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00184 Rome, Italy.

3 Department of Electrical and Systems Engineering, Washington University,
St. Louis, MO 63130, USA.
isidori@zach.wustl.edu, lmarconi@deis.unibo.it

Summary. In this paper, we consider a servomechanism problem in which the com-
mand and control functions are distributed in space, and hence the system consists
of different components linked by a communication channel of finite capacity. The
desired control goal is achieved by designing appropriate encoders, decoders and
internal models of the exogenous signals. As an application, we describe a how the
output of a system can be forced to track a reference signal generated by a remotely
located nonlinear oscillator.

Keywords: Nonlinear tracking, internal model, encoding, remote control.

1 Introduction

Generally speaking, the problem of tracking and asymptotic disturbance re-
jection (sometimes also referred to as the generalized servomechanism problem
or the output regulation problem) is to design a controller so as to obtain a
closed-loop system in which all trajectories are bounded, and a regulated out-
put asymptotically decays to zero as time tends to infinity. The peculiar aspect
of this design problem is the characterization of the class of all possible exoge-
nous inputs (disturbances, commands, uncertain constant parameters) as the
set of all possible solutions of a fixed (finite-dimensional) differential equation.
In this setting, any source of uncertainty (about actual disturbances affecting
the system, about actual trajectories that are required to be tracked, about
any uncertain constant parameters) is treated as uncertainty in the initial
condition of a fixed autonomous finite dimensional dynamical system, known
as the exosystem.
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© Springer-Verlag Berlin Heidelberg 2005
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The body of theoretical results that was developed in this domain over
about three decades has scored numerous important successes and has now
reached a stage of full maturity. The design of a controller that solves a gen-
eralized servomechanism problem is centered around the design of an inter-
nal model, which is an autonomous dynamical system capable of generating
all possible “feed-forward inputs” capable of securing perfect tracking. Even
though several different approaches to the design of internal models have been
pursued in the literature (see e.g. [13, 3, 19, 8]) it was only recently that the
design in question was understood to be based on the very same principles
underlying the design of state observers. And, of course, in the design of regu-
lators for nonlinear systems, it is the design on nonlinear observers that plays
a crucial role.

The theory of nonlinear observers has been used, in the design of nonlin-
ear regulators, at different levels of generality. The earliest contribution of this
kind is directly related to the pioneering work of Michael Zeitz on the design
of nonlinear observers [2]. Professor Zeitz investigated the problem of deter-
mining when and how the dynamics of the observation error can be made
diffeomorphic to a linear dynamics, a problem that later became known as
problem of linearization by output injection. As a matter of fact, the same
principles inspiring the method of linearization by output injection have been
used in [9] for the design of a (special class of) nonlinear internal models. An
adaptive version of the method, based on the works of [1, 18], was used later
in [10] for the design of a class of adaptive nonlinear internal models. Finally,
the theory of high-gain nonlinear observers as developed by [12] was used in
[6] for the design of a fully general (though not adaptive) nonlinear internal
model.

In this paper, we consider a servomechanism problem in which the com-
mand and control functions are distributed in space, and hence the system
consists of different components linked by communication networks. The sim-
plest case in which this situation may occur is when generation of reference
signals and control functions take place at distant locations. The problem ad-
dressed is the control of a plant so as to have its output tracking (a family of)
reference commands generated at a remote location and transmitted through a
communication channel of finite capacity. What renders the problem in ques-
tion different from a conventional tracking problem is that the tracking error,
that is the difference between the command input and the controlled out-
put, is not available as a physical entity, as it is defined as difference between
two quantities residing at different (and possibly distant) physical locations.
Therefore the tracking error as such cannot be used to drive a feedback con-
troller, as it is the case in a standard tracking problem. As a simple example
of application of our method, we describe a how the output of a system can
be forced to track a reference signal generated by a remotely located Van der
Pol oscillator.
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2 Problem Statement

The problem outlined in the introduction can be defined in the following terms.
Consider a single-input single-output nonlinear system modeled by equations
of the form

