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4th Theoretical Fluid Mechanics Meeting, June 6-9, Toronto

Quasi-Simultaneous Viscous-Inviscid Interaction for

Transonic Airfoil Flow

Arthur E.P. Veldman∗

University of Groningen, Groningen, The Netherlands

Following Prandtl, a viscous-inviscid interaction (VII) method is presented, where the
flow field is divided into a viscous shear layer and an inviscid outer region. Their coupling
is performed with the quasi-simultaneous approach, making use of an appropriately chosen
interaction law. Firstly, an engineering example of transonic airfoil flow is presented, in
which the interaction law is based on thin-airfoil theory. Thereafter, the VII coupling
approach is analyzed by mathematical means, leading to a strongly simplified interaction
law, yet allowing calculations beyond maximum lift simply starting from scratch.

I. Introduction

W
hen simulating flow around aircraft, one of the physical phenomena to be considered is viscosity. In
transonic cruise conditions it can reduce the lift by as much as 50% when compared to a purely inviscid

situation.1 Also, viscosity plays a role in take-off and landing performance: it determines, for instance,
the maximum lift which can be achieved. In many cases viscosity plays its role only in a thin shear layer,
consisting of boundary layer and wake, whereas the remaining part of the flow field can be considered inviscid.
Thus a subdivision of the flow field is created (Fig. 1), with different models for each of the two regions.
Coupling the models, a so-called Viscous-Inviscid Interaction (VII) method is obtained. The price of a
simulation with a VII method is, of course, higher than the price for a simulation based on an inviscid-flow
model. However, its price is much less than the price to be paid for a simulation based on a Navier–Stokes
approach.2

inviscid flow

STRONG INTERACTION
M>1

viscous flow

Figure 1. Subdivision of flow field in viscous shear
layer and inviscid-flow region (shear layer exaggerated
in thickness).

In VII methods, the shear layer is usually mod-
elled through the boundary-layer equations, be it
in differential or integral form. The paper shortly
describes the modelling of the viscous and inviscid
flow regions, respectively. The emphasis is on the
coupling between the two subdomains, i.e. on the
numerical treatment of the viscous-inviscid interac-
tion process. In particular the quasi-simultaneous
VII approach will be highlighted.

Examples are presented from transonic flow
around the RAE2822 airfoil, for which experimen-
tal data are available. In these examples the quasi-
simultaneous interaction law is chosen relatively
close to the physics, making its implementation somewhat complicated. Therefore, also ideas are presented
on simplifying the interaction law. In fact, the resulting method is very close to the direct interaction method
which breaks down in separation. Nevertheless, it turns out te be very robust, and is able to simulate airfoil
flow beyond maximum lift from scratch (i.e. without needing a good initial guess).

∗Professor, Institute of Mathematics and Computing Science, P.O. Box 800, 9700 AV Groningen, AIAA member.
Copyright c© 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
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II. Mathematical model

In this section a short description is given of the flow models in the viscous shear layer (boundary layer
and wake) and in the inviscid flow, respectively. Also their mathematical coupling is described.

A. Viscous-flow boundary-value problem

The boundary layer and wake are described with a field method, which in principle offers the possibility to
apply refined turbulence modelling. When the development of this method, called VISIAN, began (in the late
1970s at the National Aerospace Laboratory NLR) it was hoped that within a few years more sophisticated
flow models would become available. However, turbulent-flow modelling turned more complicated than
expected.

In a field method, the non-dimensional equations of motion in the shear layer read

continuity:
∂

∂x
(ρu) +

∂

∂y
(ρv) = 0; (1)

x-momentum: u
∂u

∂x
+ v

∂u

∂y
= −

1

ρ

∂p

∂x
+

∂

∂y

(

µef
∂u

∂y

)

. (2)

Here u and v are the velocity components along the airfoil surface and perpendicular to it, respectively
(the (x, y)-coordinate system). Further, ρ is the density, p is the pressure and µef is the effective viscosity
containing the influence of turbulence. For scaling of the variables, the upstream values have been used,
together with a characteristic length.

The shear-layer equations are solved subject to boundary conditions at the airfoil surface y = 0 where
the velocity vanishes, and at the edge of the shear layer y = ye where the edge values ue and pe follow from
a match with the inviscid flow (Section C). In the wake the vertical velocity along the cut y = 0 follows
from the position of the dividing inviscid-flow streamline.

