations of the inference rules that are built in the prover.

Moreover, PVS allows to combine several proof commands into high-level proof strategies

to facilitate the reasoning. We refer to the PVS prover guide [63] for the available proof

commands and the other aspects of interactive proving with PVS.

1.4.3 Experiences with PVS

In this thesis, we present two lock-free algorithms that are considered very complicated.

The only approach capable of formally verifying these algorithms is using theorem proving.

PVS’s combination of a highly expressive specification language and a powerful interactive

18 Chapter 1. Introduction

proof checking capability yields a productive verification environment. Our experiences

with PVS also show that it is a well-performing theorem-proving tool. It may take much

more time to do the same work if we chose other theorem provers such as Nqthm, of which

the proof states are much harder to read and analyze.

In general, theorem proving requires considerable technical expertise. The PVS system

needs a precise description of the problem written in the PVS language. This forces the

user to think carefully about the problem in order to produce an appropriate specification

and hence requires a deep understanding of the problem. Moreover, one obtains a clear

list of assumptions under which the algorithm is correct. With handwritten proofs, such

assumptions are often unknown or hidden.

TCCs arise, for instance, when a term is type checked against an expected predicate

subtype. In practice, TCCs can often be discharged automatically by the proof automation

tools provided by the system. In general, type checking is a simple and effective way to

discover many errors in specifications.

PVS provides a collection of powerful proof commands to carry out propositional, equal-

ity, and arithmetic reasoning with the use of definitions and lemmas. Case analysis is sur-

prising useful for introducing assumptions that will eventually be discharged. To make

proofs easier to debug, PVS permits proof steps to be undone. Quite often, the grind

command is a good way to complete a proof that does not require induction. If grind does

not work or takes too much time (say more than half minute) to complete the proof, we

always first try to read the output of the sequent to get some new insights into the problem.

If even this does not help, we then try to do case analysis to make some assumptions or

classify the proof into sub-goals. Hiding irrelevant formulas in the sequent is rather useful,

since it helps to reduce the running time of the proof, and enables the user to focus on the

essential formulas.

According to our experiences, it may be easier to detect an error using model checking

than thereom proving, but it is much more difficult to locate the source of the error. When

the specification is adapted/extended, most parts of the PVS proofs can be re-used without

much effort.

1.5 Overview of the thesis 19

1.5 Overview of the thesis

Efficient programming of multi-processor systems holds a challenge to the designer because

of the conflicting issues of efficient distribution and maximal concurrency, as opposed to

reliable communication and predictable behavior. Communication between the processors

needs a form of synchronization which in a poor design may hamper speed and even lead

to deadlock. Since concurrent systems are very nondeterministic, it is usually almost im-

possible to perform tests that provide adequate coverage. Model checkers can be used

for verification of communication protocols, but cannot verify data intensive algorithms.

We therefore aim at the design of efficient and provably correct lock-free algorithms for

multiprocessor systems.

Lock-free algorithms are hard to design correctly, even when apparently straightforward.

Ensuring the correctness of the design at the earliest possible stage is a major challenge in

any responsible system development. In view of the complexity of the algorithms presented

in this thesis, we turned to the interactive theorem prover PVS for mechanical support.

The chapters 2 and 3 concern our published papers [20, 21, 23]. Chapter 4 is a slightly

modified version of our paper that is under submission. Chapter 5 concerns our technical

report [22].

In the second chapter, we present an efficient lock-free algorithm for parallel accessible

hash tables with open addressing, which promises more robust performance and reliability

than conventional lock-based implementations. For a multiprocessor architecture our so-

lution is as efficient as sequential hash tables. The algorithm allows processors that have

widely different speeds or come to a halt. It can easily be implemented using C-like lan-

guages and requires on average only constant time for insertion, deletion or accessing of

elements. The algorithm allows the hash tables to grow and shrink when needed.

For the correctness of the algorithm, we employ standard deductive verification tech-

niques to prove around 200 invariance properties of our algorithm, and describe how this is

achieved with the theorem prover PVS.

In the third chapter, we formalize Herlihy’s methodology [28] for transferring a sequential

implementation of any data structure into a lock-free synchronization by means of synchro-

nization primitives LL/SC. This is done by means of a reduction theorem that enables

us to reason about the general lock-free algorithm to be designed on a higher level than

the synchronization primitives. The reduction theorem is based on refinement mapping as

20 Chapter 1. Introduction

described by Lamport [49] and has been verified with the theorem prover PVS. Using the

reduction theorem, fewer invariants are required and some invariants are easier to discover

and formulate.

The lock-free implementation works quite well for small objects. However, for large

objects, the approach is not very attractive as the burden of copying the data can be very

heavy. We propose two enhanced lock-free algorithms for large objects in which slower

processes don’t need to copy the entire object again if their attempts fail. This results in

lower copying overhead than in Herlihy’s proposal.

CAS is a synchronization primitive for lock-free algorithms. Most uses of it, however,

suffer from the so-called ABA problem. The simplest and most efficient solution to the ABA

problem is to include a tag with the memory location such that the tag is incremented with

each update of the target location. However, applying this solution is not theoretically

bug-free and limits the applicability of these algorithms.

In the fourth chapter, we present a general lock-free pattern that is based on the synchro-

nization primitive CAS without causing the ABA problem or problems with wrap around.

It can be used to provide lock-free functionality for any generic data type. Our algorithm

is a CAS variation of Herlihy’s LL/SC methodology for lock-free transformation. The basis

of our techniques is to poll different locations on reading and writing objects, in such a

way that the consistency of an object can be checked by its location instead of its tag. It

consists of simple code that can be easily implemented using C-like languages.

In the fifth chapter, we presents a lock-free parallel algorithm for mark&sweep garbage

collection (GC) in a realistic model using synchronization primitives LL/SC or CAS. Mu-

tators and collectors can simultaneously operate on the data structure. In particular no

strict alternation between usage and cleaning up is necessary contrary to what is common

in most other garbage collection algorithms.

We first design and prove an algorithm with a coarse grain of atomicity and subsequently

apply the reduction theorem developed in chapter 3 to implement the higher-level atomic

steps by means of the low-level primitives. Even so, the structure of our algorithm and its

correctness properties, as well as the complexity of reasoning about them, makes neither

automatic nor manual verification feasible. We therefore turned to PVS for mechanical

support.

Chapter 6 gives some conclusions and a summary of the contents of this thesis.

Chapter 2

Lock-free dynamic hash tables with

open addressing

This chapter has been published as [21]. Its extended abstract appears in [20].

21

22 Chapter 2. Lock-free dynamic hash tables with open addressing

2.1 Introduction

We are interested in efficient, reliable, parallel algorithms. The classical synchronization

paradigm based on mutual exclusion is not most suited for this, since mutual exclusion

often turns out to be a performance bottleneck, and failure of a single process can force all

other processes to come to a halt. This is the reason to investigate lock-free or wait-free

concurrent objects, see e.g. [6, 27, 28, 30, 38, 46, 48, 55, 64, 66, 67, 69].

Lock-free and wait-free objects

A concurrent object is an abstract data type that permits concurrent operations that appear

to be atomic [27, 52, 69]. The easiest way to implement concurrent objects is by means of

mutual exclusion, but this leads to blocking when the process that holds exclusive access

to the object is delayed or stops functioning.

The object is said to be lock-free if any process can be delayed at any point without

forcing any other process to block and when, moreover, it is guaranteed that always some

process will complete its operation in a finite number of steps, regardless of the execution

speeds of the processes [6, 28, 48, 64, 69]. The object is said to be wait-free when it

is guaranteed that any process can complete any operation in a finite number of steps,

regardless of the speeds of the other processes [27].

We regard “non-blocking” as synonymous to “lock-free”. In several recent papers, e.g.

[67], the term “non-blocking” is used for the first conjunct in the above definition of lock-free.

Note that this weaker concept does not in itself guarantee progress. Indeed, without real

blocking, processes might delay each other arbitrarily without getting closer to completion

of their respective operations. The older literature [2, 6, 30] seems to suggest that originally

“non-blocking” was used for the stronger concept, and lock-free for the weaker one. Be this

as it may, we use lock-free for the stronger concept.

Concurrent hash tables

The data type of hash tables is very commonly used to efficiently store huge but sparsely

filled tables. Before 2003, as far as we know, no lock-free algorithm for hash tables had been

proposed. There were general algorithms for arbitrary wait-free objects [3, 6, 7, 27, 35, 36],

but these are not very efficient. Furthermore, there are lock-free algorithms for different

domains, such as linked lists [69], queues [68] and memory management [30, 38].

2.1 Introduction 23

In this chapter we present a lock-free algorithm for hash tables with open addressing

that is in several aspects wait-free. The central idea is that every process holds a pointer

to a hash table, which is the current one if the process is not delayed. When the current

hash table is full, a new hash table is allocated and all active processes join in the activity

to transfer the contents of the current table to the new one. The consensus problem of the

choice of a new table is solved by means of a test-and-set register. When all processes have

left the obsolete table, it is deallocated by the last one leaving. This is done by means of a

compare-and-swap register. Measures have been taken to guarantee that actions of delayed

processes are never harmful. For this purpose we use counters that can be incremented and

decremented atomically.

After the initial design, it took us several years to establish the safety properties of the

algorithm. We did this by means of the proof assistant PVS [63]. Upon completion of this

proof, we learned that a lock-free resizable hash table based on chaining was proposed in

[66]. We come back to this below.

Our algorithm is lock-free and some of the subtasks are wait-free. We allow fully parallel

insertion, assignment, deletion, and finding of elements. Finding is wait-free, the other three

are not. The primary cause is that the process executing it may repeatedly have to execute

or join a migration of the hash table. Assignment and deletion are also not wait-free when

other processes repeatedly assign to the same address successfully.

Migration is called for when the current hash table is almost filled. This occurs when

the table has to grow beyond its current upper bound, but also for maintenance after many

insertions and deletions. The migration itself is wait-free, but, in principle, it is possible

that a slow process is unable to access and use a current hash table since the current hash

table is repeatedly replaced by faster processes.

Migration requires subtle provisions, which can be best understood by considering the

following scenario. Suppose that process A is about to (slowly) insert an element in a

hash table H1. Before this happens, however, a fast process B has performed migration

by making a new hash table H2, and copying the content from H1 to H2. If (and only if)

process B did not copy the insertion of A, A must be informed to move to the new hash

table, and carry out the insertion there. Suppose a process C comes into play also copying

the content from H1 to H2. This must be possible, since otherwise B can stop copying,

blocking all operations of other processes on the hash table, and thus violating the lock-free

nature of the algorithm. Now the value inserted by A can but need not be copied by both

24 Chapter 2. Lock-free dynamic hash tables with open addressing

B and/or C. This can be made more complex by a process D that attempts to replace H2

by H3. Still, the value inserted by A should show up exactly once in the hash table, and it

is clear that processes should carefully keep each other informed about their activities on

the tables.

Performance, comparison, and correctness

Actually, only an extra check is required in the main loop of the main functions, one extra

bit needs to be set when writing data in the hashtables and at some places a write operation

has been replaced by a compare-and-swap, which is more expensive. For ordinary operations

on the hashtable, this is the only overhead and therefore a linear speed up can be expected

on multiprocessor systems. The only place where no linear speed up can be achieved is

when copying the hashtable. Especially, when processes have widely different speeds, a

logarithmic factor may come into play (see algorithms for the write all problem [24, 46]).

Indeed, initial experiments indicate that our algorithm is as efficient as sequential hash

tables. It seems to require on average only constant time for insertion, deletion or accessing

of elements.

Some differences between our algorithm and the algorithm of [66] are clear. No formally

verified correctness proof was given for the algorithm in [66]. In our algorithm, the hashed

values need not be stored in dynamic nodes if the address-value pairs (plus one additional

bit) fit into one word. Our hash table can shrink whereas the table of bucket headers in

[66] cannot shrink. A disadvantage of our algorithm, due to its open addressing, is that

migration is needed as maintenance after many insertions and deletions.

An apparent weakness of our algorithm is the worst-case space complexity in the order

of O(PM) where P is the number of processes and M is the size of the table. This only

occurs when many of the processes fail or fall asleep while using the hash table. Failure

while using the hash table can be made less probable by adequate use of the procedure

“releaseAccess”. This gives a trade-off between space and time since it introduces the need

of a corresponding call of “getAccess”. When all processes make ordinary progress and the

hash table is not too small, the actual memory requirement is O(M).

The migration activity requires worst-case O(M2) time for each participating process.

This only occurs when the migrating processes tend to choose the same value to migrate

and the number of collisions is O(M) due to a bad hash function. This is costly, but even

this is in agreement with wait-freedom. The expected amount of work for migration for all

2.2 The interface 25

processes together is O(M) when collisions are sparse, as should be the case when migrating

to a hash table that is sufficiently large.

A true problem of lock-free algorithms is that they are hard to design correctly, which

even holds for apparently straightforward algorithms. Whereas human imagination gen-

erally suffices to deal with all possibilities of sequential processes or synchronized parallel

processes, this appears impossible (at least to us) for lock-free algorithms. The only tech-

nique that we see fit for any but the simplest lock-free algorithms is to prove the correctness

of the algorithm very precisely, and to verify this using a proof checker or theorem prover.

As a correctness notion, we take that the operations behave the same as for ‘ordinary’

hash tables, under some arbitrary linearization [31] of these operations. So, if a find is

carried out strictly after an insert, the inserted element is found. If insert and find are

carried out at the same time, it may be that find takes place before insertion, and it is not

determined whether an element will be returned.

Our algorithm contains 81 atomic statements. The structure of our algorithm and its

correctness properties, as well as the complexity of reasoning about them, makes neither

automatic nor manual verification feasible. We have therefore chosen the higher-order

interactive theorem prover PVS [11, 63] for mechanical support. PVS has a convenient

specification language and contains a proof checker which allows users to construct proofs

interactively, to automatically execute trivial proofs, and to check these proofs mechanically.

Overview of this chapter

Section 2.2 contains the description of the hash table interface offered to the users. The

algorithm is presented in Section 2.3. Section 2.4 contains a description of the proof of

the safety properties of the algorithm: functional correctness, atomicity, and absence of

memory loss. This proof is based on a list of around 200 invariants, presented in Appendix

A.1, while the relationships between the invariants are given by a dependency graph in

Appendix A.2. Progress of the algorithm is proved informally in Section 2.5. Conclusions

are drawn in Section 2.6.

2.2 The interface

The aim is to construct a hash table that can be accessed simultaneously by different

processes in such a way that no process can passively block another process’ access to the

26 Chapter 2. Lock-free dynamic hash tables with open addressing

table.

A hash table is an implementation of (partial) functions between two domains, here

called Address and Value. The hash table thus implements a modifiable shared variable

X : Address → Value. The domains Address and Value both contain special default elements

0 ∈ Address and null ∈ Value. An equality X(a) = null means that no value is currently

associated with the address a. In particular, since we never store a value for the address 0,

we impose the invariant

X(0) = null .

We use open addressing to keep all elements within the table. For the implementation of the

hash table we require that from every value the address it corresponds to is derivable. We

therefore assume that some function ADR : Value → Address is given with the property:

Ax1: v = null ≡ ADR(v) = 0.

Indeed, we need null as the value corresponding to the undefined addresses and use address

0 as the (only) address associated with the value null. We thus require the hash table to

satisfy the invariant

X(a) 6= null ⇒ ADR(X(a)) = a .

Note that the existence of ADR is not a real restriction since one can choose to store the

pair (a, v) instead of v. When a can be derived from v, it is preferable to store v, since that

saves memory.

There are four principle operations: find, delete, insert and assign. The first one is

to find the value currently associated with a given address. This operation yields null if

the address has no associated value. The second operation is to delete the value currently

associated with a given address. It fails if the address was empty, i.e. X(a) = null. The

third operation is to insert a new value for a given address, provided the address was

empty. So, note that at least one out of two consecutive inserts for address a must fail,

except when there is a delete for address a in between them. The operation assign does the

same as insert, except that it rewrites the value even if the associated address is not empty.

Moreover, assign never fails.

We assume that there is a bounded number of processes that may need to interact with

the hash table. Each process is characterized by the sequence of operations

2.2 The interface 27

(getAccess ; (find + delete + insert + assign)∗ ; releaseAccess)ω

A process that needs to access the table, first calls the procedure getAccess to get the

current hash table pointer. It may then invoke the procedures find, delete, insert, and

assign repeatedly, in an arbitrary, serial manner. A process that has access to the table can

call releaseAccess to log out. The processes may call these procedures concurrently. The

only restriction is that every process can do at most one invocation at a time.

The basic correctness conditions for concurrent systems are functional correctness and

atomicity, say in the sense of [52], chapter 13. Functional correctness is expressed by

prescribing how the procedures find, insert, delete, assign affect the value of the abstract

mapping X in relation to the return value. Atomicity means that the effect on X and the

return value takes place atomically at some time between the invocation of the routine

and its response. Each of these procedures has the precondition that the calling process

has access to the table. In this specification, we use auxiliary private variables declared

locally in the usual way. We give them the suffix S to indicate that the routines below are

the specifications of the procedures. We use angular brackets 〈 and 〉 to indicate atomic

execution of the enclosed command.

proc findS(a : Address \ {0}) : Value =

local rS : Value;

(fS) 〈 rS := X(a) 〉;

return rS.

proc deleteS(a : Address \ {0}) : Bool =

local sucS : Bool;

(dS) 〈 sucS := (X(a) 6= null) ;

if sucS then X(a) := null end 〉 ;

return sucS.

proc insertS(v : Value \ {null}) : Bool =

local sucS : Bool ; a : Address := ADR(v) ;

(iS) 〈 sucS := (X(a) = null) ;

if sucS then X(a) := v end 〉 ;

return sucS.

28 Chapter 2. Lock-free dynamic hash tables with open addressing

proc assignS(v : Value \ {null}) =

local a : Address := ADR(v) ;

(aS) 〈 X(a) := v 〉 ;

end.

Note that, in all cases, we require that the body of the procedure is executed atomically at

some moment between the beginning and the end of the call, but that this moment need

not coincide with the beginning or end of the call. This is the reason that we do not (e.g.)

specify find by the single line return X(a).

Due to the parallel nature of our system we cannot use pre- and postconditions to

specify it. For example, it may happen that insert(v) returns true while X(ADR(v)) 6= v

since another process deletes ADR(v) between the execution of (iS) and the response of

insert.

In Section 2.3.4, we provide implementations for the operations find, delete, insert,

assign. We prove partial correctness of the implementations by extending them with the

auxiliary variables and commands used in the specification. So, we regard X as a shared

auxiliary variable and rS and sucS as private auxiliary variables; we augment the imple-

mentations of find, delete, insert, assign with the atomic commands (fS), (dS), (iS), (aS),

respectively. We prove that each of the four implementations executes its specification

command always exactly once and that the resulting value r or suc of the implementation

equals the resulting value rS or sucS in the specification. It follows that, by removing the

implementation variables from the combined program, we obtain the specification. This

removal may eliminate many atomic steps of the implementation. This is analogous to

removal of stutterings in TLA [49] or abstraction from τ steps in process algebras.

2.3 The algorithm

An implementation consists of P processes along with a set of variables, for P ≥ 1. Each

process, numbered from 1 up to P , is a sequential program comprised of atomic statements.

Actions on private variables can be added to an atomic statement, but all actions on shared

variables must be separated into atomic accesses. Since auxiliary variables are only used

to facilitate the proof of correctness, they can be assumed to be touched instantaneously

without violation of the atomicity restriction.

2.3 The algorithm 29

2.3.1 Hashing

We implement function X via hashing with open addressing, cf. [47, 70]. We do not use

direct chaining, where colliding entries are stored in a secondary list, as is done in [66]. A

disadvantage of open addressing with deletion of elements is that the contents of the hash

table must regularly be refreshed by copying the non-deleted elements to a new hash table.

As we wanted to be able to resize the hash tables anyhow, we consider this less of a burden.

In principle, hashing is a way to store address-value pairs in an array (hash table) with

a length much smaller than the number of potential addresses. The indices of the array

are determined by a hash function. In case the hash function maps two addresses to the

same index in the array there must be some method to determine an alternative index. The

question how to choose a good hash function and how to find alternative locations in the

case of open addressing is treated extensively elsewhere, e.g. [47].

For our purposes it is convenient to combine these two roles in one abstract function

key given by:

key(a : Address, l : Nat, n : Nat) : Nat ,

where l is the length of the array (hash table), that satisfies

Ax2: 0 ≤ key(a, l, n) < l

for all a, l, and n. The number n serves to obtain alternative locations in case of collisions:

when there is a collision, we re-hash until an empty “slot” (i.e. null) or the same address

in the table is found. The approach with a third argument n is unusual but very general.

It is more usual to have a function Key dependent on a and l, and use a second function

Inc, which may depend on a and l, to use in case of collisions. Then our function key is

obtained recursively by

key(a, l, 0) = Key(a, l) and key(a, l, n + 1) = Inc(a, l, key(a, l, n)) .

We require that, for any address a and any number l, the first l keys are all different, as

expressed in

Ax3: 0 ≤ k < m < l ⇒ key(a, l, k) 6= key(a, l,m) .

30 Chapter 2. Lock-free dynamic hash tables with open addressing

2.3.2 Tagging of values

As is well known [47], hashing with open addressing needs a special value del ∈ Value to

replace deleted values.

When the current hash table becomes full, the processes need to reach consensus to

allocate a new hash table of new size to replace the current one. Then all values except

null and del must be migrated to the new hash table. A value that is being migrated

cannot be simply removed, since the migrating process may stop functioning during the

migration. Therefore, a value being copied must be tagged in such a way that it is still

recognizable. This is done by the function old. We thus introduce an extended domain of

values to be called EValue, which is defined as follows:

EValue = {del} ∪ Value ∪ {old(v) | v ∈ Value}.

We furthermore assume the existence of functions val : EValue → Value and oldp :

EValue → Bool that satisfy, for all v ∈ Value:

val(v) = v oldp(v) = false

val(del) = null oldp(del) = false

val(old(v)) = v oldp(old(v)) = true

Note that the old tag can easily be implemented by designating one special bit in the

representation of Value. In the sequel we write done for old(null). Moreover, we extend

the function ADR to domain EValue by ADR(v) = ADR(val(v)).

2.3.3 Data structure

A Hash table is either ⊥, indicating the absence of a hash table, or it has the following

structure:

size, bound, occ, dels : Nat;

table : array 0 . . size-1 of EValue.

The field size indicates the size of the hash table, bound the maximal number of places

that can be occupied before refreshing the table. Both are set when creating the table and

remain constant. The variable occ gives the number of occupied positions in the table,

while the variable dels gives the number of deleted positions. If h is a pointer to a hash

2.3 The algorithm 31

table, we write h.size, h.occ, h.dels and h.bound to access these fields of the hash table.

We write h.table[i] to access the ith EValue in the table.

Apart from the current hash table, which is the main representative of the variable X,

we have to deal with old hash tables, which were in use before the current one, and new

hash tables, which can be created after the current one.

We now introduce data structures that are used by the processes to find and operate on

the hash table and allow to delete hash tables that are not used anymore. The basic idea is

to count the number of processes that are using a hash table, by means of a counter busy.

The hash table can be thrown away when busy is set to 0. An important observation is that

busy cannot be stored as part of the hash table, in the same way as the variables size, occ

and bound above. The reason for this is that a process can attempt to access the current

hash table by increasing its busy counter. However, just before it wants to write the new

value for busy it falls asleep. When the process wakes up the hash table might have been

deleted and the process would be writing at a random place in memory.

This forces us to use separate arrays H and busy to store the pointers to hash tables

and the busy counters. There can be 2P hash tables around, because each process can

simultaneously be accessing one hash table and attempting to create a second one. The

arrays below are shared variables.

H : array 1 . . 2P of pointer to Hashtable ;

busy : array 1 . . 2P of Nat ;

prot : array 1 . . 2P of Nat ;

next : array 1 . . 2P of 0 . . 2P .

As indicated, we also need arrays prot and next. The variable next[i] points to the next

hash table to which the contents of hash table H[i] is being copied. If next[i] equals 0, this

means that there is no next hash table. The variable prot[i] is used to guard the variables

busy[i], next[i] and H[i] against being reused for a new table, before all processes have

discarded them.

We use a shared variable currInd to hold the index of the currently valid hash table:

currInd : 1 . . 2P .

Note however that after a process copies currInd to its local memory, other processes may

create a new hash table and change currInd to point to that one.

32 Chapter 2. Lock-free dynamic hash tables with open addressing

It is assumed that initially H[1] is pointing to some hash table. The other initial values

of the shared variables are given by

currInd = busy[1] = prot[1] = 1 ,

H[i] = busy[i] = prot[i] = 0 for all i 6= 1 ,

next[i] = 0 for all i.

2.3.4 Primary procedures

We first provide the code for the primary procedures, which match directly with the proce-

dures in the interface. Every process has a private variable

index : 1 . . 2P ;

containing what it regards as the currently active hash table. At entry of each primary

procedure, it must be the case that the variable H[index] contains valid information. In

section 2.3.5, we provide the procedure getAccess with the main purpose to guarantee this

property. When getAccess has been called, the system is obliged to keep the hash table

at index stored in memory, even if there are no accesses to the hash table using any of

the primary procedures. A procedure releaseAccess is provided to release resources, and it

should be called whenever the process will not access the hash table for some time.

Syntax

We use a syntax analogous to Modula-3 [25]. We use := for the assignment. We use the C–

operations ++ and -- for atomic increments and decrements. The semicolon is a separator,

not a terminator. The basic control mechanisms are

loop .. end is an infinite loop, terminated by exit or return.

while .. do .. end and repeat .. until .. are ordinary loops.

if .. then .. {elsif ..} [else ..] end is the conditional statement.

case .. end is a case statement.

Types are slanted and start with a capital. Shared variables and shared data elements are

in typewriter font. Private variables are slanted or in math italic.

2.3 The algorithm 33

The main loop

We model the clients of the hash table in the following loop. This is not an essential part

of the algorithm, but it is needed in the PVS description, and therefore provided here.

loop

0: getAccess() ;

loop

1: choose call; case call of

(f, a) with a 6= 0 → find(a)

(d, a) with a 6= 0 → delete(a)

(i, v) with v 6= null → insert(v)

(a, v) with v 6= null → assign(v)

(r) → releaseAccess(index); exit

end

end

end

The main loop shows that each process repeatedly invokes its four principle operations with

correct arguments in an arbitrary, serial manner. Procedure getAccess has to provide the

client with a protected value for index. Procedure releaseAccess releases this value and its

protection. Note that exit means a jump out of the inner loop.

Procedure find

Finding an address in a hash table with open addressing requires a linear search over the

possible hash keys until the address or an empty slot is found. The kernel of procedure find

is therefore:

n := 0 ;

repeat r := h.table[key(a, l, n)] ; n++ ;

until r = null ∨ a = ADR(r) ;

The main complication is that, when the process encounters an entry done (i.e. old(null)),

it has to join the migration activity by calling refresh.

34 Chapter 2. Lock-free dynamic hash tables with open addressing

Apart from a number of special commands, we group statements such that at most one

shared variable is accessed and label these ‘atomic’ statements with a number. The labels

are chosen identical to the labels in the PVS code, and therefore not completely consecutive.

In every execution step, one of the processes proceeds from one label to a next one. The

steps are thus treated as atomic. The atomicity of steps that refer to shared variables more

than once is emphasized by enclosing them in angular brackets. Since procedure calls only

modify private control data, procedure headers are not always numbered themselves, but

their bodies usually have numbered atomic statements.

proc find(a : Address \ {0}) : Value =

local r : EValue ; n, l : Nat ; h : pointer to Hashtable ;

5: h := H[index] ; n := 0 ; {cnt := 0} ;

6: l := h.size ;

repeat

7: 〈 r := h.table[key(a, l, n)] ;

{ if r = null ∨ a = ADR(r) then cnt++ ; (fS) end } 〉 ;

8: if r = done then

refresh() ;

10: h := H[index] ; n := 0 ;

11: l := h.size ;

else n++ end ;

13: until r = null ∨ a = ADR(r) ;

14: return val(r) .

In order to prove correctness, we add between braces instructions that only modify

auxiliary variables, like the specification variables X and rS and other auxiliary variables to

be introduced later. The part between braces is comment for the implementation, it only

serves in the proof of correctness. The private auxiliary variable cnt of type Nat counts the

number of times (fS) is executed and serves to prove that (fS) is executed precisely once in

every call of find.

This procedure matches the code of an ordinary find in a hash table with open address-

ing, except for the code at the condition r = done. This code is needed for the case that the

value at address a has been copied, in which case the new table must be located. Locating

the new table is carried out by the procedure refresh, which is discussed in Section 2.3.5.

2.3 The algorithm 35

In line 7, the accessed hash table should be valid (see invariants fi4 and He4 in Appendix

A.1). After refresh the local variables n, h and l must be reset, to restart the search in

the new hash table. If the procedure terminates, the specifying atomic command (fS) has

been executed precisely once (see invariant Cn1) and the return values of the specification

and the implementation are equal (see invariant Co1). If the operation succeeds, the return

value must be a valid entry currently associated with the given address in the current hash

table. It is not evident but it has been proved that the linear search of the process executing

find cannot be violated by other processes (see invariants Cu9, Cu10 and fi8), i.e. no other

process can delete, insert, or rewrite an entry associated with the same address (as what

the process is looking for) in the region where the process has already searched.

We require that every valid hash table contains at least one entry null or done. There-

fore, the local variable n in the procedure find never goes beyond the size of the hash table

(see invariants Cu1, fi4, fi5 and axiom Ax2). When the bound of the new hash table is

tuned properly before use (see invariants Ne7 , Ne8), the hash table will not be updated too

frequently, and termination of the procedure find can be guaranteed.

Procedure delete

To some extent, deletion is similar to finding. Since r is a local variable to the procedure

delete, we regard 18a and 18b as two parts of atomic instruction 18. If the entry is found

in the table, then at line 18b this entry is overwritten with the designated element del.

proc delete(a : Address \ {0}) : Bool =

local r : EValue ; k, l, n : Nat ;

h : pointer to Hashtable ; suc : Bool ;

15: h := H[index] ; suc := false ; {cnt := 0} ;

16: l := h.size ; n := 0 ;

repeat

17: k := key(a, l, n) ;

〈 r := h.table[k] ;

{ if r = null then cnt++ ; (dS) end } 〉 ;

18a: if oldp(r) then

refresh() ;

20: h := H[index] ;

36 Chapter 2. Lock-free dynamic hash tables with open addressing

21: l := h.size ; n := 0 ;

elsif a = ADR(r) then

18b: 〈 if r = h.table[k] then

suc := true ; h.table[k] := del ;

{ cnt++ ; (dS) ; Y[k] := del }

end 〉 ;

else n++ end ;

until suc ∨ r = null ;

25: if suc then h.dels++ end ;

26: return suc .

The repetition in this procedure has two ways to terminate. Either deletion fails with

r = null in 17, or deletion succeeds with r = h.table[k] in 18b. In the latter case, we

have in one atomic statement a double access of the shared variable h.table[k]. This is

a so-called compare&swap instruction. Atomicity is needed here to preclude interference.

The specifying command (dS) is executed either in 17 or in 18b, and it is executed precisely

once (see invariant Cn2), since in 18b the guard a = ADR(r) implies r 6= null (see invariant

de1 and axiom Ax1).

In order to remember the address from the value rewritten to done after the value is

being copied in the procedure moveContents, in 18, we introduce a new auxiliary shared

variable Y of type array of EValue, whose contents equals the corresponding contents of the

current hash table almost everywhere except that the values it contains are not tagged as

old or rewritten as done (see invariants Cu9, Cu10).

Since we postpone the increment of h.dels until line 25, the field dels is a lower bound

of the number of positions deleted in the hash table (see invariant Cu4).

Procedure insert

The procedure for insertion in the table is given below. Basically, it is the standard algorithm

for insertion in a hash table with open addressing. Notable is line 28 where the current

process finds that the current hash table too full, and orders a new table to be made. We

assume that h.bound is a number less than h.size (see invariant Cu3), which is tuned for

optimal performance.

Furthermore, in line 35, it can be detected that values in the hash table have been

2.3 The algorithm 37

marked old, which is a sign that hash table h is outdated, and the new hash table must be

located to perform the insertion.

proc insert(v : Value \ {null}) : Bool =

local r : EValue ; k, l, n : Nat ; h : pointer to Hashtable ;

suc : Bool ; a : Address := ADR(v) ;

27: h := H[index] ; {cnt := 0} ;

28: if h.occ > h.bound then

newTable() ;

30: h := H[index] end ;

31: n := 0 ; l := h.size ; suc := false ;

repeat

32: k := key(a, l, n) ;

33: 〈 r := h.table[k] ;

{ if a = ADR(r) then cnt++ ; (iS) end } 〉 ;

35a: if oldp(r) then

refresh() ;

36: h := H[index] ;

37: n := 0 ; l := h.size ;

elsif r = null then

35b: 〈 if h.table[k] = null then

suc := true ; h.table[k] := v ;

{ cnt++ ; (iS) ; Y[k] := v }

end 〉 ;

else n++ end ;

until suc ∨ a = ADR(r) ;

41: if suc then h.occ++ end ;

42: return suc .

Instruction 35b is a version of compare&swap. Procedure insert terminates successfully

when the insertion to an empty slot is completed, or it fails when there already exists

an entry with the given address currently in the hash table (see invariant Co3 and the

specification of insert).

38 Chapter 2. Lock-free dynamic hash tables with open addressing

Procedure assign

Procedure assign is almost the same as insert except that it rewrites an entry with a

given value even when the associated address is not empty. We provide it without further

comments.

proc assign(v : Value \ {null}) =

local r : EValue ; k, l, n : Nat ; h : pointer to Hashtable ;

suc : Bool ; a : Address := ADR(v) ;

43: h := H[index] ; {cnt := 0} ;

44: if h.occ > h.bound then

newTable() ;

46: h := H[index] end ;

47: n := 0 ; l := h.size ; suc := false ;

repeat

48: k := key(a, l, n) ;

49: r := h.table[k] ;

50a: if oldp(r) then

refresh() ;

51: h := H[index] ;

52: n := 0 ; l := h.size ;

elsif r = null ∨ a = ADR(r) then

50b: 〈 if h.table[k] = r then

suc := true ; h.table[k] := v ;

{ cnt++ ; (aS) ; Y[k] := v }

end 〉

else n++ end ;

until suc ;

57: if r = null then h.occ++ end ;

end.

2.3.5 Memory management and concurrent migration

In this section, we provide the public procedures getAccess and releaseAccess and the auxil-

iary procedures refresh and newTable which are responsible for allocation and deallocation.

2.3 The algorithm 39

We begin with the treatment of memory by providing a model of the heap.

The model of the heap

We model the Heap as an infinite array of hash tables, declared and initialized in the

following way:

Heap : array Nat of Hashtable := ([Nat]⊥) ;

H−index : Nat := 1 .

So, initially, Heap[i] = ⊥ for all indices i. The indices of array Heap are the pointers to hash

tables. We thus simply regard pointer to Hashtable as a synonym of Nat. Therefore, the

notation h.table used elsewhere in this chapter stands for Heap[h].table. Since we reserve

0 (to be distinguished from the absent hash table ⊥ and the absent value null) for the null

pointer (i.e. Heap[0] = ⊥, see invariant He1), we initialize H−index, which is the index of

the next hash table, to be 2 instead of 0 or 1. Allocation of memory is modeled in

proc allocate(s, b : Nat) : Nat =

〈 Heap[H−index] := blank hash table with size = s, bound = b,

occ = dels = 0 ;

H−index++ 〉 ;

return H−index ;

We assume that allocate sets all values in the hash table Heap[H−index] to null, and also

sets its fields size and bound as specified. The variables occ and dels are set to 0 because

the hash table is completely filled with the value null.

Deallocation of hash tables is modeled by

proc deAlloc(h : Nat) =

〈 assert Heap[h] 6= ⊥ ; Heap[h] := ⊥ 〉

end .

The assert here indicates the obligation to prove that deAlloc is called only for allocated

memory.

Procedure getAccess

The procedure getAccess is defined as follows.

40 Chapter 2. Lock-free dynamic hash tables with open addressing

proc getAccess() =

loop

59: index := currInd;

60: prot[index]++ ;

61: if index = currInd then

62: busy[index]++ ;

63: if index = currInd then return ;

else releaseAccess(index) end ;

65: else prot[index]-- end ;

end

end.

This procedure is a bit tricky. When the process reaches line 62, the index has been

protected not to be used for creating a new hash table in the procedure newTable (see

invariants pr2, pr3 and nT12).

The hash table pointer H[index] must contain the valid contents after the procedure

getAccess returns (see invariants Ot3, He4). So, in line 62, busy is increased, guaranteeing

that the hash table will not inadvertently be destroyed (see invariant bu1 and line 69).

Line 63 needs to check the index again in case that instruction 62 has the precondition that

the hash table is not valid. Once some process gets hold of one hash table after calling

getAccess, no process can throw it away until the process releases it (see invariant rA7).