ẋ = f(x) + g(x)u
y = h(x) (1)

and suppose its output y is required to asymptotically track the output ydes

of a remotely located exosystem

ẇ = s(w) w ∈ Rr

ydes = yr(w) .
(2)

The problem is to design a control law of the form

ξ̇ = ϕ(ξ, y, wq)
u = θ(ξ, y, wq)

(3)

in which wq represents a sampled and quantized version of the remote exoge-
nous input w, so as to have the tracking error

e(t) = y(t) − yr(w(t)) (4)

asymptotically converging to zero as time tends to ∞. Note that the controller
in question does not have access to e, which is not physically available, but
only to the controlled output and to a sampled and quantized version of the
remotely generated command.

We will show in what follows how the theory of output tracking can be
enhanced so as to address this interesting design problem. In particular, we
will show how, by incorporating in the controller two (appropriate) internal
models of the exogenous signals, the desired control goal can be achieved.
One internal model is meant to asymptotically reproduce, at the location of
the controlled plant, the behavior of the remote command input. The other
internal model, as in any tracking scheme, is meant to generate the “feed-
forward” input which keeps the tracking error identically at zero.

We begin by describing, in the following section, the role of the first internal
model.

3 The Encoder-Decoder Pair

In order to overcome the limitation due to the finite capacity of the com-
munication channel, the control structure proposed here has a decentralized
structure consisting of two separate units: one unit, co-located with the com-
mand generator, consists of an encoder which extracts from the the reference
signal the data which are transmitted through the communication channel;
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the other unit, co-located with the controlled plant, consists of a decoder which
processes the encoded received information and of a regulator which generates
appropriate control input.

The problem at issue will be solved under a number of assumptions most
of which are inherited by the literature of output regulation and/or control
under quantization. The first assumption, which is a customary condition in
the problem of output regulation, is formulated as follows.

(A0) The vector field s(·) in (2) is locally Lipschitz and the initial conditions
for (2) are taken in a fixed compact invariant set W0.

The next assumption is, on the contrary, newer and motivated by the
specific problem addressed in this paper. In order to formulate rigorously the
assumption in question, we need to introduce some notation. In particular let
|x|S denote the distance at a point x ∈ Rn from a compact subset S ⊂ Rn,
i.e. the number

|x|S := max
y∈S

|x − y|

and let
L0 = max

i∈[1,...,r]
(x,y)∈W0×W0

|xi − yi| . (5)

Furthermore, having denoted by Nb the number of bits characterizing the
communication channel constraint, let N be the largest positive integer such
that

Nb ≥ r log2 N (6)

where υ , υ ∈ R, denotes the lowest integer such that υ ≥ υ.
With this notation in mind, the second assumption can be precisely for-

mulated as follows.

(A1) There exists a compact set W ⊃ W0 which is invariant for ẇ = s(w)
and such that

w̄ ∈ W ⇒ |w̄|W0 ≥ √
r

L0

2N
.

W being compact and s(·) being locally Lipschitz, it is readily seen that
there exists a non decreasing and bounded function M(·) : R≥0 → R>0, with
M(0) = 1, such that for all w10 ∈ W and w20 ∈ W and for all t ≥ 0

|w1(t) − w2(t)| ≤ M(t)|w10 − w20| (7)

where w1(t) and w2(t) denote the solutions of (2) at time t passing through
w10 and, respectively, w20 at time t = 0.

This function, the sampling interval T , the number L0 defined in (5) and
the number N fulfilling (6), determine the parameters of the encoder-decoder
pair, which are defined as follows (see [20], [17], [11] for more details).