In first-order boundary-layer theory, as used here, the pressure is assumed to be constant across the shear
layer. But here this pressure level is allowed to differ from the inviscid-flow pressure; this difference represents
the influence of streamline curvature (Section C). The flow in the shear layer is assumed compressible, with
the temperature described from Crocco’s integral energy equation. Pressure, density and Mach number are
modelled through relations for isentropic flow with constant total enthalpy. The influence of turbulence is
modeled by means of the algebraic eddy-viscosity model of Cebeci and Smith, with an extension in the wake
as introduced by Cebeci et al.3

B. Inviscid-flow boundary-value problem

The inviscid flow is formulated in terms of the full-potential equation in mass-conservation form

∂

∂x

(

ρ
∂Φ

∂x

)

+
∂

∂y

(

ρ
∂Φ

∂y

)

= 0, (3)

where the density

ρ =

{

1 +
γ − 1

2
M2

∞

[

1 −

(

∂Φ

∂x

)2

−

(

∂Φ

∂y

)2
]}1/(γ−1)

is nondimensionalized by the upstream value ρ∞, and M∞ is the (subsonic) Mach number of the upstream
flow. Details of the method, called TRAFS, can be found in Ref. 4.

At the airfoil surface the normal mass outflux is given as a transpiration condition

ρΦn = ρ0v0, (4)

where Φn is the component of the potential-flow velocity in the direction normal to the airfoil. The displace-
ment and curvature effects of the viscous wake are represented in the potential flow by specifying jumps in
normal mass flux ρΦn and tangential velocity Φt:

(ρΦn)u − (ρΦn)` = (ρ0v0)u − (ρ0v0)`,

(Φt)u − (Φt)` = (u0)u − (u0)`. (5)
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The subscripts u and ` refer to the upper and lower side of the wake cut.
The problem to compute the potential flow is equivalent to that of solving the boundary-value problem

defined by Eqs. (3) – (5) for the unknown potential Φ; either at prescribed angle-of-attack or at prescribed
lift. The potential flow becomes unique if the velocity components are required to remain finite at the trailing
edge point (Kutta condition), which can be formulated more precisely by demanding that the second jump
condition in Eq. (5) is also valid in the trailing edge.

C. Coupled boundary-value problem

The two boundary-value problems described above are coupled by demanding continuity of the flow variables
at the edge of the shear layer. Usually the resulting relation is transformed into a relation between inviscid-
flow variables at the matching surface (denoted by the subscript ’0’) and viscous-flow variables at the edge
of the shear layer (denoted by the subscript ’e’). In physical terms, these relations describe the displacement
effect of the shear layer (translated into a mass outflow), and the effect of streamline curvature (translated
into a pressure jump).

Displacement effect The displacement effect of the shear layer is formulated as a surface transpiration
condition. Along the airfoil it reads

ρ0v0 =
d

dx
(ρeueδ

∗), (6)

where δ∗ is the displacement thickness. The wake is split in two parts, according to the wake cut y = 0;
similar relations hold here.

Streamline curvature The effect of streamline curvature can be modelled as a jump between the pressure
p0 from the outer inviscid flow and the pressure level pe in the boundary layer5

p0 − pe = ρeueκ(θ + δ∗). (7)

Here, θ denotes the momentum thickness, whereas κ denotes the streamline curvature estimated by

κ = κw +
d2

ds2
(δ∗) (8)

(κw is the curvature of the wall). In the wake similar relations hold for upper and lower side, respectively.
Note that the linearized Bernoulli equation transforms these pressure jumps into jumps between the inviscid
and viscous streamwise velocities, u0 and ue, respectively.

III. Viscous-inviscid interaction

A. The quasi-simultaneous method

Following Prandtl, the boundary-layer equations are usually solved with prescribed pressure. However, in
points of flow separation such an approach leads to (numerical) problems, in fact a total breakdown of
the calculations results. An extensive study of these problems, presented by Goldstein in 1948,6 suggested
several possible causes for this breakdown. One of his suggestions was that the problem could originate in
the prescribed pressure, which should satisfy certain conditions. Twenty years later, Catherall and Mangler7

indeed showed that when prescribing displacement thickness, the shear-layer equations can be integrated
through the separation point. At the same time, Stewartson in the UK,8 Neiland in the USSR10 and
Messiter in the USA9 came up with the concept of the triple deck. Its most important property is that
there exists no hierarchy11 between shear layer and inviscid flow near singular points (such as a point of flow
separation): strong interaction.