Procedure releaseAccess

The procedure releaseAccess is given by

proc releaseAccess(i : 1 . . 2P) =

local h : pointer to Hashtable ;

67: h := H[i] ;

68: busy[i]-- ;

69: if h 6= 0 ∧ busy[i] = 0 then

70: 〈 if H[i] = h then H[i] := 0 ; 〉

71: deAlloc(h) ;

end ;

end ;

2.3 The algorithm 41

72: prot[i]-- ;

end.

The test h 6= 0 at 69 is necessary since it is possible that h = 0 at the lines 68 and

69. This occurs e.g. in the following scenario. Assume that process p is at line 62 with

index 6= currInd, while the number i = index satisfies H[i] = 0 and busy[i] = 0. Then

process p increments busy[i], calls releaseAccess(i), and arrives at 68 with h = 0.

Since deAlloc in line 71 accesses a shared variable, we have separated its call from 70.

The counter busy[i] is used to protect the hash table from premature deallocation. Only if

busy[i]=0, H[i] can be released. The main problem of the design at this point is that it can

happen that several processes concurrently execute releaseAccess for the same value of i,

with interleaving just after the decrement of busy[i]. Then they all may find busy[i] = 0.

Therefore, a bigger atomic command is needed to ensure that precisely one of them sets

H[i] to 0 (line 70) and calls deAlloc. Indeed, in line 71, deAlloc is called only for allocated

memory (see invariant rA3). The counter prot[i] can be decreased since position i is no

longer used by this process.

Procedure newTable

When the current hash table has been used for some time, some actions of the processes may

require replacement of this hash table. Procedure newTable is called when the number of

occupied positions in the current hash table exceeds the bound (see lines 28, 44). Procedure

newTable tries to allocate a new hash table as the successor of the current one. If several

processes call newTable concurrently, they need to reach consensus on the choice of an index

for the next hash table (in line 84). A newly allocated hash table that will not be used

must be deallocated again.

proc newTable() =

local i : 1 . . 2P ; b, bb : Bool ;

77: while next[index] = 0 do

78: choose i ∈ 1 . . 2P ;

〈 b := (prot[i] = 0) ;

if b then prot[i] := 1 end 〉 ;

if b then

81: busy[i] := 1 ;

42 Chapter 2. Lock-free dynamic hash tables with open addressing

82: choose bound > H[index].bound− H[index].dels + 2P ;

choose size > bound + 2P ;

H[i] := allocate(size,bound) ;

83: next[i] := 0 ;

84: 〈 bb := (next[index] = 0) ;

if bb then next[index] := i end 〉 ;

if ¬bb then releaseAccess(i) end ;

end end ;

refresh() ;

end .

In command 82, we allocate a new blank hash table (see invariant nT8), of which the bound

is set greater than H[index].bound − H[index].dels + 2P in order to avoid creating a too

small hash table (see invariants nT6, nT7).

We require the size of a hash table to be more than bound+2P because of the following

scenario: P processes find “h.occ > h.bound” at line 28 and call newtable, refresh, migrate,

moveContents and moveElement one after the other. After moving some elements, all

processes but process p sleep at line 126 with bmE = true (bmE is the local variable b of

procedure moveElement). Process p continues the migration and updates the new current

index when the migration completes. Then, process p does several insertions to let the

occ of the current hash table reach one more than its bound. Just at that moment, P − 1

processes wake up, increase the occ of the current hash table to be P−1 more, and return to

line 30. Since P − 1 processes insert different values in the hash table, after P − 1 processes

finish their insertions, the occ of the current hash table reaches 2P −1 more than its bound.

It may be useful to make size larger than bound+2P to avoid too many collisions, e.g.

with a constraint size ≥ α · bound for some α > 1. If we did not introduce dels, every

migration would force the sizes to grow, so that our hash table would require unbounded

space for unbounded life time. We introduced dels to avoid this.

Strictly speaking, instruction 82 inspects one shared variable, H[index], and modifies

three other shared variables, viz. H[i], Heap[H−index], and H−index. In general, we split

such multiple shared variable accesses in separate atomic commands. Here the accumulation

is harmless, since the only possible interferences are with other allocations at line 82 and

deallocations at line 71. In view of the invariant Ha2, all deallocations are at pointers

h < H−index. Allocations do not interfere because they contain the increment H−index++

2.3 The algorithm 43

(see procedure allocate).

The procedure newTable first searches for a free index i, say by round robin. We use

a nondeterministic choice. Once a free index has been found, a hash table is allocated and

the index gets an indirection to the allocated address. Then the current index gets a next

pointer to the new index, unless this pointer has been set already.

The variables prot[i] are used primarily as counters with atomic increments and decre-

ments. In 78, however, we use an atomic test-and-set instruction. Indeed, separation of this

instruction in two atomic instructions is incorrect, since that would allow two processes to

grab the same index i concurrently.

Procedure migrate

After the choice of the new hash table, the procedure migrate serves to transfer the contents

in the current hash table to the new hash table by calling a procedure moveContents and

to update the current hash table pointer afterwards. Migration is complete when at least

one of the (parallel) calls to migrate has terminated.

proc migrate() =

local i : 0 . . 2P ; h : pointer to Hashtable ; b : Bool ;

94: i := next[index];

95: prot[i]++ ;

97: if index 6= currInd then

98: prot[i]-- ;

else

99: busy[i]++ ;

100: h := H[i] ;

101: if index = currInd then

moveContents(H[index], h) ;

103: 〈 b := (currInd = index) ;

if b then currInd := i ; {Y := H[i].table }

end 〉 ;

if b then

104: busy[index]-- ;

105: prot[index]-- ;

44 Chapter 2. Lock-free dynamic hash tables with open addressing

end end ;

releaseAccess(i) ;

end end .

According to invariants mi4 and mi5, it is an invariant that i = next(index) 6= 0 holds

after instruction 94.

Line 103 contains a compare&swap instruction to update the current hash table pointer

when some process finds that the migration is finished while currInd is still identical to its

index, which means that i is still used for the next current hash table (see invariant mi5).

The increments of prot[i] and busy[i] here are needed to protect the next hash table. The

decrements serve to avoid memory loss.

Procedure refresh

In order to avoid that a delayed process starts migration of an old hash table, we encapsulate

migrate in refresh in the following way.

proc refresh() =

90: if index 6= currInd then

releaseAccess(index) ;

getAccess() ;

else migrate() end ;

end.

When index is outdated, the process needs to call releaseAccess to abandon its hash table

and getAccess to acquire the present pointer to the current hash table. Otherwise, the

process can join the migration.

Procedure moveContents

Procedure moveContents has to move the contents of the current table to the next current

table. All processes that have access to the table, may also participate in this migration.

Indeed, they cannot yet use the new table (see invariants Ne1 and Ne3). We have to

take care that delayed actions on the current table and the new table are carried out or

abandoned correctly (see invariants Cu1 and mE10). Migration requires that every value

in the current table be moved to a unique position in the new table (see invariant Ne19).

2.3 The algorithm 45

Procedure moveContents uses a private variable toBeMoved that ranges over sets of

locations. The procedure is given by

proc moveContents(from, to : pointer to Hashtable) =

local i : Nat ; b : Bool ; v : EValue ; toBeMoved : set of Nat ;

toBeMoved := {0, . . . , from.size− 1} ;

110: while currInd = index ∧ toBeMoved 6= ∅ do

111: choose i ∈ toBeMoved ;

v := from.table[i] ;

if v = done then

112: toBeMoved := toBeMoved − {i} ;

else

114: 〈 b := (v = from.table[i]) ;

if b then from.table[i] := old(val(v)) end 〉 ;

if b then

116: if val(v) 6= null then moveElement(val(v), to) end ;

117: from.table[i] := done ;

118: toBeMoved := toBeMoved − {i} ;

end end end ;

end .

Note that the value is tagged as outdated before it is copied (see invariant mC11). After

tagging, the value cannot be deleted or assigned until the migration has been completed.

Tagging must be done atomically, since otherwise an interleaving deletion may be lost.

When indeed the value has been copied to the new hash table, it becomes done in the

old hash table in line 117. This has the effect that other processes need not wait for this

process to complete procedure moveElement, but can help with the migration of this value

if needed.

Since the address is lost after being rewritten to done, we had to introduce the shared

auxiliary hash table Y to remember its value for the proof of correctness. This could have

been avoided by introducing a second tagging bit, say for “very old”.

The processes involved in the same migration should not use the same strategy for

choosing i in line 111, since it is advantageous that moveElement is called often with different

values. They may exchange information: any of them may replace its set toBeMoved by the

46 Chapter 2. Lock-free dynamic hash tables with open addressing

intersection of that set with the set toBeMoved of another one. We do not give a preferred

strategy here, one can refer to algorithms for the write-all problem [24, 46].

Procedure moveElement

The procedure moveElement moves a value to the new hash table. Note that the value is

tagged as outdated in moveContents before moveElement is called.

proc moveElement(v : Value \ {null}, to : pointer to Hashtable) =

local a : Address ; k,m, n : Nat ; w : EValue ; b : Bool ;

120: n := 0 ; b := false ; a := ADR(v) ; m := to.size ;

repeat

121: k := key(a,m, n) ; w := to.table[k] ;

if w = null then

123: 〈 b := (to.table[k] = null);

if b then to.table[k] := v end 〉 ;

else n++ end ;

125: until b ∨ a = ADR(w) ∨ currInd 6= index ;

126: if b then to.occ++ end

end .

The value is only allowed to be inserted once in the new hash table (see invariant

Ne19), since otherwise the main property of open addressing would be violated. In total,

four situations can occur in the procedure moveElement:

• the current location k contains a value with a different address. The process increases

n to inspect the next location.

• the current location k contains a value with the same address. This means that the

value has already been copied to the new hash table, the process therefore terminates.

• the current location k is an empty slot. The process inserts v and returns. If insertion

fails, since another process filled the empty slot in between, the search is continued.

• when index happens to differ from currInd, the entire migration has been completed.

While the current hash table pointer is not updated yet, there exists at least one null

entry in the new hash table (see invariants Ne8 , Ne22 and Ne23), hence the local variable n

2.4 Correctness (Safety) 47

in the procedure moveElement never goes beyond the size of the hash table (see invariants

mE3 and mE8), and the termination is thus guaranteed.

2.4 Correctness (Safety)

In this section, we describe the proof of safety of the algorithm. The main aspects of

safety are functional correctness, atomicity, and absence of memory loss. These aspects are

formalized in eight invariants described in section 2.4.1. To prove these invariants, we need

many other invariants. These are listed in Appendix A.1. In section 2.4.2, we sketch the

verification of some of the invariants by informal means. In section 2.4.3, we describe how

the theorem prover PVS is used in the verification. As exemplified in 2.4.2, Appendix A.2

gives the dependencies between the invariants.

Notational Conventions. Recall that there are at most P processes with process

identifiers ranging from 1 up to P . We use p, q, r to range over process identifiers, with a

preference for p. Since the same program is executed by all processes, every private variable

name of a process 6= p is extended with the suffix “.” + “process identifier”. We do not

do this for process p. So, e.g., the value of a private variable x of process q is denoted by

x.q, but the value of x of process p is just denoted by x. In particular, pc.q is the program

location of process q. It ranges over all integer labels used in the implementation.

When local variables in different procedures have the same names, we add an abbre-

viation of the procedure name as a subscript to the name. We use the following abbre-

viations: fi for find, del for delete, ins for insert, ass for assign, gA for getAccess, rA for

releaseAccess, nT for newTable, mig for migrate, ref for refresh, mC for moveContents,

mE for moveElement.

In the implementation, there are several places where the same procedure is called, say

getAccess, releaseAccess, etc. We introduce auxiliary private variables return, local to such

a procedure, to hold the return location. We add a procedure subscript to distinguish these

variables according to the above convention.

If V is a set,]V denotes the number of elements of V . If b is a boolean, then]b = 0

when b is false, and]b = 1 when b is true. Unless explicitly defined otherwise, we always

(implicitly) universally quantify over addresses a, values v, non-negative integer numbers

k, m, and n, natural number l, processes p, q and r. Indices i and j range over [1, 2P]. We

abbreviate H(currInd).size as curSize.

48 Chapter 2. Lock-free dynamic hash tables with open addressing

In order to avoid using too many parentheses, we use the usual binding order for the

operators. We give “∧” higher priority than “∨”. We use parentheses whenever necessary.

2.4.1 Main properties

We have proved the following three safety properties of the algorithm. Firstly, the access

procedures find, delete, insert, assign, are functionally correct. Secondly they are executed

atomically. The third safety property is absence of memory loss.

Functional correctness of find, delete, insert is the condition that the result of the

implementation is the same as the result of the specification (fS), (dS), (iS). This is expressed

by the required invariants:

Co1: pc = 14 ⇒ val(rfi) = rSfi

Co2: pc ∈ {25, 26} ⇒ sucdel = sucSdel

Co3: pc ∈ {41, 42} ⇒ sucins = sucSins

Note that functional correctness of assign holds trivially since it does not return a result.

According to the definition of atomicity in chapter 13 of [52], atomicity means that each

execution of one of the access procedures contains precisely one execution of the correspond-

ing specifying action (fS), (dS), (iS), (aS). We introduced the private auxiliary variables cnt

to count the number of times the specifying action is executed. Therefore, atomicity is

expressed by the invariants:

Cn1: pc = 14 ⇒ cntfi = 1

Cn2: pc ∈ {25, 26} ⇒ cntdel = 1

Cn3: pc ∈ {41, 42} ⇒ cntins = 1

Cn4: pc = 57 ⇒ cntass = 1

We interpret absence of memory loss to mean that the number of allocated hash tables

is bounded. More precisely, we prove that this number is bounded by 2P . This is formalized

in the invariant:

No1:]{k | k < H−index ∧ Heap(k) 6= ⊥} ≤ 2P

An important safety property is that no process accesses deallocated memory. Since

most procedures perform memory accesses, by means of pointers that are local variables,

the proof of this is based on a number of different invariants. Although this is not explicit

2.4 Correctness (Safety) 49

in the specification, it has been checked because the theorem prover PVS does not allow

access to deallocated memory as this would violate type correctness conditions.

2.4.2 Intuitive proof

The eight correctness properties (invariants) mentioned above have been completely proved

with the interactive proof checker of PVS. The use of PVS did not only take care of the

delicate bookkeeping involved in the proof, it could also deal with many trivial cases auto-

matically. At several occasions where PVS refused to let a proof be finished, we actually

found a mistake and had to correct previous versions of this algorithm.

In order to give some feeling for the proof, we describe some proofs. For the complete

mechanical proof, we refer the reader to [33]. Note that, for simplicity, we assume that all

non-specific private variables in the proposed assertions belong to the general process p, and

general process q is an active process that tries to threaten some assertion (p may equal q).

Proof of invariant Co1 (as claimed in 2.4.1). According to Appendix A.2, the stability of

Co1 follows from the invariants Ot3, fi1, fi10, which are given in Appendix A.1. Indeed,

Ot3 implies that no procedure returns to location 14. Therefore all return statements falsify

the antecedent of Co1 and thus preserve Co1. Since rfi and rSfi are private variables to

process p, Co1 can only be violated by process p itself (establishing pc at 14) when p ex-

ecutes 13 with rfi = null ∨ afi = ADR(rfi). This condition is abbreviated as Find(rfi , afi).

Invariant fi10 then implies that action 13 has the precondition val(rfi) = rSfi , so then it

does not violate Co1. In PVS, we used a slightly different definition of Find, and we applied

invariant fi1 to exclude that rfi is done or del, though invariant fi1 is superfluous in this

intuitive proof. 2

Proof of invariant Ot3. Since the procedures getAccess, releaseAccess, refresh, newTable

are called only at specific locations in the algorithm, it is easy to list the potential return

addresses. Since the variables return are private to process p, they are not modified by

other processes. Stability of Ot3 follows from this. As we saw in the previous proof, Ot3 is

used to guarantee that no unexpected jumps occur. 2

Proof of invariant fi10. According to Appendix A.2, we only need to use fi9 and Ot3. Let

us use the abbreviation k = key(afi , lfi , nfi). Since rfi and rSfi are both private variables,

50 Chapter 2. Lock-free dynamic hash tables with open addressing

they can only be modified by process p when p is executing statement 7. We split this

situation into two cases

1. with precondition Find(hfi .table[k], afi)

After execution of statement 7, rfi becomes hfi .table[k], and rSfi becomes X(afi). By

fi9, we get val(rfi) = rSfi . Therefore the validity of fi10 is preserved.

2. otherwise.

After execution of statement 7, rfi becomes hfi .table[k], which then falsifies the an-

tecedent of fi10. 2

Proof of invariant fi9. According to Appendix A.2, we proved that fi9 follows from Ax2,

fi1, fi3, fi4, fi5, fi8, Ha4 , He4 , Cu1, Cu9, Cu10, and Cu11. We abbreviate key(afi , lfi , nfi)

as k. We deduce hfi = H(index) from fi4, H(index) is not ⊥ from He4 , and k is below

H(index).size from Ax2, fi4 and fi3. We split the proof into two cases:

1. index 6= currInd: By Ha4 , it follows that H(index) 6= H(currInd). Hence from Cu1,

we obtain hfi .table[k] = done, which falsifies the antecedent of fi9.

2. index = currInd: By premise Find(hfi .table[k], afi), we know that hfi .table[k] 6=

done because of fi1. By Cu9 and Cu10, we obtain val(hfi .table[k]) = val(Y[k]).

Hence it follows that Find(Y[k], afi). Using fi8, we obtain

∀m < nfi : ¬Find(Y[key(afi , curSize,m)], afi)

We get nfi is below curSize because of fi5. By Cu11, we conclude

X(afi) = val(hfi .table[k])

2

2.4.3 The model in PVS

Our proof architecture (for one property) can be described as a dynamically growing tree in

which each node is associated with an assertion. We start from a tree containing only one

node, the proof goal, which characterizes some property of the system. We expand the tree

2.4 Correctness (Safety) 51

by adding some new children via proper analysis of an unproved node (top-down approach,

which requires a good understanding of the system). The validity of that unproved node

is then reduced to the validity of its children and the validity of some less or equally deep

nodes.

Normally, simple properties of the system are proved with appropriate precedence, and

then used to help establish more complex ones. It is not a bad thing that some property

that was taken for granted turns out to be not valid. Indeed, it may uncover a defect of the

algorithm, but in any case it leads to new insights in it.

We model the algorithm as a transition system [53], which is described in the language

of PVS in the following way. As usual in PVS, states are represented by a record with a

number of fields:

State : TYPE = [#

% global variables

...

busy : [range(2*P) → nat],

prot : [range(2*P) → nat],

...

% private variables:

index : [range(P) → range(2*P)],

...

pc : [range(P) → nat], % private program counters

...

% local variables of procedures, also private to each process:

% find

a−find : [range(P) → Address],

r−find : [range(P) → EValue],

...

% getAccess

return−getAccess : [range(P) → nat],

...

#]

where range(P) stands for the range of integers from 1 to P.

Note that private variables are given with as argument a process identifier. Local vari-

ables are distinguished by adding their procedure’s names as suffixes.

An action is a binary relation on states: it relates the state prior to the action to the

52 Chapter 2. Lock-free dynamic hash tables with open addressing

state following the action. The system performed by a particular process is then specified

by defining the precondition of each action as a predicate on the state and also the effect of

each action in terms of a state transition. For example, line 5 of the algorithm is described

in PVS as follows:

% corresponding to statement find5: h := H[index]; n := 0;

find5(i,s1,s2) : bool =

pc(s1)(i)=5 AND

s2 = s1 WITH [(pc)(i) := 6,

(n−find)(i) := 0,

(h−find)(i) := H(s1)(index(s1)(i))]

where i is a process identifier, s1 is a pre-state, s2 is a post-state.

Since our algorithm is concurrent, the global transition relation is defined as the dis-

junction of all atomic actions.

% transition steps

step(i,s1,s2) : bool =

find5(i,s1,s2) or find6(i,s1,s2) or ...

delete15(i,s1,s2) or delete16(i,s1,s2) or ...

...

Stability for each invariant is proved by a PVS Theorem of the form:

% Theorem about the stability of invariant fi10

IV−fi10: THEOREM

forall (u,v : state, q : range(P)) :

step(q,u,v) AND fi10(u) AND fi9(u) AND ot3(u)

=> fi10(v)

To ensure that all proposed invariants are stable, there is a global invariant INV, which is

the conjunction of all proposed invariants.

% global invariant

INV(s:state) : bool =

He3(s) and He4(s) and Cu1(s) and ...

...

% Theorem about the stability of the global invariant INV

IV−INV: THEOREM

forall (u,v : state, q : range(P)) :

step(q,u,v) AND INV(u) => INV(v)

2.5 Correctness (Progress) 53

We define Init as all possible initial states, for which all invariants must be valid.

% initial state

Init: { s : state |

(forall (p: range(P)):

pc(s)(p)=0 and ...

...) and

(forall (a: Address):

X(s)(a)=null) and

...

}

% The initial condition can be satisfied by the global invariant INV

IV−Init: THEOREM

INV(Init)

The PVS code contains eleven preconditions to imply well-definedness: e.g. in find7, the

hash table must be non-NIL and ` must be its size.

% corresponding to statement find7

find7(i,s1,s2) : bool =

i?(Heap(s1)(h−find(s1)(i))) and

l−find(s1)(i)=size(i−(Heap(s1)(h−find(s1)(i)))) and

pc(s1)(i)=7 and

...

All preconditions are allowed, since we can prove lock-freedom in the following form. In

every state s1 that satisfies the global invariant, every process q can perform a step, i.e.,

there is a state s2 with (s1, s2) ∈ step and pc(s1, q) 6= pc(s2, q). This is expressed in PVS

by

% theorem for lock-freedom

IV−prog: THEOREM

forall (u: state, q: range(P)) :

INV(u) => exists (v: state): pc(u)(q) /= pc(v)(q) and step(q,u,v)

2.5 Correctness (Progress)

In this section, we prove that our algorithm is lock-free, and that it is wait-free for several

subtasks. However, the proof was not checked with PVS.

54 Chapter 2. Lock-free dynamic hash tables with open addressing

Recall that an algorithm is called lock-free if always at least some process will finish its

task in a finite number of steps, regardless of delays or failures by other processes. This

means that no process can block the applications of further operations to the data structure,

although any particular operation need not terminate since a slow process can be passed

infinitely often by faster processes. We say that an operation is wait-free if any process

involved in that operation is guaranteed to complete it in a finite number of its own steps,

regardless of the (in)activity of other processes.

2.5.1 The easy part of progress

It is clear that releaseAccess is wait-free. It follows that the wait-freedom of migrate depends

on wait-freedom of moveContents. The loop of moveContents is clearly bounded. So, wait-

freedom of moveContents depends on wait-freedom of moveElement. It has been proved

that n is bounded by m in moveElement (see invariants mE3 and mE8). Since, moreover,

to.table[k] 6= null is stable, the loop of moveElement is also bounded. This concludes the

sketch that migrate is wait-free.

2.5.2 Progress of newTable

The main part of procedure newTable is wait-free. This can be shown informally, as follows.

Since we can prove the condition next(index) 6= 0 is stable while process p stays in the region

[77, 84], once the condition next(index) 6= 0 holds, process p will exit newTable in a few

rounds.

Otherwise, we may assume that p has precondition next(index) = 0 before executing

line 78. By the invariant

Ne5: pc ∈ [1, 58] ∨ pc ≥ 62 ∧ pc 6= 65 ∧ next(index) = 0

⇒ index = currInd

we get that index = currInd holds and next(currInd) = 0 from the precondition. We

define two sets of integers:

prSet1(i) = {r | index.r = i ∧ pc.r /∈ {0, 59, 60}}

prSet2(i) = {r | index.r = i ∧ pc.r ∈ {104, 105}

∨ irA.r = i ∧ index.r 6= i ∧ pc.r ∈ [67, 72]

∨ inT .r = i ∧ pc.r ∈ [81, 84]

∨ imig .r = i ∧ pc.r ≥ 97 }

2.5 Correctness (Progress) 55

and consider the sum
∑

2P
i=1

(](prSet1(i)) +](prSet2(i))). While process p is at line 78,

the sum cannot exceed 2P − 1 because there are only P processes around and process p

contributes only once to the sum. It then follows from the pigeon hole principle that there

exists j ∈ [1, 2P] such that](prSet1(j)) +](prSet2(j)) = 0 and j 6= index.p. By the

invariant

pr1: prot[j] =](prSet1(j)) +](prSet2(j)) +](currInd = j)

+](next(currInd) = j)

we can get that prot[j] = 0 because of j 6= index.p = currInd.

While currInd is constant, no process can modify prot[j] for j 6= currInd infinitely

often. Therefore, if process p acts infinitely often and chooses its value i in 78 by round

robin, process p exits the loop of newTable eventually. This shows that the main part of

newTable is wait-free.

2.5.3 The failure of wait-freedom

Procedure getAccess is not wait-free. When the active clients keep changing the current

index faster than the new client can observe it, the accessing client is doomed to starvation.

In that case, however, the other processes repeatedly succeed. It follows that getAccess,

refresh, and newTable are lock-free.

It may be possible to make a queue for the accessing clients which is emptied by a process

in newTable. The accessing clients must however also be able to enter autonomously. This

would at least add another layer of complications. We therefore prefer to treat this failure

of wait-freedom as a performance issue that can be dealt with in practice by tuning the

sizes of the hash tables.

According to the invariants fi5, de8, in8 and as6 , the primary procedures find, delete,

insert, assign are loops bounded by n ≤ h.size, and n is only reset to 0 during migration.

If n is not reset to 0, it is incremented or stays constant. Indeed, the atomic if statements

in 18b, 35b, and 50b have no else parts. In delete and assign, it is therefore possible that n

stays constant without termination of the loop. Since assign can modify non-null elements

of the table, it follows that delete and assign are not wait-free. This unbounded fruitless

activity is possible only when assign actions of other processes repeatedly succeed. It follows

that the primary procedures are lock-free. This concludes the argument that the system is

lock-free.

56 Chapter 2. Lock-free dynamic hash tables with open addressing

2.6 Conclusions

Lock-free shared data objects are inherently resilient to halting failures and permit maxi-

mum parallelism. We have presented a new practical, lock-free algorithm for concurrently

accessible hash tables, which promises more robust performance and reliability than a con-

ventional lock-based implementation. Moreover, the new algorithm is dynamic in the sense

that it allows the hash table to grow and shrink as needed.

The algorithm scales up linearly with the number of processes, provided the function

key and the selection of i in line 111 are defined well. This is confirmed by some experi-

ments where random values were stored, retrieved and deleted from the hash table. These

experiments indicated that 106 insertions, deletions and finds per second and per processor

are possible on an SGI powerchallenge with 250Mhz R12000 processors. This figure should

only be taken as a rough indicator, since the performance of parallel processing is very much

influenced by the machine architecture, the relative sizes of data structures compared to

sizes of caches, and even the scheduling of processes on processors.

The correctness proof for our algorithm is noteworthy because of the extreme effort it

took to finish it. Formal deduction by human-guided theorem proving can, in principle,

verify any correct design, but doing so may require huge amounts of effort, time, or skill.

Though PVS provided great help for managing and reusing the proofs, we have to admit

that the verification for our algorithm was very complicated due to the complexity of our

algorithm. The total verification effort can roughly be estimated to consist of two man

years excluding the effort in determining the algorithm and writing the documentation.

The whole proof contains around 200 invariants. It takes a 1 Ghz Pentium IV computer

around two days to re-run an individual proof for one of the biggest invariants. Without

suitable tool support like PVS, we even doubt if it would be possible to complete a reliable

proof of such size and complexity.

It may well be possible to simplify the proof and reduce the number of invariants slightly,

but we did not work on this. The complete version of the PVS specifications and the whole

proof scripts can be found at [33]. Note that we simplified some definitions in this chapter

for the sake of presentation.

Chapter 3

A formal reduction for lock-free

parallel algorithms

This chapter has been published as [23].

57

58 Chapter 3. A formal reduction for lock-free parallel algorithms

3.1 Introduction

On shared-memory multiprocessors, processes coordinate with each other via shared data

structures. To ensure the consistency of these concurrent objects, processes need a mech-

anism for synchronizing their access. In such a system the programmer typically has to

explicitly synchronize access to shared data by different processes to ensure correct behav-

iors of the overall system, using synchronization primitives such as semaphores, monitors,

guarded statements, mutex locks, etc. Consequently the operations of different processes

on a shared data structure should appear to be serialized: if two operations execute simul-

taneously, the system guarantees the same result as if one of them is arbitrarily executed

before the other.

Due to blocking, the classical synchronization paradigms using locks can incur many

problems such as convoying, priority inversion and deadlock. A lock-free (also called non-

blocking) implementation of a shared object guarantees that within a finite number of steps

always some process trying to perform an operation on the object will complete its task,

independently of the activity and speed of other processes [28]. As lock-free synchronizations

are built without locks, they are immune from the aforementioned problems. In addition,

lock-free synchronizations can offer progress guarantees. A number of researchers [9, 6, 54,

28, 29, 51] have proposed techniques for designing lock-free implementations. The basis of

these techniques is using some synchronization primitives such as compare-and-swap (CAS),

or Load-linked (LL)/store-conditional (SC).

Typically, the implementation of the synchronization operations is left to the designer,

who has to decide how much of the functionality to implement in software using system

libraries. The high-level specification gives lots of freedom about how a result is obtained. It

is constructed in some mechanical way that guarantees its correctness and then the required

conditions are automatically satisfied [13]. We reason about a high-level specification of a

system, with a large grain of atomicity, and hope to deduce an implementation, a low-level

specification, which must be fine grained enough to be translated into a computer program

that has all important properties of the high-level specification.

However, the correctness properties of an implementation are seldom easy to verify.

Our previous work (see chapter 2) shows that a proof may require huge amounts of effort,

time, or skill. We therefore develop a reduction theorem that enables us to reason about a

lock-free program to be designed on a higher level than the synchronization primitives. The

3.2 Lock-free transformation 59

reduction theorem is based on refinement mappings as described by Lamport [49], which

are used to prove that a lower-level specification correctly implements a higher-level one.

Using the reduction theorem, fewer invariants are required and some invariants are easier

to discover and easier to formulate, without considering the internal structure of the final

implementation. In particular, nested loops in the algorithm may be treated as one loop at

a time.

3.2 Lock-free transformation

The machine architecture that we have in mind is based on modern shared-memory multi-

processors that can access a common shared address space. There can be several processes

running on a single processor. Let us assume there are P (≥ 1) concurrently executing

sequential processes.

Synchronization primitives LL and SC, proposed by Jensen et al. [42], have found

widespread acceptance in modern processor architectures (e.g. MIPS II, PowerPC and Alpha

architectures). They are a pair of instructions, closely related to the CAS, and together

implement an atomic Read/Write cycle. Instruction LL first reads a memory location, say

X , and marks it as “reserved” (not “locked”). If no other processor changes the contents of

X in between, the subsequent SC operation of the same processor succeeds and modifies the

value stored; otherwise it fails. There is also a validate instruction VL, used to check whether

X was not modified since the corresponding LL instruction was executed. Implementing

VL should be straightforward in an architecture that already supports SC. Note that the

implementation does not access or manipulate X other than by means of LL/SC/VL. Moir

[57] showed that LL/SC/VL can be constructed on any system that supports either LL/SC

or CAS. A shared variable X only accessed by LL/SC/VL operations can be regarded as

a variable that has an associated shared set of process identifiers V.X, which is initially

empty. The semantics of LL, VL and SC are given by equivalent atomic statements below.

proc LL(ref X: val): val =

〈 V.X := V.X ∪ {self}; return X; 〉

proc VL(ref X: val): boolean =

〈 return (self ∈ V.X) 〉

60 Chapter 3. A formal reduction for lock-free parallel algorithms

proc SC (ref X: val; in Y : val): boolean =

〈 if self ∈ V.X then V.X := ∅; X := Y ; return true

else return false; fi 〉

where self is the process identifier of the acting process.

At the cost of copying an object’s data before an operation, Herlihy [28] introduced a

general methodology to transfer a sequential implementation of any data structure into a

lock-free synchronization by means of synchronization primitives LL and SC. A process

that needs access to a shared object pointed by X performs a loop of the following steps:

(1) read X using an LL operation to gain access to the object’s data area; (2) make a

private copy of the indicated version of the object (this action need not be atomic); (3)

perform the desired operation on the private copy to make a new version; (4) finally, call

an SC operation on X to attempt to swing the pointer from the old version to the new

version. The SC operation will fail when some other process has modified X since the LL

operation, in which case the process has to repeat these steps until consistency is satisfied.

The algorithm is non-blocking because at least one out of every P attempts must succeed

within finite time. Of course, a process might always lose to some faster process, but this

is often unlikely in practice.

3.3 Reduction

We assume a universal set V of typed variables, which is called the vocabulary . A state s

is a type-consistent interpretation of V, mapping variables v ∈ V to values sJvK. We denote

by Σ the set of all states. If C is a command, we denote by Cp the transition C executed

by process p, and sJCpKt indicates that in state s process p can do a step C that establishes

state t. When discussing the effect of a transition Cp from state s to state t on a variable v,

we abbreviate sJvK to v and tJvK to v′. We use the abbreviation Pres(V) for
∧

v∈V (v′ = v)

to denote that all variables in the set V are preserved by the transition. Every private

variable name can be extended with the suffix “.” + “process identifier”. We sometimes

use indentation to eliminate parentheses.

3.3 Reduction 61

3.3.1 Observed Specification

In practice, the specification of systems is concerned rather with externally visible behavior

than computational feasibility. We assume that all levels of specifications under consider-

ation have the same observable state space Σ0, and are interpreted by their observation

functions Π: Σ → Σ0. Every specification can be modeled as a five-tuple (Σ,Π,Θ,N ,L)

where (Σ,Θ,N) is the transition system [53] and L is the supplementary property of the

system (i.e. a predicate on Σω).

The supplementary constraint L is imposed since the transition system only specifies

safety requirements and has no kind of fairness conditions or liveness assumptions built into

it. Since, in reality, a stuttering step might actually perform modifications to some internal

variables in internal states, we do allow stuttering transitions (where the state does not

change) and the next-state relation is therefore reflexive. A finite or infinite sequence of

states is defined to be an execution of system (Σ,Π,Θ,N ,L) if it satisfies initial predicate

Θ and the next-state relation N but not necessarily the requirements of the supplementary

property L. We define a behavior to be an infinite execution that satisfies the supplementary

property L. A (concrete) specification Sc implements an (abstract) specification Sa iff every

externally visible behavior allowed by Sc is also allowed by Sa. We write Beh(S) to denote

the set of behaviors of system S.

3.3.2 Refinement mappings

A refinement mapping from a lower-level specification Sc = (Σc,Πc,Θc,Nc,Lc) to a higher-

level specification Sa = (Σa,Πa,Θa,Na,La), written ϕ: Sc v Sa, is a mapping ϕ: Σc → Σa

that satisfies:

1. ϕ preserves the externally visible state component: Πa ◦ ϕ = Πc.

2. ϕ is a simulation, denoted ϕ: Sc 4 Sa:

① ϕ takes initial states into initial states: Θc ⇒ Θa ◦ ϕ.

② Nc is mapped by ϕ into a transition (possibly stuttering) allowed by Na:

Q ∧Nc ⇒ Na ◦ ϕ, where Q is an invariant of Sc.

3. ϕ maps behaviors allowed by Sc into behaviors that satisfy Sa’s supplementary prop-

erty: ∀ σ ∈ Beh(Sc): La(ϕ(σ)).

62 Chapter 3. A formal reduction for lock-free parallel algorithms

Below we need to exploit the fact that the simulation only quantifies over all reachable

states of the lower-level system, not all states. We therefore explicitly allow an invariant Q

in condition 2 ➁. The following theorem is stated in [1].

Theorem 3.3.1 If there exists a refinement mapping from Sc to Sa, then Sc implements

Sa.

Refinement mappings give us the ability to reduce an implementation by reducing its

components in relative isolation, and then gluing the reductions together with the same

structure as the implementation. Atomicity guarantees that a parallel execution of a pro-

gram gives the same results as a sequential and non-deterministic execution. This allows

us to use the refinement calculus for stepwise refinement of transition systems [5]. Essen-

tially, the reduction theorem allows us to design and verify the program on a higher level

of abstraction. The big advantage is that substantial pieces of the concrete program can be

dealt with as atomic statements on the higher level.

The refinement relation is transitive, which means that we don’t have to reduce the

implementation in one step, but can proceed from the implementation to the specification

through a series of smaller steps.

3.3.3 Correctness

The safety properties satisfied by the program are completely determined by the initial

predicate and the next-state relation. This is described by Theorem 3.3.2, which can be

easily verified.

Theorem 3.3.2 Let Pc and Pa be safety properties for Sc and Sa respectively. The veri-

fication of a concrete judgment (Σc,Θc,Nc) |= Pc can be reduced to the verification of an

abstract judgment (Σa,Θa,Na) |= Pa, if we can exhibit a simulation ϕ mapping from Σc to

Σa that satisfies Pa ◦ ϕ⇒ Pc.

