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Chapter 1 

 

General introduction and aims of the thesis 

 

Diagnosis and treatment of ST segment elevation myocardial infarction 
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College of Cardiology (ACC)5, and the American Heart Association (AHA)5 requires a 

typical clinical syndrome plus a rise and fall in creatine kinase-MB (CK-MB) or tropinin. 

 

Predictors of death in patients with myocardial ischemia and 

infarction 

 

A number of prognostic models have been developed in populations of patients with ST 

segment elevation MI to determine the predictive value of several characteristics to 

predict outcome.6-9 In the multinational, observational Global Registry of Acute Coronary 

Events (GRACE) the value of baseline clinical and demographic characteristics on hospital 

mortality was predicted in an unselected population of patients with acute coronary 

syndrome.10 Killip class, age, blood pressure, cardiac arrest, positive enzymatic markers, 

serum creatinine level, ST segment deviation, and heart rate contained most of the 

prognostic information. Although acute coronary syndromes are usually categorized 

according to the presence or the absence of ST segment elevation at the time of 

presentation, this variable did not appear to be important for determining the risk of death 

after accounting for the presence of ST segment deviation. The risk of major 

cardiovascular complications and death is dependent on acute and pre-existing risk 

factors (table 1).  

     

Table 1. High risk factors and markers of outcome 

• Age 

• Previous cardiovascular disease 

• ST segment deviation 

• Rhythm disturbances (bundle branch block, ventricular fibrillation, cardiac arrest) 

• Signs of heart failure (Killip class ≥2) 

• Glucose derangement (elevated glycosylated hemoglobin or diabetes mellitus) 

• Renal dysfunction (raised serum creatinine, raised blood urea nitrogen, reduced 

creatinine clearance, micro-albuminuria) 

• Elevated inflammatory markers (C reactive protein, interleukin-6) 

• Extent of coronary artery disease on angiography (multi-vessel disease) 

• Large enzymatic infarct size 

 

General measures 

 

The underlying principles of the treatment of ST segment elevation MI patients are to 

provide relief of ischemia and pain. In the presence of heart failure or shock, assisted 
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ventilation with positive end expiratory pressures may be required.4;5 Reperfusion of 

critically ischemic myocardium is crucial in those with acute ST elevation or (new-onset) 

left-bundle branch block or posterior MI. Hemodynamic support may be necessary in 

patients with hypotension or cardiogenic shock, i.e., patients with Killip class 4 at 

admission. If so indicated, this supports intra-aortic balloon pumping to stabilize the 

patient for PCI. Specific measures may be required to control hypertension so as to 

reduce myocardial wall stress, and to treat acute heart failure.  

 

Reperfusion therapy 

 

Early and effective reperfusion therapy is the cornerstone of treatment for acute ST 

segment elevation MI. Restoration of antegrade flow in the occluded artery can be 

achieved by PCI and/or fibrinolytic therapy. To evaluate the coronary blood flow in 

patients with the Thrombolysis in Myocardial Infarction (TIMI) flow is determined. The 

restoration of TIMI grade 3 flow, i.e., optimal flow,  is achieved in approximately 9 out of 

10 patients treated with PCI as compared to 5-7 out of 10 patients treated with fibrinolytic 

therapy.11 Early restoration of antegrade flow is related to diminished enzymatic infarct 

size, preserved left ventricular function, prevention of recurrent infarction, and short-term 

as well as long-term survival benefit. 

  

Fibrinolytic therapy 

The first two large-scale, placebo-controlled, randomized trials that compared fibrinolytic 

therapy with placebo demonstrated dramatic benefits for streptokinase. These two trials 

showed that streptokinase reduced 30-day mortality rates from 13% to 10.7% (P<0.001)12 

and 12% to 9.2% (P<0.001)13. These results also showed the synergistic benefits of 

antiplatelet agents and fibrinolytic therapy, since 30-day mortality was reduced to a 

greater extent by the combination of aspirin and streptokinase (13.2% versus 8.0%, 