The situation near a point of flow separation can be described as follows. By varying a prescribed
displacement thickness δ∗ at a given boundary-layer station it is possible to study the behaviour of the
streamwise velocity ue. A typical situation is sketched in Fig. 2. The essential feature of this graph is that
ue possesses a minimum, which is found to correspond with the onset of flow separation. As Goldstein
already hunched, no boundary-layer solution will exist for values of ue below this minimum. On the other
hand, prescription of δ∗ or a suitable combination of ue and δ∗ will lead to a solution of the boundary-layer
equations.
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separated flowattached

inviscid flow

δ*
i

boundary layer

uemin

uei

Figure 2. A sketch of the boundary-layer be-
haviour, combined with an inviscid-flow re-
lation.

Based on these findings, in the late 1970s a number of
proposals have been made to solve viscous-inviscid interaction
problems. The first proposal, simply inverting the order of in-
formation between invisicd flow and shear layer,12 did survive
in flow separation but possessed very bad convergence prop-
erties. A better idea was to mix the classical direct approach
and the inverse approach into the semi-inverse method.13, 14

This method has become quite powerful in engineering appli-
cations.15

At NLR another approach was followed, inspired by the lack
of hierarchy between both flow regions; the idea was to solve
them simultaneously.16, 17 However, at that time computers
were quite modest (only 1 Mb of central memory), and a full
simultaneous treatment was impossible (except when using in-
tegral methods18, 19, 20). But one could try to approach such an
idea. For instance by solving the shear layer equations together
with a simple approximation of the outer flow that contained
the essential part of the interaction. As triple-deck theory showed that the local invisicd-flow interaction is
described by thin-airfoil theory, the quasi-simultaneous method was born.

The quasi-simultaneous method is easily explained in abstract terms by first defining the external inviscid-
flow operator ue = Eu[δ∗] and boundary-layer operator ue = B[δ∗]. Further, the approximate inviscid-
flow description is denoted by ue = I[δ∗]; it is called the interaction law. With this notation, the quasi-
simultaneous method can be written as

u
(n)
e − I[δ∗(n)] = Eu[δ∗(n−1)] − I[δ∗(n−1)],

u
(n)
e − B[δ∗(n)] = 0.

(9)

It is stressed that the interaction law is used in defect formulation, i.e. it does not influence the final result
of the calculations. It is however very important for letting the calculations survive during all iterations on
their way to the final flow solution.

The interaction law From the local asymptotic descriptions of strong interaction, it is natural to base the
interaction law on thin-airfoil theory. Here, the airfoil is considered to be a flat segment, located at the
interval [0, c] of the x-axis of a Cartesian coordinate system (x, y). Let u and v, generically, denote the
velocity components, and let their symmetric and antisymmetric parts be indicated by the subscripts s and
a, respectively. Then the following thin-airfoil formulas, which are continuous in the trailing edge, form the
basis of the interaction law:

• symmetric (0 ≤ x < ∞)

us(x) =
1

π

∫ ∞

0

vs(ξ)
dξ

x − ξ
; (10)

• antisymmetric at the profile (0 ≤ x < c)

ua(x) =
1

π

√

c − x

x

[

∫ c

0

√

ξ

c − ξ
va(ξ)

dξ

x − ξ
−

∫ ∞

c

√

ξ

ξ − c
ua(ξ)

dξ

x − ξ

]

; (11)

• antisymmetric in the wake (c < x < ∞)

va(x) =
1

π

√

x − c

x

[

∫ c

0

√

ξ

c − ξ
va(ξ)

dξ

x − ξ
+

∫ ∞

c

√

ξ

ξ − c
ua(ξ)

dξ

x − ξ

]

. (12)

In the trailing edge (x = c) the antisymmetric formula (11) degenerates into ua(c) = limξ↓c ua(ξ). Its
right-hand side is calculated from the jumps in u on upper and lower side of the trailing edge ua(c) =
1
2 ([u]u,te − [u]`,te). Note that this formulation is equivalent with using a Kutta condition, which imposes
continuity of the pressure in the trailing edge, i.e. pe,u = pe,`.
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To incorporate the effects of compressibility, a Prandtl-Glauert transformation is applied to the equations
above. This is easily accomplished by replacing the vertical velocity v according to

v 7→ v(1 − M2
∞)−1/2.