We make a distinction between safety and liveness properties (see section 1.2 for the

proof schemes). The proof of liveness relies on the fairness conditions associated with a

specification. The purpose for fairness conditions is to rule out executions where the system

idles indefinitely with control at some internal point of a procedure and with some transition

of that procedure enabled. Fairness arguments usually depend on safety properties of the

system.

3.4 A lock-free pattern 63

3.4 A lock-free pattern

We propose a pattern that can be universally employed for a lock-free construction in order

to synchronize access to a shared node of nodeType. The interface Sa is shown in Fig. 3.1,

where the following statements are taken as a schematic representation of segments of code:

1. noncrit(ref pub: aType, priv: bType; in tm: cType; out x: 1 . . . N) : representing

an atomic non-critical activity on variables pub and priv according to the value of tm,

and choosing an index x of a shared node to be accessed.

2. guard(in X: nodeType, priv: bType) a non-atomic boolean test on the variable X of

nodeType. It may depend on private variable priv.

3. com(ref X: nodeType; in priv: bType; out tm: cType) : a non-atomic action on

the variable X of nodeType and private variable tm. It is allowed to inspect private

variable priv.

The action enclosed by angular brackets 〈. . .〉 is defined as atomic. The private variable

x is intended only to determine the node under consideration, the private variable tm is

intended to hold the result of the critical computation com, if executed. By means of

Herlihy’s methodology, we give a lock-free implementation Sll/sc of interface Sa in Fig. 3.2.

In the implementation, we use some other schematic representations of segments of code,

which are described as follows:

4. read(ref X: nodeType, in Y : nodeType) : a non-atomic read operation that reads

the value from the variable Y of nodeType to the variable X of nodeType, and does

nothing else. If Y is modified during read, the resulting value of X is unspecified but

type correct, and no error occurs.

5. LL, SC and VL: atomic actions as we defined before.

Typically, we are not interested in the internal details of these schematic commands but in

their behavior with respect to lock-freedom. In Sll/sc, we declare P extra shared nodes for

private use (one for each process). Array indir acts as pointers to shared nodes. node[mp.p]

can always be taken as a “private” node (other processes can read but not modify the content

of the node) of process p though it is declared publicly. If some other process successfully

64 Chapter 3. A formal reduction for lock-free parallel algorithms

Constant
P = number of processes; N = number of nodes;

Shared variable
pub: aType; Node: array [1 . . .N] of nodeType;

Private variable
priv: bType; pc: {a1, a2}; x: 1 . . .N ; tm: cType;

Program
loop

a1: noncrit(pub, priv, tm, x);
a2: 〈 if guard(Node[x], priv) then com(Node[x], priv, tm); fi; 〉

end.
Initial conditions

Θa: ∀p: 1 . . . P : pcp = a1

Liveness
La: 2(pcp = a2 −→ 3pcp = a1)

Figure 3.1: Interface Sa

Constant
P = number of processes; N = number of nodes;

Shared variable
pub: aType; node: array [1 . . .N+P] of nodeType;
indir: array [1 . . . N] of 1 . . .N+P;

Private variable
priv: bType; pc: [c1 . . . c7];
x: 1 . . .N ; mp, m: 1 . . .N+P; tm, tm1 : cType;

Program
loop

c1: noncrit(pub, priv, tm, x);
loop

c2: m := LL(indir[x]);
c3: read(node[mp], node[m]);
c4: if guard(node[mp], priv) then
c5: com(node[mp], priv , tm1);
c6: if SC(indir[x], mp) then mp := m; tm := tm1; break; fi;
c7: elseif VL(indir[x]) then break; fi; fi; end;

end.
Initial conditions

Θll/sc: (∀p: 1 . . . P : pcp = c1 ∧ mpp = N+p) ∧ (∀i: 1 . . .N : indir[i] = i)
Liveness

Lll/sc: 2(pcp = c2 −→ 3pcp = c1)

Figure 3.2: Lock-free implementation Sll/sc of Sa

3.4 A lock-free pattern 65

updates a shared node while an active process p is copying the shared node to its “private”

node, process p will restart the inner loop, since its private view of the node is not consistent

anymore. After the assignment mp := m at line c6, the “private” node becomes shared and

the node shared previously (which contains the old version) becomes “private”.

Formally, we introduceNc as the relation corresponding to command noncrit on (aType×

bType × cType, aType × bType × 1 . . . N), Pg as the predicate computed by guard on

nodeType×bType, Rc as the relation corresponding to com on (nodeType×bType, nodeType×

cType), and define

Σa , (Node[1 . . . N], pub) × (pc, x, priv, tm)P ,

Σll/sc , (node[1 . . . N+P], indir[1 . . . N], pub) × (pc, x, mp, m, priv, tm, tm1)P ,

Πa(Σa) , (Node[1 . . . N], pub), Πll/sc(Σll/sc) , (node[indir[1 . . . N]], pub),

Na ,
∨

0≤i≤2
Nai , Nll/sc ,

∨
1≤i≤7

Nci ,

The transitions of the abstract system can be described: ∀s, t: Σa, p: 1 . . . P :

sJ(Na0)pKt , s = t (to allow stuttering)

sJ(Na1)pKt , pc.p = a1 ∧ pc′.p = a2 ∧ Pres(V − {pub, priv.p, pc.p, x.p})

∧ ((pub, priv.p, tm.p), (pub, priv.p, x.p)′) ∈ Nc

sJ(Na2)pKt , pc.p = a2 ∧ pc′.p = a1 ∧ (Pg(Node[x], priv.p)

∧ ((Node[x], priv.p), (Node[x], tm.p)′) ∈ Rc

∧ Pres(V − {pc.p, Node[x], tm.p})

∨ ¬Pg(Node[x], priv.p) ∧ Pres(V − {pc.p})).

The transitions of the concrete system can be described in the same way. Here we only

provide the description of the step that starts in c6: ∀s, t: Σll/sc, p: 1 . . . P :

sJ(Nc6)pKt , pc.p = c6 ∧ (p ∈ V.indir[x.p]

∧ pc′.p = c1 ∧ (indir[x.p])′ = mp.p ∧ mp′.p = m.p

∧ tm′.p = tm1.p ∧ (V.indir[x.p])′ = ∅

∧ Pres(V − {pc.p, indir[x.p], mp.p, tm.p, V.indir[x.p]})

∨ p /∈ V.indir[x.p] ∧ pc′.p = c2 ∧ Pres(V − {pc.p}))

3.4.1 Simulation

According to Theorem 3.3.2, the verification of a safety property of concrete system Sll/sc

can be reduced to the verification of the corresponding safety property of abstract system

Sa if we can exhibit the existence of a simulation between them.

66 Chapter 3. A formal reduction for lock-free parallel algorithms

Theorem 3.4.1 The concrete system Sll/sc defined in Fig. 3.2 is simulated by the abstract

system Sa defined in Fig. 3.1, that is, ∃ϕ : Sll/sc 4 Sa.

Proof: We prove Theorem 3.4.1 by providing a simulation. The simulation function ϕ is

defined by showing how each component of the abstract state (i.e. state of Σa) is generated

from components in the concrete state (i.e. state of Σll/sc). We define ϕ : the concrete

location c1 is mapped to the abstract location a1, while all other concrete locations are

mapped to a2; the concrete shared variable node[indir[x]] is mapped to the abstract shared

variable Node[x], and the remaining variables are all mapped to the identity of the variables

occurring in the abstract system.

The assertion that the initial condition Θll/sc of the concrete system implies the initial

condition Θa of the abstract system follows easily from the definitions of Θll/sc, Θa and ϕ.

The central step in the proof of simulation is to prove that every atomic step of the

concrete system is simulated by an atomic step of the abstract system. We therefore need

to associate each transition in the concrete system with the transition in the abstract system.

It is easy to see that the concrete transition Nc1 is simulated by Na1 and that Nc2,

Nc3, Nc4, Nc5, Nc6 with precondition “self /∈ V.indir[x.self]”, and Nc7 with precondition

“self /∈ V.indir[x.self]” is simulated by a stuttering step Na0 in the abstract system.

E.g. we prove that Nc6 executed by any process p with precondition “p /∈ V.indir[x.p]” is

simulated by a stuttering step in the abstract system. By the mechanism of SC, an active

process p will only modify its program counter pc.p from c6 to c2 when executing Nc6 with

precondition “p /∈ V.indir[x.p]”. According to the mapping of ϕ, both concrete locations

c6 and c2 are mapped to abstract location a2. Since the mappings of the pre-state and the

post-state to the abstract system are identical, Nc6 executed by process p with precondition

“p /∈ V.indir[x.p]” is simulated by the stuttering step Na0 in the abstract system.

The proof for the simulations of the remaining concrete transitions is less obvious. Since

simulation applies only to transitions taken from a reachable state, we postulate the follow-

ing invariants in the concrete system Sll/sc:

Q1: (p 6= q ⇒ mp.p 6= mp.q) ∧ (indir[y] 6= mp.p)

∧ (y 6= z ⇒ indir[y] 6= indir[z])

Q2: pc.p = c6 ∧ p ∈ V.indir[x.p]

⇒ ((node[m.p], priv.p), (node[mp.p], tm1.p)) ∈ Rc

Q3: pc.p = c7 ∧ p ∈ V.indir[x.p] ⇒ ¬ Pg(node[m.p], priv.p)

3.4 A lock-free pattern 67

Q4: pc.p ∈ [c3 . . . c7] ∧ p ∈ V.indir[x.p] ⇒ m.p = indir[x.p]

Q5: pc.p ∈ {c4, c5} ∧ p ∈ V.indir[x.p] ⇒ node[m.p] = node[mp.p]

Q6: pc.p = {c5, c6} ⇒ Pg(node[mp.p], priv.p)

In the invariants, the free variables p and q range over 1 . . . P , and the free variables y and

z range over 1 . . . N . Invariant Q1 implies that, for any process q, node[mp.q] can be indeed

treated as a “private” node of process q since only process q can modify that. Invariant Q4

reflects the mechanism of the synchronization primitives LL and SC.

With the help of those invariants above, we have proved that Nc6 and Nc7 executed

by process p with precondition “p ∈ V.indir[x.p]” are simulated by the abstract step Na2

in the abstract system. For reasons of space we refer the interested reader to [34] for the

complete mechanical proof. 2

3.4.2 Refinement

Recall that not all simulation relations are refinement mappings. According to the formalism

of the reduction, it is easy to verify that ϕ preserves the externally visible state component.

For the refinement relation we also need to prove that the simulation ϕ maps behaviors

allowed by Sll/sc into behaviors that satisfy Sa’s liveness property, that is, ∀σ ∈ Beh(Sll/sc) :

La(ϕ(σ)). Since ϕ is a simulation, we deduce

σ |= Lll/sc ≡ σ |= 2(pc = c2 −→ 3pc = c1)

⇒ σ |= 2(pc ∈ [c2 . . . c7] −→ 3pc = c1)

⇒ ϕ(σ) |= 2(pc = a2 −→ 3pc = a1)

≡ La(ϕ(σ))

Consequently, we have our main reduction theorem:

Theorem 3.4.2 The abstract system Sa defined in Fig. 3.1 is implemented by the concrete

system Sll/sc defined in Fig. 3.2, that is, ∃ϕ : Sll/sc v Sa.

The liveness property Lll/sc of concrete system Sll/sc can also be proved under the

assumption of the strong fairness conditions and the following assumption:

2 (2pc.p ∈ [c2 . . . c7] ∧ 23p ∈ V.indir[x.p]

−→ 3(pc.p = c6 ∨ pc.p = c7) ∧ p ∈ V.indir[x.p]).

68 Chapter 3. A formal reduction for lock-free parallel algorithms

The additional assumption indicates that for every process p, when process p remains in

the loop from c2 to c7 and executes c2 infinitely often, it will eventually succeed in reaching

c6 or c7 with precondition “p ∈ V.indir[x.p]”.

3.5 Large object

To reduce the overhead of failing non-blocking operations, Herlihy [28] proposes an expo-

nential back-off policy to reduce useless parallelism, which is caused by failing attempts. A

fundamental problem with Herlihy’s methodology is the overhead that results from making

complete copies of the entire object (c3 in Fig. 3.2) even if only a small part of an object

has been changed. For a large object this may be excessive.

We therefore propose two alternatives given in Fig. 3.3. For both algorithms the fields of

the object are divided into W disjoint logical groups such that if one field is modified then

other fields in the same group may be modified simultaneously. We introduce an additional

field ver in nodeType to attach version numbers to each group to avoid unnecessary copying.

We assume all version numbers attached to groups are positive. As usual with version

numbers, we assume that they can be sufficiently large. We increment the version number

of a group each time we modify at least one member in the group.

All schematic representations of segments of code that appear in Fig. 3.3 are the same

as before, except

3. com(ref X: nodeType; in g: 1 . . .W, priv: bType; out tm: cType) : performs an

action on group g of the variable X of nodeType instead of on the whole object X.

4. read(ref X: nodeType; in Y : nodeType, g: 1 . . . W) : only reads the value from group

g of node Y to the same group of node X.

The relations corresponding to these schematic commands are adapted accordingly.

In the first implementation, mp becomes an array used to record pointers to private

copies of shared nodes. In total we declare N × P extra shared nodes for private use (one

for each process and each node). Note that node[mp[x].p] can be taken as a “private” node

of process p though it is declared publicly. Array indir continues to act as pointers to

shared nodes.

At the moment that process p reads group i.p of node[m.p] (line l5), process p may

observe the object in an inconsistent state (i.e. the read value is not the current or historical

3.5 Large object 69

Constant
P = number of processes; N = number of nodes;
W = number of groups;
K = N + N × P ; (∗II: K = N + P ; ∗)

Type
nodeType: record =

val: array [1 . . .W] of valType;
ver: array [1 . . .W] of posnat;

end
Shared variables

pub: aType;
node: array [1 . . .K] of nodeType;
indir: array [1 . . .N] of 1 . . .K;

Private variables
priv : bType; pc: l1 . . . l11;
x: 1 . . .N ; m: 1 . . .K;
mp: array [1 . . .N] of 1 . . .K; (∗II: mp: 1 . . .K; ∗)
new : array [1 . . .W] of posnat; old: array [1 . . .W] of nat;
g : 1 . . .W ; tm, tm1 : cType; i: nat;

Program:
loop

l1: noncrit(pub, priv, tm, x);
choose group g to be modified;
old := node[mp[x]].ver; (∗II: old := λ(i: 1 . . .W) : 0; ∗)
(∗II: replace all mp[x] below by mp ∗)
loop

l2: m := LL(indir[x]);
l3: i := 1
l4: while i ≤W do

new [i] := node[m].ver[i];
if new [i] 6= old[i] then

l5: read(node[mp[x]], node[m], i); old[i] := 0;
l6: if ¬VL(indir[x]) then goto l2; fi;
l7: node[mp[x]].ver[i] := new [i]; old[i] := new [i]; fi;

i++; end;
l8: if guard(node[mp[x]], priv) then
l9: com(node[mp[x]], g, priv, tm1); old[g] := 0;

node[mp[x]].ver[g] := new [g] + 1;
l10: if SC(indir[x], mp[x]) then

mp[x] := m; tm := tm1; break; fi;
l11: elseif VL(indir[x]) then break; fi; end;

end.

Figure 3.3: Lock-free implementation I (* implementation II *) for large objects

70 Chapter 3. A formal reduction for lock-free parallel algorithms

view of the shared object) since pointer m.pmay have been redirected to some private copy of

the node by some faster process q, which has increased the modified group’s version number

(in lines l9 and l10). When process p restarts the loop, it will get higher version numbers at

the array new, and only needs to reread the modified groups, whose new version numbers

differ from their old version numbers. Excessive copying can be therefore prevented. Line

l6 is used to check if the read value of a group is consistent with the version number.

The first implementation is fast for an application that often changes only a small part

of the object. However, the space complexity is substantial because P + 1 copies of each

node are maintained and copied back and forth. Sometimes, a trade-off is chosen between

space and time complexity. We therefore adapt it to our second lock-free algorithm for large

objects (shown in Fig. 3.3 also) by substituting all statements enclosed by (∗ . . . ∗) for the

corresponding statements in the first version. As we did for small objects, we use only one

extra copy of a node for each process in the second implementation.

In the second implementation, since the private copy of a node may belong to some

other node, a process first initializes all elements of old to be zero (line l1) before accessing

an object, to force the process to make a complete copy of the entire object for the first

attempt. The process then only needs to copy part of the object from the second attempt

on. The space complexity for our second version saves (N − 1)× P times of size of a node,

while the time complexity is more due to making one extra copy of the entire object for the

first attempt. To see why these two algorithms are correct, we refer the interested reader

to [34] for the complete mechanical proof.

3.6 Conclusions

This chapter shows an approach to verification of simulation and refinement between a

lower-level specification and a higher-level specification. It is motivated by the algorithm

of lock-free garbage collection (which will be presented in chapter 5). Using the reduc-

tion theorem, the verification effort for a lock-free algorithm becomes simpler since fewer

invariants are required and some invariants are easier to discover and easier to formulate

without considering the internal structure of the final implementation. Apart from safety

properties, we have also considered the important problem of proving liveness properties

using the strong fairness assumption.

A more fundamental problem with Herlihy’s methodology is the overhead that results

3.6 Conclusions 71

from having multiple processes that simultaneously attempt to update a shared object.

Since copying the entire object can be time-consuming, we present two enhanced algorithms

that avoid unnecessary copying for large objects in cases where only small parts of the

objects are modified. It is often better to distribute the contents of a large object over

several small objects to allow parallel execution of operations on a large object. However,

this requires that the contents of those small objects must be independent of each other.

Formal verification is desirable because there could be subtle bugs as the complexity

of algorithms increases. To ensure our hand-written proof presented in this chapter is not

flawed, we use the higher-order interactive theorem prover PVS for mechanical support.

PVS has a convenient specification language and contains a proof checker which allows

users to construct proofs interactively, to automatically execute trivial proofs, and to check

these proofs mechanically. For the complete mechanical proof, we refer the reader to [34].

Chapter 4

A general lock-free algorithm using

compare-and-swap

This chapter is a slightly modified version of our paper that is under submission.

72

4.1 Introduction 73

4.1 Introduction

We are interested in designing efficient data structures and algorithms on shared-memory

multiprocessors. A natural model for these machines is an asynchronous parallel machine,

in which the processes may execute instructions at a different rate, and are subject to long

delays. On such machines, processes often need to coordinate with each other via shared

data structures. In order to prevent the corruption of these concurrent objects, processes

need a mechanism for synchronizing their access. The traditional approach is to explicitly

synchronize access to shared data by different processes to ensure correct behaviors of

the overall system, using synchronization primitives such as semaphores, monitors, guarded

statements, mutex locks, etc. Consequently the operations of different processes on a shared

data structure should appear to be serialized: if two operations execute simultaneously, the

system guarantees the same result as if one of them is arbitrarily executed before the other.

If the blocked process is performing a high-priority or real-time task, it is highly un-

desirable to halt its progress. Due to blocking, the classical synchronization paradigms

using locks can incur many problems such as long delays, convoying, priority inversion and

deadlock. Using locks also involves a trade-off between coarse-grained locking which can

significantly reduce opportunities for parallelism, and fine-grained locking which requires

more careful design and is more prone to bugs.

A lock-free (also called non-blocking) implementation of a shared object guarantees that

within a finite number of steps always some process trying to perform an operation on the

object will complete its task, independently of the activity and speed of other processes

[28]. As lock-free synchronizations are built without locks, they are immune from the afore-

mentioned problems. In addition, lock-free synchronizations can offer progress guarantees,

and increase performance by allowing extra concurrency.

Herlihy [27] has shown that the compare-and-swap (CAS) primitive and the similar

load-linked (LL)/store-conditional (SC) are universal primitives that solve the consensus

problem. A number of researchers [6, 9, 28, 29, 51, 54] have proposed techniques for design-

ing lock-free implementations. The basis of these techniques is using some synchronization

primitives such as CAS, or LL/SC.

Many machines provide either CAS or LL/SC, but not both. All architectures that

support LL/SC restrict memory accesses between LL and SC. Furthermore, most kinds

of hardware do not provide the complete semantics expected by program designers for the

74 Chapter 4. A general lock-free algorithm using compare-and-swap

implementations of LL/SC . For example, the cache-coherence mechanism may let SC fail

spuriously, i.e., a SC operation may incorrectly fail in an implementation if a cached word

is selected for replacement by the cache protocol. Some machines such as DEC Alpha and

PowerPC, also restrict LL/SC operations from being concurrent executed since LL and SC

are implemented using only one tag bit per processor.

Associated with most uses of CAS (and restricted LL/SC) is the ABA problem [41].

When swinging the pointer, we do not want the operation to succeed if the referred contents

has changed since it was read. This problem occurs when the pointer has changed from

A to B, but then subsequently changes back to A again. In that case, the CAS primitive

will successfully change the value of the pointer, possibly corrupting the data structure

because the referred contents may not satisfy the expected conditions. The simplest and

most efficient solution to the ABA problem is to include a tag with the memory location

such that the tag is incremented with each update of the target location [57]. Usually,

however, this solution with tags in principle requires that the tags are unbounded. The

practical solution of taking 32-bit integers for the tags gives an infinitesimal but positive

probability of misbehaviour by wrap around. In our solution, this problem is eliminated.

The correctness properties of an implementation are seldom easy to verify. Our previous

work (see chapter 2) shows that a proof may require huge amounts of effort, time, and

skill. We therefore develop a reduction theorem that enables us to reason about a lock-

free program to be designed on a higher level than the synchronization primitives. The

reduction theorem is based on refinement mappings as described by Lamport [49], which

are used to prove that a lower-level specification correctly implements a higher-level one.

Using the reduction theorem, fewer invariants are required and some invariants are easier

to discover and easier to formulate, without considering the internal structure of the final

implementation. In particular, nested loops in the algorithm may be eliminated at a time.

In chapter 3, we have shown a similar reduction theorem for reducing lock-free imple-

mentations using LL/SC. This time, we aim to provide correct lock-free transformation

using CAS. Our algorithm is a variation of Herlihy’s general methodology for lock-free

transformation. The basis of our techniques is to poll different locations on reading and

writing objects, in such a way that the consistency of an object can be checked by its lo-

cation instead of its tag. It consists of simple code that can be easily implemented using

C-like languages.

4.2 Synchronization primitives 75

4.2 Synchronization primitives

Traditional multiprocessor architectures have included hardware support only for low level

synchronization primitives such as CAS and LL/SC, while high level synchronization prim-

itives such as locks, barriers, and condition variables have to be implemented in software.

CAS atomically compares the contents of a location with a value and, if they match,

stores a new value at the location. The semantics of CAS is given by equivalent atomic

statements below.

proc CAS(ref X; in old, new): bool =

〈 if X = old then X := new ; return true

else return false; fi 〉

LL and SC are a pair of instructions, closely related to the CAS, and together implement

an atomic Read/Write cycle. Instruction LL first reads the content of a memory location,

say X , and marks it as “reserved” (not “locked”). If no other processor changes the content

of X in between, the subsequent SC operation of the same process succeeds and modifies

the value stored; otherwise it fails. There is also a validate instruction VL, used to check

whether X was not modified since the corresponding LL instruction was executed. For the

semantics of LL, SC and VL, see chapter 3.

An atomic counter can be implemented by fetch-and-increment (FAI) and fetch-and-

decrement (FAD) given below. Both operations return the original value of a memory

location after atomically increment and decrement the counter, respectively. From hardware

point of view, they are simpler versions of CAS.

proc FAI(ref X): int =

〈 X := X + 1; return X − 1; 〉

FAD is declared analogously. When FAI and FAD are not available on the machine ar-

chitectures, then they can be easily implemented by CAS and LL/SC. E.g., FAI can be

implemented by CAS in the following lock-free way.

proc FAI(ref X): int =

local Y ;

loop

Y := X;

76 Chapter 4. A general lock-free algorithm using compare-and-swap

if CAS(X, Y, Y + 1) then return Y ; fi;

end;

end.

4.3 The lock-free implementation using CAS

In chapter 3, we formalized Herlihy’s methodology [28] for transferring a sequential im-

plementation Sa (see Fig. 3.1) of any data structure into a lock-free synchronization Sll/sc

given in Fig. 3.2, using synchronization primitives LL/SC. We now turn our attention to

the lock-free implementation of the same interface using CAS, which is given by the algo-

rithm Scas shown in Fig. 4.1. This lock-free implementation is inspired by the lock-free

implementation Sll/sc (see Fig. 3.2). The lines c2, c6 and c7 of Sll/sc correspond in Scas to

the fragments from d20 to d23, from d60 to d65, and from d70 to d71, respectively.

The basic idea is to employ array prot to count the number of processes that are using

an index for accessing a node, in such a way that the consistency of a node can be checked by

its index: suppose process p first reads the index of node x.p to m.p (see line d20), then the

consistency can be checked later by the predicate m.p = indir[x.p]. In Sll/sc, LL/VL and

LL/SC are taken as pairs of instructions, that together implement the atomic read/write

cycle. In Scas , we therefore increment and decrement the corresponding counter (in array

prot) at the beginning and the end of a cycle.

As in Sll/sc, we need to ensure all indices of shared nodes and “private” nodes (still

declared in a public way) are mutually different. Moreover, after success of the analogue of

SC, the previous shared node can not serve as a private node immediately (unlike that in

Sll/sc, see line c6) if some process is still hanging on that node. Otherwise, interference may

occur when the new “private” node is redirected to be a shared node again. Every “private”

node for each process is now truly private since it does not allow some other process to have

a peep at its content.

In Scas , we introduce a constant K ≥ N +2P for the sizes of the arrays node and prot.

There is a trade-off between space and time that the user can choose: large K is faster when

an unused index is chosen at line d64, but large K requires more space.

The guard in line d22 is essential since it guarantees that the accessing node can not be

taken as a private node during the read/write cycle. Decrement of prot[m] in line d61 is

necessary since m does not refer to a shared node when CAS in line d60 succeeds. When

4.3 The lock-free implementation using CAS 77

Constant
P = number of processes;
N = number of nodes;
K = N + 2P;

Shared variable
pub: aType;
node: array [1 . . .K] of nodeType;
indir: array [1 . . .N] of 1 . . .K;
prot: array [1 . . .K] of 0 . . .K;

Private variable
priv : bType; pc: [d10 . . . d71]; suc: bool;
x: 1 . . .N ; mp, m: 1 . . .K ; tm, tm1 : cType;

Program
loop

d10: noncrit(pub, priv, tm, x);
loop

loop
d20: m := indir[x];
d21: 〈 prot[m]++; 〉
d22: if m = indir[x] then break; % goto d30

d23: else 〈 prot[m]--; 〉 fi;
end;

d30: read(node[mp], node[m]);
d40: if guard(node[mp], priv) then
d50: com(node[mp], priv , tm1);
d60: if CAS(indir[x], m, mp) then

tm := tm1;
d61: 〈 prot[m]--; 〉
d62: if prot[m] = 1 then mp := m;

else
d63: 〈 prot[m]--; 〉

loop
d64: choose mp from 1 . . .K

if CAS(prot[mp], 0, 1) then
break; fi; % goto d10

end; fi;
break; % goto d10

else
d65: 〈 prot[m]--; 〉 fi; % goto d20

else
d70: suc := (m = indir[x]);
d71: 〈 prot[m]--; 〉

if suc then break; fi; fi; % goto d10 if suc, else goto d20

end;
end.

Initial conditions
Θcas : (∀p: 1 . . . P : pcp = d10 ∧ mpp = N+p) ∧ (∀i: 1 . . .N : indir[i] = i)

∧ (∀i: 1 . . .K : prot[i] = (i ≤ N+P ? 1 : 0))
Liveness

Lcas : 2(pcp = d20 −→ 3pcp = d10)

Figure 4.1: Lock-free implementation Scas of Sa

78 Chapter 4. A general lock-free algorithm using compare-and-swap

the check in line d62 finds that prot[m] equals 1, it means that only this process is hanging

on that index, and the process can thus immediately treat that node as its private node.

Otherwise, before the process starts to find an unused index for its private node, it needs

to release the reading access to the node. When a new unused index, say mp, is chosen in

line d64 for private use, the process increments prot[mp] to 1. Therefore, no other process

will regard that chosen “index” as an unused index and take that for its private use.

4.4 Correctness

In this section we prove that the concrete system Scas implements the abstract system Sa.

The correctness of the lock-free implementation Scas does not depends on the correctness

of the lock-free implementation Sll/sc. Formally, as we did in chapter 3, we introduce Nc

as the relation corresponding to command noncrit on (aType × bType × cType, aType ×

bType× 1 . . . N), Pg as the predicate computed by guard on nodeType× bType, Rc as the

relation corresponding to com on (nodeType× bType, nodeType× cType), and define

Σa , (Node[1 . . . N], pub) × (pc, x, priv, tm)P ,

Σcas ,(node[1 . . . K], indir[1 . . . N], prot[1 . . . K], pub)

×(pc, x, mp, m, suc, priv, tm, tm1)P .

Πa(Σa) , (Node[1 . . . N], pub), Πcas(Σcas) , (node[indir[1 . . . N]], pub).

Na ,
∨

0≤i≤2
Nai

, Ncas ,
∨

10≤i≤71
Ndi

.

The transitions of the abstract system can be described: ∀s, t: Σa, p: 1 . . . P :

sJ(Na0
)pKt , s = t (to allow stuttering)

sJ(Na1
)pKt , pc.p = a1 ∧ pc′.p = a2 ∧ Pres(V − {pub, priv .p, pc.p, x.p})

∧ ((pub, priv.p, tm.p), (pub, priv .p, x.p)′) ∈ Nc

sJ(Na2
)pKt , pc.p = a2 ∧ pc′.p = a1 ∧ (Pg(Node[x.p], priv .p)

∧ ((Node[x.p], priv.p), (Node[x.p], tm.p)′) ∈ Rc

∧ Pres(V − {pc.p, Node[x.p], tm.p})

∨ ¬Pg(Node[x.p], priv.p) ∧ Pres(V − {pc.p})).

The transitions of the concrete system can be described in the same way. Here we only

provide the description of concrete transitions d60 and d64: ∀s, t: Σcas , p: 1 . . . P :

sJ(Nd60
)pKt , pc.p = d60 ∧ (indir[x.p] = m.p ∧ pc′.p = d61 ∧ (indir[x.p])′ = mp.p

4.4 Correctness 79

∧ tm′.p = tm1.p ∧ Pres(V − {pc.p, indir[x.p], tm.p})

∨ indir[x.p] 6= m.p ∧ pc′.p = d65 ∧ Pres(V − {pc.p})).

sJ(Nd64
)pKt , pc.p = d64 ∧ ∃ k: 1 . . . K: (prot[k] = 0 ∧ pc′.p = d10 ∧ (prot[k])′ = 1

∧ mp′.p = k ∧ Pres(V − {pc.p, prot[k], mp.p}))

∨ (prot[k] 6= 0 ∧ Pres(V)).

To prove that Scas implements Sa, we define the state mapping ϕ: Σcas → Σa by

showing how each component of Σa is generated from components in Σcas :

∀x: 1 . . . N : Nodea[x] = nodecas [indircas [x]],

∀p: 1 . . . P : pca.p = (pccas .p = d10 ∨ pccas .p ∈ [d61 . . . d64]

∨ (pccas .p = d71 ∧ sucp) ? a1 : a2),

where the subscript indicates the system a variable belongs to, and the remaining variables

in Σa are identical to the variables occurring in Σcas .

4.4.1 Invariants

We establish some invariants for the concrete system Scas , that will aid us in proving the

refinement.

I1: p 6= q ∧ pc.p /∈ [d61 . . . d64] ∧ pc.q /∈ [d61 . . . d64] ⇒ mp.p 6= mp.q

I2: pc.p /∈ [d61 . . . d64] ⇒ indir[x] 6= mp.p

I3: x 6= y ⇒ indir[x] 6= indir[y]

I4: pc.p = d60 ∧ m.p = indir[x.p]

⇒ Pg(node[m.p], priv.p) ∧ ((node[m.p], priv.p), (node[mp.p], tm1.p)) ∈ Rc

I5: pc.p = d70 ∧ m.p = indir[x.p] ⇒ ¬ Pg(node[m.p], priv.p)

In the expression of invariants, free variables p and q range over 1 . . . P , and x and y range

over 1 . . . N . Invariants I1 and I2 indicate that, for any process p, node[mp.p] can be

treated as a “private” node of process p since only process p can modify that. Invariant I3

implies that all shared nodes are different. Invariant I4 gives the precondition when process

p arrives at line d60 and node x.p has not been changed since the last execution of line d20.

Invariant I5 gives the precondition when process p arrives at line d70 and node x.p has not

been changed since the last execution of line d20.

To prove the invariances of I1 to I5, we postulate

80 Chapter 4. A general lock-free algorithm using compare-and-swap

I6: ∀i: 1 . . . K: prot[i] =]({x: 1 . . . N | indir[x] = i})

+]({p | (pcp /∈ [d61 . . . d64] ∧ mpp = i) ∨ (pcp = d61 ∧ mp = i)})

+]({p | (pcp ∈ [d22 . . . d71] ∧ pcp 6= d64 ∧ mp = i)})

I7: pc.p ∈ [d30 . . . d71] ∧ pc.p 6= d64 ∧ mp.q = m.p ⇒ pc.q ∈ [d61 . . . d64]

I8: pc.p ∈ [d40 . . . d50] ∧ m.p = indir[x.p] ⇒ node[m.p] = node[mp.p]

I9: pc.p = d50 ⇒ Pg(node[mp.p], priv.p)

Invariant I6 precisely describes the counter prot[i] for each i ∈ 1 . . . K. Invariant I7 implies

that process p cannot read the “private” node of other process q. Invariant I8 indicates

the postcondition after process p making a private copy of the chosen node x.p at line d30.

Invariant I9 provides the precondition when process p arrives at line d50.

4.4.2 Refinement

It is straightforward to verify that the first premise of the refinement mapping and the first

premise of the simulation hold. It is easy to verify the second premise of the simulation for

most of the transitions. We examine in detail only transition d60.

Transition d60 executed by process p is split up into two cases according to whether

indir[x.p] = m.p holds in the precondition. This gives rise to the following two verification

conditions:

1. ∀ s, t ∈ Σcas : indir[x.p] = m.p ∧ sJ(Nd60
)pKt⇒ ϕ(s)J(Na2

)pKϕ(t).

Using invariant I4, we obtain the following relation that holds between the concrete

states s and t:

pc.p = d60 ∧ pc′.p = d61 ∧ Pg(node[indir[x.p]], priv .p)

∧ ((node[indir[x.p]], priv.p), (node[indir[x.p]], tm.p)′) ∈ Rc

∧ Pres(V − {indir[x.p], pc.p, tm.p}).

This corresponds to the following relation that holds between the abstract states ϕ(s)

and ϕ(t):

pc.p = a2 ∧ pc′.p = a1 ∧ Pg(Node[x.p], priv.p)

∧ ((Node[x.p], priv.p), (Node[x.p], tm.p)′) ∈ Rc

∧ Pres(V − {Node[x.p], pc.p, tm.p}).

4.4 Correctness 81

We then conclude ϕ(s)J(Na2
)pKϕ(t) holds.

2. ∀ s, t ∈ Σcas : indir[x.p] 6= m.p ∧ sJ(Nd60
)pKt⇒ ϕ(s)J(Na0

)pKϕ(t).

We obtain the following relation that holds between the concrete states s and t:

pc.p = d60 ∧ pc′.p = d65 ∧ Pres(V − {pc.p}).

This corresponds to the following relation that holds between the abstract states ϕ(s)

and ϕ(t):

pc.p = a2 ∧ pc′.p = a2 ∧ Pres(V − {pc.p}).

We then conclude ϕ(s)J(Na0
)pKϕ(t) holds.

For the third premise of refinement mapping, we deduce

σ |= Lcas ≡ σ |= 2(pc = d20 −→ 3pc = d10)

⇒ σ |= 2(pc ∈ [d20 . . . d71] −→ 3pc = d10)

⇒ ϕ(σ) |= 2(pc = a2 −→ 3pc = a1)

≡ La(ϕ(σ))

Consequently, we have the main reduction theorem for the lock-free implementation using

CAS:

Theorem 4.4.1 The abstract system Sa defined in Fig. 3.1 is implemented by the concrete

system Scas defined in Fig. 4.1, that is, ∃ϕ: Scas v Sa.

4.4.3 Progress

Note that the liveness condition Lcas in Scas is postulated, and Theorem 4.4.1 does not

require the proof of this liveness condition. In this section, we prove that the liveness

condition Lcas in Scas is feasible.

The proof of liveness relies on the fairness conditions associated with a specification. The

purpose for fairness conditions is to rule out executions where the system idles indefinitely

with control at some internal point of a procedure and with some transition of that procedure

enabled. Fairness arguments usually depend on safety properties of the system.