P<0.001) than by aspirin alone (11.8% versus 9.4%, P<0.001).12;13 Subsequent long-term 

data from both trials confirmed that the mortality benefit with streptokinase persisted for 

at least 10 years. Similar trials with other fibrinolytic agents have shown complementary 

findings, and a systematic overview of all trials randomizing more than 1000 patients to 

fibrinolytic therapy or placebo (total N=58600) reported a significant reduction in 30-day 

mortality with fibrinolytic therapy compared to placebo (11.5% versus 9.6%).14 Prehospital 

administration of fibrinolytic therapy has been proposed as a means of further reducing 

time to reperfusion. Several studies have analyzed the potential advantages of prehospital 

fibrinolytics. A recent meta-analysis (N=6434) that combined data from six randomized 

trials showed a 17%  reduction in mortality with prehospital fibrinolytics versus hospital-

administered fibrinolytic therapy (P=0.03).15 Fibrinolytic therapy is limited by various 
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safety and efficacy issues, such as contraindications and intracranial hemorrhage. 

However, until now the combination of glycoprotein IIb/IIIa receptor blockers or specific 

anti-thrombin (bivalirudin) and fibrinolytic therapy have not shown to improve survival, 

and may be associated with increased bleeding. 

 

Primary percutaneous coronary intervention 

Primary percutaneous coronary intervention (PCI) achieves reperfusion through 

mechanical recanalization of the infarct-related artery rather than through lysis of the 

coronary thrombus with fibrinolytic therapy. Dotter and Judkins were the first to propose 

the concept of reperfusion of the coronary artery by a catheter technique.16 In 1977, 

Grüntzig performed the first percutaneous balloon angioplasty.17 One year later, he and 

his colleagues reported that over a period of 18 months angioplasty had been used in 50 

patients.18 The technique was successful in 32 patients, reducing the stenosis from a 

mean of 84% to 34%. Percutaneous balloon angioplasty without the use of fibrinolytic 

therapy for acute MI was first described by Hartzler and colleagues in 1983.19 The first 

stents were implanted in 1985.20 

The number of trials comparing primary PCI with fibrinolytic therapy has been relatively 

small; however, these trials found an advantage for primary PCI. The first three 

randomized clinical trials comparing primary PCI with various fibrinolytic regimens were 

published in 1993. Zijlstra and colleagues found in 142 patients that compared to 

streptokinase primary PCI was associated with a lower incidence of the combined end-

point of recurrent infarction or angina, death, stroke, reocclusion, and heart failure (19% 

versus 47% P=0.001).21 Grines and colleagues found that primary PCI resulted in a lower 

rate of nonfatal reinfarction and death compared to tissue-type plasminogen activator 

(5.1% versus 12%, P=0.02) with a trend towards reduced overall mortality (2.6% versus 

6.5%, P=0.06).22 Gibbons and colleagues investigated in 108 patients the effect on 

myocardial salvage by technetium-99m-sestamibi and could not detect any improvement 

with primary PCI when compared to tissue-type plasminogen activator.23 These 

pioneering trials were too small to determine the magnitude of the impact of mechanical 

reperfusion on mortality. Subsequently, Weaver and colleagues performed a meta-

analysis incorporating data from the 10 available early trials that compared primary PCI 

with fibrinolytic therapy. Primary PCI was associated with a significantly lower rate of 30-

day mortality (4.4% versus 6.5%, P=0.02), as well as with a significantly lower rate of the 

combined end-point of death or nonfatal reinfarction (7.2% versus 11.9%, P<0.001). 

Furthermore, Zijlstra and colleagues evaluated the 5-year results in patients randomly 

assigned to primary PCI versus streptokinase and showed a significant reduction in 

mortality in the primary PCI group (13.4% versus 23.9%, P=0.01).24 
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Current data are available from 23 published randomized controlled trials with 7739 

patients.25 Eight trials compared primary PCI to streptokinase (N=1837), and 15 primary 