Remark: In Section V we will look for a simplification of the above formulas.

B. Inclusion of streamline curvature

Especially for rear-loaded airfoils the streamlines immediately behind the trailing edge are highly curved.
In such a situation the assumption of constant pressure across the boundary layer is no longer justifiable
a priori. The effect of streamline curvature can be modelled by a jump (7) between the pressure in the
boundary layer pe and the pressure of the inviscid flow p0 ≡ Ep[δ

∗]:

pe = Ep[δ
∗] − [p] with [p] = κρeu

2
e(δ

∗ + θ). (13)

The extended version of Eq. (9) thus could become

p
(n)
e − Ip[δ

∗(n)] = Ep[δ
∗(n−1)] − [p](n−1) − Ip[δ

∗(n−1)],

p
(n)
e − Bp[δ

∗(n)] = 0.
(14)

Note that in Eq. (14) the pressure jump (13) is calculated from the previous iteration! This pressure jump
is proportional to κ, which can be taken as the curvature of the displacement body given by Eq. (8). Thus
the pressure jump scales with the ‘second derivative’ of the streamlines and herewith it introduces a strong-
interaction character, as will be explained next.

When the pressure jump is evaluated from a previous iteration as indicated in Eq. (14), through κ, in the
discretization of the second derivative of the displacement body it generates a contribution to the iterative
amplification factor proportional to (δx)−2, where δx is the mesh size. Letting the mesh size approach
zero, this amplification blows up. This explains the numerical difficulties encountered in the literature when
the curvature effect is not treated in a simultaneous way; see Ref. 5 (page 82). Extensive smoothing and
underrelaxation is then required in order to obtain convergence of the viscous-inviscid iterations, as stated
in Ref. 21 and references therein.

Once again, a simultaneous treatment of the curvature effect is required. The term [p](n−1) should be
shifted to the left-hand side in Eq. (14) and evaluated at the new iteration level (n). However, this necessary
step to obtain convergence for small grid size turns out not to be sufficient. There is another (delicate) issue,
which can be understood through a generalization of the analysis in Ref. 22. Let’s assume that the curvature
is computed from the displacement body, i.e. κ = d2δ∗/dx2. Then the pressure jump (13) becomes

[p] = ρeu
2
e(δ

∗ + θ)
d2δ∗

dx2
to be abbreviated as [p] = c

d2δ∗

dx2
.

The quasi-simultaneous system (14) now reads

p
(n)
e − Ip[δ

∗(n)] + c
d2

dx2
δ∗(n) = Ep[δ

∗(n−1)] − Ip[δ
∗(n−1)],

p
(n)
e − Bp[δ

∗(n)] = 0.

(15)

Since both Ip and d2/dx2 are negative-(semi)definite operators, and since c > 0, the two operators mentioned
counteract each other in the left-hand side of Eq. (15)! Moreover, since the discrete version of Ip scales with
(δx)−1, whereas the curvature term scales with (δx)−2, the unfavorable influence of the latter can be made
arbitrary large for vanishing grid size. The envisaged iterations will not converge, and there is only one way
out of this problem: discretize the second derivative with a one-sided expression

d2δ∗

dx2

∣

∣

∣

∣

i

=
δ∗i−2 − 2δ∗i−1 + δ∗i

(δx)2
(16)

(the downstream-biased version will also work). At least in this way the eigenvalues of the discrete operator
in Eq. (16) are positive, and hence of the same sign as those of −Ip. Numerical experiments with the usual
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central discretization of the second derivative and with the above upstream-biased one have consistently
revealed that only the latter one could be made convergent (at least for not too violent flow cases, which
probably is related to the onset of wake instability – more research is required here). More information can
be found in Refs. 23 and 24.

IV. Results

In previous publications25, 26 results of the combined VII method, called VISTRAFS, have been presented
for various airfoils and compared with experiments and results of other flow simulation methods. Pressure
variations across the shear layer due to the streamline curvature were not yet accounted for in those calcu-
lations. In the present paper, the results do include the influence of the normal pressure gradient by means
of the pressure jump as described in Section B.

For rear-loaded airfoils the normal pressure gradient is expected to influence the calculated airfoil per-
formance; therefore the RAE2822 airfoil has been selected for presentation of results. Flow conditions have
been chosen for which extensive comparisons with the literature can be made (Table 1).