Encoder dynamics. The encoder dynamics consist of a copy of the exosystem
dynamics, whose state is updated at each sampling time kT , k ∈ N and
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determines (depending on the actual state of the exosystem) the centroid of
the quantization region, and of an additional discrete-time dynamics which
determines the size of the quantization region. Specifically, the encoder is
characterized by

ẇe = s(we) we(kT ) = we(kT−) + wq(k)
L(k)
N

we(0−) ∈ W0

L(k + 1) =
√

r
M(T )

N
L(k) L(0) = L0

in which wq represents the encoded information given by, for i = 1, . . . , r,

wq,i(k) = sgn(wi(kT )−we,i(kT−))·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N |wi(kT )−we,i(kT−)|

L(k)
− 1

2
N even

N |wi(kT )−we,i(kT−)|
L(k)

− 1
2

N odd .

At each sampling time kT , the vector wq(k) is transmitted to the controlled
plant through the communication channel and then used to update the state
of the decoder unit as described in the following. To this regard note that
each component of the vector wq(k) can be described by log2 N bits and
thus the communication channel constraint is fulfilled.

Decoder dynamics The decoder dynamics is a replica of the encoder dynamics
and it is given by

ẇd = s(wd) wd(kT ) = wd(kT−) + wq(k)
L(k)
N

wd(0−) = we(0−)

L(k + 1) =
√

r
M(T )

N
L(k) L(0) = L0

(8)

If, ideally, the communication channel does not introduce delays, it turns
out that wd(t) ≡ we(t) for all t ≥ 0. Furthermore, it can be proved that the set
W characterized in Assumption (A1) in invariant for the encoder (decoder)
dynamics and that the asymptotic behavior of we(t) (wd(t)) converges uni-
formly to the true exosystem state w(t), provided that T is properly chosen
with respect to the number N and the function M(·). This is formalized in
the next proposition (see [17], [11] for details).

Proposition 1. Suppose Assumptions (A0)-(A1) hold and that the sampling
time T and the number N satisfy

N >
√

r M(T ) . (9)
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(i) for any wd(0−) ∈ W0 and w(0) ∈ W0, wd(t) ∈ W for all t ≥ 0;

(ii) for any wd(0−) ∈ W0 and w(0) ∈ W0,

lim
t→∞ |w(t) − wd(t)| = 0

with uniform convergence rate, namely for every > 0 there exists T ∗ > 0
such that for all initial states wd(0−) ∈ W0, w(0) ∈ W0, and for all t ≥ T ∗,
|w(t) − wd(t)| ≤ .

Proof. As W is an invariant set for ẇ = s(w), the proof of the first item
reduces to show that, for all k ≥ 0, if wd(kT−) ∈ W then necessarily wd(kT ) ∈
W . For, note that this is true for k = 0. As a matter of fact, since wd(0−) ∈
W0 ⊂ W and by bearing in mind the definition of wq, it turns out that
|wd(0) − w(0)| ≤ √

rL0/2N which implies, by definition of W in Assumption
(A1), that wd(0) ∈ W . For a generic k > 0 note that, again by definition of
wq, it turns out that |wd(kT )−w(kT )| ≤ √

rL(k)/2N . But, by the second of
(8) and by condition (9), L(k) < L(k − 1) ≤ L0 yielding |wd(kT )− w(kT )| ≤√

rL0/2N which implies wd(kT ) ∈ W . This completes the proof of the first
item. The second item has been proved in [17], [11].

Remark 1. By composing (6) with (9) it is easy to realize that the number of
bits Nb and the sampling interval T are required to satisfy the constraint

Nb ≥ r log2

√
r M(T ) (10)

in order to have the encoder-decoder trajectories asymptotically converging to
the exosystem trajectories. Since the function M(·) depends on the exosystem
dynamics and on the set W0 of initial conditions for (2), equation (10) can be
interpreted as a relation between the bit-rate of the communication channel
and the exosystem dynamics which must be satisfied in order to remotely
reconstruct the reference signal.