The lock-freedom property means that a non-faulty process will finish its task in a finite

number of steps unless other processes are infinitely making progress. In the concrete system

Scas , we assume

82 Chapter 4. A general lock-free algorithm using compare-and-swap

2(pc.p ∈ [d20 . . . d60] ∪ [d65 . . . d71]) −→ 3(pc.p ∈ {d60, d70} ∧ m.p = indir[x.p]).

This assumption indicates that for every process p, when process p remains in the re-

gion [d20 . . . d60]∪ [d65 . . . d71] and executes d20 infinitely often, it will eventually succeed in

reaching d60 or d70 with precondition “m.p = indir[x.p]”. Otherwise, other processes are

infinitely making progress on modifying node x.p before process p finishes its task, which

falsifies the antecedent of the lock-freedom.

Using rule (SF1) (presented in section 1.2) with the following substitutions:

R : pc.p ∈ [d20 . . . d60] ∪ [d65 . . . d71]; N : Ncas ;

Q : pc.p ∈ [d61, d64] ∨ (pc.p = d71 ∧ suc.p);

A : (m.p = indir[x.p] ∧ Nd60
) ∨ (m.p = indir[x.p] ∧ Nd70

);

I : true,

we then obtain:

pc.p ∈ [d20 . . . d60] ∪ [d65 . . . d71] o→ pc.p ∈ [d61 . . . d64] ∨ (pc.p = d71 ∧ suc.p).

Similarly, but more obviously, we have

pc.p = d71 ∧ suc.p o→ pc.p = d10.

pc.p ∈ [d61 . . . d64] o→ pc.p = d64.

The invariant I6 implies that, while process p is at d64, we have
∑K

i=1
prot[i] ≤ N +

2P − 2 ≤ K − 2. It then follows from the pigeon hole principle that there exists j ∈ [1,K]

such that prot[j] = 0. By the antecedent of lock-freedom, no other process can change

prot[j] to be non-zero infinitely often while process p stays at d64 without finishing its task.

Therefore, if process p acts infinitely often and chooses its value mp in line d64 by round

robin, process p will exit the loop and arrive at d10 eventually. That is:

pc.p = d64 o→ pc.p = d10.

According to the transitivity of “leadsto”(o→) relation, we finally obtain:

pc.p = d20 o→ pc.p = d10,

which is the liveness property defined in the concrete system Scas .

4.5 Conclusions 83

4.5 Conclusions

Lock-free algorithms offer significant reliability and performance advantages over conven-

tional lock-based implementations. Many machines provide either CAS or LL/SC, but not

both. This chapter presents a general lock-free pattern based on the weaker atomic primi-

tive CAS without causing the ABA problem or problems with wrap around. The lock-free

pattern makes it easier to develop the lock-free implementations of any data structures. It

is a CAS variation of Herlihy’s LL/SC methodology for lock-free transformation. It pro-

vides clear evidence that CAS is sufficient for practical implementations of lock-free data

structures.

We present the lock-free pattern as a reduction theorem. Application of this theorem

simplifies the verification effort for lock-free algorithms since fewer invariants are required

and some invariants are easier to discover and easier to formulate without considering the

internal structure of the final implementation. Apart from safety properties, we have also

considered the important problem of proving liveness properties using the strong fairness

assumption.

Formal verification is desirable because there could be subtle bugs as the complexity of

algorithms increases. To ensure our proof is not flawed, we used the higher-order interactive

theorem prover PVS for mechanical support. All invariants as well as the simulation relation

have been completely verified with PVS. We felt that using PVS to prove the liveness does

not give enough advantages over the handwritten proof to justify the investment and the

delay in publication. We therefore defer a PVS proof of the liveness to future work. For

the complete mechanical proof of safety, we refer the reader to [34].

Chapter 5

Lock-free parallel garbage

collection by mark&sweep

This chapter concerns our technical report [22].

84

5.1 Introduction 85

5.1 Introduction

On shared-memory multiprocessors, processes coordinate with each other via shared data

structures. To ensure the consistency of these concurrent objects, processes need a mech-

anism for synchronizing their access. In such a system the programmer typically has to

explicitly synchronize access to shared data by different processes to ensure correct behav-

ior of the overall system, using synchronization primitives such as semaphores, monitors,

guarded statements, mutex locks, etc. In fact, the operations of different processes on a

shared data structure should appear to be serialized so that the object state is kept coherent

after each operation.

Due to blocking, the classical synchronization paradigms using locks can incur many

problems such as convoying, priority inversion and deadlock. A lock-free (also called non-

blocking) implementation of a shared object guarantees that within a finite number of steps

always some process trying to perform an operation on the object will complete its task,

independently of the activity and speed of other processes [28]. As lock-free synchroniza-

tions are built without locks, they are immune from the aforementioned problems. In

addition, lock-free synchronizations can offer progress guarantees. A number of researchers

[6, 9, 28, 29, 51, 54] have proposed techniques for designing lock-free implementations.

Essential for such implementations are advanced machine instructions such as load-linked

(LL)/store-conditional (SC), or compare-and-swap (CAS).

In this chapter we propose a lock-free implementation of mark&sweep garbage collection

(GC). Garbage collectors are employed to identify at run-time which objects are no longer

referenced by the mutators (i.e. user programs that use and modify the objects). The heap

space occupied by these objects is said to be garbage and must be re-cycled for subsequent

new objects. The garbage collectors reclaim all garbage by adding them to a so called

free-list, which keeps track of free memory. Some programming languages (e.g. C, C++)

force or allow the programs to do their own GC, which means that programs are required

to delete objects that they allocate in memory. However, this task is so difficult that

non-trivial applications often exhibit incorrect behavior as the result of memory leaks or

dangling pointers. To relieve programmers of virtually all memory-management problems, it

is preferable to offer GC that is automatically triggered during memory allocation when the

amount of free memory falls below some threshold or after a certain number of allocations.

There are several basic strategies for GC: reference counting [15, 44, 50, 59], mark&sweep

86 Chapter 5. Lock-free parallel garbage collection by mark&sweep

[4, 8, 16, 17, 18] and copying [30, 38, 39, 40, 61]. Reference counting algorithms can do their

job incrementally (the entire heap need not be collected at once, resulting in shorter col-

lection pauses), but impose overhead on the mutators and fail to reclaim circular garbage.

Mark&sweep algorithms can reclaim circular structure, and don’t place any burden on the

mutators like reference counting algorithms do, but tend to leave the heap fragmented.

Copying algorithms can reduce fragmentation, but add the cost of copying data from one

space to another and require twice as much memory as a mark&sweep collector. Moreover,

copying also requires that the programming language restricts address manipulation opera-

tions, which isn’t true for C or C++. For a more detailed introduction to garbage collection

and memory management the reader is referred to [43].

One often encounters GC algorithms (e.g. [10, 18, 19, 60, 65]) that employ “stop-the-

world” mechanisms, which suspend all normal running threads and then perform GC. Such

an algorithm introduces a global synchronization point between all threads and tends to

become a scaling bottleneck that limits program performance and processor utilization. In

particular, a “stop-the-world” mechanism violates non-blockingness. This is unacceptable

when the system must guarantee response time of interactive applications. Therefore, to

achieve parallel speed-ups on shared-memory multiprocessors, lock-free algorithms are of

interest [46, 67, 69].

There are several lock-free GC algorithms in the literature. The first one is due to

Herlihy and Moss [30]. They present a lock-free copying GC algorithm, which uses copying

for moving objects to avoid blocking synchronization. In their algorithm, the failure of a

participating thread can indefinitely prevent the freeing of unbounded memory. In [38],

Hesselink and Groote give a wait-free (wait-freedom is stronger than lock-freedom) GC

algorithm using reference counting. However, this collector applies only to a restricted

programming model, in which objects are not allowed to be modified between creation

and deletion, and is therefore generally limited. Detlefs et al. [15] provide a lock-free GC

algorithm using reference counting. The approach relies on a strong hardware primitive,

namely double-compare-and-swap (DCAS) for atomic update of two completely distinct

words in memory. Michael [56] presents an efficient lock-free memory management algorithm

that does not require special operating system or hardware support. However, his algorithm

only guarantees an upper bound on the number of removed nodes not yet freed at any time.

This is undesirable because a single garbage node might induce a large amount of occupied

resources and might never be reclaimed.

5.1 Introduction 87

Mark&sweep algorithms do not move objects. They can thus coexist well with C/C++

code, where one never dares to move an object because of possible address computations, and

are gaining popularity. Our lock-free mark&sweep algorithm is non-intrusive and features

high-performance and reliability. Moreover, unlike most previously published Mark&sweep

algorithms [4, 8, 16, 17, 18, 60], we make no assumption on the maximum numbers of

mutators and collectors that can operate concurrently at any time. The performance of GC

is improved when more processors are involved in it. As far as we could find, no similar

algorithm exist.

The correctness properties of any concurrent implementation are seldom easy to verify.

This is in general even harder for lock-free algorithms. Our previous work (see chapter

2) shows that providing correctness proofs for such algorithms require huge amounts of

effort, time, and skill. In chapters 3 and 4, we have developed two reduction theorems

that enable us to reason about a lock-free program to be designed on a higher level than

the synchronization primitives LL/SC and CAS. The reduction theorems are based on

refinement mappings as described by Lamport [49], which are used to prove that a lower-level

specification correctly implements a higher-level one. Using the reduction theorems, fewer

invariants are required and some invariants are easier to discover and formulate without

considering the internal structure of the final implementation. In particular, nested loops

in the lower-level algorithm may be treated as one loop at a time.

Even so, the structure of our algorithm and its correctness properties, as well as the

complexity of reasoning about them, makes neither automatic nor manual verification fea-

sible. We use the higher-order interactive theorem prover PVS [63] for mechanical support.

It is worth noting that there are only a few computer checked correctness proofs of con-

current GC algorithms. In [26], Havelund and Shankar use PVS to verify a safety property

of a Mark&sweep GC algorithm, originally suggested by Ben-Ari [8]. In [59], Moreau and

Duprat model a distributed reference counting algorithm and prove the safety and liveness

property with Coq [14].

Overview of this chapter

Section 5.2 contains the specification of the garbage collector and the interface offered to

the users. A higher-level implementation are presented in Section 5.3. In Section 5.4, the

correctness properties are proven. The proof is based on a list of invariants and lemmas,

presented in Appendix B.1, while the relationships between the invariants are given by a

88 Chapter 5. Lock-free parallel garbage collection by mark&sweep

dependency graph in Appendix B.2. Section 5.5 gives a low-level lock-free transformation

by means of LL and SC using the reduction theorem (Theorem 3.4.2) developed in chapter

3. The result is given in Appendix B.3. Section 5.6 presents the results of some practical

experiments. Conclusions are drawn in Section 5.7.

5.2 Specification

We assume a fixed set Node of nodes, each of which is identified with a unique label between

1 and N for some N ∈ N. To specify garbage collection, we introduce a specification variable

free of type set of nodes to hold the nodes that are available for allocation of new objects

by the application processes. The set free is filled by the garbage collectors.

The nodes outside free form a finite directed graph of varying structure, called the

heap, see Fig. 5.1. Each node in the graph points to zero or more children (nodes), and

the descendent relation may be circular. In the following context, we regard the attributes

of nodes as arrays indexed by 1 . . . N . The number of children of a node x is indicated by

its arity, which is denoted by arity[x] (instead of Node[x].arity as it would be if x is an

index of array Node of some record type with a field arity). We let C be the upper bound

of the arities of the nodes. The expression child[x, j] stands for the pointer to the jth child

of node x, where 1 ≤ j ≤ arity[x].

free nodes

source nodes

garbage
1

2

3

15

5

4

7

8

10

6

9

11

13

14

12

Figure 5.1: A graph representation of the memory

A node is called a root when some process has direct read access to it (such as global/static

5.2 Specification 89

variables, stack locations and registers of the system). Each application process p maintains

a private set rootsp that holds its root nodes. The set Roots is the union of all rootsp for

all processes p.

Access to nodes can be transferred between processes. We assume that there is a two-

dimensional array Mbox indexed with a pair of processes that serves as mailboxes. If process

p allows process q to access some node x, it writes x at Mbox[p, q] using Send. Then, process

q can claim access to node x by calling Receive.

We call a node a source node if the node is either in Roots or in some mailbox. A node

is called accessible iff it is reachable by following a chain of pointers from a source node.

Free nodes must not be accessible. Only nodes in the free set are allowed to be allocated

by the mutators. A node is said to be a garbage node if it is neither accessible nor in the

free set. Behind “user system” garbage collectors compute the set of nodes reachable from

a set of source nodes and reclaim all garbage nodes by placing them into the free set. More

formally, we define

R(p, x) ≡ (∃z ∈ rootsp: z
∗
−→ x),

R(x) ≡ (∃z ∈ Roots: z
∗
−→ x) ∨ (∃p, q ∈ Process: Mbox[p, q]

∗
−→ x),

where the reachability relation
∗
−→ is the reflexive transitive closure of relation −→ on nodes

defined by

z −→ x ≡ (∃k: 1 . . . arity[z]: child[z, k] = x).

According to the definitions, a node x is accessible iff R(x) holds. Process p is said to have

access to node x if R(p, x) holds. Obviously, R(p, x) implies R(x). The fact that a node x

is a garbage node is formalized by:

¬R(x) ∧ x /∈ free.

GC does not modify the memory graph (children or arities of nodes) but only repeatedly

adds garbage nodes to the free set by executing:

proc GCollect()

〈 choose x ∈ Node such that ¬R(x) ∧ x /∈ free; free := free ∪ x; 〉

Here, and henceforth, we use angular brackets 〈 〉 to indicate that embraced statements are

(thought to be) executed atomically.

To specify that GC does happen and is eventually exhaustive, we give the progress

property of the collectors specified as follows:

90 Chapter 5. Lock-free parallel garbage collection by mark&sweep

¬R(x) ∧ x /∈ free ⇒ 3(¬R(x) ∧ x ∈ free)

that is, every garbage node will be eventually put into the free set by a garbage collector.

The machine architecture that we have in mind is based on modern shared-memory

multiprocessors that can access a common shared address space. There can be several

processes running on a single processor. Let us assume there are P concurrently executing

sequential processes along with a set of variables. In the text of a procedure, we use self

to indicate the process identifier of the process that invokes the procedure. The interface

consists of a shared data structure of nodes, and a number of procedures that can be called

in the application processes.

We provide procedures that can read and modify the reachable part of the memory

graph (from source nodes). An application programmer can assume that the behavior of

the routines to access the data is as provided here. In this sense these routines are the

specification of our algorithm. In the next section we provide implementable routines with

the same behavior as specified here. The specification procedures are Create, AddChild,

GetChild, Make, Protect, UnProtect, Send, Receive and Check. We use braces { } to

indicate a precondition that must hold when invoking a certain procedure.

proc Create(): Node

local x : Node;

〈 when available extract x from free;

arity[x] := 0; rootsself := rootsself ∪ {x}; 〉

return x;

proc AddChild(x, y: Node): Bool

{ R(self , x) ∧R(self , y) }

local suc : Bool;

〈 suc := (arity[x] < C);

if suc then arity[x]++; child[x, arity[x]] := y; fi 〉

return suc;

proc GetChild(x: Node, rth: N): Node ∪ {0}

{ R(self , x) }

local y : Node ∪ {0};

5.2 Specification 91

〈 if 1 ≤ rth ≤ arity[x] then y := child[x, rth]; else y := 0; fi 〉

return y;

proc Make(c: array [] of Node, n: 1 . . . C): Node

{ ∀j: 1 ≤ j ≤ n: R(self , c[j]) }

local x : Node; j : N;

〈 when available extract x from free;

for j := 1 to n do child[x, j] := c[j] od;

arity[x] := n; rootsself := rootsself ∪ {x}; 〉

return x;

proc Protect(x: Node)

{ R(self , x) ∧ x /∈ rootsself }

〈 rootsself := rootsself ∪ {x}; 〉

return;

proc UnProtect(z: Node)

{ z ∈ rootsself }

〈 rootsself := rootsself \ {z}; 〉

return;

proc Send(x: Node, r: Process)

{ R(self , x) ∧ Mbox[self , r] = 0 }

〈 Mbox[self , r] := x; 〉

return;

proc Receive(r: Process): Node

{ Mbox[r, self] 6= 0 }

local x : Node;

〈 x := Mbox[r, self];

Mbox[r, self] := 0; rootsself := rootsself ∪ {x}; 〉

return x;

92 Chapter 5. Lock-free parallel garbage collection by mark&sweep

proc Check(r, q: Process): Bool

local suc : Bool;

〈 suc := (Mbox[r, q] = 0); 〉

return suc;

The application programmers are responsible for ensuring that an offered procedure is called

only when its precondition (enclosed by braces if there is any) holds. It is a proof obligation

for us that all preconditions of any interface procedure are stable from the perspective of

the calling process.

A mutator may continuously allocate a node, add some pointers in the memory, and

remove a node from its roots set or mailbox. When an allocation request is made, the mu-

tator tries to find a free node (see procedures Create and Make). The condition “available”

in Create and Make is implementation dependent. When an allocation request cannot be

met from the free memory, the mutator either waits, or invokes a new round of GC to free

more garbage, or expands the current heap by requesting more memory from the operating

system. The threshold value that determines whether or not to invoke a new round of GC

can be customized by the user.

The interface is designed in such a way that, when R(p, x) holds, no other process can

falsify R(p, x). This means that every process can justify the accessibility of node x by

checking R(p, x) (via repeatedly reading arities and children of nodes) without worrying

about possible interference from other processes. Indeed, no process is able to decrease

arity[x] or modify child[x, j] for 1 ≤ j ≤ arity[x] when node x is accessible (see pro-

cedures AddChild and Make). Instead, the interface only allows to extend the graph by

addition of already accessible children. This restriction is stronger than elsewhere, e.g.

[8, 45].

The intention of UnProtect is that it makes the node and its descendants eligible for

garbage collection unless some other process wants to keep them. Via Send, Receive and

Check, our algorithm can be used in a distributed system, in which all processors coopera-

tively traverse the entire data graph by exchanging “messages” to access remote nodes.

5.3 A higher-level implementation 93

5.3 A higher-level implementation

The idea behind most GC algorithms in use is to first recursively trace all reachable nodes

starting from root nodes, then nodes not reached are considered garbage and can be col-

lected. We present a lock-free implementation that comes close to the classical mark&sweep

algorithms. Since we allow to transfer access to nodes between processes via mailboxes, we

have strengthened the definition of garbage to non-reachability from source nodes instead

of from root nodes.

Atomicity is a semantic correctness condition for concurrent systems. Each process

in the implementation is a sequential program comprised of labeled groups of statements.

Each group is thought to be executed atomically. Actions on private variables can be freely

merged to one of the nearest atomic groups without violating the atomicity restriction.

For simplicity, we first extend the specification to a high-level implementation, where

all actions on shared variables are separated into distinct atomic accesses except for some

special commands enclosed by angular brackets 〈. . .〉. In order to be able to finally trans-

form the higher-level algorithm into the low-level algorithm using the reduction theorem

developed in chapter 3, we require that every labeled atomic group of statements in the

higher-level algorithm refer to at most one shared node.

Notational Conventions. Recall that there are P processes with process identifiers rang-

ing from 1 up to P and N nodes labeled from 1 up to N . Unless otherwise specified, we

assume that the free variables p, q and r are universally quantified over process identifiers

and the free variables w, x, y and z universally quantified over node labels. Since the same

sequential program can be executed by all processes, we adopt the convention that every

private variable name can be subscripted by the process identifier. In particular, pcp is

the program location of process p. Recall that we regard the attributes of nodes as arrays

indexed by 1 . . . N . E.g. we do not write Node[x].f but f [x]. In order to avoid using too

many parentheses, we sometimes use indentation to eliminate brackets and define a binding

order for some symbols that we frequently use. The following is a list of these symbols,

grouped by binding order; the groups are ordered from the highest binding order to the

lowest:

all subscripts and superscripts (), [] ¬ (not) ∧ (and) ∨ (or)

⇒ (implication), ≡ (equivalent) ∀, ∃

94 Chapter 5. Lock-free parallel garbage collection by mark&sweep

Constant
P = number of processes;
N = number of nodes;
C = upper bound of number of children;

Type
colorType: {white, black, grey};
nodeType: record =

arity: N; % number of children
child: array [1 . . . C] of 1 . . .N ; % pointers to children
color: colorType; % holds the color of the node
srcnt: N; % reference counter for a source node
freecnt: N; % dereference counter for a source node
ari: N; % number of children at the beginning of GC
father: N ∪ {−1}; % records the parent node GC traverses
round: N; % the latest round of GC involved in

end
Shared variables

Node: array [1 . . .N] of nodeType; % N shared nodes
Mbox: array [1 . . . P, 1 . . . P] of 0 . . .N ; % mailboxes
shRnd: N; % the version of the current round of GC

Private variables
roots: a subset of 1 . . .N ; % a set of root nodes
rnd: N; % private copy of “shRnd”, initially 0!
toBeC: a subset of 1 . . .N ; % a set of nodes to be checked

Initialization:
shRnd = 1 ∧ ∀x: 1 . . . N : round[x] = 1;
all other variables are equal to be the minimal values in their respective domains.

Figure 5.2: Data Structure

5.3.1 Data Structure

The data structure we use in the higher-level implementation is shown in Fig. 5.2. We

define a shared array Node with N elements to represent the memory graph, and a shared

two-dimensional array Mbox with P × P elements to represent mailboxes. Besides fields

arity and child, each node has one of three colors: white, black and grey , which is stored

in the field color. The free set is implemented as a virtual set that contains all white

nodes. All black nodes reachable from a source node are interpreted as accessible nodes,

and all other black nodes are garbage. Grey is a transient color that only occurs during

GC.

Since any accessible node must not be freed as garbage, the system needs to keep track of

5.3 A higher-level implementation 95

source nodes that are created by a process and may still be referred to by other processes.

For safety, a process is not allowed to inspect another process’s private variable such as

roots. Instead, we introduce a field srcnt for each node to count all references (processes

and mailboxes) to the node as a source node. Intentionally, we would like to have something

like1:

srcnt[x] =]({p | x ∈ rootsp}) +]({(p, q) | Mbox(p, q) = x).

Therefore, each collector can recognize a source node immediately by checking if its srcnt

field is positive. We define:

R1(x) ≡ (∃z: srcnt[z] > 0: z
∗
−→ x),

and we have R(x) ⇒ R1(x). We do not apply other reference counting to the nodes, since

manipulating reference counters is slow and may incur expensive overhead with every du-

plication and deletion of the pointers.

The main difficulty with tracing the memory graph is that the memory structure can

dynamically change during GC. In order to solve this problem, we need some coordination

between mutators and collectors to take the view of the memory graph, on which all collec-

tors work. To avoid possible interference between mutators and collectors (we will explain

this later), the updates of the field srcnt of the node in UnProtect, upon deletion from the

roots set, is postponed until the end of GC. We use the field freecnt to count the post-

poned decrementings of srcnt. The fields ari and father contain the number of children

a node has at the beginning of GC and the parent node of a node in a tree traversed from

a source node by collectors, respectively.

Moreover, since more than one process may participate in GC and they may operate

concurrently with mutators, we need to avoid interference from delayed processes. We use

a shared variable shRnd to hold the round number of the current GC, together with an

additional field round in the record of a node. The private variable rnd is a private copy of

the shared variable shRnd. A process p participates in the current round of GC if and only

if rndp = shRnd. We introduce the global private variable toBeC to transfer information

about checked nodes between internal calls. There is also a local private variable toBeD.

1The precise formula is invariant I5 in Appendix B.1.

96 Chapter 5. Lock-free parallel garbage collection by mark&sweep

5.3.2 Algorithm

In this section, we give a higher-level implementation for the collectors and the mutators.

Since procedure calls only modify private control data, procedure headers are not always

labeled themselves, but their bodies usually have numbered atomic statements. The la-

bels are chosen identical to the labels in the PVS code, and are therefore not completely

consecutive.

Brackets J K and the actions between braces { } and parenthesis L M can be ignored in

the implementation. They only serve in the proof of correctness. We will explain this in

section 5.4.

Collectors

Our garbage collectors are encoded in the procedure GCollect as shown in Fig. 5.3. It

is comprised of three phases: (1) paint all black nodes grey while recording the current

memory structure, (2) paint all grey nodes reachable from the source nodes back to black

after traversing the memory graph, and (3) reclaim all garbage by painting all remaining

grey nodes white. The transitions between the colors are shown in Fig. 5.4.

Processes first let rnd get the current value of shRnd (this is the only action that updates

the private variable rnd) to prepare for participating in this round of GC. A new round of

GC is started when the fastest process reaches line 101 with rndself = shRnd holding in the

precondition. It is proved by means of invariants that before a new round of GC is started,

all earlier rounds of GC have completed:

∀x: 1 . . . N : round[x] = shRnd ∧ color[x] 6= grey .

In order to prevent some process from doing useless or even harmful work, every modification

on a node in each phase is protected by a guard, which can force a process (in particular,

a process with rndself 6= shRnd) to abandon its delayed operation.

In the first phase, from label 101 to label 108, processes try to update field round, paint

black nodes grey and record the present memory structure using fields ari and father.

The processes only need to paint the black nodes grey since the white nodes can not be

garbage.

As the algorithm allows parallel use of mutators, being a source node is not stable during

GC. A new source node can be allocated from the free set by Create or Make, or generated

by Protect or Send during GC.

5.3 A higher-level implementation 97

proc GCollect() =
local x: 1 . . .N ; toBeD: a subset of 1 . . .N ;

% first phase
100: rnd := shRnd; toBeC := {1, . . . , N};
101: while shRnd = rnd ∧ toBeC 6= ∅ do

choose x ∈ toBeC ;
108: 〈 if round[x] = rnd then

round[x] := rnd + 1; ari[x] := arity[x]; { outGC [x] := false; }
if color[x] = black then color[x] := grey; fi;
if srcnt[x] > 0 then father[x] := 0; else father[x] := − 1; fi; fi; 〉

toBeC := toBeC \ {x};
od;

% second phase
121: toBeC := {1, . . . , N}; toBeD := {1, . . . , N};
122: while shRnd = rnd ∧ toBeD 6= ∅ do

choose x ∈ toBeD;
126: toBeD := toBeD \ {x};

〈 if father[x] = 0 then 〉
Mark stack(x); fi;

od;
% third phase
129: while shRnd = rnd ∧ toBeC 6= ∅ do

choose x ∈ toBeC ;
134: 〈 if round[x] = rnd + 1 ∧ color[x] = grey then

color[x] := white;
L assert ¬R(x) ∧ x /∈ free; free := free ∪ x; M fi; 〉

toBeC := toBeC \ {x};
od;

135: 〈 if rnd = shRnd then shRnd := rnd + 1; { outGC := λ(i:1 . . .N):true; } fi; 〉
137: return
end GCollect.

Figure 5.3: Procedure GCollect

98 Chapter 5. Lock-free parallel garbage collection by mark&sweep

grey

white

black

m
ak

e(
);

Cre
ate

();

phase 1

phase 2

phase 3

Figure 5.4: Transitions between these colors.

There may be some delay in decrementing field srcnt when the number of references

decreases (see UnProtect). Therefore, we can not say a node x is a source node if its field

srcnt is positive. Instead, a node is ever a source node since the latest calibration (this is

carried out at the end of the second phase) if its field srcnt is positive.

We let the field father of each node with positive srcnt be 0, and that of other nodes

be −1 in the first phase. A new source node x can then be distinguished from others by

checking if srcnt[x] > 0 ∧ father[x] 6= 0 holds. For simplicity, we say that a node x with

father[x] = 0 is an old source node. When the fastest process participating in the current

GC is at the end of its first phase, all non-free nodes are grey except that new source nodes

are black.

A delayed initialization on node x will be skipped because of the guard in line 108

since round[x] is never decreased. As usual with version numbers, here we need to assume

that sufficient bits are allocated for the version numbers to ensure that they cannot “wrap

around” during the interval of a process’s GC cycle.

In the second phase, from label 121 to label 126, the processes build a forest in the set

of all reachable nodes starting from the old source nodes. Trees in the forest are mutually

disjoint. Each of them is rooted by a chosen old source node, and is created via calling a

procedure Mark stack (see Fig. 5.5) in a while loop. During Mark stack, all the grey nodes

on the tree are painted back to black in the order from the leaf to the root.

The procedure Mark stack is mainly a form of graph search, and it was initially designed

as a recursive procedure. Since we want to prove the correctness of our algorithm with PVS,

we eliminated the recursion in favor of an explicit stack. The private variable toBeC serves

to ensure that the search of a collector traverses every node at most once. This is important

since the memory graph may have cycles and nodes may be reachable from different old

source nodes.

5.3 A higher-level implementation 99

proc Mark stack(x: 1 . . .N) =
local w, y: 1 . . .N ; suc: Bool; j, k: N;
stack: Stack; head: N; set: a subset of 1 . . .N ;
ch: [1 . . . C] of 1 . . .N ;

150: toBeC := toBeC \ {x}; set := {x}; head := 0;
151: while shRnd = rnd ∧ set 6= ∅ do

choose w ∈ set;
157: set := set \ {w};

〈 if color[w] = grey ∧ round[w] = rnd + 1 then
k := ari[w];
for j := 1 to k do ch[j] := child[w, j] od; 〉
head++; stack[head] := w; j := 1;

158: while shRnd = rnd ∧ j ≤ k do
y := ch[j];
if y /∈ toBeC then j++;
else

163: 〈 if (father[y] = −1 ∨ father[y] = w)
∧color[y] = grey ∧ round[y] = rnd + 1 then

father[y] := w; 〉
toBeC := toBeC \ {y}; set := set ∪ {y}; fi;

j++; fi;
od; fi;

od;
168: while shRnd = rnd ∧ head 6= 0 do

y := stack[head];
175: head--;

〈 if color[y] = grey ∧ round[y] = rnd + 1 then
color[y] := black;
srcnt[x] := srcnt[x] − freecnt[x]; freecnt[x] := 0; fi; 〉

od;
180: return
end Mark stack.

Figure 5.5: Procedure Mark stack

100 Chapter 5. Lock-free parallel garbage collection by mark&sweep

In Mark stack, from label 151 to label 163, the tree (in the forest) is established by

setting the father pointers. Since the memory graph is not a tree and may even have

cycles, the processes must reach consensus about the tree. The processes starting from the

same old source node cooperate with each other, and are in competition with others to

expand the tree to all nodes reached. E.g. in the scenario of Fig. 5.6, node 7 belongs to tree

B since one of the processes establishing tree B first detects that node and sets its father

to 6. The processes establishing tree A will ignore node 7 since its father is now neither

−1 nor in tree A. Note that all slower processes starting from the same old source node use

the same tree for tracing reachable nodes if the task is not finished. The tree stops growing

when every leaf node has no child that regards it as its father.

father

child

15 17

1411

1361

2 7 9

3 4 8 10 12

5 16

source nodes

tree Ctree Btree A

black

black

black

black

black

black

grey

grey

grey

grey

grey

grey

grey

grey

grey

grey

grey

Figure 5.6: A garbage collection scenario

The order for choosing an element from the local variable set is irrelevant for correctness,

but relevant for efficiency. The search is a depth first search if the order is first in last out.

The search is a breadth first search if the order is first in first out.

The reduction theorems require that every labeled atomic group of statements in the

higher-level algorithm refers to at most one shared node. In the procedure Mark stack, local

variables ch and k are therefore introduced to store the old children of a node, temporarily.

This also prevents processes from visiting a shared node unnecessarily. It adds a proof

obligation that these local variables preserve the information of the node when the process

is not delayed.

Starting from the chosen old source node, all nodes on the tree are pushed on the local

5.3 A higher-level implementation 101

stack after their old children have been temporarily stored. The order of the elements

pushed on the stack is essential for correctness.

After the tree has been established, the process paints all grey nodes black in the order

in which they are popped from the stack (from label 168 to label 175) if the action is not too

late. When a node in the tree is painted black, its descendants (with respect to the father

relation) in the tree have been painted black already (see Fig. 5.6). So the other processes

need not trace or paint the subtree starting from that node. In particular, processes need

not trace or paint the tree starting from a new source node. The proof of all this requires

interesting and rather complicated graph theoretic invariants. At the end of Mark stack,

the process returns to the procedure GCollect to search the tree from another old source

node.

Note that it is sufficient to explore all accessible grey nodes in the second phase without

the help of new source nodes. Using the view of the memory structure taken in the first

phase may cause to miss collecting some new garbage that is generated by UnProtecting a

source node after the first phase, but this does not matter since the new garbage will be

recycled within two rounds of GC according to the liveness property (we will come to this

later).

All old source nodes appear in the different trees of the forest. The tasks of tracing

reachable nodes starting from the different old source nodes can be distributed among

several processes. When the fastest process that participates in the current GC is at the

end of the second phase, all accessible grey nodes have been detected and painted black.

In the third phase, from label 129 to the end of the procedure, processes try to re-cycle all

remaining grey nodes by coloring them white (i.e. adding them to the free set). The main

proof obligation for the algorithm is that all nodes being freed are not accessible. When the

fastest process that participates in the current GC is at the end of third phase, the shared

variable shRnd is incremented to notify all other collectors to quit garbage collecting. We

define a round of GC to be completed as soon as the fastest process involved in that round

of GC finishes the third phase by incrementing shRnd.

It is advantageous that the processes may exchange information. The processes involved

in the same round of GC should not use the same strategy for choosing x in the same

phase. For the interested reader, more details can be found in the algorithms for the write-

all-problem [24, 46]. The main idea is to partition the task statically into many roughly

equivalent subtasks (more subtasks than the number of available threads), and then let each

102 Chapter 5. Lock-free parallel garbage collection by mark&sweep

thread dynamically claim one subtask at a time and remove the subtask after completion.

Mutators

The implementations of the procedures for the mutators are relatively easy. We provide

the code in Fig. 5.7 and Fig. 5.8 for the interface procedures in the mutators, which match

directly with the procedures in the specification. Note that the mutators do not modify

fields ari, father and round of nodes.

Procedure Create and Make serve to extend the memory graph with a new node. In

Create and Make, “time to do GC” indicates that some variable, like time or the amount of

free memory, reaches a threshold value. Allocation in the mutator (see Create and Make) is

potentially expensive. It requires a linear search over the whole memory. This problem can

be solved by implementing the free set as a lock-free list (see [55, 69]) with adding a new

element to the list in a new numbered line just before the last fi in line 134, and deletions

of elements from the list in lines 200 and 300.

In procedure UnProtect, at line 450, the decrementing of the field srcnt of the node

is postponed when the process removes the node from its roots set. Instead, we use the

field freecnt to count every delayed UnProtect. The immediate incrementation of srcnt

is incorrect because of the following counterexample. Assume there are three nodes: node

1 is a free node, node 2 is a source node, with one child, node 3. Now, process p starts

the first phase of GC. Just after process p initializes node 1 (a white node), it goes to

sleep. Then process q is scheduled and Makes node 1 a new root node, of which the color

becomes black (instead of grey), and sets node 3 as a new child of node 1. Then process

q UnProtects node 2, and node 2 happens to become a non-source node afterwards. Then

process p wakes up, resumes to initialize node 2 and node 3. Since in the second phase,

processes only explore all grey nodes reachable from old source nodes, processes will regard

node 3 as an inaccessible node and collect it mistakenly as garbage in the third phase.

One may wonder why the decrementing of the field srcnt is postponed from UnProtect

to line 175 of Mark stack. We tried to update fields srcnt in the first phase of GC. However,

we found that this is not correct while we proceeded the mechanical proof with PVS. The

counterexample is the same as the previous one. After inspecting some invariants, we found

that all accessible grey nodes can be traced without the help of either the black nodes or

the upper grey nodes resided in the local stack. This means that it is safe to update the

field srcnt at that moment. Moreover, fields srcnt of all remaining grey nodes appearing

5.3 A higher-level implementation 103

proc Create(): 1 . . .N =
local x: 1 . . .N ;
while true do

200: choose x ∈ 1 . . .N ;
206: 〈 if color[x] = white then

color[x] := black; srcnt[x] := 1;
L assert x ∈ free; free := free \ x; M
J arity[x] := 0; roots := roots ∪ {x}; K 〉
break;

208: elseif time to do GC then
GCollect(); fi;

od;
210: J return x K
end Create.

proc AddChild(x, y: 1 . . .N): Bool =
{ R(self , x) ∧R(self , y) }

local suc: Bool;
258: 〈 J suc := (arity[x] < C);

if suc then arity[x]++; child[x, arity[x]] := y; fi K 〉
262: J return suc K
end AddChild.

proc GetChild(x: 1 . . .N, rth: 1 . . .N): 0 . . .N =
{ R(self , x) }

local y: 0 . . .N ;
280: 〈 J if 1 ≤ rth ≤ arity[x] then y := child[x, rth]; else y := 0; fi K 〉
284: J return y K
end GetChild.

proc Make(c: array [] of 1 . . .N, n: 1 . . . C): 1 . . .N =
{ ∀ j: 1 . . .n: R(self , c[j]) }

local x: 1 . . .N ; j: N;
while true do

300: choose x ∈ [1 . . .N];
306: 〈 if color[x] = white then

color[x] := black; srcnt[x] := 1;
L assert x ∈ free; free := free \ x; M
J for j := 1 to n do child[x, j] := c[j]; od
arity[x] := n; roots := roots ∪ {x}; K 〉

break;
308: elseif time to do GC then

GCollect(); fi;
od;

310: J return x K
end Make.