Table 1. Experimental data of selected flow cases for RAE 2822 airfoil.

M∞ Re trip αexp αcorr CL

Case 1 0.676 5.7 × 106 0.11 2.40 1.93 0.566

Case 6 0.725 6.5 × 106 0.03 2.92 2.44 0.743

Case 9 0.730 6.5 × 106 0.03 3.19 2.79 0.803

A. Numerics

In TRAFS an O-type grid with 129× 65 grid points has been employed. In VISIAN a non-uniform C-type
grid consisting of 193 × 21 grid points has been used, with 129 points along the airfoil surface. Per call
of VISIAN 3 global marching sweeps through the shear layer were performed. Per shear-layer station, the
Newton iterations are converged until 5 digits accuracy.

0 20 40
-6

-4

-2

0

number of iterations

Case 1 Case 6 Case 9lo
g 

||u
e_

di
ffe

re
nc

e|
|

Figure 3. Convergence of ue in viscous-
inviscid iterations

For situations with shock waves the prescription of the lift
turns out to be more convenient. When the angle-of-attack is
prescribed there is a danger of a limit cycle in the convergence
behaviour, which is caused by the shock switching to and fro
between two adjacent grid cells. The convergence rate is similar
in both cases, but the iterations will not reach machine level.

The convergence behaviour of the iterations between VISIAN
and TRAFS is presented in Fig. 3. It gives the difference be-
tween successive u0 values. Case 1 has been calculated with α
prescribed; for Cases 6 and 9 CL was prescribed. The calcula-
tions shown have been performed in one consecutive run, with 15
iterations per flow case which is sufficient to approach machine
zero (32-bit word length).

For Case 1, with subsonic flow, 7 iterations are sufficient to
reach the level ||∆ue|| < 10−4. For Case 6, with transonic flow
featuring a modest shock wave, 10 iterations are required to reach
this level of convergence; Case 9, which exhibits some shock-
induced flow separation, requires 13 iterations. The convergence rate for this case again is somewhat slower
than for the preceding case. This can be explained, since the difference between the subsonic interaction law
and the ’real’ inviscid-flow model (i.e. TRAFS) becomes larger when the shock gets stronger. On current
PC’s it is not an issue to discuss CPU times: it is about 5 seconds per flow case.

Essential for the convergence of the viscous-inviscid iterations is that the pressure jump is treated si-
multaneously with the innermost iteration loop of VISIAN (see Section B). In the literature, numerical
smoothing of the pressure jump is often reported to be necessary in order to obtain converged results.21

This leads to an underestimation of the pressure jump, and it introduces a certain degree of arbitrariness
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in the results, as explained in Ref. 5 (page 82). With the current approach there is no need for this kind of
smoothing.

0 0.5 1
-1

-0.5

0

0.5

1

1.5
Case 6: pressure

o 193 x 21

-  385 x 41
-Cp

x/c 0 0.5 1

0

2

4

6

x 10
-3 skin friction

o 193 x 21
-  385 x 41Cf

x/c

lower

upper

Figure 4. Grid refinement study (pressure and skin friction) for RAE2822 - Case 6.

To get an impression of the discretization error, the calculation of Case 6 has been repeated on a much
finer grid: in VISIAN 385× 41 (with 257 points along the profile) and in TRAFS 257× 97. Figure 4 shows a
comparison of the corresponding pressure and skin friction distributions; they are almost indistinguishable.
The convergence rate of the viscous-inviscid iterations appears not to be affected by the grid refinement.
This confirms the expectations: in both flow regions the calculations are converged sufficiently such that
information about updated coupling conditions can spread across the whole flow domain. Even when one of
the solvers is replaced by another one, the same VII convergence rate will be obtained.