4 The Design of the Regulator

4.1 Standing Hypotheses

As in most of the literature on regulation of nonlinear system, we assume in
what follows that the controlled plant has well defined relative degree and
normal form. If this is the case and if the initial conditions of the plant are
allowed to vary on a fixed (though arbitrarily large) compact set, there is no
loss of generality in considering the case in which the controlled plant has
relative degree 1 (see for instance [4]). We henceforth suppose that system (1)
is expressed in the form

Then:
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ż = f(z, y, μ) z ∈ Rn

ẏ = q(z, y, μ) + u y ∈ R (11)

in which μ is a vector of uncertain parameters ranging in a known compact
set P . Initial conditions (z(0), y(0)) of (11) are allowed to range on a fixed
(but otherwise arbitrary) compact set Z × Y ⊂ Rn × R.

It is well known that, if the regulation goal is achieved, in steady-state (i.e
when the tracking error e(t) is identically zero) the controller must necessarily
provide an input of the form

uss = Lsyr(w) − q(z, yr(w), μ) (12)

(where Lsyr(·) stands for the derivative of yr(·) along the vector field s(·)) in
which w and z obey

μ̇ = 0
ẇ = s(w)
ż = f(z, yr(w), μ) .

(13)

As in [5], we assume in what follows that system (13) has a compact at-
tractor, which is also locally exponentially stable. To express this assumption
in a concise form, it is convenient to group the components μ, w, z of the state
vector of (13) into a single vector z = col(μ, w, z) and rewrite the latter as

ż = f0(z) .

Consistently, the map (12) is rewritten as

uss = q0(z) ,

and it is set Z = P ×W ×Z. The assumption in question is the following one:

(A2) there exists a compact subset Z of P × W × Rn which contains the
positive orbit of the set Z under the flow of (13) and ω(Z) is a differential
submanifold (with boundary) of P ×W ×Rn. Moreover there exists a number
d1 > 0 such that

z ∈ P × W × Rn , |z|ω(Z) ≤ d1 ⇒ z ∈ Z .

Finally, there exist m ≥ 1, a > 0 and d2 ≤ d1 such that

z0 ∈ P × W × Rn , |z0|ω(Z) ≤ d2 ⇒ |z(t)|ω(Z) ≤ me−at|z0|ω(Z) ,

in which z(t) denotes the solution of (13) passing through z0 at time t = 0.

In what follows, the set ω(Z) will be simply denoted as A0. The final
assumption is an assumption that allows us to construct an internal model of
all inputs of the form uss(t) = q0(z(t)), with z(t) solution of (13) with initial
condition in A0. This assumption, which can be referred to as assumption of
immersion into a nonlinear uniformly observable system, is the following one:
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(A3) There exists an integer d > 0 and a locally Lipschitz map ϕ : Rd → R
such that, for all z ∈ A0, the solution z(t) of (13) passing through z0 at t = 0
is such that the function u(t) = q0(z(t)) satisfies

u(d)(t) + ϕ(u(t), u(1)(t), . . . , u(d−1)(t)) = 0 . (14)

4.2 A Nonlinear Observer as Nonlinear Internal Model

As mentioned in the introduction, nonlinear observers play a fundamental role
in the design of nonlinear regulators. To see why this is the case consider a
candidate controller having the following structure

ξ̇ = Φ(ξ) + Ψ(ξ)v
u = γ(ξ) + v

(15)

in which ξ ∈ Rν and v is an additional control, to be determined at a later
stage. Controlling the plant (11) by means of (15) yields a system

μ̇ = 0
ẇ = s(w)
ż = f(z, y, μ)
ẏ = q(z, y, μ) + γ(ξ) + v

ξ̇ = Φ(ξ) + Ψ(ξ)v
e = y − yr(w)

which, regarded as a system with input v and output e, has a well-defined
relative degree, equal to one. If the vector field Ψ(ξ) is complete, this system
has a globally-defined normal form (see e.g. [14, pages 427-432]). Its zero
dynamics are those of

μ̇ = 0
ẇ = s(w)
ż = f(z, yr(w), μ)
ξ̇ = Φ(ξ) + Ψ(ξ)[Lsyr(w) − q(z, yr(w), μ) − γ(ξ)] ,

and these equations, using the concise notation z = col(μ, w, z) introduced
above, can be rewritten as

ż = f0(z)
ξ̇ = Φ(ξ) + Ψ(ξ)[q0(z) − γ(ξ)] .