Figure 5.7: Procedure Create, AddChild, GetChild and Make

104 Chapter 5. Lock-free parallel garbage collection by mark&sweep

proc Protect(x: 1 . . .N) =
{ R(self , x) ∧ x /∈ roots }
400: 〈 srcnt[x]++; 〉

J roots := roots ∪ {x}; K
408: J return K
end Protect.

proc UnProtect(z: 1 . . .N) =
{ z ∈ roots }
450: 〈 freecnt[z]++; 〉

J roots := roots \ {z}; K
460: J return K
end UnProtect.

proc Send(x: 1 . . .N, r: 1 . . . P) =
{ R(self , x) ∧ Mbox[self , r] = 0 }
500: 〈 srcnt[x]++; 〉
508: J Mbox[self , r] := x; K
510: J return K
end Send.

proc Receive(r: 1 . . . P): 1 . . .N =
{ Mbox[r, self] 6= 0 }

local x: 1 . . .N ;
550: J x := Mbox[r, self]; K
552: if x /∈ roots then

J Mbox[r, self] := 0; roots := roots ∪ {x}; K
else

558: 〈 srcnt[x]--; 〉
559: J Mbox[r, self] := 0; K L assert x ∈ roots; M fi;
560: J return K
end Receive.

proc Check(r, q: 1 . . . P): Bool
local suc : Bool;

600: J suc := (Mbox[r, q] = 0); K
602: J return suc K
end Check.

Figure 5.8: Procedure Protect, UnProtect, Send, Receive and Check

5.4 Correctness 105

in the third phase are all zero and therefore need not be decremented.

In procedure Send and Receive, the weaker requirement on the reference counter (i.e.

field srcnt of a node) is based on the fact that the reference counter does not always need

to be accurate.

5.4 Correctness

The main issue of the algorithm is how to ensure the correct execution of collectors and

mutators when they concurrently compete with each other for the same data structure.

The standard notion of correctness for asynchronous parallel algorithms is to assume that

the atomic instructions of the threads are interleaved in an arbitrary linear order. The

algorithm is correct if it behaves properly for all such interleavings. Any property can be

considered as the conjunction of safety properties and liveness properties. In this section we

describe the proofs of safety properties and a liveness property of the algorithm by means

of invariants.

5.4.1 The main loop

In order to verify our memory management system, we model the clients as a very nonde-

terministic environment in the following loop that may call the interface procedures in any

arbitrary order and with arbitrary arguments provided the preconditions are met. This is

not part of the memory management system itself, and therefore not to be implemented. It

is provided since it is used in the PVS proof to verify the correctness of the system under

all possible applications, in the same way as, e.g. in [37] section 4.2.

loop

1: choose call; case call of

(C) → Create();

(A, x, y) with R(self , x) ∧ R(self , y) → AddChild(x, y);

(G, x, rth) with R(self , x) → GetChild(x, rth);

(M, c, n) with ∀j: 1 . . . n: R(self , c[j]) → Make(c, n);

(P, x) with R(self , x) ∧ x /∈ rootsself → Protect(x);

(U, z) with z ∈ rootsself → UnProtect(z);

(S, x, r) with R(self , x) ∧ Mbox(self , r) = 0 → Send(x, r);

(R, r) with Mbox(r, self) 6= 0 → Receive(r);

106 Chapter 5. Lock-free parallel garbage collection by mark&sweep

(C, r, q) → Check(r, q);

end

end

Normally, after some operation is finished, the process will return to the main loop. In the

implementation, there are several places where the same procedure (e.g. GCollect) is called.

We introduce an auxiliary private variable return to hold the return location. Since they

are private, they can be assumed to be touched instantaneously without violation of the

atomicity restriction.

5.4.2 Safety properties

The main aspect of safety is functional correctness and atomicity, say in the sense of [52].

We prove partial correctness of the implementation by showing that each procedure of the

implementation executes its specification command always exactly once and that the result-

ing value of the implementation equals the resulting value in the specification. As shown in

Fig. 5.3 to Fig. 5.8, we therefore extend the implementations with auxiliary variables and

commands used in the specification. For simplicity, we use brackets J K to enclose the spec-

ification commands that perform the same actions as the implementation, and parenthesis

L M to enclose the specification commands that can be deleted in the implementation.

GC is an internal affair not relevant for the users of the routines. GCollect cannot be

invoked explicitly, but will only be invoked implicitly in for instance Make and Create. This

means we only need to prove the match of the specifications and implementations for all

user programs, but not for GCollect. Instead, the main safety property we have proved for

GCollect is that the system only collects garbage, i.e. that an accessible node is never freed.

This is expressed in the invariant:

I1: color[x] = white ⇒ ¬R(x).

To facilitate the proof of correctness, in GCollect we introduce an auxiliary variable

outGC to indicate whether a node is not involved in the current round of GC. All operations

on outGC are enclosed in braces { }, and can be assumed to be executed instantaneously

without violation of the atomicity restriction.

We note that the implementation is an extension of the specification except that the set

free in the specification is implemented as a virtual set of all white nodes in the imple-

mentation. Apart from the common actions enclosed in J K, all implementation commands

5.4 Correctness 107

do not modify the specification variables and all specification commands do not modify the

implementation variables. Therefore for simplicity, we do not distinguish the identical vari-

ables and commands used in the specification and the implementation, and enclose them in

J K. Functional correctness of the mutator now becomes obvious since we have proved the

following invariants:

I2: color[x] = white ≡ x ∈ free

I3: 554 ≤ pcp ≤ 559 ⇒ xp ∈ rootsp

It follows that, by removing the implementation variables from the combined program, we

obtain the specification. This removal may eliminate many atomic steps of the implemen-

tation. This is known as removal of stutterings in TLA [49] or abstraction from τ steps in

process algebras.

Furthermore, we also need to prove that all preconditions of the interface procedures

are stable under the actions of the other processes. For the interface procedures AddChild,

GetChild, Make, Protect, Send and Receive, the stability of the precondition is expressed

respectively by the following invariants:

I6: 250 ≤ pcp ≤ 258 ⇒ R(p, xp) ∧ R(p, yp)

I7: pcp = 280 ⇒ R(p, xp)

I8: 300 ≤ pcp ≤ 308 ∨ (100 ≤ pcp ≤ 180 ∧ returnp = 300) ⇒ ∀k: 1 . . . np: R(p, cp[k])

I9: pcp = 400 ∨ (500 ≤ pcp ≤ 508) ⇒ R(p, xp)

I10: 500 ≤ pcp ≤ 508 ⇒ Mbox[p, rp] = 0

I11: 550 ≤ pcp ≤ 559 ⇒ Mbox[rp, p] 6= 0

Process p can ensure its rights to have access to node x by checking the predicate R(p, x),

independently, because of the following lemma that asserts R(p, x) can only be invalidated

by process p itself:

V1: p 6= q ∧ R(p, x) ∧ I18 ∧ I25 .q R(p, x),

where we write P .q Q to express that, if precondition P holds and process q performs an

atomic action, this action has postcondition Q.

As we announced earlier, no node is grey when the current round of GC is finished.

This is formalized in the following invariant:

I4: ¬(∃p: rndp = shRnd) ⇒ color[x] 6= grey

108 Chapter 5. Lock-free parallel garbage collection by mark&sweep

where the predicate rndp = shRnd indicates that process p is involved in the current round

of GC.

The difference srcnt[x] − freecnt[x] of node x counts the number of references to the

source node. Since an atomic group of statements in the higher-level implementation must

not refer different shared variables (this is an important requirement for the final lock-free

transformation), the fields of a node and a mailbox can not be simultaneously modified in

the same atomic group. The counter is precisely described by the following invariant:

I5: srcnt[x]−freecnt[x] =]({p | x ∈ rootsp}) +]({(p, q) | (Mbox(p, q) = x

∧ ¬(pcq = 559 ∧ p = rq)) ∨ (pcp = 508 ∧ xp = x ∧ q = rp)})

All the safety properties (invariants) have been proved with the interactive proof checker

PVS. The use of PVS did not only take care of the delicate bookkeeping involved in the

proof, it could also deal with many trivial cases automatically. At several occasions where

PVS refused to complete the proof, we actually found some mistakes and had to correct

previous versions of this algorithm. To prove these invariants, we need many other invari-

ants. All proved invariants and lemmas are listed in Appendix B.1. Appendix B.2 gives

the dependencies between the invariants. For the complete mechanical proof, we refer the

interested reader to [32].

5.4.3 Liveness

A liveness property asserts that program execution eventually reaches some desirable state.

In our case, we want to ensure that every garbage node is eventually collected. We shall

express this by means of the “leads-to”(denoted as o→) relation that was developed for

UNITY in [12]. For assertions P and Q, we use the formal definition:

(P o→Q) ≡ 2(P ⇒ 3Q).

We write P . Q to express that, if P holds in the precondition of an atomic action, Q

holds in the postcondition. Moreover, we define:

(P U Q) ≡ P . (P ∨ Q).

All these new symbols are defined to have the same binding order as “ ⇒ ” (implication).

The liveness property of the algorithm we need to verify is that, it is always the case

that every garbage node is eventually collected. That is,

¬R(x) o→ color[x] = white.

5.4 Correctness 109

General Lemmas

In order to prove the liveness property of the algorithm, we establish the needed tech-

niques. First, we introduce fairness into our formalism. This can be done with a single

rule: atomic actions always termi- nate. This means that if some process is at the label of

some atomic action, this process will eventually execute the action and arrive at the label

of the next atomic action. GC is infinitely often triggered during memory allocation when

the amount of free memory falls below some threshold or after a certain number of allo-

cations. We therefore need one more fairness assumption, namely GC is eventually called:

2(3(∃p : pcp = 100)).

Except some well-known lemmas extracted from the literatures, all lemmas in this sec-

tion have been verified mechanically with PVS. The following lemmas are stated in [62].

Lemma 5.4.1 For assertions P , Q, R and I,

(a) Relation o→ is reflexive and transitive.

(b) If P ⇒ Q then P o→Q.

(c) If P o→R and Q o→R then (P ∨ Q) o→R.

(d) If (P ∧ 2Q) o→R then (P ∧ 2Q) o→ (R ∧ 2Q).

(e) P o→ (Q ∨ (P ∧ 2¬Q)).

Lemma 5.4.1 (a), (b) and (c) are used to prove a general proof lattice for a program, which

is addressed in [62]. Lemma 5.4.1 (d) shows that in every behavior every state where an

invariant holds is followed by states where the invariant always hold. Intuitively, Lemma

5.4.1 (e) is true because starting from a time where P is true, either Q will be true at some

subsequent time, or ¬Q will be always true from then on. Thus, the general pattern of

these proofs by contradiction is to assume that the desired predicate never becomes true,

and then show that this assumption leads to a contradiction. For more details, refer to [62].

We found the “steps-to”(.) relation and the “unless”(U) relation are quite useful to

prove the “leads-to”(o→) relation. Since these two relations only involve a single step,

they can be checked directly by PVS with the help of invariants. It is not hard to prove the

following general lemmas, which are postulated during the proof of the liveness property.

Lemma 5.4.2 For assertions P , Q, R and S,

(a) If P and (P o→Q) then 3Q.

110 Chapter 5. Lock-free parallel garbage collection by mark&sweep

(b) If P U Q and 3¬P then P o→Q.

Lemma 5.4.3 Let Q(w) be assertions for all w ∈ I, where I is a finite set. Let P , R, S

and T are assertions with ∀ w: I: (P o→ T ∨ (S ∧R∧Q(w))) ∧ (S ∧R∧Q(w) U T ∨¬S)

and ¬S . ¬S. Then P o→ T ∨ (S ∧R ∧ ∀ w: I: Q(w)).

Main Theorems

Actually, we prove something stronger, viz., that, every inaccessible node is painted white

within two rounds of GC.

Theorem 5.4.1 For any integer m, shRnd = m ∧ ¬R(x) o→ shRnd ≤ m+2∧white(x).

An invariant has the form of Q⇒ 2Q, where Q is an immediate assertion. This means

that if the program starts with Q true, then Q is always true throughout its execution.

While we proceed the proof of the liveness property, we only need to concern the reachable

states starting from initial states where all invariants hold. Therefore, according to Lemma

5.4.1 (d), we are allowed to add to an assertion any conjunction of invariants freely at any

time. To save some space, we denote color[x] = white by white(x), and similarly for the

other two colors. Moreover, we define the fastest process that arrives at the first phase,

the second phase, the third phase and label 135, and the fastest process that finishes the

current GC, respectively by:

A1(m) ≡ (∃p :pcp ∈ [101, 110] ∧ rndp = shRnd = m)

∧ ¬(∃p : pcp /∈ [101, 110] ∧ rndp = shRnd = m),

A2(m) ≡ (∃p : pcp /∈ [101, 110] ∧ rndp = shRnd = m)

∧ ¬(∃p : pcp ∈ [129, 135] ∧ rndp = shRnd = m),

A3(m) ≡ (∃p : pcp ∈ [129, 135] ∧ rndp = shRnd = m)

∧ ¬(∃p : pcp = 135 ∧ rndp = shRnd = m),

A4(m) ≡ (∃p : pcp = 135 ∧ rndp = shRnd = m),

A0(m) ≡ (∀p : rndp 6= shRnd) ∧ shRnd = m.

To prove Theorem 5.4.1, we first prove the following lemmas with PVS, which are related

to the “steps-to”(.) relation and the “unless”(U) relation.

Lemma 5.4.4 For any integer m,

5.4 Correctness 111

(a) A0(m) ∧ ¬R1(x) ∧ black(x) ∧ round[x] = m

U A1(m) ∧ ¬R1(x) ∧ black(x) ∧ round[x] = m

U A1(m) ∧ ¬R1(x) ∧ grey(x) ∧ round[x] = m+ 1

U A2(m) ∧ ¬R1(x) ∧ grey(x) ∧ round[x] = m+ 1

U A3(m) ∧ ¬R1(x) ∧ grey(x) ∧ round[x] = m+ 1

U A3(m) ∧ white(x)

(b) shRnd = m = round[x] − 1 ∧ ¬R1(x) ∧ ¬white(x)

U (shRnd = m ∧ white(x)) ∨ (shRnd = m+ 1 = round[x] ∧ ¬R1(x) ∧ ¬white(x))

(c) A0(m) ∧ ¬R(x) ∧ ¬white(x) ∧ ¬R(w) ∧ black(w) ∧ srcnt(w) > 0 ∧ round[w] = m

U A1(m) ∧ ¬R(x) ∧ ¬white(x) ∧ ¬R(w) ∧ black(w) ∧ srcnt(w) > 0 ∧ round[w] = m

U A1(m) ∧ ¬R(x) ∧ ¬white(x) ∧ ¬R(w) ∧ grey(w) ∧ srcnt(w) > 0 ∧ round[w] = m+ 1

U A2(m) ∧ ¬R(x) ∧ ¬white(x) ∧ ¬R(w) ∧ grey(w) ∧ srcnt(w) > 0 ∧ round[w] = m+ 1

U A2(m) ∧ ¬R(x) ∧ ¬white(x) ∧ srcnt(w) = 0

(d) shRnd = m = round[w] − 1 ∧ ¬R(x) ∧ ¬white(x) ∧ ¬R(w) ∧ srcnt(w) > 0

U (shRnd = m ∧ white(x)) ∨ (shRnd = m ∧ ¬R(x) ∧ ¬white(x) ∧ srcnt(w) = 0)

∨ (shRnd = m+ 1 = round[w] ∧ ¬R(x) ∧ ¬white(x) ∧ ¬R(w) ∧ srcnt(w) > 0)

(e) shRnd ≤ m ∧ ¬R(x) ∧ ¬white(x) ∧ ¬(srcnt(w) > 0 ∧ (w
∗

−→ x))

U (shRnd ≤ m ∧ white(x)) ∨ shRnd > m

(f) shRnd > m . shRnd > m

Using Lemmas 5.4.1, 5.4.2, 5.4.3 and 5.4.4, we prove the following corollaries.

Corollary 5.4.1 For any integer m,

shRnd = m o→ A4(m)

Proof : Inspired by Lemma 5.4.1(e), we assume 2¬A4(m). Since the shared variable shRnd

can be modified only by some process executing line 135 with precondition rndself = shRnd,

we then obtain that shRnd is constant, i.e. m. GC is infinitely often triggered during

memory allocation when the amount of free memory falls below some threshold or after a

certain number of allocations. We therefore assume that there will eventually exist some

process p such that pcp = 100. Because of the fairness of atomic actions, we then get

3(rndp = shRnd = m ∧ pcp = 101). Since toBeC and toBeD are both private variables,

all loops in GC are finite (see procedures GCollect and Mark stack). We therefore obtain

3(rndp = shRnd = m ∧ pcp = 135) according to the fairness. This leads to a contradiction.

2

112 Chapter 5. Lock-free parallel garbage collection by mark&sweep

Corollary 5.4.2 For any integer m,

shRnd = m o→ shRnd = m+ 1

Proof : By Lemma 5.4.2(a) and Corollary 5.4.1, we obtain 3A4(m). Since the shared

variable shRnd can be modified only by some process executing line 135 with precondition

rndself = shRnd, we then obtain that shRnd will be eventually incremented by 1 according

to the fairness. 2

Corollary 5.4.3 In Lemma 5.4.4, all “unless”(U) relations can be replaced by “leads-

to”(o→) relations.

Proof : By Lemma 5.4.2(a) and Corollary 5.4.2, we obtain 3(shRnd 6= m). Therefore, this

corollary is an obvious consequence of using Lemma 5.4.2(b). 2

Corollary 5.4.4 For any integer m,

shRnd = m = round[x] ∧ ¬R1(x) ∧ ¬white(x) o→ shRnd = m ∧ white(x).

Proof : By invariant I16, we obtain black(x). By invariant I34, we have A0(m) ∨ A1(m).

Using transitivity of “leads-to” relation, this is an obvious consequence of Lemma 5.4.4(a)

and Corollary 5.4.3. 2

Corollary 5.4.5 For any integer m,

shRnd = m ∧ ¬R(x) ∧ ¬R1(x) ∧ ¬white(x) o→ shRnd ≤ m+ 1 ∧ white(x).

Proof : By invariant I13, we know round[x] = m ∨ round[x] = m + 1. Therefore, this

corollary follows from Corollary 5.4.4, Lemma 5.4.4(b) and Corollary 5.4.3. 2

Corollary 5.4.6 For any integer m,

shRnd = m = round[w] ∧ ¬R(x) ∧ ¬white(x) ∧ ¬R(w) ∧ srcnt(w) > 0 o→

shRnd = m ∧ ¬R(x) ∧ ¬white(x) ∧ srcnt(w) = 0

Proof : Obviously, we have R1(w). By invariants I16 and I18, we then obtain black(w).

By invariant I34, we have A0(m) ∨ A1(m). Using transitivity of “leads-to” relation, this is

an obvious consequence of Lemma 5.4.4(c) and Corollary 5.4.3. 2

Corollary 5.4.7 For any integer m,

5.5 The low-level lock-free implementation 113

shRnd = m ∧ ¬R(x) ∧ ¬white(x) o→ (shRnd = m ∧ white(x))

∨ (shRnd ≤ m+ 1 ∧ ¬R(x) ∧ ¬white(x) ∧ ¬(srcnt(w) > 0 ∧ (w
∗
−→ x)))

Proof : It holds obviously if ¬(srcnt(w) > 0 ∧ (w
∗
−→ x)) is true. Otherwise, by definition

of relation R and transitivity of “
∗
−→”, we obtain ¬R(w). By invariant I13, we obtain

round[w] = m ∨ round[w] = m+ 1. Then, it follows from Corollary 5.4.6, Lemma 5.4.4(d)

and Corollary 5.4.3. 2

Corollary 5.4.8 For any integer m,

shRnd = m ∧ ¬R(x) ∧ ¬white(x) o→ (shRnd ≤ m+ 1 ∧ white(x))

∨ (shRnd ≤ m+ 1 ∧ ¬R(x) ∧ ¬white(x) ∧ ¬R1(x)).

Proof : Intending to use Lemma 5.4.3 with substitutions: 1 . . . N for I; ¬(srcnt(w) >

0 ∧ (w
∗
−→ x)) for Q(w); shRnd = m ∧ ¬R(x) ∧ ¬white(x) for P ; shRnd ≤ m + 1 for

S; ¬R(x) ∧ ¬white(x) for R; shRnd ≤ m + 1 ∧ white(x) for T , it remains to check the

premises. The first premise is true because of Corollary 5.4.7 and Lemma 5.4.4(e). The

second premise is true because of Lemma 5.4.4(f). 2

Corollary 5.4.9 For any integer m,

shRnd = m ∧ ¬R(x) ∧ ¬white(x) o→ shRnd ≤ m+ 2 ∧ white(x).

Proof : This is an obvious consequence of Lemma 5.4.1, Corollaries 5.4.5 and 5.4.8. 2

Theorem 5.4.1 follows immediately from Lemma 5.4.1 and Corollary 5.4.9.

5.5 The low-level lock-free implementation

Refinement mappings enable us to reduce an implementation by reducing its components

in relative isolation, and then gluing the reductions together with the same structure as

the implementation. Atomicity guarantees that a parallel execution of a program gives the

same results as a sequential and non-deterministic execution. This allows us to use the

refinement calculus for stepwise refinement of transition systems [5].

In chapter 3, we formalize Herlihy’s methodology [28] for transferring a sequential im-

plementation of any data structure into a lock-free synchronization using synchronization

primitives LL/SC, and develop a reduction theorem (Theorem 3.4.2) that enables us to

114 Chapter 5. Lock-free parallel garbage collection by mark&sweep

reason about a general lock-free algorithm to be designed on a higher level than the syn-

chronization primitives LL/SC. Theorem 3.4.2 can be universally employed for a lock-free

construction to synchronize access to shared nodes of nodeType, and be sure that we end

up with the reduction of the implementation. This allows us to design and verify a lock-free

program on a higher level than the synchronization primitives. The big advantage is that

substantial pieces of the concrete program can be dealt with as atomic statements on the

higher level and thus the correctness can be more easily verified.

In the higher-level implementation (from Fig. 5.3 to Fig. 5.8), instruction 135 is simply

a CAS instruction offered by machine architectures or a Read/Write cycle that can easily

be implemented by an LL/SC. All other special commands enclosed by angular brack-

ets 〈. . .〉 only refer to one shared node and some private variables, and therefore can be

transformed into low-level lock-free implementations using Theorem 3.4.2. E.g. line 108

of Fig. 5.3 is implemented in lines 104. . . 107 of Appendix B.3.2, where round[mp] is an

alias of Node[mp].round, and similarly for color[mp], srcnt[mp] and father[mp]. At lines

126 and 157 (and possibly other cases), since these commands do not modify the node,

swapping of pointers is unnecessary. We therefore use a simplified version where SC can be

replaced by VL. After the transformation, all statements in the algorithm are atomic2. The

transformation is straightforward, and we present our final lock-free algorithm in Appendix

B.3.

Apart from that, the higher-level algorithm can also be transformed into a lock-free

implementation by means of CAS using the reduction theorem (Theorem 4.4.1) developed

in chapter 4. This final transformation is a bit more complicated. Because of the similarity,

we don’t provide the final trasformation here.

5.6 Practical experiment

We carried out a number of experiments with our algorithm in order to obtain some insight

in its practical performance. The first major conclusion is that the performance of the

algorithm is strongly influenced by its parameter setting such as the total number of nodes,

the condition for joining the garbage collection process, the percentage of occupied nodes

and the division of work between garbage collecting and manipulating the data structure. A

2Note that accesses to “private” nodes do not violate the atomicity restriction and can be freely added
to an atomic statement.

5.6 Practical experiment 115

second conclusion is that if we set these parameters well, we see no degrading in performance

when increasing the number of processes. A third conclusion is that due to the fact that

garbage collection is a relatively elaborate affair, the performance in terms of the number

of nodes that are created and collected per unit of time is relatively low.

1 processor 2 processors 4 processors
#Processes 0 100 0 100 0 100

1 833k 125k 800k 87k 714k 77k
2 800k 118k 784k 200k 750k 136k
3 789k 115k 741k 207k 794k 207k
4 800k 114k 727k 205k 800k 216k
5 794k 114k 758k 204k 800k 233k
10 833k 112k 870k 222k 851k 263k
15 789k 115k 833k 214k 845k 261k
20 769k 118k 769k 211k 800k 258k
25 781k 114k 735k 208k 840k 256k
31 756k 115k 729k 214k 844k 253k

Table 5.1: Some experimental results

In our experimental setup, we let a number of processes repeatedly create a node, read

it a number of times and release it again. One process is the garbage collector process, and

the settings of parameters are such that no other process will join in to assist this process.

However, if a process fails too often to obtain a free node, the process yields its processor,

putting itself in the processor waiting queue. This provides an effective load balancing

policy. Note that in order to maintain the lock-free nature of the algorithm this process

must eventually join garbage collection if obtaining free nodes fails continuously.

More concretely, in the experiments reported in table 5.6, we use a small array of 2000

nodes and let each process create a large (> 106) number of nodes. Each processor that

must create a node tries 15 times to find a free node before yielding its processor.

The experiments have been carried out on a one, two and four processor machine. All

machines were Intel Linux machines of the following types:

• The single processor uses a Pentium III (Coppermine) processors of 1Ghz with 256kb

cache each.

• The two processor machine contained two Xeon CPUs of 2.8Ghz with 512kb of cache

each.

116 Chapter 5. Lock-free parallel garbage collection by mark&sweep

• The four processor machine has four Intel Xeon CPUs of 2.4 Ghz with 512 KB cache

each.

The load linked, store conditional and verify link statements have been implemented using

the 64 bit compare and swap (cmpxchg8B) instruction available on Intel Pentium processors

(see [58] for the implementation). This limits parallelism to 32 processes, but does not have

problems with wrap around as the implementation in [57].

The table provides the number of nodes that could be created and read per second.

The letter ‘k’ indicates that the figures refer to thousands of nodes. In the columns marked

with 0 these nodes are read 0 times, and in the columns marked with 100 these nodes are

read a 100 times. The column headed with #Processes indicates the number of processes

that were used to create new nodes. As stated above there is one additional process doing

garbage collecting.

Note that the table shows an almost perfect linear scaling. The variations in the table

can fully be contributed to statistical noise. Only when there are few processes on a mul-

tiprocessor machine performance is bad. This is due to the fact that the garbage collector

has plenty of time compared to the heavily loaded processes – which must read often –

and therefore wastes its time. Note also that on multiprocessor machines the performance

on generating nodes is low compared to the relatively slow single processor machine. We

believe that this is due to interprocess communication induced by compare and swap.

5.7 Conclusions

We present a lock-free parallel algorithm for mark&sweep GC in a realistic model by means

of synchronization primitives load-linked (LL)/store-conditional (SC) or CAS offered by

machine architectures. Our algorithm allows to collect a circular data structure and makes

no assumption on the maximum number of mutators and collectors that can operate concur-

rently during GC. The efficiency of GC can be enhanced when more processors are involved

in it. Providing Send and Receive, our algorithm can be adapted to a distributed system, in

which all processors cooperatively traverse the entire data graph by exchanging “messages”

to access remote nodes.

Formal verification is desirable because there could be subtle bugs as the complexity

of algorithms increases. To ensure our correctness proof presented in this chapter is not

flawed, we use the higher-order interactive theorem prover PVS for mechanical support.

5.7 Conclusions 117

PVS has a convenient specification language and contains a proof checker which allows

users to construct proofs interactively, to automatically execute trivial proofs, and to check

these proofs mechanically. At several occasions where PVS refused to let a proof be finished,

we actually found a mistake and had to correct previous versions of the algorithm. For the

complete mechanical proof, we refer the reader to [32].

The entrenched problem inherited from classical mark&sweep algorithms is that our

algorithm may also result in severe memory fragmentation, with lots of small blocks. It

is possible that there will be no block of memory on the free list large enough to hold a

large object, such as an array. Thus, it is important to move free blocks that happen to

be adjacent in memory. We plan in the future to incorporate some appropriate copying

technique in our algorithm.

Appendix A

For lock-free dynamic hash tables

A.1 Invariants

Some abbreviations.

Find(r, a) , r = null ∨ a = ADR(r)

LeastFind(a, n) , (∀m < n : ¬Find(Y[key(a, curSize, m)], a))

∧ Find(Y[key(a, curSize, n)], a))

LeastFind(h, a, n) , (∀m < n : ¬Find(h.table[key(a, h.size, m)], a))

∧ Find(h.table[key(a, h.size, n)], a))

Axioms on functions key and ADR.

Ax1: v = null ≡ ADR(v) = 0

Ax2: 0 ≤ key(a, l, k) < l

Ax3: 0 ≤ k < m < l ⇒ key(a, l, k) 6= key(a, l, m)

Main correctness properties

Co1: pc = 14 ⇒ val(rfi) = rSfi

Co2: pc ∈ {25, 26} ⇒ sucdel = sucSdel

Co3: pc ∈ {41, 42} ⇒ sucins = sucSins

Cn1: pc = 14 ⇒ cntfi = 1

Cn2: pc ∈ {25, 26} ⇒ cntdel = 1

Cn3: pc ∈ {41, 42} ⇒ cntins = 1

Cn4: pc = 57 ⇒ cntass = 1

The absence of memory loss is shown by

118

A.1 Invariants 119

No1:](nbSet1) ≤ 2 ∗ P

No2:](nbSet1) =](nbSet2)

where nbSet1 and nbSet2 are sets of integers, characterized by

nbSet1 = {k | k < H−index ∧ Heap(k) 6= ⊥}

nbSet2 = {i | H(i) 6= 0 ∨ (∃r : pc.r = 71 ∧ irA.r = i)}

Further, we have the following definitions of sets of integers:

deSet1 = {k | k < curSize ∧ Y[k] = del}

deSet2 = {r | index.r = currInd ∧ pc.r = 25 ∧ sucdel .r}

deSet3 = {k | k < H(next(currInd)).size ∧ H(next(currInd)).table[k] = del}

ocSet1 = {r | index.r 6= currInd

∨ pc.r ∈ [30, 41] ∨ pc.r ∈ [46, 57] ∨ pc.r ∈ [59, 65] ∧ returngA.r ≥ 30

∨ pc.r ∈ [67, 72] ∧ (returnrA.r = 59 ∧ returngA.r ≥ 30

∨ returnrA.r = 90 ∧ returnref .r ≥ 30)

∨ (pc.r = 90 ∨ pc.r ∈ [104, 105]) ∧ returnref .r ≥ 30}

ocSet2 = {r | pc.r ≥ 125 ∧ bmE .r ∧ to.r = H(currInd)}

ocSet3 = {r | index.r = currInd ∧ pc.r = 41 ∧ sucins .r

∨ index.r = currInd ∧ pc.r = 57 ∧ rass .r = null}

ocSet4 = {k | k < curSize ∧ val(Y[k]) 6= null}

ocSet5 = {k | k < H(next(currInd)).size ∧ val(H(next(currInd)).table[k]) 6= null}

ocSet6 = {k | k < H(next(currInd)).size ∧ H(next(currInd)).table[k] 6= null}

ocSet7 = {r | pc.r ≥ 125 ∧ bmE .r ∧ to.r = H(next(currInd))}

prSet1(i) = {r | index.r = i ∧ pc.r /∈ {0, 59, 60}}

prSet2(i) = {r | index.r = i ∧ pc.r ∈ {104, 105} ∨ irA.r = i ∧ index.r 6= i ∧ pc.r ∈ [67, 72]

∨ inT .r = i ∧ pc.r ∈ [81, 84] ∨ imig .r = i ∧ pc.r ≥ 97}

prSet3(i) = {r | index.r = i ∧ pc.r ∈ [61, 65] ∪ [104, 105] ∨ irA.r = i ∧ pc.r = 72

∨ inT .r = i ∧ pc.r ∈ [81, 82] ∨ imig .r = i ∧ pc.r ∈ [97, 98]}

prSet4(i) = {r | index.r = i ∧ pc.r ∈ [61, 65] ∨ imig .r = i ∧ pc.r ∈ [97, 98]}

buSet1(i) = {r | index.r = i ∧ (pc.r ∈ [1, 58] ∪ (62, 68] ∧ pc.r 6= 65

∨ pc.r ∈ [69, 72] ∧ returnrA.r > 59 ∨ pc.r > 72)}

buSet2(i) = {r | index.r = i ∧ pc.r = 104 ∨ irA.r = i ∧ index.r 6= i ∧ pc.r ∈ [67, 68]

∨ inT .r = i ∧ pc.r ∈ [82, 84] ∨ imig .r = i ∧ pc.r ≥ 100}

We have the following invariants concerning the Heap

He1: Heap(0) = ⊥

He2: H(i) 6= 0 ≡ Heap(H(i)) 6= ⊥

120 Appendix A. For lock-free dynamic hash tables

He3: Heap(H(currInd)) 6= ⊥

He4: pc ∈ [1, 58] ∨ pc > 65 ∧ ¬(pc ∈ [67, 72] ∧ irA = index) ⇒ Heap(H(index)) 6= ⊥

He5: Heap(H(i)) 6= ⊥ ⇒ H(i).size ≥ P

He6: next(currInd) 6= 0 ⇒ Heap(H(next(currInd))) 6= ⊥

Invariants concerning hash table pointers

Ha1: H−index > 0

Ha2: H(i) < H−index

Ha3: i 6= j ∧ Heap(H(i)) 6= ⊥ ⇒ H(i) 6= H(j)

Ha4: index 6= currInd ⇒ H(index) 6= H(currInd)

Invariants about counters for calling the specification.

Cn5: pc ∈ [6, 7] ⇒ cntfi = 0

Cn6: pc ∈ [8, 13] ∨ pc ∈ [59, 65] ∧ returngA = 10

∨ pc ∈ [67, 72] ∧ (returnrA = 59 ∧ returngA = 10 ∨ returnrA = 90 ∧ returnref = 10)

∨ pc ≥ 90 ∧ returnref = 10

⇒ cntfi =](rfi = null ∨ afi = ADR(rfi))

Cn7: pc ∈ [16, 21] ∧ pc 6= 18 ∨ pc ∈ [59, 65] ∧ returngA = 20

∨ pc ∈ [67, 72] ∧ (returnrA = 59 ∧ returngA = 20 ∨ returnrA = 90 ∧ returnref = 20)

∨ pc ≥ 90 ∧ returnref = 20

⇒ cntdel = 0

Cn8: pc = 18 ⇒ cntdel =](rdel = null)

Cn9: pc ∈ [28, 33] ∨ pc ∈ [59, 65] ∧ returngA = 30

∨ pc ∈ [67, 72] ∧ (returnrA = 59 ∧ returngA = 30 ∨ returnrA = 77 ∧ returnnT = 30)

∨ returnrA = 90 ∧ returnref = 30

∨ pc ∈ [77, 84] ∧ returnnT = 30 ∨ pc ≥ 90 ∧ returnref = 30

⇒ cntins = 0

Cn10: pc ∈ [35, 37] ∨ pc ∈ [59, 65] ∧ returngA = 36

∨ pc ∈ [67, 72] ∧ (returnrA = 59 ∧ returngA = 36 ∨ returnrA = 90 ∧ returnref = 36)

∨ pc ≥ 90 ∧ returnref = 36

⇒ cntins =](ains = ADR(rins) ∨ sucins)

Cn11: pc ∈ [44, 52] ∨ pc ∈ [59, 65] ∧ returngA ∈ {46, 51}

∨ pc ∈[67, 72] ∧ (returnrA = 59 ∧ returngA ∈ {46, 51}

∨ returnrA = 77 ∧ returnnT = 46 ∨ returnrA = 90 ∧ returnref ∈ {46, 51})

∨ pc ∈ [77, 84] ∧ returnnT = 46 ∨ pc ≥ 90 ∧ returnref ∈ {46, 51}

⇒ cntass = 0

Invariants about old hash tables, current hash table and the auxiliary hash table Y.

Here, we universally quantify over all non-negative integers n < curSize.

A.1 Invariants 121

Cu1: H(index) 6= H(currInd) ∧ k < H(index).size

∧ (pc ∈ [1, 58] ∨ pc > 65 ∧ ¬(pc ∈ [67, 72] ∧ irA = index)

⇒ H(index).table[k] = done

Cu2:]({k | k < curSize ∧ Y[k] 6= null}) < curSize

Cu3: H(currInd).bound+ 2 ∗ P < curSize

Cu4: H(currInd).dels+](deSet2) =](deSet1)

Cu5: Cu5 has been eliminated, but the numbering has been kept.