B. Physics

Table 2 gives the aerodynamic coefficients (for grids with 129 points along the airfoil), with and without
inclusion of the normal pressure gradient. For all cases, inclusion of the normal pressure gradient has a
decreasing effect on the calculated lift, or an increasing effect on the computed angle-of-attack, respectively.
This is consistent (although less outspoken) with the expectations for rear-loaded airfoils.1, 5

Table 2. Experimental and calculated aerodynamic coefficients for RAE2822 airfoil.

experiment [p] = 0 [p] 6= 0

αexp CL CD αcorr α CL CD α CL CD

Case 1 2.40 0.566 0.0085 1.93 1.93 .589 0.0080 1.93 .581 0.0081

Case 6 2.92 0.743 0.0127 2.44 2.39 .743 0.0104 2.44 .743 0.0107

Case 9 3.19 0.803 0.0168 2.79 2.85 .803 0.0146 2.86 .803 0.0149

0 0.5 1
-0.5

0

0.5

1

1.5
RAE 2822 - Case 1: pressure

-Cp

x/c

+ experiment

0 0.5 1
0

1

2

3

4

5
x 10

-3 skin friction

upper

lower
Cf

x/c

Figure 5. Pressure and skin friction for RAE2822 - Case 1.
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0 0.5 1
-0.5

0

0.5

1

1.5
RAE 2822 - Case 9: pressure

+ experiment-Cp

x/c 0 0.5 1

0

2

4

x 10
-3 skin friction

upper

lower
Cf

x/c

Figure 6. Pressure and skin friction for RAE2822 - Case 9.

In Figs. 5 and 6 we show the pressure (including experiment) and skin friction for Cases 1 and 9. The
displacement thickness (Fig 7 (left)) shows a sharp kink at the trailing edge, which however does exactly fit
to the kink due to the finite trailing edge angle. We demonstrate this in Fig. 7 (right), where for Case 9 the
displacement body is shown. The curve is smooth: it is hardly possible to recognize individual grid points.
Also shown is the trailing edge streamline, obtained from integration of the velocity field of the viscous flow.
Once again we stress that these smooth results have been obtained straight from the discretization method,
without any additional artificial smoothing.

0 0.5 1 1.5
0

0.005

0.01

0.015

0.02
Case 9: displacement thickness

upper

lower

0.7 0.8 0.9 1 1.1 1.2 1.3
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
Case 9: displacementbody and wake streamline

airfoil surface

wake cut

displacementbody

wake streamline

Figure 7. Displacement thickness (left) and displacement body (right) for RAE2822 - Case 9 (note the enlarged
scale in vertical direction).

C. Comparison with other methods

The present result for Case 6 has been compared in Fig. 8 with results of various VII-methods and Navier–
Stokes methods from the Viscous Transonic Airfoil Workshop.2 Figure 8 shows the scattering of the cal-
culated results for Case 6 to be relatively large, even between the Navier–Stokes methods. An overview of
results for Cases 1 and 9 can be found in Ref. 26.

Part of the scattering is due to discretization and solution (iteration) errors, i.e. it is numerical noise. But
another important part of the scattering is caused by the difference in turbulence models applied. Coakley27

focusses on the influence of different turbulence models in Reynolds-averaged Navier–Stokes methods at
various flow conditions. Especially when the flow is separated and shocks occur, there is a substantial
difference in the calculated flow field. In Fig. 8 his results for Case 6 can be found at α = 2.40 (four results,
corresponding with four different turbulence models). Coakley’s results and those of the other participants in
the VTA-Workshop2 led Holst to the conclusion, already referred to in Section A, that “improved turbulence
models are desperately needed.”

The extent of these modeling errors remains unevitably unassessed. Even if the numerical noise is
minimized, the error due to the lack of physical relevance of the turbulence model cannot be assessed,
because no sufficiently accurate experiments are available. Validation of the present results against other
digital simulation results is hampered through these unassessed modeling errors. The only judgement that
can be expressed here is that the VII results are no better and no worse than those of the more expensive
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Navier–Stokes methods. Although the above comparison has been carried out almost two decades ago, in my
opinion, since then the progress in turbulence modelling has not yet led to significantly (and systematically)
better flow predictions, as demonstrated in more recent reviews.28, 29

V. The quest for a simpler interaction law

A. A model problem
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ci
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Navier−Stokes
VII methods
VISTRAFS

Figure 8. Comparison of present VIS-
TRAFS result for RAE2822 Case 6 (M∞ =
0.725, Re = 6.5 × 106) with VTA workshop2

The implementation of an interaction law, be it the thin-airfoil
expressions for thickness (10) and camber (11, 12) or an influ-
ence matrix of a panel method, can be cumbersome. Therefore,
it is worthwhile to investigate how much the interaction law can
be simplified, in the direction of the classical condition ‘ue =
prescribed’, without being struck by Goldstein’s singularity.
The viscous-inviscid convergence is likely to deteriorate, but
the effort to adapt an existing ‘classical’ boundary-layer code
to separated-flow computations will be smaller. Thus, referring
to the quasi-simultaneous formulation (9), the question is

How ‘small’ can I be chosen?