(16)

It is known that if a system has relative degree one, a globally defined
normal form, and a zero dynamics whose trajectories asymptotically converge
to a compact attractor, control by means of high-gain output feedback has the
effect of keeping trajectories bounded and steering the output itself to zero.
In view of this fact, it is reasonable to expected that if the trajectories of
(16) converge to a compact attractor, the choice of the additional control v in
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(15) as a high-gain feedback on e can be used to solve the problem of output
regulation. Leaving aside, for the time being, the fact that the variable e is not
– in the present setting – available for feedback, we describe in what follows
how the desired asymptotic properties of (16) can be achieved.

Note that the dynamics in question can be viewed as the cascade connec-
tion of two subsystems, the upper of which has trajectories which are bounded
and attracted by the compact invariant set A0 (see Assumption (A2)). Thus,
the idea is to design Φ(ξ), Ψ(ξ), γ(ξ) so that also in the full system (16) the
trajectories are bounded and attracted by a compact invariant set. Looking
at how the upper and the lower subsystem of (16) are coupled, it is seen that
the coupling takes places through the function uss(t) = q0(z(t)), which is seen
as “output” of the upper subsystem and “input” of the lower subsystem. In
view of Assumption (A3), as long as z0 ∈ A0, the function in question can be
regarded also as output of the autonomous nonlinear system

ζ̇1 = ζ2

ζ̇2 = ζ3

· · ·
ζ̇d−1 = ζd

ζ̇d = −ϕ(ζ1, ζ2, . . . , ζd)
uss = ζ1

which is trivially uniformly completely observable, in the sense of [12]. Taking
advantage of this property, it seems quite natural at this point to choose
the lower subsystem of (16) as an observer for the set of variables ζ1, . . . , ζd

(which is indeed always possible, because the latter possesses the required
observability properties). In this way, one is guaranteed that the components
of the vector ξ are attracted by a compact set, and the required asymptotic
property of (16) is obtained.

The nonlinear observer will be designed according to the so-called “high-
gain” construction proposed in [12]. To this end, consider the sequence of
functions recursively defined as

τ1(z) = q0(z) , . . . , τi+1(z) =
∂τi

∂z
f0(z)

for i = 1, . . . , d − 1, with d as introduced in assumption (A3), and consider
the map

τ : P × W × Rn → Rd

(μ, w, z) → col(τ1(z), τ2(z), . . . , τd(z)) .

If k, the degree of continuous differentiability of the functions in (11), is large
enough, the map τ is well defined and C1. In particular τ(A0), the image of
A0 under τ is a compact subset of Rd, because A0 is a compact subset of
P × W × Rn.

Let ϕc : Rd → R be any locally Lipschitz function of compact support
which agrees on τ(A0) with the function ϕ defined in (A3), i.e. a function
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such that, for some compact superset S of τ(A0) satisfies

ϕc(η) = 0 for all η ∈ S
ϕc(η) = ϕ(η) for all η ∈ τ(A0).

With this in mind, consider the system

ξ̇ = Φc(ξ) + G(uss − Γξ) (17)

in which

Φc(ξ) =

⎛⎜⎜⎜⎜⎝
ξ2

ξ3

· · ·
ξd

−ϕc(ξ1, ξ2, . . . , ξd)

⎞⎟⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎝
κcd−1

κ2cd−2

· · ·
κd−1c1

κdco

⎞⎟⎟⎟⎟⎠ , Γ = 1 0 · · · 0 ,

the ci’s are such that the polynomial λd + c0λ
d−1 + · · ·+ cd−1 = 0 is Hurwitz

and κ is a positive number. As shown in [6], if κ is large enough, the state
ξ(t) of (17) asymptotically tracks τ(z(t)), in which z(t) is the state of system
(13). Therefore Γξ(t) asymptotically reproduces its output (12), i.e. the steady
state control uss(t). As a matter of fact, the following result holds.