Cu6: H(currInd).occ+](ocSet1) +](ocSet2) ≤ H(currInd).bound+ 2 ∗ P

Cu7:]({k | k < curSize ∧ Y[k] 6= null} = H(currInd).occ+](ocSet2) +](ocSet3)

Cu8: next(currInd) = 0 ⇒ ¬ oldp(H(currInd).table[n])

Cu9: ¬(oldp(H(currInd).table[n])) ⇒ H(currInd).table[n] = Y[n]

Cu10: oldp(H(currInd).table[n]) ∧ val(H(currInd).table[n]) 6= null

⇒ val(H(currInd).table[n]) = val(Y[n])

Cu11: LeastFind(a, n) ⇒ X(a) = val(Y[key(a, curSize, n)])

Cu12: X(a) = val(Y[key(a, curSize , n)]) 6= null ⇒ LeastFind(a, n)

Cu13: X(a) = val(Y[key(a, curSize, n)]) 6= null ∧ n 6= m < curSize

⇒ ADR(Y[key(a, curSize, m)]) 6= a

Cu14: X(a) = null ∧ val(Y[key(a, curSize, n)]) 6= null ⇒ ADR(Y[key(a, curSize, n)]) 6= a

Cu15: X(a) 6= null ⇒ ∃m < curSize : X(a) = val(Y[key(a, curSize, m)])

Cu16: ∃(f : [{m : 0 ≤ m < curSize) ∧ val(Y[m]) 6= null} →

{v : v 6= null ∧ (∃k < curSize : v = val(Y[k]))}]) : f is bijective

Invariants about next and next(currInd):

Ne1: currInd 6= next(currInd)

Ne2: next(currInd) 6= 0 ⇒ next(next(currInd)) = 0

Ne3: pc ∈ [1, 59] ∨ pc ≥ 62 ∧ pc 6= 65 ⇒ index 6= next(currInd)

Ne4: pc ∈ [1, 58] ∨ pc ≥ 62 ∧ pc 6= 65 ⇒ index 6= next(index)

Ne5: pc ∈ [1, 58] ∨ pc ≥ 62 ∧ pc 6= 65 ∧ next(index) = 0 ⇒ index = currInd

Ne6: next(currInd) 6= 0

⇒](ocSet6) ≤]({k | k < curSize ∧ Y[k] 6= null} − H(currInd).dels−](deSet2)

Ne7: next(currInd) 6= 0

⇒ H(currInd).bound− H(currInd).dels+ 2 ∗ P ≤ H(next(currInd)).bound

Ne8: next(currInd) 6= 0

⇒ H(next(currInd)).bound+ 2 ∗ P < H(next(currInd)).size

Ne9: next(currInd) 6= 0 ⇒ H(next(currInd)).dels =](deSet3)

Ne9a: next(currInd) 6= 0 ⇒ H(next(currInd)).dels = 0

Ne10: next(currInd) 6= 0 ∧ k < h.size ⇒ h.table[k] /∈ {del,done},

where h = H(next(currInd))

122 Appendix A. For lock-free dynamic hash tables

Ne11: next(currInd) 6= 0 ∧ k < H(next(currInd)).size

⇒ ¬oldp(H(next(currInd)).table[k])

Ne12: k < curSize ∧ H(currInd).table[k] = done ∧ m < h.size ∧ LeastFind(h, a, m)

⇒ X(a) = val(h.table[key(a, h.size, m)]),

where a = ADR(Y[k]) and h = H(next(currInd)))

Ne13: k < curSize ∧ H(currInd).table[k] = done ∧ m < h.size

∧ X(a) = val(h.table[key(a, h.size, m)]) 6= null

⇒ LeastFind(h, a, m),

where a = ADR(Y[k]) and h = H(next(currInd))

Ne14: next(currInd) 6= 0 ∧ a 6= 0 ∧ k < h.size ∧ X(a) = val(h.table[key(a, h.size, k)]) 6= null

⇒ LeastFind(h, a, k),

where h = H(next(currInd))

Ne15: k < curSize ∧ H(currInd).table[k] = done ∧ X(a) 6= null

∧ m < h.size ∧ X(a) = val(h.table[key(a, h.size, m)]) ∧ n < h.size ∧ m 6= n

⇒ ADR(h.table.[key(a, h.size, n)]) 6= a,

where a = ADR(Y[k]) and h = H(next(currInd))

Ne16: k < curSize ∧ H(currInd).table[k] = done ∧ X(a) = null ∧ m < h.size

⇒ val(h.table[key(a, h.size, m)]) = null

∨ ADR(h.table[key(a, h.size, m)]) 6= a,

where a = ADR(Y[k]) and h = H(next(currInd))

Ne17: next(currInd) 6= 0 ∧ m < h.size ∧ a = ADR(h.table[m]) 6= 0

⇒ X(a) = val(h.table[m]) 6= null,

where h = H(next(currInd))

Ne18: next(currInd) 6= 0 ∧ m < h.size ∧ a = ADR(h.table[m]) 6= 0

⇒ ∃n < curSize : val(Y[n]) = val(h.table[m]) ∧ oldp(H(currInd).table[n]),

where h = H(next(currInd))

Ne19: next(currInd) 6= 0 ∧ m < h.size ∧ m 6= n < h.size

∧ a = ADR(h.table[key(a, h.size, m)]) 6= 0

⇒ ADR(h.table[key(a, h.size, n)]) 6= a,

where h = H(next(currInd))

Ne20: k < curSize ∧ H(currInd).table[k] = done ∧ X(a) 6= null

⇒ ∃m < h.size : X(a) = val(h.table[key(a, h.size, m)]),

where a = ADR(Y[k]) and h = H(next(currInd))

Ne21: Ne21 has been eliminated.

Ne22: next(currInd) 6= 0 ⇒](ocSet6) = H(next(currInd)).occ +](ocSet7)

Ne23: next(currInd) 6= 0

⇒ H(next(currInd)).occ ≤ H(next(currInd)).bound

A.1 Invariants 123

Ne24: next(currInd) 6= 0 ⇒](ocSet5) ≤](ocSet4)

Ne25: next(currInd) 6= 0

⇒ ∃(f : [{m : 0 ≤ m < h.size ∧ val(h.table[m]) 6= null} →

{v : v 6= null ∧ (∃k < h.size : v = val(h.table[k]))}]) : f is bijective,

where h = H(next(currInd))

Ne26: next(currInd) 6= 0

⇒ ∃(f : [{v : v 6= null ∧ (∃m < h.size : v = val(h.table[m]))} →

{v : v 6= null ∧ (∃k :< curSize : v = val(Y[k]))}]) : f is injective,

where h = H(next(currInd))

Ne27: next(currInd) 6= 0 ∧ (∃n < h.size : val(h.table[n]) 6= null)

⇒ ∃(f : [{m : 0 ≤ m < h.size ∧ val(h.table[m]) 6= null} →

{k : 0 ≤ k < curSize ∧ val(Y[k]) 6= null}]) : f is injective,

where h = H(next(currInd))

Invariants concerning procedure find (5. . . 14)

fi1: afi 6= 0

fi2: pc ∈ {6, 11} ⇒ nfi = 0

fi3: pc ∈ {7, 8, 13} ⇒ lfi = hfi .size

fi4: pc ∈ [6, 13] ∧ pc 6= 10 ⇒ hfi = H(index)

fi5: pc = 7 ∧ hfi = H(currInd) ⇒ nfi < curSize

fi6: pc = 8 ∧ hfi = H(currInd) ∧ ¬Find(rfi , afi) ∧ rfi 6= done

⇒ ¬ Find(Y[key(afi , curSize, nfi)], afi)

fi7: pc = 13 ∧ hfi = H(currInd) ∧ ¬Find(rfi , afi) ∧ m < nfi

⇒ ¬Find(Y[key(afi , curSize, m)], afi)

fi8: pc ∈ {7, 8} ∧ hfi = H(currInd) ∧ m < nfi ⇒ ¬Find(Y[key(afi , curSize, m)], afi)

fi9: pc = 7 ∧ Find(t, afi) ⇒ X(afi) = val(t),

where t = hfi .table[key(afi , lfi , nfi)]

fi10: pc /∈ (1, 7] ∧ Find(rfi , afi) ⇒ val(rfi) = rSfi

fi11: pc = 8 ∧ oldp(rfi) ∧ index = currInd ⇒ next(currInd) 6= 0

Invariants concerning procedure delete (15. . . 26)

de1: adel 6= 0

de2: pc ∈ {17, 18} ⇒ ldel = hdel .size

de3: pc ∈ [16, 25] ∧ pc 6= 20 ⇒ hdel = H(index)

de4: pc = 18 ⇒ kdel = key(adel , ldel , ndel)

de5: pc ∈ {16, 17} ∨ Deleting ⇒ ¬sucdel

de6: Deleting ∧ sucSdel ⇒ rdel 6= null

de7: pc = 18 ∧ ¬ oldp(hdel .table[kdel]) ⇒ hdel = H(currInd)

124 Appendix A. For lock-free dynamic hash tables

de8: pc ∈ {17, 18} ∧ hdel = H(currInd) ⇒ ndel < curSize

de9: pc = 18 ∧ hdel = H(currInd) ∧ (val(rdel) 6= null ∨ rdel = del)

⇒ r 6= null ∧ (r = del ∨ ADR(r) = ADR(rdel)),

where r = Y[key(adel , hdel .size, ndel)]

de10: pc ∈ {17, 18} ∧ hdel = H(currInd) ∧ m < ndel) ⇒ ¬Find(Y[key(adel , curSize, m)], adel)

de11: pc ∈ {17, 18} ∧ Find(t, adel) ⇒ X(adel) = val(t),

where t = hdel .table[key(adel , ldel , ndel)]

de12: pc = 18 ∧ oldp(rdel) ∧ index = currInd ⇒ next(currInd) 6= 0

de13: pc = 18 ⇒ kdel < H(index).size

Deleting is characterized by

Deleting ≡ pc ∈ [18, 21] ∨ pc ∈ [59, 65] ∧ returngA = 20

∨ pc ∈ [67, 72] ∧ (returnrA = 59 ∧ returngA = 20 ∨ returnrA = 90 ∧ returnref = 20)

∨ pc ≥ 90 ∧ returnref = 20

Invariants concerning procedure insert (27. . . 52)

in1: ains = ADR(vins) ∧ vins 6= null

in2: pc ∈ [32, 35] ⇒ lins = hins .size

in3: pc ∈ [28, 41] ∧ pc /∈ {30, 36} ⇒ hins = H(index)

in4: pc ∈ {33, 35} ⇒ kins = key(ains , lins , nins)

in5: pc ∈ [32, 33] ∨ Inserting ⇒ ¬sucins

in6: Inserting ∧ sucSins ⇒ ADR(rins) 6= ains

in7: pc = 35 ∧ ¬ oldp(hins .table[kins]) ⇒ hins = H(currInd)

in8: pc ∈ {33, 35} ∧ hins = H(currInd) ⇒ nins < curSize

in9: pc = 35 ∧ hins = H(currInd) ∧ (val(rins) 6= null ∨ rins = del)

⇒ r 6= null ∧ (r = del ∨ ADR(r) = ADR(rins)),

where r = Y[key(ains , hins .size, nins)]

in10: pc ∈ {32, 33, 35} ∧ hins = H(currInd) ∧ m < nins

⇒ ¬Find(Y[key(ains , curSize, m)], ains)

in11: pc ∈ {33, 35} ∧ Find(t, ains) ⇒ X(ains) = val(t),

where t = hins .table[key(ains , lins , nins)]

in12: pc = 35 ∧ oldp(rins) ∧ index = currInd ⇒ next(currInd) 6= 0

in13: pc = 35 ⇒ kins < H(index).size

Inserting is characterized by

Inserting ≡ pc ∈ [35, 37] ∨ pc ∈ [59, 65] ∧ returngA = 36

∨ pc ∈ [67, 72] ∧ (returnrA = 59 ∧ returngA = 36 ∨ returnrA = 90 ∧ returnref = 36)

∨ pc ≥ 90 ∧ returnref = 36

A.1 Invariants 125

Invariants concerning procedure assign (43. . . 57)

as1: aass = ADR(vass) ∧ vass 6= null

as2: pc ∈ [48, 50] ⇒ lass = hass .size

as3: pc ∈ [44, 57] ∧ pc /∈ {46, 51} ⇒ hass = H(index)

as4: pc ∈ {49, 50} ⇒ kass = key(aass , lass , nass)

as5: pc = 50 ∧ ¬ oldp(hass .table[kass]) ⇒ hass = H(currInd)

as6: pc = 50 ∧ hass = H(currInd) ⇒ nass < curSize

as7: pc = 50 ∧ hass = H(currInd) ∧ (val(rass) 6= null ∨ rass = del)

⇒ r 6= null ∧ (r = del ∨ ADR(r) = ADR(rass)),

where r = Y[key(aass , hass .size, nass)]

as8: pc ∈ {48, 49, 50} ∧ hass = H(currInd) ∧ m < nass

⇒ ¬Find(Y[key(aass , curSize, m)], aass)

as9: pc = 50 ∧ Find(t, aass) ⇒ X(aass) = val(t),

where t = hass .table[key(aass , lass , nass)]

as10: pc = 50 ∧ oldp(rasssign) ∧ index = currInd ⇒ next(currInd) 6= 0

as11: pc = 50 ⇒ kass < H(index).size

Invariants concerning procedure releaseAccess (67. . . 72)

rA1: hrA < H−index

rA2: pc ∈ [70, 71] ⇒ hrA 6= 0

rA3: pc = 71 ⇒ Heap(hrA) 6= ⊥

rA4: pc = 71 ⇒ H(irA) = 0

rA5: pc = 71 ⇒ hrA 6= H(i)

rA6: pc = 70 ⇒ H(irA) 6= H(currInd)

rA7: pc = 70 ∧ (pc.r ∈ [1, 58] ∨ pc.r > 65 ∧ ¬(pc.r ∈ [67, 72] ∧ irA.r = index.r))

⇒ H(irA) 6= H(index.r)

rA8: pc = 70 ⇒ irA 6= next(currInd)

rA9: pc ∈ [68, 72] ∧ (hrA = 0 ∨ hrA 6= H(irA)) ⇒ H(irA) = 0

rA10: pc ∈ [67, 72] ∧ returnrA ∈ {0, 59} ⇒ irA = index

rA11: pc ∈ [67, 72] ∧ returnrA ∈ {77, 90} ⇒ irA 6= index

rA12: pc ∈ [67, 72] ∧ returnrA = 77 ⇒ next(index) 6= 0

rA13: pc = 71 ∧ pc.r = 71 ∧ p 6= r ⇒ hrA 6= hrA.r

rA14: pc = 71 ∧ pc.r = 71 ∧ p 6= r ⇒ irA 6= irA.r

Invariants concerning procedure newTable (77. . . 84)

nT1: pc ∈ [81, 82] ⇒ Heap(H(inT)) = ⊥

nT2: pc ∈ [83, 84] ⇒ Heap(H(inT)) 6= ⊥

126 Appendix A. For lock-free dynamic hash tables

nT3: pc = 84 ⇒ next(inT) = 0

nT4: pc ∈ [83, 84] ⇒ H(inT).dels = 0

nT5: pc ∈ [83, 84] ⇒ H(inT).occ = 0

nT6: pc ∈ [83, 84] ⇒ H(inT).bound+ 2 ∗ P < H(inT).size

nT7: pc ∈ [83, 84] ∧ index = currInd

⇒ H(currInd).bound− H(currInd).dels+ 2 ∗ P < H(inT).bound

nT8: pc ∈ [83, 84] ∧ k < H(inT).size ⇒ H(inT).table[k] = null

nT9: pc ∈ [81, 84] ⇒ inT 6= currInd

nT10: pc ∈ [81, 84] ∧ (pc.r ∈ [1, 58] ∨ pc.r ≥ 62 ∧ pc.r 6= 65) Implies inT 6= index.r

nT11: pc ∈ [81, 84] ⇒ inT 6= next(currInd)

nT12: pc ∈ [81, 84] ⇒ H(inT) 6= H(currInd)

nT13: pc ∈ [81, 84] ∧ (pc.r ∈ [1, 58] ∨ pc.r > 65 ∧ ¬(pc.r ∈ [67, 72] ∧ irA.r = index.r))

⇒ H(inT) 6= H(index.r)

nT14: pc ∈ [81, 84] ∧ pc.r ∈ [67, 72] ⇒ inT 6= irA.r

nT15: pc ∈ [83, 84] ∧ pc.r ∈ [67, 72] ⇒ H(inT) 6= H(irA.r)

nT16: pc ∈ [81, 84] ∧ pc.r ∈ [81, 84] ∧ p 6= r ⇒ inT 6= inT .r

nT17: pc ∈ [81, 84] ∧ pc.r ∈ [95, 99] ∧ index.r = currInd ⇒ inT 6= imig .r

nT18: pc ∈ [81, 84] ∧ pc.r ≥ 99 ⇒ inT 6= imig .r

Invariants concerning procedure migrate (94. . . 105)

mi1: pc = 98 ∨ pc ∈ {104, 105} ⇒ index 6= currInd

mi2: pc ≥ 95 ⇒ imig 6= index

mi3: pc = 94 ⇒ next(index) > 0

mi4: pc ≥ 95 ⇒ imig 6= 0

mi5: pc ≥ 95 ⇒ imig = next(index)

mi6: pc.r = 70 ∧ (pc ∈ [95, 102) ∧ index = currInd ∨ pc ∈ [102, 103] ∨ pc ≥ 110)

⇒ irA.r 6= imig

mi7: pc ∈ [95, 97] ∧ index = currInd ∨ pc ≥ 99 ⇒ imig 6= next(imig)

mi8: (pc ∈ [95, 97] ∨ pc ∈ [99, 103] ∨ pc ≥ 110) ∧ index = currInd

⇒ next(imig) = 0

mi9: (pc ∈ [95, 103] ∨ pc ≥ 110) ∧ index = currInd ⇒ H(imig) 6= H(currInd)

mi10: (pc ∈ [95, 103] ∨ pc ≥ 110) ∧ index = currInd ∧ (pc.r ∈ [1, 58] ∨ pc.r ≥ 62 ∧ pc.r 6= 65)

⇒ H(imig) 6= H(index.r)

mi11: pc = 101 ∧ index = currInd ∨ pc = 102 ⇒ hmig = H(imig)

mi12: pc ≥ 95 ∧ index = currInd ∨ pc ∈ {102, 103} ∨ pc ≥ 110 ⇒ Heap(H(imig)) 6= ⊥

mi13: pc = 103 ∧ index = currInd ∧ k < curSize ⇒ H(index).table[k] = done

mi14: pc = 103 ∧ index = currInd ∧ n < H(imig).size ∧ LeastFind(H(imig), a, n)

⇒ X(a) = val(H(imig)[key(a, H(imig).size, n)])

A.1 Invariants 127

mi15: pc = 103 ∧ index = currInd ∧ n < H(imig).size

∧ X(a) = val(H(imig).table[key(a, H(imig).size, n)] 6= null

⇒ LeastFind(H(imig), a, n)

mi16: pc = 103 ∧ index = currInd ∧ k < H(imig).size

⇒ ¬oldp(H(imig).table[k])

mi17: pc = 103 ∧ index = currInd ∧ X(a) 6= null ∧ k < h.size

∧ X(a) = val(h.table[key(a, h.size, k)]) ∧ k 6= n < h.size

⇒ ADR(h.table.[key(a, h.size, n)]) 6= a,

where h = H(imig)

mi18: pc = 103 ∧ index = currInd ∧ X(a) = null ∧ k < h.size

⇒ val(h.table[key(a, h.size, k)]) = null ∨ ADR(h.table[key(a, h.size, k)]) 6= a,

where h = H(imig)

mi19: pc = 103 ∧ index = currInd ∧ X(a) 6= null

⇒ ∃m < h.size : X(a) = val(h.table[key(a, h.size, m)],

where h = H(imig)

mi20: pc = 117 ∧ X(a) 6= null ∧ val(H(index).table[imC]) 6= null

∨ pc ≥ 126 ∧ X(a) 6= null ∧ index = currInd

∨ pc = 125 ∧ X(a) 6= null ∧ index = currInd

∧ (bmE ∨ val(wmE) 6= null ∧ amE = ADR(wmE))

⇒ ∃m < h.size : X(a) = val(h.table[key(a, h.size, m)]),

where a = ADR(Y[imC]) and h = H(next(currInd))

Invariants concerning procedure moveContents (110. . . 118):

mC1: pc = 103 ∨ pc ≥ 110 ⇒ to = H(imig)

mC2: pc ≥ 110 ⇒ from = H(index)

mC3: pc > 102 ∧ m ∈ toBeMoved ⇒ m < H(index).size

mC4: pc = 111 ⇒ ∃m < from.size : m ∈ toBeMoved

mC5: pc ≥ 114 ∧ pc 6= 118 ⇒ vmC 6= done

mC6: pc ≥ 114 ⇒ imC < H(index).size

mC7: pc = 118 ⇒ H(index).table[imC] = done

mC8: pc ≥ 110 ∧ k < H(index).size ∧ k /∈ toBeMoved ⇒ H(index).table[k] = done

mC9: pc ≥ 110 ∧ index = currInd ∧ toBeMoved = ∅ ∧ k < H(index).size

⇒ H(index).table[k] = done

mC10: pc ≥ 116 ∧ val(vmC) 6= null ∧ H(index).table[imC] = done

⇒ H(imig).table[key(a, H(imig).size, 0)] 6= null,

where a = ADR(vmC)

mC11: pc ≥ 116 ∧ H(index).table[imC] 6= done

⇒ val(vmC) = val(H(index).table[imC]) ∧ oldp(H(index).table[imC])

128 Appendix A. For lock-free dynamic hash tables

mC12: pc ≥ 116 ∧ index = currInd ∧ val(vmC) 6= null

⇒ val(vmC) = val(Y[imC])

Invariants concerning procedure moveElement (120. . . 126):

mE1: pc ≥ 120 ⇒ val(vmC) = vmE

mE2: pc ≥ 120 ⇒ vmE 6= null

mE3: pc ≥ 120 ⇒ to = H(imig)

mE4: pc ≥ 121 ⇒ amE = ADR(vmC)

mE5: pc ≥ 121 ⇒ mmE = to.size

mE6: pc ∈ {121, 123} ⇒ ¬bmE

mE7: pc = 123 ⇒ kmE = key(amE , to.size, nmE)

mE8: pc ≥ 123 ⇒ kmE < H(imig).size

mE9: pc = 120 ∧ to.table[key(ADR(vmE), to.size, 0)] = null

⇒ index = currInd

mE10: pc ∈ {121, 123} ∧ to.table[key(amE , to.size, nmE)] = null

⇒ index = currInd

mE11: pc ∈ {121, 123} ∧ pc.r = 103 ∧ to.table[key(amE , to.size, nmE)] = null

⇒ index.r 6= currInd

mE12: pc ∈ {121, 123} ∧ next(currInd) 6= 0 ∧ to = H(next(currInd))

⇒ nmE < H(next(currInd)).size

mE13: pc ∈ {123, 125} ∧ wmE 6= null

⇒ ADR(wmE) = ADR(to.table[kmE]) ∨ to.table[kmE] ∈ {del, done}

mE14: pc ≥ 123 ∧ wmE 6= null ⇒ H(imig).table[kmE] 6= null

mE15: pc = 117 ∧ val(vmC) 6= null ∨ pc ∈ {121, 123} ∧ nmE > 0 ∨ pc = 125

⇒ h.table[key(ADR(vmC), h.size, 0)] 6= null,

where h = H(imig)

mE16: pc ∈ {121, 123}

∨ (pc = 125 ∧ ¬bmE ∧ (val(wmE) = null ∨ amE 6= ADR(wmE)))

⇒ ∀m < nmE : ¬Find(to.table[key(amE , to.size, m)], amE)

Invariants about the integer array prot.

pr1: prot[i] =](prSet1(i)) +](prSet2(i)) +](currInd = i) +](next(currInd) = i)

pr2: prot[currInd] > 0

pr3: pc ∈ [1, 58] ∨ pc ≥ 62 ∧ pc 6= 65 ⇒ prot[index] > 0

pr4: next(currInd) 6= 0 ⇒ prot[next(currInd)] > 0

pr5: prot[i] = 0 ⇒ Heap(H[i]) = ⊥

pr6: prot[i] ≤](prSet3(i)) ∧ busy[i] = 0 ⇒ Heap(H[i]) = ⊥

pr7: pc ∈ [67, 72] ⇒ prot[irA] > 0

A.2 Dependencies between invariants 129

pr8: pc ∈ [81, 84] ⇒ prot[inT] > 0

pr9: pc ≥ 97 ⇒ prot[imig] > 0

pr10: pc ∈ [81, 82] ⇒ prot[inT] =](prSet4(inT)) + 1

Invariants about the integer array busy.

bu1: busy[i] =](buSet1(i)) +](buSet2(i)) +](currInd = i) +](next(currInd) = i)

bu2: busy[currInd] > 0

bu3: pc ∈ [1, 58] ∨ pc > 65 ∧ ¬(irA = index ∧ pc ∈ [67, 72])

⇒ busy[index] > 0

bu4: next(currInd) 6= 0 ⇒ busy[next(currInd)] > 0

bu5: pc = 81 ⇒ busy[inT] = 0

bu6: pc ≥ 100 ⇒ busy[imig] > 0

Some other invariants we have postulated:

Ot1: X(0) = null

Ot2: X(a) 6= null ⇒ ADR(X(a)) = a

The motivation of invariant (Ot1) is that we never store a value for the address 0. The

motivation of invariant (Ot2) is that the address in the hash table is unique.

Ot3: returngA = {1, 10, 20, 30, 36, 46, 51} ∧ returnrA = {0, 59, 77, 90}

∧ returnref = {10, 20, 30, 36, 46, 51} ∧ returnnT = {30, 46}

Ot4: pc ∈ {0, 1, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 25, 26, 27, 28, 30,

31, 32, 33, 35, 36, 37, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 57, 59, 60,

61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 77, 78, 81, 82, 83, 84, 90, 94, 95, 97,

98, 99, 100, 101, 102, 103, 104, 105, 110, 111, 114, 116, 117, 118, 120, 121,

123, 125, 126}

A.2 Dependencies between invariants

Let us write “ϕ from ψ1, · · · , ψn” to denote that ϕ is proved to be an invariant using that

ψ1, . . . , ψn hold. We write “ϕ ⇐ ψ1, · · · , ψn” to denote that predicate ϕ is implied by

the conjunction of ψ1, . . . , ψn. We have verified the following “from” and “⇐” relations

mechanically:

Co1 from fi10, Ot3, fi1

Co2 from de5, Ot3, de6, del, de11

Co3 from in5, Ot3, in6, in1, in11

130 Appendix A. For lock-free dynamic hash tables

Cn1 from Cn6, Ot3

Cn2 from Cn8, Ot3, del

Cn3 from Cn10, Ot3, in1, in5

Cn4 from Cn11, Ot3

No1 ⇐ No2

No2 from nT1, He2, rA2, Ot3, Ha2, Ha1, rA1, rA14, rA3, nT14, rA4

He1 from Ha1

He2 from Ha3, rA5, Ha1, He1, rA2

He3, He4 from Ot3, rA6, rA7, mi12, rA11, rA5

He5 from He1

He6 from rA8, Ha3, mi8, nT2, rA5

Ha1 from true

Ha2 from Ha1

Ha3 from Ha2, Ha1, He2, He1

Ha4 ⇐ Ha3, He3, He4

Cn5 from Cn6, Ot3

Cn6 from Cn5, Ot3

Cn7 from Cn8, Ot3, del

Cn8 from Cn7, Ot3

Cn9 from Cn10, Ot3, in1, in5

Cn10 from Cn9, Ot3, in5

Cn11 from Cn11, Ot3

Cu1 from Ot3, Ha4, rA6, rA7, nT13, nT12, Ha2, He3, He4, rA11, nT9, nT10, mi13, rA5

Cu2 ⇐ Cu6, cu7, Cu3, He3, He4

Cu3 from rA6, rA7, nT13, nT12, mi5, mi4, Ne8, rA5

Cu4 from del, in1, as1, rA6, rA7, Ha2, nT13, nT12, Ne9, Cu9, Cu10, de7, in7, as5, He3,

He4, mi5, mi4, Ot3, Ha4, de3, mi9, mi10, de5, rA5

Cu6 from Ot3, rA6, rA7, Ha2, nT13, nT12, Ha3, in3, as3, Ne23, mi5, mE6, mE7, mE10,

mE3, Ne3, mi1, mi4, rA5

Cu7 from Ot3, rA6, rA7, Ha2, nT13, nT12, Ha3, in3, as3, in5, mi5, mE6, mE7, mE10, mi4,

mE3, Ne3, de7, in7, as5, Ne22, mi9, mi10, rA5, He3, mi12, mi1, Cu9, de1, in1, as1

Cu8 from Cu8, Ha2, nT9, nT10, rA6, rA7, mi5, mi4, mC2, mC5, He3, He4, Cu1, Ha4,

mC6, mi16, rA5

Cu9, Cu10 from rA6, rA7, nT13, nT12, Ha2, He3, He4, Cu1, Ha4, de3, in3, as3, mE3,

mi9, mi10, mE10, mE7, rA5

Cu11, Cu12 from Cu9, Cu10, Cu13, Cu14, del, in1, as1, rA6, rA7, Ha2, nT13, nT12,

He3, He4, Cu1, Ha4, in3, as3, mi14, mi15, de3, in10, as8, mi12, Ot2, fi5, de8, in8,

A.2 Dependencies between invariants 131

as6, Cu15, de11, in11, rA5

Cu13, Cu14 from He3, He4, Ot2, del, in1, as1, Ot1, rA6, rA7, nT13, nT12, Ha2, Cu9,

Cu10, Cu1, Ha4, de3, in3, as3, Cu11, Cu12, in10, as8, fi5, de8, in8, as6, Cu15, mi17,

mi18, mi12, mi4, de11, rA5

Cu15 from He3, He4, rA6, rA7, nT13, nT12, Ha2, Cu1, Ha4, del, in1, as1, de3, in3, as3,

fi5, de8, in8, as6, mi12, mi19, mi4, Ot2, Cu9, Cu10, Cu11, Cu12, Cu13, Cu14, rA5

Cu16 ⇐ Cu13, Cu14, Cu15, He3, He4, Ot1

Ne1 from nT9, nT10, mi7

Ne2 from Ne5, nT3, mi8, nT9, nT10

Ne3 from Ne1, nT9, nT10, mi8

Ne4 from Ne1, nT9, nT10

Ne5 from Ot3, nT9, nT10, mi5

Ne6 ⇐ Ne10, Ne24, He6, He3, He4, Cu4

Ne7 from Ha3, rA6, rA7, rA8, nT13, nT12, nT11, He3, He4, mi8, nT7,

Ne5, Ha2, He6, rA5

Ne8 from Ha3, rA8, nT11, mi8, nT6, Ne5, rA5

Ne9 from Ha3, Ha2, Ne3, Ne5, de3, as3, rA8, rA6, rA7, nT8, nT11, mC2, nT4, mi8, rA5

Ne9a from Ha3, Ne3, rA5, de3, rA8, nT4, mi8

Ne10 from Ha3, Ha2, de3, rA8, nT11, Ne3, He6, mi8, nT8, mC2, nT2, Ne5, rA5

Ne11 from Ha3, Ha2, He6, nT2, nT8, rA8, nT11, mi8, Ne3, mC2, rA5

Ne12, Ne13 from Ha3, Ha2, Cu8, He6, He3, He4, Cu1, de3, in3, as3, rA8, rA6, rA7, nT11,

nT13, nT12, mi12, mi16, mi5, mi4, de7, in7, as5, Ot2, del,in1, as1, Cu9, Cu10, Cu13,

Cu14, Cu15, as9, fi5, de8, in8, as6, mC2, Ne3, Ot1, Ne14, Ne20, mE16, mE7, mE4,

mE1, mE12, mE2, Ne15, Ne16, Ne17, Ne18, mi20, de11, in11, rA5

Ne14 from Ha3, Ha2, He6, He3, He4, nT2, nT8, de3, in3, as3, rA8, nT11, Ot2, del, in1, as1,

Cu9, Cu10, mi8, Ne3, mC2, mE7, mE16, mE1, mE4, mE12, Ne17, Ne18, Cu1, rA5

Ne15, Ne16 from Ha3, Ha2, Cu8, He6, He3, He4, Cu1, de3, in3, as3, rA8, rA6, rA7, nT11,

nT13, nT12, mi12, mi16, mi5, mi4, de7, in7, as5, Ot2, del, in1, as1, Cu9, Cu10, Cu13,

Cu14, Cu15, as9, fi5, de8, in8, as6, mC2, Ne3, Ot1, Ne19, Ne20, Ne12, Ne13, mE16,

mE7, mE4, mE1, mE12, mE10, mE2, in11, de11, rA5

Ne17, Ne18 from Ha3, Ha2, mi8, He6, He3, He4, Cu1, nT2, de3, in3, as3, rA8, rA6, rA7,

nT11, nT13, nT12, de7, in7, as5, Ot2, del, in1, as1, Cu9, Cu10, nT8, mE2, fi5, de8, in8,

as6, mC2, Ne3, mC11, mC6, mC12, mE7, mE10, mE1, Cu8, Cu15, Cu13, Cu14, Cu11,

Cu12, as8, de11, rA5

Ne19 from Ha3, Ha2, He6, nT2, nT8, de3, in3, as3, rA8, nT11, mi8, Ne3, mE7, Ne14, mE16,

Ot1, mE1, mE4, mE12, Ne17, Ne18, rA5

Ne20 from Ha3, Ha2, Cu8, He6, He3, He4, Cu1, Ha4, de3, in3, as3, rA8, rA6, rA7, nT11,

132 Appendix A. For lock-free dynamic hash tables

nT13, nT12, mi12, mi16, mi5, mi4, Ne1, de7, in7, as5, del, in1, as1, Cu9, Cu10, Cu13,

Cu14, Cu15, as9, fi5, de8, in8, as6, mC2, Ne3, Ot1, mi20, in11, rA5

Ne22 from Ot3, rA8, Ha2, nT11, Ha3, de3, in3, as3, mi5, mi4, Ne3, nT18, mE3, mi8, mE10,

mE7, mE6, Ne5, nT5, nT2, rA5, nT8, nT12, mC2, mE2

Ne23 ⇐ Cu6, cu7, Ne6, Ne7, He3, He4, Ne22, He6

Ne24 ⇐ Ne27, He6

Ne25 ⇐ Ne19, Ne17, Ne18, He6

Ne26 ⇐ Ne17, Ne18, He6

Ne27 ⇐ Cu16, Ne25, Ne26, Ne17, Ne18, He6

fi1, del, in1, as1 from

fi2 from fi2, Ot3

fi3 from fi4, Ot3, rA6, rA7, Ha2, rA5

fi4 from Ot3, rA6, rA7, nT13, nT12

fi5, de8, in8, as6 ⇐ Cu2, de10, in10, as8, fi8, He3, He4

fi6 from Ot3, fi1, del, in1, as1, rA6, rA7, Ha2, nT13, nT12, mi9, mi10, Cu9, Cu10, He3, He4,

Cu1, Ha4, fi4, in3, as3, rA5

fi7 from fi8, fi6, fi2, Ot3, fi1, del, in1, as1, rA6, rA7, Ha2, nT13, nT12, mi9, mi10, Cu9, Cu10,

He3, He4, Cu1, Ha4, fi4, in3, as3, rA5

fi8 from fi4, fi7, fi2, Ot3, fi1, del, in1, as1, rA6, rA7, Ha2, nT13, nT12, mi9, mi10, Cu9, Cu10,

He3, He4, Cu1, Ha4, in3, as3, rA5

fi9 ⇐ Cu1, Ha4, Cu9, Cu10, Cu11, Cu12, fi8, fi3, fi4, fi5, de8, in8, as6, He3, He4

fi10 from fi9, Ot3

fi11, de12, in12, as10 from Ot3, nT9, nT10, mi9, mi10, Cu8, fi4, de3, in3, as3, fi3, de2, in2,

as2

de2 from de3, Ot3, rA6, rA7, Ha2, rA5

de3 from Ot3, rA6, rA7, nT13, nT12

de4, in4, as4 from Ot3

de5 from Ot3

de6 from Ot3, de1, de11

de7, in7, as5 ⇐ de3, in3, as3, Cu1, Ha4, de13, in13, as11

de9 from Ot3, del, in1, as1, rA6, rA7, Ha2, nT13, nT12, mi9, mi10, Cu9, Cu10, de3, de7,

in7, as5, rA5

de10 from de3, de9, Ot3, del, in1, as1, rA6, rA7, Ha2, nT13, nT12, mi9, mi10, Cu9, Cu10,

de7, in7, as5, He3, He4, rA5

de11 ⇐ de10, de2, de3, He3, He4, Cu1, Ha4, Cu9, Cu10, Cu11, Cu12, fi5, de8, in8, as6

de13, in13, as11 ⇐ Ax2, de2, de3, de4, in2, in3, in4, as2, as3, as4

in2 from in3, Ot3, rA6, rA7, Ha2, rA5

A.2 Dependencies between invariants 133

in3 from Ot3, rA6, rA7, nT13, nT12

in5 from Ot3

in6 from Ot3, in1, in11

in9 from Ot3, del, in1, as1, rA6, rA7, Ha2, nT13, nT12, mi9, mi10, Cu9, Cu10, He3, He4,

in3, de7, in7, as5, rA5

in10 from in9, fi2, Ot3, del, in1, as1, rA6, rA7, Ha2, nT13, nT12, mi9, mi10, Cu9, Cu10,