PCI with fibrin-specific agents (N=5902). Of the 3867 patients randomly assigned to 

fibrinolytic therapy, most (76%, N=2939) received a fibrin-specific agent (tissue-type 

plasminogen activator). Stents were used in twelve and platelet glycoprotein IIb/IIIa 

receptor blockers in eight trials. The included trials differ in many respects, including 

patient sample size, type of fibrinolytic therapy, and whether the stents were used with or 

without platelet glycoprotein IIb/IIIa receptor blockers. Primary PCI was found to be more 

effective than fibrinolytic therapy in reducing short-term and long-term major adverse 

clinical events, including death. It was also associated with better clinical outcomes, 

regardless of the type of fibrinolytic agent used or whether the patient required emergent 

transfer to another hospital for primary PCI. Thus, primary PCI reduces mortality for 

patients with ST segment elevation MI even in high-risk patients. In the ‘Should we 

emergenly revascularize Occluded Coronaries for cardiogenic shocK’ (SHOCK) trial it was 

observed that at 1 year patients treated with PCI or coronary artery bypass grafting had a 

lower mortality than patients receiving fibrinolytic therapy (34% versus 47%, P=0.03). 

Postprocedural TIMI grade 3 flow rates in primary PCI trials have been as high as 73% to 

97%, surpassing the 50% to 60% early TIMI grade 3 flow rates demonstrated with 

fibrinolytic therapy. Infarct-related artery reocclusion is also much less frequent after 

mechanical recanalization. Complications of PCI include the need for vascular repair and 

development of acute renal failure (approximately 3%).26;27 

 

Additional treatment 

 

To salvage viable myocardium by re-establishing coronary blood flow with the rapid use 

of reperfusion strategies is an essential first step. However, reperfusion of ischemic 

myocardium carries with it an inherent risk. Paradoxically, the process of reperfusion itself 

can result in myocyte death. This phenomenon is termed reperfusion injury. Mitochondria 

play a key role in determining cell fate during exposure to stress. Their role during 

ischemia/reperfusion is particularly critical due to the conditions that promote both 

apoptosis by the mitochondrial pathway and necrosis by irreversible damage to 

mitochondria in association with mitochondrial permeability transition. Mitochondrial 

permeability transition is caused by the opening of permeability transition pores in the 

inner mitochondrial membrane, leading to matrix swelling, outer membrane rupture, 

release of apoptotic signaling molecules such as cytochrome c from the intermembrane 

space, and irreversible injury to the mitochondria. During ischemia, factors such as 

intracellular calcium accumulation, fatty acid accumulation, and reactive oxygen species 

progressively increase mitochondrial susceptibility to mitochondrial permeability 
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transition, increasing the likelihood that mitochondrial permeability transition will occur on 

reperfusion. Since functional cardiac recovery ultimately depends on mitochondrial 

recovery, cardioprotection by ischemic and pharmacological preconditioning needs to 

involve the prevention of mitochondrial permeability transition. Experimental studies in 

animals suggest that it is possible to limit the amount of myocardial damage during  

ischemia and the early reperfusion periods. A variety of pharmacological approaches to 

prevention of injury (including vasodilators, adhesion molecule blockers, and receptor 

blockers of complement fractions) has been investigated. One of these potential additional 

treatments is metabolic intervention. Drugs such as ranolazine, trimetazidine, 

dichloroacetate, L-carnitine28 and glucose-insulin-potassium (GIK) infusion and glucagon-

like peptide29 have mechanisms of action distinct from traditional anti-ischemic drugs.30 

These agents work by shifting myocardial energy metabolism away from free fatty acids 

(FFA) toward glucose as a source of fuel. Since these agents are well tolerated and do not 

affect heart rate or blood pressure, they conceivably could supplement traditional anti-

ischemic drug therapy with little risk. 

 

Glucose-insulin-potassium infusion in myocardial ischemia 

 

In the timespan of almost a century, a large amount of experimental evidence has been 

accumulated that underlines the importance of glucose metabolism during 

ischemia/reperfusion of the heart. As early as 1912, Goulston suggested that treatment 

with glucose could be beneficial in several heart diseases.31 The first experimental results 

on the mechanical effects of insulin and glucose in the isolated heart were made by 