Lemma 1. Suppose assumptions (A1) and (A2) hold. Consider the triangular
system

ż = f0(z)

ξ̇ = Φc(ξ) + G(q0(z) − Γξ) .
(18)

Let the initial conditions for z range in the set Z and let Ξ be an arbitrarily
large compact set of initial condition for ξ. There is a number κ∗ such that,
if κ ≥ κ∗, the trajectories of (18) are bounded and

graph(τ |A0 ) = ω(Z× Ξ) .

In particular graph(τ |A0 ) is a compact invariant set which uniformly attracts
Z × Ξ. Moreover, graph(τ |A0 ) is also locally exponentially attractive.

4.3 The Remote Regulator and its Properties

In view of Lemma 1, it would be natural – if the true error variable e were
available for feedback purposes – to choose for (11) a control of the form

ξ̇ = Φc(ξ) − Gke
u = Γξ − ke ,

(19)

with k a large number. This control, in fact, would solve the problem of output
regulation (see [5]). The true error e not being available, we choose instead
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ê = y − yr(wd) (20)

and the controller accordingly as

ξ̇ = Φc(ξ) − Gkê
u = Γξ − kê .

(21)

The main result which can be established is that there exists k∗ > 0 such
that if k ≥ k∗ the regulator designed above solves the problem in question
(provided that N and T satisfy the condition of Proposition 1).

To this end, it is shown first of all the trajectories of the controlled system,
namely those of the system

ẇd = s(wd) wd(kT ) = wd(kT−) + wq(k)
L(k)
2N

ż = f(z, y, μ)

ẏ = q(z, y, μ) + Γξ − k(y − yr(wd))

ξ̇ = Φc(ξ) − Gk(y − yr(wd))
(22)

are bounded. To study trajectories of (22) it is convenient to replace the
coordinate y by

ê = y − yr(wd)

to obtain the system

ẇd = s(wd)
ż = f(z, ê + yr(wd), μ)

ξ̇ = Φc(ξ) − Gkê

˙̂e = q(z, ê + yr(wd), μ) − Lsyr(wd) + Γξ − kê .

(23)

This system can be further simplified by changing the state variable ξ into
ξ̃ = ξ − Gê and setting p = col(μ, wd, z, ξ̃), so as to obtain a system of the
form

ṗ = F0(p) + F1(p, ê)ê
˙̂e = H0(p) + H1(p, ê)ê − kê ,

(24)

in which

F0(p) =

⎛⎜⎜⎝
0

s(wd)
f(z, yr(wd), μ)

Φ(ξ̃) + G(−q(z, yr(wd), μ) + Lsyr(wd) − Γ ξ̃)

⎞⎟⎟⎠
H0(p) = q(z, yr(wd), μ) − Lsyr(wd) + Γ ξ̃

and F1(p, ê), H1(p, ê) are suitable continuous functions.
With this notation at hand, it is possible to show that a large value of

k succeeds in rendering bounded the trajectories of the switched nonlinear
system (24) provided that the sampling interval T is sufficiently large.
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Proposition 2. Consider system (22) with initial conditions in P ×W ×Z ×
Y ×Ξ. Suppose assumptions (A0)-(A3) hold. Let κ be chosen as indicated in
Lemma 1. Then there exist T ∗ > 0 and k∗ > 0 such that for all sampling
intervals T > T ∗ and all k ≥ k∗ the trajectories are bounded in positive time.

Proof. See [16].

Proposition 2 shows that trajectories of the controlled system remain
bounded if the time interval T exceeds a minimum number T ∗ (minimal
“dwell-time”) which depends on the parameters of the controlled system and
on the sets of initial conditions. This, in view of (10), requires Nb to exceed a
suitable minimum number N∗

b . 4

To prove that the tracking error converges to zero, it is useful to observe
that, if the coordinate y of (22) is replaced by

e = y − yr(w)

the system in question can be also rewritten as

ẇ = s(w)
ż = f(z, e + yr(w), μ)

ξ̇ = Φc(ξ) + G(−ke) + G(−kẽ)
ė = q(z, e + yr(w), μ) − Lsyr(w) + Γξ − ke − kẽ

(25)

having set
ẽ = ê − e .