He3, He4, in3, de7, in7, as5, rA5

in11 ⇐ in10, in2, in3, Cu1, Ha4, Cu9, Cu10, Cu11, Cu12, fi5, de8, in8, as6

as2 from as3, He3, He4, Ot3, rA6, rA7, Ha2, rA5

as3 from Ot3, rA6, rA7, nT13, nT12

as7 from Ot3, del, in1, as1, rA6, rA7, Ha2, nT13, nT12, mi9, mi10, Cu9, Cu10, as3, de7,

in7, as5, rA5

as8 from as7, Ot3, del, in1, as1, rA6, rA7, Ha2, nT13, nT12, mi9, mi10, Cu9, Cu10, He3,

He4, as3, de7, in7, as5, rA5

as9 ⇐ as8, as2, as3, He3, He4, Cu1, Ha4, Cu9, Cu10, Cu11, Cu12, fi5, de8, in8, as6

rA1 from Ha2

rA2 from Ot3

rA3 from Ot3, rA9, He2, He1, rA2, rA13

rA4 from Ot3, nT14

rA5 from Ot3, rA1, rA2, Ha3, He2

rA6, rA7 from Ot3, nT13, nT12, nT14, rA11, mi4, bu2, bu3, Ha3, mi6, Ha2, He3, He4,

He2, rA2

rA8 from Ot3, bu4, nT14, mi6, Ne2, mi5

rA9 from Ot3, Ha2, nT14, He1, He2

rA10 from Ot3

rA11 from Ot3, nT13, nT12, mi2

rA12 from Ot3, nT9, nT10

rA13 from Ot3, rA5

rA14 from Ot3, rA4, He1, rA2

nT1 from Ot3, pr5, Ha3, nT14, nT16, Ha2

nT2 from Ot3, nT14, Ha3, rA5

nT3 from Ot3, nT9, nT10

nT4 from Ot3, Ha3, de3, nT13, nT12, nT15, rA5

nT5 from Ot3, Ha3, in3, as3, nT13, nT12, nT15, nT18, mE3, mi4, rA5

nT6 from Ot3, nT13, nT12, nT14, Ha3, rA5

nT7 from Ot3, nT13, nT12, nT15, rA6, rA7, Ha2, mi9, mi10, nT14, Ha3, nT16, rA5

nT8 from Ot3, de3, in3, as3, nT13, nT12, nT15, nT18, mE3, mi4, Ha3, mC2, nT16, nT2,

134 Appendix A. For lock-free dynamic hash tables

Ha2, rA5

nT9, nT10 from Ot3, pr2, pr3, nT18

nT11 from Ot3, pr4, nT16, mi8

nT13, nT12 ⇐ nT9, nT10, Ha3, He3, He4

nT14 from Ot3, nT9, nT10, nT18, nT16, pr7

nT15 ⇐ nT14, Ha3, nT2

nT16 from Ot3, pr8

nT17 from Ot3, mi5, pr4, nT11, mi10

nT18 from Ot3, pr9, mi5, nT11

mi1 from Ot3, mi9, mi10, mi10

mi2 from Ot3, Ne4

mi3 from Ot3, fi11, de12, in12, as10, nT9, nT10, Ne5

mi4 from Ot3, mi9, mi10, mi3

mi5 from Ot3, nT9, nT10, Ne5, mi10, mi4

mi6 from Ot3, mi5, bu6, rA8, mi9, mi10, bu4, mi4

mi7 from Ot3, mi2, mi7, mi4, nT18, Ne2, mi10, nT17, mi3

mi8 from Ot3, mi10, Ne2, mi3

mi9, mi10 from Ot3, He3, He4, nT9, nT10, nT18, Ne3, Ha3, mi3, nT17, mi10, He2, mi4,

mi12, mi6, He6

mi11 from Ot3, nT18, mi9, mi6, mi6

mi12 from Ot3, rA8, nT2, He6, mi9, mi5, mi3, Ha3, mi4, rA5

mi12 from Ot3, mi12, nT18, mi6, Ha3, mi4, rA5

mi13 from Ot3, rA6, rA7, Ha2, nT13, nT12, He3, He4, mi9, mi10, mC9, rA5

mi14, mi15 ⇐ Ne12, Ne13, mi5, Cu15, mi13, Ot2, He3, He4, Ne17, Ne18, Cu8, He6, He5,

mi4, Ot1

mi16 ⇐ Ne11, mi5, mi4

mi17, mi18 ⇐ Ne15, Ne16, mi5, Cu15, mi13, Ot2, He3, He4, Ne17, Ne18, Cu8, He6,

He5, mi4

mi19 ⇐ Ne20, mi5, Cu15, mi13, Ot2, He3, He4

mi20 from Ha3, Ha2, Cu8, He6, He3, He4, Cu1, Ha4, de3, in3, as3, rA8, rA6, rA7, nT11,

nT13, nT12, mi5, mi4, de7, in7, as5, Ot2, del, in1, as1, Cu9, Cu10, Cu13, Cu14, Cu15,

as9, fi5, de8, in8, as6, mC6, Ne3, Ot3, mC11, mi13, mi9, mi10, mC2, mE3, mE10,

mE7, mC12, mE1, mE13, Ne17, Ne18, mE2, mE4, Ot1, mE6, Ne10, in11, rA5

mC1 from Ot3, mi6, mi11, nT18

mC2 from Ot3, rA6, rA7, nT13, nT12, mC2

mC3 from Ot3, mC3, nT13, nT12, rA6, rA7, Ha2, rA5

mC4 from Ot3, mC4, mC2, mC3, He3, He4, rA6, rA7, Ha2, rA5

A.2 Dependencies between invariants 135

mC5 from Ot3

mC6 from Ot3, rA6, rA7, Ha2, nT13, nT12, mC2, rA5

mC7 from Ot3, rA6, rA7, Ha2, nT13, nT12, mC2, rA5

mC8 from Ot3, rA6, rA7, Ha2, nT13, nT12, He3, He4, mC7, rA5

mC9 from Ot3, rA6, rA7, Ha2, nT13, nT12, He3, He4, mi9, mi10, He5, mC7, mC8, rA5

mC10 from Ot3, rA6, rA7, Ha2, nT13, nT12, mC2, del, in1, as1, mi6, Ha3, mi4, nT18,

mE15, mC11, mi5, rA5

mC11 from Ot3, rA6, rA7, Ha2, nT13, nT12, mC2, rA5

mC12 from Ot3, rA6, rA7, mC2, mC11, Cu9, Cu10, de7, in7, as5, mi9, mC6

mE1 from Ot3

mE2 from Ot3

mE3 from mC1, Ot3, mi6, nT18

mE4 from Ot3, mE1

mE5 from Ot3, mE3, Ha3, mi6, mi4, nT18, Ha2, rA5

mE6 from Ot3

mE7 from Ot3, Ha2, Ha3, mi6, mi4, mE3, rA5

mE8 from Ot3, Ha3, mi6, mi4, nT18, Ha2, mE3, rA5

mE9 from Cu1, Ha4, Ot3, Ha2, Ha3, mi6, mi4, mE3, mC2, mC10, mE1, mC1, del, in1,

as1, mi13, mi12, mC6, mE2, rA5

mE10 from del, in1, as1, mE3, mi6, Ot3, Ha2, Ha3, mi4, mE11, mE9, mE7, rA5

mE11 ⇐ mE10, mi13, mE16, mi16, mi5, mE3, Ne12, Ne13, mC12, mE2, mE1, mE4, mC6,

mE12, mi12, Cu13, Cu14, He3, He4, mi4

mE12 ⇐ Ne23, Ne22, mE16, He6, Ne8

mE13 from Ot3, Ha2, mE14, del, in1, as1, Ha3, mi6, mi4, mE3, rA5

mE14 from Ot3, Ha2, del, in1, as1, Ha3, mi6, mi4, nT18, mE3, mE2, rA5

mE15 from Ot3, mE1, Ha2, del, in1, as1, Ha3, mi6, mi4, nT18, mE3, mE2, mE7, mE14,

mE4, rA5

mE16 from Ha3, Ha2, mE3, del, in1, as1, mi6, mE2, mE4, mE1, mE7, mi4, Ot3, mE14,

mE13, rA5

pr1 from Ot3, rA11, rA10, nT9, nT10, Ne5, mi2, mi4, mi8, mi5

pr2, pr3 from pr1, Ot3, rA11, mi1

pr4 ⇐ pr1

pr5 ⇐ pr6, pr1, bu1

pr6 from Ot3, Ha2, nT9, nT10, nT14, nT16, He2, rA2, pr1, bu1, pr10, rA9, He1, rA4

pr7, pr8, pr9 ⇐ pr1, mi4

pr10 from Ot3, pr1, nT9, nT10, nT14, nT17

bu1 from Ot3, rA11, rA10, nT9, nT10, Ne5, mi2, mi8, mi5, bu5

136 Appendix A. For lock-free dynamic hash tables

bu2, bu3 ⇐ bu1, Ot3, rA10

bu4 ⇐ bu1

bu5 from Ot3, nT9, nT10, nT16, nT18, pr1, bu1

bu6 ⇐ bu1, mi4

Ot1 from del, in1, as1

Ot2 from del, in1, as1

Ot3 from true

Ot4 from Ot3

Appendix B

For lock-free parallel GC

B.1 Invariants

In the invariants and the lemmas given below, we use the relations R(x), R(p, x), R1(p, x),

.q defined in sections 5.2, 5.2, 5.3.1 and 5.4.2, respectively. The relation
∗
−→ is defined in

section 5.2. The relation
M∗
−−→ is the reflexive transitive closure of relation

M
−→ on nodes

defined by:

z
M
−→ x ≡ (color[z] = black ∧ aux[z] ∧ ∃k: 1 . . .arity[z]: child[z, k] = x)

∨ (color[z] = grey ∧ ∃k: 1 . . .ari[z]: child[z, k] = x)

We define the j-th ancestor of a node x by the recursive function:

anc(x, j) ≡ ((j = 0 ∨ father[x] ≤ 0) ? x : anc(father[x], j − 1))

Main invariants:

I1: color[x] = white ⇒ ¬R(x)

I2: color[x] = white ≡ x ∈ free

I3: 554 ≤ pcp ≤ 559 ⇒ xp ∈ rootsp

I4: ¬(∃p: rndp = shRnd) ⇒ color[x] 6= grey

I5: srcnt[x]−freecnt[x] =]({p | x ∈ rootsp}) +]({(p, q) |

(Mbox(p, q) = x ∧ ¬(pcq = 559 ∧ p = rq)) ∨ (pcp = 508 ∧ xp = x ∧ q = rp)})

Invariants about the stability of the preconditions in the offered procedures:

I6: 250 ≤ pcp ≤ 258 ⇒ R(p, xp) ∧ R(p, yp)

137

138 Appendix B. For lock-free parallel GC

I7: pcp = 280 ⇒ R(p, xp)

I8: 300 ≤ pcp ≤ 308 ∨ (100 ≤ pcp ≤ 180 ∧ returnp = 300) ⇒ ∀k: 1 . . . np: R(p, cp[k])

I9: pcp = 400 ∨ (500 ≤ pcp ≤ 508) ⇒ R(p, xp)

I10: 500 ≤ pcp ≤ 508 ⇒ Mbox[p, rp] = 0

I11: 550 ≤ pcp ≤ 559 ⇒ Mbox[rp, p] 6= 0

Invariants that hold globally:

I12: rndp ≤ shRnd

I13: shRnd ≤ round[x] ≤ shRnd+ 1

I14: ¬aux[x] ⇒ round[x] = shRnd+ 1

I15: ¬(∃p: rndp = shRnd) ⇒ round[x] ≤ shRnd

I16: round[x] ≤ shRnd ⇒ color[x] 6= grey

I17: color[x] = grey ⇒ ¬aux[x]

I18: color[x] = white ⇒ ¬R1(x)

I19: color[x] = white ⇒ father[x] ≤ −1

I20: color[x] = grey ∨ father[x] ≥ 0 ⇒ ari[x] ≤ arity[x]

I21: color[x] = grey ∧ father[x] > 0

⇒ ∃k: 1 . . .ari[father[x]]: child[father[x], k] = x

I22: x 6= father[x]

I23: father[x] > 0 ⇒ ¬(∃j: N: x = anc(x, j))

I24: father[x] = 0 ∧ color[x] = grey ⇒ srcnt[x] > 0

I25: (∃p: x ∈ rootsp) ⇒ srcnt[x] − freecnt[x] > 0

I26: ¬R(x) ⇒ srcnt[x] − freecnt[x] = 0

I27: R1(x) ∧ (color[x] = grey ∨ (color[x] = black ∧ aux[x]))

⇒ ∃w: srcnt[w] > 0 ∧ (father[w] = 0 ∨ aux[w]) ∧ w
M∗

−−→ x

I28: returnp = 200 ∨ returnp = 300 ∨ returnp = 450

Invariants about the first phase of GC:

I29: 101 ≤ pcp ≤ 110 ∧ rndp = shRnd ∧ ¬(x ∈ toBeCp ∧ aux[x])

⇒ round[x] = rndp + 1

I30: 101 ≤ pcp ≤ 110 ∧ rndp = shRnd ∧ ¬(∃r: ¬(101 ≤ pcr ≤ 110) ∧ rndr = shRnd)

⇒ father[x] 6= 0 ∨ aux[x] ∨ color[x] 6= black

I31: 101 ≤ pcp ≤ 110 ∧ rndp = shRnd ∧ ¬(∃r: ¬(101 ≤ pcr ≤ 110) ∧ rndr = shRnd)

∧ (x /∈ toBeCp ∨ round[x] = rndp + 1)

⇒ ¬aux[x]

I32: 101 ≤ pcp ≤ 110 ∧ rndp = shRnd ∧ ¬(∃r: ¬(101 ≤ pcr ≤ 110) ∧ rndr = shRnd)

B.1 Invariants 139

∧ ¬(x ∈ toBeCp ∧ aux[x])

⇒ father[x] = 0 ∨ father[x] = −1

I33: 101 ≤ pcp ≤ 110 ∧ rndp = shRnd ∧ ¬(∃r: ¬(101 ≤ pcr ≤ 110) ∧ rndr = shRnd)

∧ (x /∈ toBeCp ∨ round[x] = rndp + 1) ∧ srcnt[x] = 0

⇒ father[x] = −1

Invariants about the second phase of GC:

I34: ¬(101 ≤ pcp ≤ 110) ∧ rndp = shRnd ⇒ round[x] = rndp + 1

I35: ¬(101 ≤ pcp ≤ 110) ∧ rndp = shRnd ⇒ ¬aux[x]

I36: ¬(101 ≤ pcp ≤ 110) ∧ rndp = shRnd ∧ father[w] ≤ −1 ⇒ ¬(∃x: father[x] = w)

I37: ¬(101 ≤ pcp ≤ 110) ∧ rndp = shRnd ∧ color[x] = grey ∧ father[x] > 0

⇒ color[father[x]] = grey ∧ father[father[x]] ≥ 0

I38: ¬(101 ≤ pcp ≤ 110) ∧ rndp = shRnd ∧ father[x] > 0 ∧ color[x] = grey

⇒ ∃j: 1 . . .N : father[anc(x, j)] = 0 ∧ color[anc(x, j)] = grey

I39: ¬(101 ≤ pcp ≤ 110) ∧ rndp = shRnd ∧ ¬R1(x) ∧ color[x] = grey

⇒ father[x] = −1

I40: ¬(101 ≤ pcp ≤ 110) ∧ rndp = shRnd ∧ color[w] = black ∧ father[w] ≥ 0

⇒ ∀k: 1 . . .ari[w]: (father[child[w, k]] = w ∨ father[child[w, k]] < 0

⇒ color[child[w, k]] = black)

I41: pcp = 121 ⇒ rndp 6= shRnd ∨ toBeCp = ∅

I42: ¬(101 ≤ pcp ≤ 121) ∧ rndp = shRnd ∧ srcnt[x] > 0 ∧ father[x] = 0

∧ ¬(x ∈ toBeDp ∨ (150 ≤ pcp ≤ 180 ∧ x = xp))

⇒ color[x] = black

I43: (122 ≤ pcp ≤ 127 ∨ 150 ≤ pcp ≤ 180) ∧ rndp = shRnd ∧ x /∈ toBeCp

⇒ father[x] ≥ 0

I44: ((122 ≤ pcp ≤ 127 ∨ 150 ≤ pcp ≤ 180) ∧ rndp = shRnd ∧ x ∈ toBeDp

∧ father[x] = 0) ∨ (pcp = 150 ∧ rndp = shRnd ∧ x = xp)

⇒ x ∈ toBeCp

I45: (122 ≤ pcp ≤ 127 ∨ 150 ≤ pcp ≤ 180) ∧ rndp = shRnd ∧ x /∈ toBeCp

⇒ ¬(∃w: father[x] = w ∧ (w ∈ setp ∨ w ∈ toBeCp))

I46: 122 ≤ pcp ≤ 180 ∧ rndp = shRnd

∧ ¬(x ∈ toBeCp ∨ (pcp ≥ 151 ∧ (x ∈ setp ∨ ∃i: 1 . . .headp: x = stackp[i])))

⇒ color[x] 6= grey

Invariants about procedure Mark stack:

I47: pcp = 150 ⇒ xp /∈ toBeDp

140 Appendix B. For lock-free parallel GC

I48: 150 ≤ pcp ≤ 180 ∧ rndp = shRnd

⇒ (color[xp] = grey ∧ father[xp] = 0 ∧ srcnt[xp] > 0)

∨ (color[xp] = black ∧ father[xp] = 0)

I49: 151 ≤ pcp ≤ 180 ∧ x ∈ toBeCp

⇒ ¬(x ∈ setp ∨ ∃i: 1 . . .headp: x = stackp[i])

I50: 151 ≤ pcp ≤ 180 ∧ (∃i: 1 . . .headp: x = stackp[i])

⇒ x /∈ setp ∧ x /∈ toBeCp

I51: 151 ≤ pcp ≤ 180 ∧ rndp = shRnd

⇒ xp ∈ setp ∨ color[xp] = black ∨ (∃i: 1 . . .headp: xp = stackp[i])

I52: 151 ≤ pcp ≤ 180 ∧ rndp = shRnd ∧ (x ∈ setp ∨ ∃i: 1 . . .headp: x = stackp[i])

⇒ (color[x] = grey ∨ color[x] = black) ∧ father[x] ≥ 0

I53: 151 ≤ pcp ≤ 180 ∧ rndp = shRnd ∧ color[x] = grey

∧ (x ∈ setp ∨ ∃i: 1 . . .headp: x = stackp[i])

⇒ R1(x) ∧ father[x] ≥ 0

I54: 151 ≤ pcp ≤ 180 ∧ rndp = shRnd ∧ (∃i: 1 . . .headp: w = stackp[i])

⇒ ∀k: 1 . . .ari[w]: (father[child[w, k]] ≥ 0 ∨ color[child[w, k]] = black)

∧ (father[child[w, k]] = w ⇒ child[w, k] ∈ setp ∨ color[child[w, k]] = black

∨ ((∃j: 1 . . .headp: child[w, k] = stackp[j]) ∧ (∀m, n: 1 . . .headp:

w = stackp[m] ∧ child[w, k] = stackp[n] ⇒ m < n)))

∨ (158 ≤ pcp ≤ 164 ∧ wp = w ∧ k ≥ jp)

I55: pcp = 158 ∧ rndp = shRnd ⇒ jp = 1 ∨ 1 < jp ≤ ari[wp] + 1

I56: 158 ≤ pcp ≤ 164 ∧ rndp = shRnd

⇒ kp = ari[wp] ∧ ∀j: 1 . . . kp: chp[j] = child[wp, j]

I57: 158 ≤ pcp ≤ 164 ∧ rndp = shRnd

∧ ¬(x ∈ toBeCp ∨ ∃j: 1 . . . jp − 1: x = child[wp, j])

⇒ father[x] 6= wp

I58: 158 ≤ pcp ≤ 164 ∧ rndp = shRnd

⇒ ∀k: 1 . . . jp − 1: (color[child[wp, k]] = grey ⇒ father[child[wp, k]] ≥ 0

∧ (father[child[wp, k]] = wp ⇒ child[wp, k] ∈ setp))

I59: 158 ≤ pcp ≤ 165 ⇒ ∃i: 1 . . . headp: wp = stackp[i]

I60: 159 ≤ pcp ≤ 164 ∧ rndp = shRnd ⇒ 1 ≤ jp ≤ ari[wp] ∧ yp = child[wp, jp]

I61: 168 ≤ pcp ≤ 180 ⇒ rndp 6= shRnd ∨ setp = ∅

I62: 170 ≤ pcp ≤ 176 ⇒ headp 6= 0

I63: pcp = 180 ⇒ rndp 6= shRnd ∨ headp = 0

Invariants about the third phase of GC:

I64: 129 ≤ pcp ≤ 137 ∧ rndp = shRnd ∧ color[x] = grey ⇒ ¬R1(x)

B.2 Dependencies between invariants 141

I65: pcp = 134 ∧ round[x] = rndp + 1 ∧ color[x] = grey

⇒ ¬R(x) ∧ x /∈ free

I66: ¬(101 ≤ pcp ≤ 134 ∨ 150 ≤ pcp ≤ 180) ∧ rndp = shRnd

⇒ color[x] 6= grey

I67: pcp = 135 ⇒ rndp 6= shRnd ∨ toBeCp = ∅

I68: ¬(101 ≤ pcp ≤ 135 ∨ 150 ≤ pcp ≤ 180) ⇒ rndp 6= shRnd

Invariants outside GC:

I69: pcp = 450 ∨ (100 ≤ pcp ≤ 180 ∧ returnp = 450) ⇒ R(p, zp)

I70: 500 ≤ pcp ≤ 508 ⇒ Mbox[p, rp] = 0

I71: 552 ≤ pcp ≤ 559 ⇒ xp = Mbox[rp, p] ∧ xp 6= 0

I72: pcp = 558 ⇒ srcnt[xp] > 1

Main lemmas:

V1: p 6= q ∧ R(p, x) ∧ I18 ∧ I25 .q R(p, x)

V2: color[x] 6= white ∧ ¬R1(x) ∧ I6 ∧ I8 ∧ I9 ∧ I25 ∧ I63 ∧ I66 . ¬R1(x)

B.2 Dependencies between invariants

Let us write “ϕ from ψ1, · · · , ψn” to denote that ϕ can be proved to be an invariant using

that ψ1, · · · , ψn hold in the precondition of every step. We write “ϕ ⇐ ψ1, · · · , ψn” to

denote that ϕ can be directly derived from ψ1, · · · , ψn. We have verified the following

“from” and “⇐” relations mechanically:

I1 ⇐ I3, I5, I18, I71

I2 from : true

I3 from : I28

I4 ⇐ I12, I15, I16

I5 from : I18, I25, I28, I70, I71

I6 from : I18, I25, I28

I7 from : I18, I25, I28

I8 from : I18, I25, I28

I9 from : I18, I25, I28

I10 from : I28

I11 from : I28

I12 from : true

142 Appendix B. For lock-free parallel GC

I13 from : I12, I34

I14 from : I12, I13

I15 from : I12, I13, I34

I16 from : I12, I13, I66

I17 from : I66

I18 from : I6, I8, I9, I12, I16, I25, I64, I69

I19 from : I12, I16, I18, I39, I64

I20 from : I19

I21 from : I12, I13, I14, I15, I17, I20, I32, I34, I37, I60, I66

I22 ⇐ I23

I23 from : I13, I16, I36, I50, I59

I24 from : true

I25 ⇐ I5

I26 ⇐ I3, I5, I9

I27 from : I6, I8, I9, I12, I13, I14, I16, I17, I18, I20, I21, I24, I25, I35, I37, I38, I54, I61,

I64, I66, I69

I28 from : true

I29 from : I12, I13, I14, I28

I30 from : I12, I13, I14, I15, I16, I19, I28, I68

I31 from : I12, I13, I15, I28, I35, I68

I32 from : I12, I13, I14, I15, I28, I29, I31, I34, I68

I33 from : I12, I13, I15, I28, I29, I34, I68

I34 from : I12, I13, I29, I34

I35 from : I12, I31, I34

I36 from : I12, I32, I34, I52, I59

I37 from : I12, I21, I28, I32, I34, I39, I40, I52, I54, I59, I60, I61, I64

I38 ⇐ I23, I32, I35, I37

I39 from : I12, I18, I19, I20, I21, I24, I27, I28, I33, I34, I35, I37, I38, I40, I52, I53, I54,

I59, I60, I61

I40 from : I12, I19, I20, I28, I30, I31, I32, I34, I35, I54, I61, I62

I41 from : I12, I28

I42 from : I9, I12, I18, I24, I25, I34, I42, I51, I61, I63

I43 from : I12, I28, I34, I43, I48

I44 from : I12, I28, I34, I35, I47

I45 from : I12, I28, I43, I44, I48, I50, I59

I46 from : I12, I34, I61, I63

I47 from : I28

B.3 The low-level lock-free algorithm 143

I48 from : I12, I18, I19, I24, I28, I34, I39, I64

I49 from : I28

I50 from : I28, I49

I51 from : I12, I28, I34, I52

I52 from : I12, I28, I34, I48, I53, I64

I53 from : I12, I18, I19, I20, I21, I24, I27, I28, I34, I35, I37, I38, I40, I48, I52, I54, I59,

I60, I61

I54 from : I12, I18, I19, I20, I22, I28, I34, I35, I40, I43, I50, I52, I53, I55, I56, I57, I58,

I60, I62

I55 from : I12, I28, I34, I56, I60

I56 from : I12, I20, I28, I34, I52, I59

I57 from : I12, I19, I20, I28, I34, I43, I45, I52, I55, I59, I60

I58 from : I12, I20, I28, I34, I35, I43, I52, I55, I56, I57, I59, I60

I59 from : I28

I60 from : I12, I20, I28, I34, I52, I56, I59

I61 from : I12, I28

I62 from : I28

I63 from : I12, I28

I64 from : I6, I8, I9, I12, I25, I27, I34, I35, I42

I65 ⇐ I2, I3, I5, I12, I16, I64, I71

I66 from : I12, I34, I46

I67 from : I12, I28

I68 from : I12

I69 from : I18, I25

I70 from : I28

I71 from : I28, I70

I72 ⇐ I3, I5, I71

B.3 The low-level lock-free algorithm

B.3.1 Data Structure

Constant

P = number of processes;

N = number of nodes;

C = upper bound of number of children;

Type

colorType: {white, black, grey};

144 Appendix B. For lock-free parallel GC

nodeType: record =

arity: N;

child: array [1 . . . C] of 1 . . .N ;

color: colorType;

srcnt, freecnt, ari: N;

father: N ∪ {−1};

round: N;

end

Shared variables

node: array [1 . . .N + P] of nodeType;

indir: array [1 . . .N] of 1 . . .N + P ;

Mbox: array [1 . . . P, 1 . . . P] of 0 . . .N ;

shRnd: N;

Private variables

roots: a subset of 1 . . .N ;

rnd: N;

toBeC : a subset of 1 . . .N ;

mp: 1 . . .N + P ;

Initialization:

shRnd = 1 ∧ ∀x: 1 . . .N : (indir[x] = x ∧ round[indir[x]] = 1);

∀p: 1 . . . P : mpp = N + p;

all other variables are equal to be the minimal values in their respective domains.

B.3.2 Algorithm

proc GCollect() =

local m : 1 . . .N + P ; x: 1 . . .N ; toBeD: a subset of 1 . . .N ;

% first phase

100: rnd := shRnd; toBeC := {1, . . . , N};

101: while shRnd = rnd ∧ toBeC 6= ∅ do

choose x ∈ toBeC ;

while true do

102: m := LL(indir[x]);

103: node[mp] := node[m];

104: if round[mp] = rnd then

105: round[mp] := rnd + 1; ari[mp] := arity[mp];

if color[mp] = black then color[mp] := grey; fi;

B.3 The low-level lock-free algorithm 145

if srcnt[mp] > 0 then father[mp] := 0; else father[mp] := − 1; fi;

106: if SC(indir[x], mp) then toBeC := toBeC − {x}; mp := m; break; fi;

107: elseif VL(indir[x]) then toBeC := toBeC − {x}; break; fi;

od;

od;

% second phase

110: toBeC := {1, . . . , N}; toBeD := {1, . . . , N};

111: while shRnd = rnd ∧ toBeD 6= ∅ do

choose x ∈ toBedone;

while true do

112: m := LL(indir[x]);

113: node[mp] := node[m];

114: if father[mp] = 0 then

116: if VL(indir[x]) then

toBeD := toBeD − {x};

Mark stack(x); break; fi;

117: elseif VL(indir[x]) then toBeD := toBeD − {x}; break; fi;

od;

od;

% last phase

120: while shRnd = rnd ∧ toBeC 6= ∅ do

choose x ∈ toBeC ;

while true do

121: m := LL(indir[x]);

122: node[mp] := node[m];

123: if round[mp] = rnd + 1 ∧ color[mp] = grey then

124: color[mp] := white;

125: if SC(indir[x], mp) then toBeC := toBeC − {x}; mp := m; break; fi;

126: elseifVL(indir[x]) then toBeC := toBeC − {x}; break; fi;

od;

od;

127: CAS(shRnd, rnd, rnd + 1);

128: return;

end GCollect.

proc Mark stack(x: 1 . . . N) =

local w, y: 1 . . .N ; suc: Bool; j, k: N;

146 Appendix B. For lock-free parallel GC

stack: Stack; head: N; set: a subset of 1 . . .N ;

ch: [1 . . . C] of 1 . . .N ; m, n: 1 . . .N + P ;

150: toBeC := toBeC − {x}; set := {x}; head := 0;

151: while shRnd = rnd ∧ set 6= ∅ do

choose w ∈ set;

while true do

152: m := LL(indir[w]);

153: node[mp] := node[m];

154: if color[mp] = grey ∧ round[mp] = rnd + 1 then

155: k := ari[mp];

for j := 1 to k do ch[j] := child[mp, j]; od;

156: if VL(indir[w]) then

set := set − {w}; head++; stack[head] := w; j := 1;

157: while shRnd = rnd ∧ j ≤ k do

y := ch[j];

if y ∈ toBeC then

while true do

158: n := LL(indir[y]);

159: node[mp] := node[n];

160: if (father[mp] = −1 ∨ father[mp] = w)

∧round[mp] = rnd + 1 then

161: if father[mp] = −1 then father[mp] := w; fi;

162: if SC(indir[y], mp) then

toBeC := toBeC − {y}; mp := n;

set := set + {y}; break; fi;

163: elseif VL(indir[y]) then break; fi;

od; fi;

j := j + 1;

od;

break; fi;

164: elseif VL(indir[w]) then set := set − {w}; break; fi;

od;

od;

170: while shRnd = rnd ∧ head 6= 0 do

y := stack[head];

while true do

171: m := LL(indir[y]);

B.3 The low-level lock-free algorithm 147

172: node[mp] := node[m];

173: if color[mp] = grey ∧ round[mp] = rnd + 1 then

174: color[mp] := black;

srcnt[mp] := srcnt[mp] − freecnt[mp]; freecnt[mp] := 0;

175: if SC(indir[y],mp) then mp := m; head--; break; fi ;

176: elseifVL(indir[y]) then head--; break; fi;

od;

od;

180: return;

end Mark stack.

proc Create(): 1 . . .N =

local m: 1 . . .N + P ; x: 1 . . .N ;

while true do

200: choose x ∈ 1 . . .N ;

201: m := LL(indir[x]);

202: node[mp] = node[m];

203: if color[mp] = white then

204: color[mp] := black; srcnt[mp] := 1; arity[mp] := 0;

205: if SC(indir[x],mp) then

roots := roots + {x};

mp := m; break; fi;

206: elseif time to do GC then

GCollect(); fi;

od;

207: return x

end Create.

proc AddChild(x, y: 1 . . .N): Bool =

{R(self , x) ∧R(self , y)}

local m: 1 . . .N + P ; suc: Bool;

250: suc := false;

while true do

251: m := LL(indir[x]);

252: node[mp] := node[m];

253: if arity[mp] < C then

254: arity[mp]++;

148 Appendix B. For lock-free parallel GC

child[mp, arity[mp]] := y;

255: if SC(indir[x], mp) then

mp := m; suc := true; break; fi;

256: elseif VL(indir[x]) then break; fi;

od;

257: return suc

end AddChild.

proc GetChild(x: 1 . . .N, rth: 1 . . .N): 0 . . .N =

{R(self , x)}

local m: 1 . . .N + P ; y: 1 . . .N ;

while true do

280: m := LL(indir[x]);

281: node[mp] := node[m];

282: if 1 ≤ rth ≤ arity[mp] then y := child[mp, rth]; else y := 0; fi;

283: if VL(indir[x]) then break; fi;

od;

284: return y

end GetChild.

proc Make(c: array [1 . . . C] of 1 . . .N, n: 1 . . . C): 1 . . .N =

{∀ j: 1 . . .n: R(self , c[j])}

local m: 1 . . .N + P ; x: 1 . . .N ; j: N;

while true do

300: choose x ∈ [1 . . .N];

301: m := LL(indir(x));

302: node[mp] := node[m];

303: if color[mp] = white then

304: color[mp] := black;

srcnt[mp] := 1; arity[mp] := n;

for j := 1 to n do child[mp, j] := c[j] od;

305: if SC(indir(x), mp) then

roots := roots + {x};

mp := m; break; fi;

306: elseif time to do GC then

GCollect(); fi;

od;

B.3 The low-level lock-free algorithm 149

307: return x

end Make.

proc Protect(x: 1 . . .N) =

{R(self , x) ∧ x /∈ roots}

local m: 1 . . .N + P ;

while true do

400: m := LL(indir[x]);

401: node[mp] := node[m];

402: srcnt[mp]++;

403: if SC(indir[x],mp) then

roots := roots + {x};

mp := m; break; fi;

od;

404: return

end Protect.

proc UnProtect(z: 1 . . .N) =

{z ∈ roots}

local m: 1 . . .N + P ;

while true do

450: m := LL(indir[z]);

451: node[mp] := node[m];

452: freecnt[mp]++;

453: if SC(indir[x],mp) then

roots := roots \ {z};

mp := m; break; fi;

od;

454: return

end UnProtect.

proc Send(x: 1 . . .N, r: 1 . . . P) =

{R(self , x) ∧ Mbox[self , r] = 0}

local m: 1 . . .N + P ;

while true do

500: m := LL(indir[x]);

501: node[mp] := node[m];

150 Appendix B. For lock-free parallel GC

502: srcnt[mp]++;

503: if SC(indir[x], mp) then

mp := m;

504: Mbox[self , r] := x; break; fi;

od;

505: return

end Send.

proc Receive(r: 1 . . . P): 0 . . .N =

{Mbox[r, self] 6= 0}

local x: 1 . . .N ;

550: x := Mbox[r, self];

551: if x /∈ roots then

roots := roots ∪ {x};

Mbox[r, self] := 0;

else

while true do

552: m := LL(indir[x]);

553: node[mp] := node[m];

554: srcnt[mp]--;

555: if SC(indir[x], mp) then

mp := m;

556: Mbox[r, self] := 0;

break; fi;

od; fi;

557: return

end Receive.

proc Check(r, q: 1 . . . P): Bool

local suc : Bool;

600: suc := (Mbox[r, q] = 0);

601: return suc;

end Receive.

Bibliography

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput.

Sci., 82(2):253–284, 1991.

[2] J.H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-free

shared objects. ACM Trans. Comput. Syst., 15(2):134–165, 1997.

[3] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asyn-

chronous environment. J. ACM, 37(3):524–548, 1990.

[4] H. Azatchi, Y. Levanoni, H. Paz, and E. Petrank. An on-the-fly mark and sweep

garbage collector based on sliding views. In Proceedings of the 18th ACM SIGPLAN

conference on Object-oriented programing, systems, languages, and applications, pages

269–281. ACM Press, 2003.

[5] R.J.R. Back and J. von Wright. Stepwise refinement of distributed systems: Models,

formalism, correctness: Refinement calculus. In J.W. de Bakker, W.-P. de Roever,

and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems, volume 430 of

Lecture Notes in Computer Science, pages 42–93. Springer-Verlag, 1990.