Visscher and Muller in 1926.32 In 1935, Evans and colleagues showed that in the ischemic 

myocardium the uptake of glucose is increased.33 Almost 30 years later, Sodi-Pallares and 

colleagues suggested that metabolic interference during myocardial ischemia with GIK 

infusion decreased electrocardiographic signs of ischemia.34 They also showed that GIK 

infusion resulted in a lower occurrence of arrhythmias.34 They attributed this effect mainly 

to the influx of potassium in ischemic cardiomyocytes.35 In order to further stimulate 

potassium transport into the cell, insulin was administered.36 Consequently, the rise of 

intercellular calcium is curtailed by the influx of potassium and so the incidence of 

arrhythmias is reduced.37-40 However, systemic infusion of insulin  stimulates the uptake of 

glucose in many celltypes41, which may result in hypoglycemic episodes.42 Consequently, 

it is not possible to administer potassium and insulin in high concentrations without 

adding glucose. Interventions in the glucose metabolism in the clinical arena, whether or 

not used to correct acute hyperglycemia, encompass three potentially effective elements: 

glucose, insulin and potassium. 
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Basic mechanism of GIK protection  

 

Ischemia induces many changes in the heart’s metabolism, including shifts from aerobic 

fatty acid metabolism to anaerobic glycolysis, which provides energy for critical 

myocardial cellular function (figure 1).43-45  

 

Figure 1. The main changes that occur in peripheral and myocardial metabolism during 

the development of acute myocardial ischemia. [adapted from Oliver MF. Am J Med 

2002;112:305-311] 

 
CoA = coenzyme A; FFA = free fatty acid; TG = triglyceride. 

 

During most clinical ischemic syndromes, including acute MI, residual or collateral blood 

flow usually provides at least 10% of the normal level of perfusion to a significant portion 

of the ischemic myocardium. This small amount of perfusion provides such a level of 

oxygen delivery  that oxidative ATP synthesis from both glucose and free fatty acids 

greatly exceeds ATP synthesis from anaerobic glycolysis.46;47 Thus, a mixture of aerobic 

and anaerobic metabolism occurs. With progressively severe ischemia, anaerobic 

glycolysis becomes a progressively more important source of energy for a limited amount 

of ATP, which may or may not suffice to support the most essential cellular functions. 

Glycogen is rapidly mobilized during ischemia, and reduced glycogen concentrations 

impair force development, calcium release, and contractile function.48 Key intermediates 

of the Krebs cycle are also depleted, which may impair energy transfer.49 

The ischemia-mediated increase in glucose utilization is characterized by enhanced rates 

of exogenous glucose uptake in vivo, which requires greater rates of transport across the 
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plasma membrane.50;51 Of the seven reported members of the facilitative glucose 

transporter family, GLUT-4 and GLUT-1 are the primary forms expressed in adult 

mammalian heart muscle.52 During low-flow ischemia the expression of GLUT-4 is 

doubled.53 Insulin increases the translocation of GLUT-4 via a pathway mediated by 

phosphatidylinositol 3-kinase (PI3-K). During ischemia and hypoxia GLUT-4 translocation is 

stimulated through a PI3-K-independent pathway. AMP-activated protein kinase plays a 

role in the translocation during ischemia.54  

 

Table 2. Mechanisms of GIK infusion during myocardial ischemia62-64 

• The yield of moles of ATP per mole of oxygen consumed is 11 percent higher for 

glucose than for FFA oxidation 

• Anti FFA effects 

o Decrease of circulating FFA levels and myocardial FFA uptake 

o Increased esterification of intracellular FFA by increasing the supply of 

alpha-glycerophosphate 

• Increased rate of ATP synthesis via anaerobic glycolysis with consequent 

beneficial effects 

o Increased concentrations of phosphocreatine and ATP 

o Blunting of an increase in inorganic phosphate and ADP concentrations 

o Increased free energy yield from ATP hydrolysis 

• Increased myocardial glycogen 

• Improved sodium and calcium homeostasis 

• Increased tolerance to rises in intracellular calcium 

• Replenishment of citric acid cycle intermediates by anaplerosis 

• Increase of glucose and decrease of FFA oxidation during reperfusion 

• Activation of cell survival signalling pathways such as Akt 

 

Opie proposed the glucose hypothesis: the enhanced uptake and metabolism of glucose 

delays cellular damage.55;56  Glucose utilization during ischemia prevents the breakdown 

of glycogen stores and leads to increased net intramyocardial glycogen synthesis, thereby 

limiting enzymatic infarct size and contracture.47;57 Two studies showed that infusion of 