This question has been thoroughly investigated in the Ph.D.
thesis of Coenen.30 She has performed an analysis based on
the theory for non-negative matrices and the closely related
M-matrices.31, 32 We will first summarize the theory as devel-
oped by Coenen; thereafter the usefulness of the theory will be
demonstrated on some realistic flow problems. As a reminder,
it is remarked that I = 0 corresponds with the direct method
that blows up in Goldstein’s singularity.

To shape the theory, as a model problem the flow past an indented plate is studied for which the external
flow will be described by the thin-airfoil expression (10). It is our aim to construct a simple interaction law
for this case. Let us first collect some properties of the operators E and B in Eq. (9).

External flow The integral (10) is discretized on a uniform grid with mesh size h. The displacement
thickness δ∗ is interpolated by a piecewise linear function; only on the two intervals adjacent to the Cauchy
principal value a quadratic interpolation is used:

E [δ∗] ≡
1

π

∫

Γ

dδ∗

dξ

dξ

xi − ξ
=

1

π

{

∫ xi+1

xi−1

+ Σj 6=i−1,i
1

π

∫ xj+1

xj

}

dδ∗

dξ

dξ

xi − ξ

≈ −
2h

π

d2δ∗

dξ2

∣

∣

∣

∣

i

+
h

π
Σj 6=i−1,i

dδ∗

dξ

∣

∣

∣

∣

j+1/2

ln

∣

∣

∣

∣

i − j

i − j − 1

∣

∣

∣

∣

. (17)

After discretization of the ξ-derivatives in Eq. (17), the corresponding discrete matrix E is symmetric,
positive definite with diagonal 4/πh, and with non-positive off-diagonal entries.

Boundary-layer flow Referring e.g. to Ref. 22, a discrete boundary-layer operator B typically is lower
diagonal, with negative diagonal entries for attached flow and (slightly) positive diagonal entries for reversed
flow; compare the slope of the (δ∗, ue)-relation in Fig. 2.

B. Simplified interaction in theory

To develop the theory, first the quasi-simultaneous method (9) will be rewritten in matrix notation

u
(n)
e − I δ∗(n) = (E − I) δ∗(n−1)

u
(n)
e − B δ∗(n) = 0

}

⇒ (I − B) δ∗(n) = (I − E) δ∗(n−1) . (18)
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After convergence, the ultimate system to be solved reads in matrix notation

(E− B) δ∗ = 0 . (19)

We will consider situations with steady flow, for which it is natural to make the following assumption;
moreover it allows theory to be developed:

Assumption The matrix E − B is assumed to be (positive) stable, i.e. all its eigenvalues lie in
the stable half plane, with positive diagonal entries and non-positive off-diagonal entries (hence
it is an M-matrix).

3

4

1

2

0

−1

−2

−4

−3

1

2

0

−1

−2

0

0

E : I :
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D

D

D

D

D

D

Figure 9. The interaction law I (right) may be obtained from the external flow matrix E (left) by omitting
some off-diagonals (here two diagonals on each side have been retained).

The choice of the interaction law obviously has an influence on the numerical behaviour of the viscous-
inviscid algorithm. In the above setting a number of theoretical statements can be made:30

1. VII iterations An interaction law as in Eq. (18) corresponds with a splitting E−B = (I−B)− (I−E).
When I ≥ E this splitting is regular, and theory about its convergence is available (Ref. 32, page 88).
This suggests to construct I from E by dropping one or more off-diagonals (Fig. 9). Subsequently it
can be proven that the convergence of the VII iterations deteriorates monotonously with the number
of dropped off-diagonals in I.

2. Boundary-layer iterations Each VII iteration a boundary-layer computation has to be performed, in
which Eq. (18) is to be solved. This is done by repeated, Gauss-Seidel type, marching through the
boundary layer, for which a strong diagonal enhances convergence. In this way it can be proven that
the Gauss-Seidel convergence improves monotonously with the number of dropped off-diagonals in I.

3. Robustness The boundary-layer formulation is highly nonlinear as already shown in Fig. 2. This figure
shows that prescribing a linear combination of ue and δ∗, as is the case when an interaction law is
applied, will only be useful when the coefficient of δ∗ stays sufficiently away from zero through all
stages of the iterative solution process. Hence a large coefficient of δ∗ is profitable, or in matrix terms,
the eigenvalues of I − B should stay sufficiently far from the imaginary axis. In this respect it can be
proven that the robustness of the interaction law grows with the number of dropped off-diagonals.