[6] G. Barnes. A method for implementing lock-free data structures. In Proceedings of the

5th ACM Symposium on Parallel Algorithms and Architectures, pages 261–270, June

1993.

[7] A. Bas-Noy and D. Dolev. Shared-memory vs. message-passing in an asynchronous

distributed environment. In Proceedings of the eighth annual ACM Symposium on

Principles of distributed computing, pages 307–318, 1989.

[8] M. Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Transactions on pro-

gramming Languages and Systems, 6(3):333–344, 1984.

151

152 BIBLIOGRAPHY

[9] B.N. Bershad. Practical considerations for non-blocking concurrent objects. In Pro-

ceedings of the Thirteenth International Conference on Distributed Computing Systems,

pages 264–274, 1993.

[10] H. Boehm, A. J. Demers, and S. Shenker. Mostly parallel garbage collection. In

Proceedings of the ACM SIGPLAN 1991 conference on Programming language design

and implementation, pages 157–164. ACM Press, 1991.

[11] F. Cassez, C. Jard, B. Rozoy, and M.D. Ryan. Modeling and verification of parallel

processes. Springer-Verlag New York, Inc., 2001.

[12] K.M. Chandy and J. Misra. Parallel program design: a foundation. Addison-Wesley

Longman Publishing Co., Inc., 1988.

[13] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM Trans-

actions on Programming Languages and Systems, 16(5):1512–1542, 1994.

[14] C. Cornes, J. Courant, and et al. The coq proof assistant - reference manual v 6.1,

1997.

[15] D.L. Detlefs, P.A. Martin, M. Moir, and G.L. Steele Jr. Lock-free reference counting.

Distributed Computing, 15(4):255–71, December 2002.

[16] E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Scholten, and E.F.M. Steffens. On-

the-fly garbage collection: An exercise in cooperation. Communications of the ACM,

21(11):966–975, November 1978.

[17] D. Doligez and X. Leroy. A concurrent generational garbage collector for a multi-

threaded implementation of ml. In Proceedings of the 1993 ACM Symposium on Prin-

ciples of Programming Languages, pages 113–123, January 1993.

[18] T. Endo, K. Taura, and A. Yonezawa. A scalable mark-sweep garbage collector on large-

scale shared-memory machines. In Proceedings of the 1997 ACM/IEEE conference on

Supercomputing (CDROM), pages 1–14. ACM Press, 1997.

[19] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel garbage collection for shared

memory multiprocessors. In Usenix Java Virtual Machine Research and Technology

Symposium (JVM ’01), Monterey, CA, April 2001.

BIBLIOGRAPHY 153

[20] H. Gao, J.F. Groote, and W.H. Hesselink. Almost wait-free resizable hashtables (ex-

tended abstract). In Proceedings of 18th International Parallel & Distributed Processing

Symposium (IPDPS). IEEE Computer Society, April 2004.

[21] H. Gao, J.F. Groote, and W.H. Hesselink. Lock-free dynamic hash tables with open

addressing. Distributed Computing, 2004. ISSN: 0178-2770 (Paper) 1432-0452 (Online)

DOI: 10.1007/s00446-004-0115-2.

[22] H. Gao, J.F. Groote, and W.H. Hesselink. Lock-free parallel garbage collection by

mark&sweep. Technical Report CS-Report CSR-04-31, Eindhoven University of Tech-

nology, The Netherlands, 2004.

[23] H. Gao and W.H. Hesselink. A formal reduction for lock-free parallel algorithms. In

Proceedings of the 16th Conference on Computer Aided Verification (CAV), July 2004.

[24] J.F. Groote, W.H. Hesselink, S. Mauw, and R. Vermeulen. An algorithm for the

asynchronous write-all problem based on process collision. Distributed Computing,

14:75–81, 2001.

[25] S.P. Harbison. Modula-3. Prentice-Hall, Inc., 1992.

[26] K. Havelund. Mechanical verification of a garbage collector. In José Rolim et al.,

editors, Parallel and Distributed Processing (Combined Proceedings of 11 Workshops),

volume 1586 of Lecture Notes in Computer Science, pages 1258–1283. Springer-Verlag,

April 1999. Presented at the Workshop on Formal Methods for Parallel Programming:

Theory and Applications (FMPPTA).

[27] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages

and Systems, 13(1):124–149, January 1991.

[28] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM

Transactions on Programming Languages and Systems, 15(5):745–770, November 1993.

[29] M.P. Herlihy, V. Luchangco, and M. Moir. The repeat offender problem: A mechanism

for supporting dynamic-sized, lock-free data structure. In Proceedings of 16th Interna-

tional Symposium on Distributed Computing, pages 339–353. Springer-Verlag, October

2002.

154 BIBLIOGRAPHY

[30] M.P. Herlihy and J.E.B. Moss. Lock-free garbage collection for multiprocessors. IEEE

Transactions on Parallel and Distributed Systems, 3(3):304–311, 1992.

[31] M.P. Herlihy and J.M. Wing. Linearizability: a correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[32] W.H. Hesselink. http://www.cs.rug.nl/~wim/mechver/garbage_collection

[33] W.H. Hesselink. http://www.cs.rug.nl/~wim/mechver/hashtable

[34] W.H. Hesselink. http://www.cs.rug.nl/~wim/mechver/lockfree_reduction

[35] W.H. Hesselink. Wait-free linearization with a mechanical proof. Distributed Comput-

ing, 9:21–36, 1995.

[36] W.H. Hesselink. Bounded delay for a free address. Acta Informatica, 33:233–254, 1996.

[37] W.H. Hesselink. Using eternity variables to specify and prove a serializable database

interface. Science of Computer Programming, 51(1-2):47–85, 2004.

[38] W.H. Hesselink and J.F. Groote. Wait-free concurrent memory management by Create,

and Read until Deletion. Distributed Computing, 14(1):31–39, January 2001.

[39] R. L. Hudson and J. E. B. Moss. Sapphire: copying gc without stopping the world. In

ISCOPE Conference on ACM 2001 Java Grande, pages 48–57. ACM Press, 2001.

[40] L. Huelsbergen and J. R. Larus. A concurrent copying garbage collector for languages

that distinguish (im)mutable data. In Proceedings of the fourth ACM SIGPLAN sym-

posium on Principles and practice of parallel programming, pages 73–82. ACM Press,

1993.

[41] IBM. IBM System/370 Extended Architecture, Principles of Operation, 1983.

[42] E.H. Jensen, G.W. Hagensen, and J.M. Broughton. A new approach to exclusive data

access in shared memory multiprocessors. Technical Report UCRL-97663, Lawrence

Livemore National Laboratory, January 1987.

[43] R. Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory Manage-

ment. John Wiley and Sons, July 1996. With a chapter on Distributed Garbage

Collection by Rafael Lins. Reprinted 1997 (twice), 1999, 2000.

BIBLIOGRAPHY 155

[44] R. Jones and R. Lins. Garbage collection: algorithms for automatic dynamic memory

management. John Wiley & Sons, Inc., 1996.

[45] J.E. Jonker. On-the-fly garbage collection for several mutators. Distributed Computing,

5:187–199, 1992.

[46] P.C. Kanellakis and A. A. Shvartsman. Fault-Tolerant Parallel Computation. Kluwer

Academic Publishers, 1997.

[47] D.E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and

searching. Addison Wesley Longman Publishing Co., Inc., 1998.

[48] A. LaMarca. A performance evaluation of lock-free synchronization protocols. In Pro-

ceedings of the thirteenth annual ACM symposium on Principles of distributed comput-

ing, pages 130–140. ACM Press, 1994.

[49] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-

guages and Systems, 16(3):872–923, 1994.

[50] Y. Levanoni and E. Petrank. An on-the-fly reference counting garbage collector for java.

In Proceedings of the 16th ACM SIGPLAN conference on Object oriented programming,

systems, languages, and applications, pages 367–380. ACM Press, 2001.

[51] V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-compare-single-swap. In Pro-

ceedings of the fifteenth annual ACM symposium on Parallel algorithms and architec-

tures, pages 314–323. ACM Press, 2003.

[52] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[53] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: Spec-

ification. Springer-Verlag New York, Inc., 1992.

[54] H. Massalin and C. Pu. A lock-free multiprocessor os kernel. Technical Report CUCS-

005-91, Columbia University, 1991.

[55] M.M. Michael. High performance dynamic lock-free hash tables and list-based sets.

In Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and

architectures, pages 73–82. ACM Press, 2002.

156 BIBLIOGRAPHY

[56] M.M. Michael. Safe memory reclamation for dynamic lock-free objects using atomic

reads and writes. In Proceedings of the twenty-first annual symposium on Principles of

distributed computing, pages 21–30. ACM Press, 2002.

[57] M. Moir. Practical implementations of non-blocking synchronization primitives. In

Proceedings of the sixteenth annual ACM symposium on Principles of distributed com-

puting, pages 219–228. ACM Press, 1997.

[58] A.J. Mooij. Non-blocking implementations of LL, VL and SC. Private Communication,

2004.

[59] L. Moreau and J. Duprat. A construction of distributed reference counting. Acta Inf.,

37(8):563–595, 2001.

[60] Y. Ossia, O. Ben-Yitzhak, I. Goft, E.K. Kolodner, V. Leikehman, and A. Owshanko.

A parallel, incremental and concurrent gc for servers. SIGPLAN Not., 37(5):129–140,

2002.

[61] J. O’Toole and S. Nettles. Concurrent replicating garbage collection. In Proceedings

of the 1994 ACM conference on LISP and functional programming, pages 34–42. ACM

Press, 1994.

[62] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM

Trans. Program. Lang. Syst., 4(3):455–495, 1982.

[63] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Calvert. PVS Version 2.4:

System Guide, Prover Guide, PVS Language Reference, 2001.

[64] R. Rajwar and J.R. Goodman. Transactional lock-free execution of lock-based pro-

grams. In Proceedings of the 10th international conference on Architectural support for

programming languages and operating systems, pages 5–17. ACM Press, 2002.

[65] H. Rodrigues and R. Jones. Cyclic distributed garbage collection with group

merger. In Proceedings of 12th European Conference on Object-Oriented Programming,

ECOOP98, pages 249–273, Brussels, July 1998. Springer.

[66] O. Shalev and N. Shavit. Split-ordered lists: lock-free extensible hash tables. In Pro-

ceedings of the twenty-second annual symposium on Principles of distributed computing,

pages 102–111. ACM Press, 2003.

BIBLIOGRAPHY 157

[67] H. Sundell and P. Tsigas. Scalable and lock-free concurrent dictionaries. In Proceedings

of the 2004 ACM Symposium on Applied computing, pages 1438–1445, 2004.

[68] J.D. Valois. Implementing lock-free queues. In Proceedings of the Seventh International

Conference on Parallel and Distributed Computing Systems, pages 64–69, Las Vegas,

NV, 1994.

[69] J.D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the

fourteenth annual ACM symposium on Principles of distributed computing, pages 214–

222. ACM Press, 1995.

[70] N. Wirth. Algorithms + Data Structures = Programs. Prentice Hall PTR, 1978.

Summary

In modern computers, many processes run concurrently, e.g. the window manager, the

mailer, the word processor, the clock, etc. All these processes need access to the shared

memory, but if they would read and modify the shared memory in unrestricted ways, the

data would become inconsistent. The classical way to avoid this is to enforce synchronization

by means of locks. This may lead to blocking.

Due to blocking, the classical synchronization paradigms using locks can incur many

problems such as convoying, priority inversion and deadlock. Over the past two decades

a number of researchers have proposed techniques for designing lock-free implementations.

These techniques allow concurrent update of shared data structures without resorting to

critical sections protected by locks. Essential for such implementations are using advanced

machine instructions such as LL/SC or CAS. Lock-free implementations guarantee that

within a finite number of steps always some process trying to perform an operation on

the object will complete its task. They can avoid many problems arising due to failures

and priority inversion. Lock-free synchronization is very important especially in real-time

systems since if the blocked process is performing a high-priority or real-time task, it is

highly undesirable to halt its progress.

Ensuring the correctness of the design at the earliest possible stage is a major challenge

in any responsible system development. Lock-free algorithms are in general very complex

and hard to design correctly. The only technique we see is to specify the programming

model of the behavior of the system in a formal language, and to mathematically verify

that the system design and implementation satisfy certain properties such as safety and

liveness. In general there are two verification methods for system design: model checking

and theorem proving. Model checking relies on automatic exhaustive exploration of the

reachable state space of the system. The lock-free algorithms presented in this thesis are too

data-intensive and complicated for model checking. Theorem proving can avoid the so-called

158

159

state explosion by a compact (or logical) representation of states and state transformations.

Therefore, we have chosen the interactive theorem prover PVS for mechanical support.

Except informal proofs for a few liveness properties, all the algorithms and proofs presented

in this thesis have been formalized and checked with PVS.

It is very difficult to fairly compare the performance of different concurrent implementa-

tions of one algorithm, since the performance of parallel processing is very much influenced

by the machine architecture, the relative sizes of data structures compared to sizes of caches,

and even the scheduling of processes on processors. Even a good comparison might be dis-

putable, and become outdated by the introduction of other architectures. Therefore, we

cannot offer full empirical support for the algorithms presented.

Chapter 2 presents an efficient lock-free algorithm for hash tables with open addressing.

The algorithm is dynamic in the sense that it allows the hash table to grow and shrink

as needed. Experiments indicate that the algorithm scales up linearly with the number

of processes. It seems to require on average only constant time for insertion, deletion

or accessing of elements. An apparent weakness of our algorithm is the worst-case space

complexity proportional to the product of the number of processes and the size of the hash

table. However, when all processes make ordinary progress and the hash table is not too

small, the actual memory requirement is proportional to the size of the table.

Though PVS provided great help for managing and reusing the proofs, we have to admit

that the verification for the algorithm was very complicated due to the complexity of the

algorithm. The whole correctness proof of the algorithm contains around 200 invariants.

The total verification effort can roughly be estimated to consist of two man years.

Chapter 3 formalizes Herlihy’s general methodology for transferring a sequential imple-

mentation of any data structure into a lock-free synchronization, and presents a lock-free

pattern as a reduction theorem. The reduction theorem enables us to reason about a lock-

free program to be designed on a higher level than the synchronization primitives LL/SC .

It is based on refinement mappings as described by Lamport. Application of this theorem

simplifies the verification effort for lock-free algorithms since fewer invariants are required

and some invariants are easier to discover and formulate without considering the internal

structure of the final implementation. Moreover, two enhanced alternative algorithms are

presented that avoid unnecessary copying for large objects in cases where only small part

of the objects are modified.

Many machines provide either CAS or LL/SC , but not both. Chapter 4 presents a

160

similar lock-free pattern based on the weaker atomic primitive CAS without causing the

so-called ABA problem or problems with wrap around. It is a variation of Herlihy’s general

methodology for lock-free transformation.

Chapter 5 presents a lock-free parallel algorithm for mark&sweep garbage collection

(GC) in a realistic model using synchronization primitives LL/SC or CAS. A number of

mutators and collectors can simultaneously operate on the data structure. In particular

no strict alternation between usage and cleaning up is necessary contrary to what is com-

mon in most other garbage collection algorithms. To simplify the proof, we first extend the

specification to a high-level implementation, then verify the correctness of the high-level im-

plementation, and finally apply the reduction theorem developed in chapter 3 to implement

the higher-level atomic steps by means of the low-level primitives.

The algorithm employs a procedure Mark stack, which is mainly a form of graph search,

and was initially designed as a recursive procedure. It is a surprise that the elimination of

the recursion in favor of an explicit stack makes the proof possible. It would be much more

difficult (if possible at all) to prove the correctness of the recursive procedure where we

have to rely on the fixed point semantics of recursive procedures or some other denotational

semantics.

Apart from safety properties, we have also considered the important problem of verify-

ing liveness properties using the strong fairness assumption. Liveness properties are often

expressed using the “leads-to” relation. They are widely thought to be harder to verify than

safety properties. We found that the “steps-to”(.) relation and the “unless”(U) relation are

quite useful to prove the “leads-to”(o→) relation, since these two relations only involve a

single step, and they can be checked directly by PVS with the help of invariants.

A main observation is that the PVS proof is surprisingly complex compared to the

size of the algorithm proved. In [26], Havelund and Shankar admit that their reduction

did not make the proof simpler because the major effort has gone to show the refinement

relation. We have the impression that, in their case, the gap between the abstraction and

the implementation is too big. In our case of the reduction theorem, there are only six

invariants and it is not a burden to show the refinement relation between the abstraction

and the implementation in the lock-free pattern. Using the reduction theorem, we only

postulate 72 invariants in the whole correctness proof of the high-level implementation of

lock-free GC since substantial pieces of the concrete program can be dealt with as atomic

statements on the higher level. The total verification effort can roughly be estimated to

161

consist of half a man year. This is significantly less than what we afforded for the correctness

of the lock-free hash tables.

Samenvatting

Op moderne computers draaien veel processen gelijktijdig, b.v. de window manager, de

mailer, de tekstverwerker, de klok enz. Al deze processen hebben toegang tot het gedeelde

geheugen nodig, maar als zij zonder beperkingen dit gedeelde geheugen lezen en wijzigen

kunnen de gegevens inconsistent worden. De klassieke manier om dit te vermijden is het

afdwingen van synchronisatie door middel van locks. Dit kan echter tot een blokkade leiden.

Wegens blokkades kunnen klassieke synchronisatieparadigma’s gebaseerd op locks vele

problemen ondervinden zoals convoying , prioriteits-inversie en deadlock. In de afgelopen

twee decennia hebben een aantal onderzoekers technieken voorgesteld om lock-vrije im-

plementaties te ontwerpen. Deze technieken staan gezamenlijke bewerking van gedeelde

datastructuren toe zonder gebruik te maken van kritieke secties die door locks beschermd

worden. Essentieel voor dergelijke implementaties is het gebruik van geavanceerde machine-

instructies zoals LL/SC of CAS. Lock-vrije implementaties garanderen dat binnen een

eindig aantal stappen altijd één of ander proces dat een handeling op het object probeert

uit te voeren zijn taak zal voltooien. Vele problemen die ontstaan door falen en prioriteits-

inversie kunnen zij vermijden. Lock-vrije synchronisatie is zeer belangrijk, met name in

real-time systemen waar het zeer onwenselijk is een geblokkeerd proces te stoppen als deze

een belangrijke of real-time taak uitvoert.

De correctheid van een ontwerp in het vroegst mogelijke stadium waarborgen is een be-

langrijke uitdaging voor elke verantwoorde methode voor systeemontwikkeling. Lock-vrije

algoritmen zijn over het algemeen zeer complex en moeilijk om correct te ontwerpen. De

enige techniek die wij kennen is het in een formele taal specificeren van het programmer-

ingsmodel van het gedrag van het systeem en het wiskundig verifiëren dat het systeemon-

twerp en de implementatie aan safety en liveness-eigenschappen voldoen. In het algemeen

er zijn twee verificatie methodes voor systeemontwerp: model checking en stellingbewijzen.

Model checking is gebaseerd op automatische en uitputtende verkenning van de bereikbare

162

163

toestandsruimte van het systeem. De in dit proefschrift gepresenteerde lock-vrije algoritmen

zijn te ingewikkeld en te omvangrijk qua gegevens voor model checking. Stellingbewijzen

kan deze zogenaamde toestandsruimte-explosie vermijden door een compacte (of logische)

beschrijving van toestanden en toestandsovergangen te gebruiken. Wij hebben daarom

gekozen voor de interactieve stellingbewijzer PVS als mechanisch hulpmiddel. Met uit-

zondering van enkele informele bewijzen voor een paar liveness-eigenschappen, zijn alle

algoritmen en bewijzen uit dit proefschrift geformaliseerd en gecontroleerd met PVS.

Het is zeer moeilijk om een eerlijke prestatievergelijking te maken van verschillende,

concurrente implementaties van één algoritme, aangezien de prestaties van parallelle ver-

werking enorm bëınvloed wordt door de machinearchitectuur, de relatieve omvang van de

datastructuren in vergelijking met omvang van de caches, en zelfs de verdeling van de pro-

cessen over de processoren. Elke redelijke vergelijking zal betwistbaar zijn en verouderd

raken door de introductie van andere architecturen. We kunnen daarom geen volledig em-

pirische onderbouwing geven voor de gepresenteerde algoritmen.

Hoofdstuk 2 geeft een efficiënt lock-vrij algoritme voor hash tables met open adressering.

Het algoritme is dynamisch in de zin dat het, indien nodig, groeien en inkrimpen van de hash

table toestaat. Experimenten wijzen er op dat het algoritme lineair schaalt met het aantal

processen. Toevoegen, verwijderen of opvragen van elementen blijkt gemiddeld in constante

tijd te kunnen. Een schijnbare tekortkoming van ons algoritme is de ruimte-complexiteit

welke in het slechtste geval evenredig is met het aantal processen maal de omvang van de

hash table. Echter, als alle processen gewoon voortgang boeken en de hash table niet te

klein is, is de daadwerkelijke geheugenvereiste evenredig aan de omvang van de hash table.

Alhoewel PVS aanzienlijke hulp biedt voor het beheren en opnieuw gebruiken van be-

wijzen, moeten wij toegeven dat het controleren van het algoritme, wegens de complexiteit

van het algoritme, zeer ingewikkeld was. Het gehele correctheidsbewijs van het algoritme

omvat zo’n 200 invarianten. De totale inspanning voor de verificatie kan ruwweg geschat

worden op twee manjaar.

Hoofdstuk 3 formaliseert de algemene methodologie van Herlihy voor het transformeren

van een sequentiële implementatie van een datastructuur naar lock-vrije synchronisatie, en

stelt een lock-vrij patroon als een reductiestelling voor. De reductiestelling stelt ons in staat

te redeneren over een lock-vrij programma dat ontworpen wordt op een hoger niveau dan de

synchronisatieprimitieven LL/SC . De stelling is gebaseerd op refinement mappings zoals

beschreven door Lamport. Toepassing van deze stelling vereenvoudigt de verificatie voor

164

lock-vrije algoritmen aangezien er minder invarianten vereist zijn en sommige invarianten

gemakkelijker te ontdekken en te formuleren zijn zonder de interne structuur van de defini-

tieve implementatie te beschouwen. Voorts worden twee verbeterde, alternatieve algoritmen

voorgesteld waar het onnodige copiëren van een groot object vermeden wordt in gevallen

waarbij slechts een klein deel van het object gewijzigd wordt.

Veel machines bieden CAS danwel LL/SC aan, maar niet allebei. Hoofdstuk 4 geeft een

zelfde lock-vrij patroon dat gebaseerd is op de zwakkere atomaire primitieve CAS, zonder

dat het zogenaamde ABA probleem of problemen met wrap around optreden. Het is een

variatie op de algemene methodologie van Herlihy voor lock-vrije transformatie.

Hoofdstuk 5 presenteert een lock-vrij parallel algoritme voor mark&sweep garbage col-

lection (GC) in een realistisch model met gebruikmaking van de synchronisatieprimitieven

LL/SC of CAS. Een aantal mutators en collectors kunnen gelijktijdig de datastructuur

bewerken. In het bijzonder is een strikte afwisseling tussen gebruik en het opruimen niet

noodzakelijk, wat bij de meeste andere algoritmen voor garbage collection wel gebruikelijk

is. Om het bewijs te vereenvoudigen breiden wij de specificatie uit tot een implementatie op

hoog niveau, verifiëren dan de correctheid van de implementatie op hoog niveau, en passen

als laatste de reductiestelling uit hoofdstuk 3 toe om atomaire stappen op het hoge niveau

te implementeren met behulp van de primitieven van het lage niveau.

Het algoritme gebruikt een procedure Mark stack welke in feite een vorm van graph

search is en aanvankelijk ontworpen is als een recursieve procedure. Het is verrassend dat het

bewijs mogelijk wordt door de recursie weg te werken ten gunste van een expliciete stapel.

Het zou veel moeilijker zijn (als het al mogelijk was) om de correctheid van de recursieve

procedure te bewijzen, waarvoor we ons zouden moeten baseren op dekpuntssemantiek van

recursieve procedures of een andere denotationele semantiek.

Naast safety eigenschappen, hebben wij ook onderzoek gedaan naar het belangrijke

probleem van verificatie van liveness eigenschappen onder aanname van strong fairness.

Liveness eigenschappen worden vaak in termen van een “leads-to” relatie uitgedrukt. Er

wordt algemeen verondersteld dat deze moeilijker zijn te verifiëren dan safety eigenschappen.

Wij bemerkten dat de “steps-to” (.) relatie en de “unless” (U) relatie erg nuttig zijn om

de “leads-to” (o→) relatie te bewijzen, aangezien deze twee relaties slechts één enkele stap

omvatten, en direct door PVS met behulp van invarianten kunnen worden gecontroleerd.

Een van de voornaamste observaties is dat het bewijs met PVS opzienbarend ingewikkeld

is in vergelijking met de omvang van het bewezen algoritme. Havelund en Shankar, [26],

165

geven toe dat hun reductie het bewijs niet vereenvoudigde omdat de meeste inspanning ging

zitten in het verifiëren van de refinement relatie. Wij hebben de indruk dat in hun geval

het gat tussen abstractie en implementatie te groot is. In ons geval van de reductiestelling

zijn er slechts zes invarianten en kost het niet veel moeite om de refinement relatie tussen

abstractie en implementatie aan te tonen in het lock-vrije patroon. Bij gebruik van de

reductiestelling postuleren we in totaal slechts 72 invarianten in het correctheidsbewijs van

de implementatie op een hoog niveau van de lock-vrije GC, aangezien wezenlijke delen

van het concrete programma als atomaire statements op het hoge niveau kunnen worden

behandeld. De totale verificatie duur kan ruwweg geschat worden op een half manjaar.

Dit is beduidend minder dan we ons voor de correctheid van de lock-vrije hashtables nodig

hadden.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Al-

gebra. Faculty of Mathematics and Computing Sci-

ence, TUE. 1996-01

A.M. Geerling. Transformational Development of

Data-Parallel Algorithms. Faculty of Mathematics

and Computer Science, KUN. 1996-02

P.M. Achten. Interactive Functional Programs:

Models, Methods, and Implementation. Faculty of

Mathematics and Computer Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search. Fac-

ulty of Mathematics and Computing Science, TUE.

1996-04

M.H.G.K. Kesseler. The Implementation of

Functional Languages on Parallel Machines with

Distrib. Memory. Faculty of Mathematics and Com-

puter Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard Real-

Time Systems. Faculty of Mathematics and Com-

puting Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchroniza-

tion, and Fault-Tolerance. Faculty of Mathematics

and Computer Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Pro-

gram Construction. Faculty of Mathematics and

Computing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and its

Denotational Dual. Faculty of Mathematics and

Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Circuits.

Faculty of Mathematics and Computing Science,

TUE. 1996-10

N.W.A. Arends. A Systems Engineering Specifi-

cation Formalism. Faculty of Mechanical Engineer-

ing, TUE. 1996-11

P. Severi de Santiago. Normalisation in Lambda

Calculus and its Relation to Type Inference. Fac-

ulty of Mathematics and Computing Science, TUE.

1996-12

D.R. Dams. Abstract Interpretation and Partition

Refinement for Model Checking. Faculty of Mathe-

matics and Computing Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in Se-

mantics. Faculty of Mathematics and Computer

Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of Small

Treewidth. Faculty of Mathematics and Computer

Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transformations

in Context. Faculty of Computer Science, UT. 1997-

02

P.F. Hoogendijk. A Generic Theory of Data

Types. Faculty of Mathematics and Computing Sci-

ence, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in

Logic and Mathematics. Faculty of Mathematics

and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-

plicit Substitution. Faculty of Mathematics and

Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra.

Faculty of Mathematics and Computing Science,

TUE. 1997-06

F.A.M. van den Beuken. A Functional Approach

to Syntax and Typing. Faculty of Mathematics and

Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.

Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-

Event Simulator for Systems Engineering. Faculty

of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for

Multiprocessor Computation. Faculty of Mathemat-

ics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-

Power 80C51 Microcontroller. Faculty of Mathe-

matics and Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design

with Petri Nets and Process Algebra. Faculty of

Mathematics and Computing Science, TUE. 1998-

05

E. Voermans. Inductive Datatypes with Laws and

Subtyping – A Relational Model. Faculty of Mathe-

matics and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-

based Parsing. Faculty of Computer Science, UT.

1999-02

J.P.L. Segers. Algorithms for the Simulation of

Surface Processes. Faculty of Mathematics and

Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolu-

tionary Search. Faculty of Mathematics and Natu-

ral Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study

on Indecisiveness in Sample Selection. Faculty of

Mathematics and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization in

Real-Time Distributed Databases. Faculty of Math-

ematics and Computing Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart: Syntax

and Semantics. Faculty of Mathematics and Com-

puting Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfiabil-

ity problems. Faculty of Mathematics and Comput-

ing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols

with Formal Methods. Faculty of Computer Science,

UT. 1999-09

P.R. D’Argenio. Algebras and Automata for

Timed and Stochastic Systems. Faculty of Com-

puter Science, UT. 1999-10

G. Fábián. A Language and Simulator for Hybrid

Systems. Faculty of Mechanical Engineering, TUE.

1999-11

J. Zwanenburg. Object-Oriented Concepts and

Proof Rules. Faculty of Mathematics and Comput-

ing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural

Prediction System. Faculty of Mathematics and

Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation of

Attribute Grammars. Faculty of Mathematics and

Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Paral-

lel Program Construction. Faculty of Mathematics

and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in

the Dutch Republic. Faculty of Mathematics and

Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified ap-

proach to the verification of distributed algorithms.

Faculty of Mathematics and Computer Science, UU.

2000-02

W. Mallon. Theories and Tools for the Design of

Delay-Insensitive Communicating Processes. Fac-

ulty of Mathematics and Natural Sciences, RUG.

2000-03

W.O.D. Griffioen. Studies in Computer Aided

Verification of Protocols. Faculty of Science, KUN.

2000-04

P.H.F.M. Verhoeven. The Design of the Math-

Spad Editor. Faculty of Mathematics and Comput-

ing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and Pack-

aging Plant. Faculty of Mechanical Engineering,

TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving Cor-

rect Programs. Faculty of Mathematics and Com-

puting Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Hetero-

geneous Applications. Faculty of Natural Sciences,

Mathematics and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specification Lan-

guage. Faculty of Mathematics and Natural Sci-

ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search

Discovering and Representing Search Space Struc-

ture. Faculty of Mathematics and Natural Sciences,

UL. 2001-01

R. Ahn. Agents, Objects and Events a computa-

tional approach to knowledge, observation and com-

munication. Faculty of Mathematics and Comput-

ing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs in

higher order logic using PVS and Isabelle. Faculty

of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes

through Structured Reflection. Faculty of Mathe-

matics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and

semantics. Faculty of Sciences, Division of Mathe-

matics and Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualization.

Faculty of Natural Sciences, Mathematics and Com-

puter Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Testing

of Event Sequences. Faculty of Mathematics and

Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes.

Faculty of Mathematics and Natural Sciences, UL.

2001-08

M.H. Lamers. Neural Networks for Analysis of

Data in Environmental Epidemiology: A Case-study

into Acute Effects of Air Pollution Episodes. Fac-

ulty of Mathematics and Natural Sciences, UL.

2001-09

T.C. Ruys. Towards Effective Model Checking.

Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concur-

rency control and recovery protocols. Faculty of

Mathematics and Computing Science, TU/e. 2001-

11

M.D. Oostdijk. Generation and presentation of

formal mathematical documents. Faculty of Mathe-

matics and Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A sim-

ulation approach using χ. Faculty of Mechanical En-

gineering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduction

techniques for model checking. Faculty of Mathe-

matics and Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelligent

Data Analysis: theoretical and experimental aspects.

Faculty of Mathematics and Natural Sciences, UL.

2002-01

V. Bos and J.J.T. Kleijn. Formal Specifica-

tion and Analysis of Industrial Systems. Faculty of

Mathematics and Computer Science and Faculty of

Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Legacy

Software Systems. Faculty of Natural Sciences,

Mathematics and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Process Al-

gebra. Faculty of Natural Sciences, Mathematics,

and Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction:

Algorithms and Complexity. Faculty of Mathemat-

ics and Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification

of Probabilistic, Real-time and Parametric Systems.

Faculty of Science, Mathematics and Computer Sci-

ence, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.

Faculty of Mathematics and Natural Sciences, UL.

2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and

Cost-Optimality in Model Checking of Timed and

Hybrid Systems. Faculty of Science, Mathematics

and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Packing.

Faculty of Mathematics and Natural Sciences, UL.

2002-09

D. Tauritz. Adaptive Information Filtering: Con-

cepts and Algorithms. Faculty of Mathematics and

Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for Pro-

cess Algebra. Faculty of Natural Sciences, Mathe-

matics, and Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of Se-

mantical Models. Faculty of Sciences, Division of

Mathematics and Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Systems. Faculty

of Natural Sciences, Mathematics, and Computer

Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Compu-

tation to Constraint Satisfaction and Data Mining.

Faculty of Mathematics and Natural Sciences, UL.

2002-14

S. Andova. Probabilistic Process Algebra. Fac-

ulty of Mathematics and Computer Science, TU/e.

2002-15

Y.S. Usenko. Linearization in µCRL. Faculty of

Mathematics and Computer Science, TU/e. 2002-

16

J.J.D. Aerts. Random Redundant Storage for

Video on Demand. Faculty of Mathematics and

Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Tech-

niques for component composition and construc-

tion. Faculty of Natural Sciences, Mathematics, and

Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over Typed

Source Code Representations. Faculty of Natu-

ral Sciences, Mathematics, and Computer Science,

UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty of

Mathematics and Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and Verification in

Process Algebras with Data and Timing. Faculty of

Mathematics and Computer Science, TU/e. 2003-

05

S.V. Nedea. Analysis and Simulations of Catalytic

Reactions. Faculty of Mathematics and Computer

Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Tertiary

Storage. Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annota-

tion – CoMPAs. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynamics

of Object-based Software: a Foundational Approach.

Faculty of Electrical Engineering, Mathematics &

Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A Formal Ap-

proach to the Modeling of Collaboration Between

System Components. Faculty of Mathematics and

Natural Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Functional Ap-

proach to Software Components. Faculty of Mathe-

matics and Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for the

Differencing Method. Faculty of Mathematics and

Computer Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms and

Their Use in Interactive Theorem Proving. Fac-

ulty of Mathematics and Computer Science, TU/e.

2004-02

P. Frisco. Theory of Molecular Computing – Splic-

ing and Membrane systems. Faculty of Mathematics

and Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty

of Mathematics and Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and Browsing for

Home Environments. Faculty of Mathematics and

Computer Science and Faculty of Industrial Design,

TU/e. 2004-05

F. Bartels. On Generalised Coinduction and Prob-

abilistic Specification Formats. Faculty of Sciences,

Division of Mathematics and Computer Science,

VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis: a

Type-Theoretical Formalization and Applications.

Faculty of Science, Mathematics and Computer Sci-

ence, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargaining

Games: An Evolutionary Investigation of Funda-

mentals, Strategies, and Business Applications. Fac-

ulty of Technology Management, TU/e. 2004-08

N. Goga. Control and Selection Techniques for the

Automated Testing of Reactive Systems. Faculty of

Mathematics and Computer Science, TU/e. 2004-

09

M. Niqui. Formalising Exact Arithmetic: Rep-

resentations, Algorithms and Proofs. Faculty of

Science, Mathematics and Computer Science, RU.

2004-10

A. Löh. Exploring Generic Haskell. Faculty of

Mathematics and Computer Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Algorithms

for Car Navigation. Faculty of Mathematics and

Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Process-

ing Using Conditionally Guaranteed Budgets. Fac-

ulty of Mathematics and Computer Science, TU/e.

2004-13

J. Pang. Formal Verification of Distributed Sys-

tems. Faculty of Sciences, Division of Mathematics

and Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Eco-

nomics. Faculty of Technology Management, TU/e.

2004-15

E.O. Dijk. Indoor Ultrasonic Position Estimation

Using a Single Base Station. Faculty of Mathemat-

ics and Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification and Ver-

ified Distribution. Faculty of Sciences, Division of

Mathematics and Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-

oriented Editor for Structured Documents. Faculty

of Mathematics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quantitative Pre-

diction of Quality Attributes for Component-Based

Software Architectures. Faculty of Mathematics and

Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Fac-

ulty of Mathematics and Computer Science, TU/e.

2004-20

N.J.M. van den Nieuwelaar. Supervisory Ma-

chine Control by Predictive-Reactive Scheduling.

Faculty of Mechanical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof System for

Multithreaded Java -Theory and Tool Support- .

Faculty of Mathematics and Natural Sciences, UL.

2005-01

R. Ruimerman. Modeling and Remodeling in

Bone Tissue. Faculty of Biomedical Engineering,

TU/e. 2005-02

C.N. Chong. Experiments in Rights Control - Ex-

pression and Enforcement. Faculty of Electrical En-

gineering, Mathematics & Computer Science, UT.

2005-03

H. Gao. Design and Verification of Lock-free Par-

allel Algorithms. Faculty of Mathematics and Com-

puting Sciences, RUG. 2005-04