GIK in isolated hearts with regional ischemia resulted in decreased infarct size, increased 

high-energy phosphate levels, and improved ventricular function.58;59 Acute MI patients 

treated with GIK also showed better stress tolerance and ischemic threshold 

improvement, analyzed with technetium-99m-tetrofosmin-gated SPECT.60 The improved 

energetic profile results in improved systolic and diastolic function during ischemia and 

reperfusion, as well as coronary vasodilatation.47 Also, glucose uptake has been shown to 

reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes.61 The 
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observed benefits of GIK infusion have been attributed to a number of mechanisms, 

which are summarized in table 2 and in part discussed. 

 

Glucose 

The potential positive effects of glucose are based on the fact that glucose is a source of 

energy for cells.65 The uptake of glucose into the cell is influenced by insulin, although 

there is also an insulin-independent transport of glucose.66 It has been observed that 

AMP-activated protein kinase is responsible for activation of glucose uptake and 

glycolysis during low-flow ischemia.67 During MI, low-flow perfusion of the ischemic area 

is often present, making the administration glucose useful.48 In an experimental study it 

was observed that a high glucose concentration stimulated translocation of GLUT-4.68 It 

was already know that the combination of glucose and insulin is more effective than either 

one alone in stimulating glycolysis under ischemic conditions.47 

Administering glucose can prevent insulin-induced hypoglycemia. When the 

hypoglycemic episodes persist or when they are severe (<2.7 mmol/L), convulsions, brain 

damage and even brain death may occur.69 Hypoglycemia is also related to myocardial 

ischemia.70 It has been shown that the prevention of hypoglycemia can prevent an 

increase in enzymatic infarct size.71 When hypoglycemia occurs, the contraregulating 

hormones are activated and result in an increased release of glucose.72 Increased glucose 

release requires, in particular, an increase in glucagon and adrenaline. During MI the 

levels of glucagon, adrenaline and aldosteron among others are already elevated. 

 

Insulin 

The potential positive effects of insulin during stress situations are multifarious.73;74 First, 

insulin is involved in the uptake of glucose in tissues, including the myocardium, mainly 

through GLUT-4 and partly through GLUT-1.75 However, the exact amount of uptake 

during ischemia is disputable.76 Besides the stimulation of glucose uptake and the 

stimulation of glycogen synthesis, insulin is also involved in gene transcription, 

expression of various metabolic enzymes, the activation of various pathways with 

mitogenic activity, and even fatty acid uptake. The insulin receptor substrate 1 has an 

important role in realizing this pleiotrope.77 Both insulin-like growth factor (IGF) 1 and 

insulin inhibit postischemic apoptosis, energetic failure and damage to cardiac tissue, in 

vitro and in animals, possibly through reduced oxidative stress.78;79 Insulin increases the 

bio-availability of IGF1 and suppresses hepatic synthesis of IGF1-binding protein, which 

binds and limits free-circulating IGF1.80;81  

Insulin stimulates protein synthesis in skeletal muscles and inhibits intracellular protein 

breakdown in cardiac tissue.82-84 The preservation of myocardial cells by inhibiting 

apoptosis and reduced destruction of proteins could be the reason that contractibility is 



Introduction and aims of thesis 

 19 

preserved.85 An additional factor is that insulin potentiates ischemic preconditioning; 

however, this has not been proven irrefutably in clinical trials.86;87  

Insulin has an anti-inflammatory effect that is caused by a reduction in oxidative stress.88 

First, insulin reduces the pro-inflammatory effects of hyperglycemia. Insulin suppresses 

the production of tumor necrosis factor α in macrophages, leucocytes and endothelium.89 

Furthermore, insulin blocks the upregulation of the endothelial cell adhesion molecule 

induced by hyperglycemia.90;91 Also, insulin inhibits macrophage-inhibitory factor, and 

potentiates endothelial nitric oxide synthase and endothelin release.92 In a clinical study it 

appeared that the oxidative stress that occurs in myocardial ischemia and during 

reperfusion by primary PCI could not be suppressed by insulin.93 

Insulin is shown to influence the adhesion of leucocytes and blood platelets during an 

acute MI.94 A study with 48 patients with type 2 diabetes mellitus showed that intensive 

treatment with insulin during an acute ischemic event (i.e., acute MI or unstable angina 

pectoris) improves the fibrinolytic profile.95 The administration of insulin with the aid of an 

algorithm led to lower mean blood-glucose values (6.9 mmol/L versus 11.4 mmol/L) and 

to lower concentrations of tissue plasminogen activator, plasminogen activator inhibitor-1 

and fibrinogen. 