The latter two aspects do suggest to choose the interaction law ’simply’ as just the diagonal of the external-
flow operator. In contrast, the first aspect suggests to take it equal to the full external-flow operator. The
numerical behaviour in practice has to reveal which of the two effects is dominating.

C. Simplified interaction in practice

From a systematic study30 of turbulent flow along the indented plate, it follows that the above extremes
are the most interesting choices for the interaction law. The choice I = E would correspond to a fully
simultaneous treatment, leaving the choice I = diag(E) as the interesting quasi-simultaneous choice.

This choice for an, indeed very simple, interaction law will now be tested for aerodynamic flow past a
NACA0012 airfoil (at Re = 9 · 106, and M∞ = 0); experimental data is available. The inviscid flow is
modelled by potential theory, and computed by means of a panel method. Boundary layer plus wake are
modelled with Head’s entrainment method.30 They are solved together with the interaction law

I = diag{4/πh} . (20)
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We stress that this interaction law is unaware of the Kutta condition and its effect on the global circulation;
it only accounts for the local VII physics. But this turns out to be sufficient!
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Figure 10. Lift polar for NACA0012
airfoil: viscous-inviscid calculation ver-
sus experiment.

A large part of the lift polar has been computed (Fig. 10). The
calculations turn out to be highly robust. It appears that even for
separated-flow cases beyond maximum lift the calculations converge
without any need for a good initial guess; they can be started from
scratch! The number of VII iterations with the extremely simple
interaction law (20) typically is less than 100 at zero lift up to 1000
around maximum lift; only for larger angles of attack the computa-
tions break down. The number of iterations may sound large, but
they can easily can be combined with the time-stepping in an un-
steady inviscid-flow solver. Unfortunately, such an unsteady flow
solver is not at my disposal, and the evaluation of the performance
of the above ’minimal’ interaction law (20) in transonic flow con-
ditions will have to wait. Anyway, in the above setting, for two-
dimensional simulations the computing times count in just seconds
on an average PC. So only in the extension of the method to three
dimensions computing times could form an issue. By the way, many
three-dimensional quasi-simultaneous experiences have been gath-
ered over the years.30, 33, 34, 35, 36, 37, 38

VI. Concluding remarks

Mathematics A quasi-simultaneous VII method, originally developed at NLR, has been discussed. A de-
scription has been presented of the underlying mathematical model which includes the effect of pressure
variations across the shear layer. By modelling the pressure jump across the shear layer in integral formula-
tion the shear-layer equations remain parabolic. In this way the required solution effort remains modest. It
is essential for the convergence of the VII iterations that the pressure jump is treated simultaneously with the
shear-layer equations. The calculations show a swift convergence of the iterations between the viscous-flow
and inviscid-flow solvers. This convergence is found to be independent of the grid size.

Further, a theoretical analysis of the interaction law has been carried out, suggesting a very simple one,
and which corresponds to a boundary condition

(

ue +
4

πh
δ∗

)(new)

=

(

ue +
4

πh
δ∗

)(old)

.

This slight change from the classical formulation, unlikely to be further simplified, results in a highly robust
calculation method, applicable to subsonic airfoil calculations beyond maximum lift. Its performance on
transonic flow remains to be investigated.

Physics Results from VISTRAFS have been presented for the moderately rear-loaded RAE 2822 airfoil,
both with and without modeling of the pressure variations across the shear layer. Both sets of results are
comparable to those of other digital simulation methods: VII-methods as well as TLNS-methods. The better
agreement with the physical simulation results is obtained when the normal pressure variations have been
taken into account. Validation against other digital simulation results is still hampered through the large
influence of the turbulence model on the results.

Thus, at present the Navier–Stokes methods do not perform significantly better than VII methods,
although the latter require much less computer resources. The current method requires only a price of
roughly five times that of a potential flow solver, which is two orders more efficient than a Navier–Stokes
solver. As a consequence, the present approach fits easily in a simple PC. As long as turbulence models do
not significantly improve, this situation will remain unchanged. Therefore, at the moment VII methods are
certainly worth their name: “poor man’s Navier–Stokes”.
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