The same change of variables used to put (23) in the form (24) yields now
a system of the form

ṗ = F0(p) + F1(p, e)e
ė = H0(p) + H1(p, e)e − ke − kẽ ,

(26)

in which p = col(μ, w, z, ξ̃) and F0(p), F1(p, e), H0(p), H1(p, e) are the same as
in (24). This system can be viewed as system

ṗ = F0(p) + F1(p, e)e
ė = H0(p) + H1(p, e)e − ke

(27)

forced by a perturbation

ẽ = yr(w) − yr(wd)

which, since yr(w) is continuous, is asymptotically vanishing because of Propo-
sition 1.
4 If the number Nb is fixed and not compatible with the minimal dwell time T ∗

determined in the proof of Proposition 2, a more elaborate control structure has
to be used, as suggested in [16].
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The asymptotic properties of (24) have been investigated in [7]. In partic-
ular, the results presented in that paper show that if k is large enough, system
(24) is input-to-state stable, with restrictions, with respect to a compact sub-
set which is entirely contained in the set {(p, e) : e = 0}. This property can
be exploited to prove the main result of the paper.

Proposition 3. Consider system (22) with initial conditions in P ×W ×Z ×
Ξ × Y . Suppose assumptions (A0)-(A3) hold. Let κ be chosen as indicated
in Lemma 1. Then there exist T ∗ > 0 and k∗ > 0 such that for all sampling
intervals T > T ∗ and all k ≥ k∗, trajectories are bounded in positive time and

lim
t→∞ e(t) = 0 .

Proof. See [16].

5 Simulation Results

We consider the problem of synchronizing two oscillators located at remote
places through a constrained communication channel. The master oscillator
(playing the role of exosystem) is a Van der Pol oscillator described by

ẇ1 = w2 + (w1 − aw3
1)

ẇ2 = −w1
(28)

whose output yr = w2 must be replied by the output y of a remote system of
the form

ẏ = u . (29)

Simple computations show that, in this specific case, the steady state control
input uss coincides with uss = −w1 and the assumption (A3) is satisfied by

ξ̇1 = ξ2

ξ̇2 = −ϕ(ξ1, ξ2)

uss = ξ1

where ϕ(ξ1, ξ2) = ξ1 − (ξ2 − 3aξ2
1ξ2) through the map

τ(w) = −w1 −w2 + (w1 − aw3
1)

T

We consider a Van der Pol oscillator with = 1.5 and a = 1. The regulator
(21) is tuned choosing κ = 3, G = (12 36)T and k = 8. We consider two dif-
ferent simulative scenarios which differ for the severity of the communication
channel constraint. In the first case we suppose that the number of available
bits is Nb = 2 yielding, according to (6) and to the fact that r = 2, N = 2. In
this case, for a certain set of initial conditions, condition (9) is fulfilled with
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T = 0.15 s. In the second case the available number of bits is assumed Nb = 4
from which (6) and (9) yield a bigger N and T respectively equal to N = 4
and T = 0.5 s. The simulation results, obtained assuming the exosystem (28)
and the system (29) respectively at the initial conditions w(0) = (1, 0) and
y(0) = 5, are shown in the figure 1 for the first scenario and figure 2 for the
second one. In particular figure 1 (respectively 2) shows in the left-half side
the phase portrait of the Van der Pol oscillator with overlapped the actual
state trajectory of the encoder (decoder) and, in the right-half side, the time
behavior of the reference trajectory yr(t) (dotted line) and of the controlled
output y(t) (solid line).
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Fig. 1. First control scenario (N = 2, T = 0.15 s). Left: phase portrait of the
exosystem (dotted line) and trajectory (we1, we2) (solid line). Right: time behavior
of the reference trajectory yr(t) (dotted line) and of the controlled output y(t) (solid
line).
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