Insulin has vasodilating capacities in blood vessels of muscle tissue.96;97 Vasodilatation 

during myocardial ischemia has been observed both in patients with and without diabetes 

mellitus.97-99 This is advantageous, since it opens up the blood vessels in the myocardium, 

enabling more glucose to reach the cells and preventing the accumulation of metabolites 

that are toxic and cause mitochondrial damage and alterations in membrane ion 

channels.98;100 Vasodilatation occurs, among others, by stimulating the production of nitric 

oxide in the endothelium and by antagonizing endothelin, a potent vasoconstrictor.101;102 

Even a small increase in myocardial blood flow can significantly reduce myocardial 

ischemia.103 

Conversely, administering insulin can potentially lead to an adverse reaction.104 It might 

lead to enhanced polarisability of the cell membrane, stimulation of the sympathetic 

nervous system, and inhibition of the parasympathic nervous system. In contrast to the 

above-mentioned results, it was also found that insulin induced oxidative stress.105 The 

effect of insulin on nuclear factor-κB (NF-κB) remains unclear.88;106 In an experimental 

setting insulin in high amounts has inhibitory effects on intermediates involved in the 

activation by platelet-derived growth factor.107 

 

Potassium 

It appears that hypokaliemia during stress situations is disadvantageous.108;109 

Hypokaliemia frequently occurs in trauma patients and has been associated with a worse 

score on the Glasgow Coma Score (GCS).110 Moreover, hypokaliemia has been associated 
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with muscle necrosis and paralysis. In patients with myocardial ischemia, hypokaliemia 

increases the risk of ventricular arrhythmias and acute cardiac arrest.111 Restoring the 

potassium concentration in the cell and in serum may be accompanied by a decrease in 

the incidence and severity of arrhythmias.112 However, when the effect of GIK infusion on 

QT-time was analyzed, no effect was found.113 Consequently, administration of potassium 

in stress situations is mandatory to patients who present with hypokaliemia as well as to 

patients treated with insulin in order to prevent hypokaliemia. Moreover, hypokaliemia 

appears to suppress the secretion of insulin, and in this way stimulates a (continued) state 

of hyperglycemia.114 

 

This thesis 

 

This thesis is a new branch on the large tree of studies on optimal therapeutic strategy for 

and understanding of ST segment elevation MI. In 1989, the Zwolle Myocardial Infarction 

Study Group performed its first study of comparing PCI with streptokinase. Thereafter 

studies on the effect of primary PCI, stenting, intra-aortic balloon counterpulsation, 

prehospital treatment with heparin and glycoprotein IIb/IIIa receptor blockers have been 

reported. Over the last years more research has been done to investigate the causative 

mechanisms behind favorable and unfavorable outcome after treatment with primary PCI. 

Currently, special emphasis is given to the effect of glucose derangements and patients 

with diabetes mellitus. The concept to add a metabolic intervention to the treatment 

strategy of primary PCI was formulated in 1997. 

 

The purpose of this thesis is to investigate the effect of metabolic interventions and 

disturbances on the clinical outcome and myocardial function in ST segment elevation MI 

patients. Therefore, we have investigated whether GIK infusion in adjunction to primary 

PCI reduces 30-day (Chapter 2.1) and 3-year mortality (Chapter 2.6) in ST segment 

elevation MI patients. We also investigated the effects of GIK infusion on myocardial 

infarct size (Chapter 2.2), left ventricular function (Chapters 2.2 and 2.3) and ST segment 

elevation resolution (Chapter 2.4). Furthermore, we investigated the metabolic 

derangements induced by GIK infusion, and the impact of metabolic derangements on 

clinical outcome (Chapter 2.5). With the results of the GIPS we performed a new analysis 

on all available results of GIK infusion on 30-day mortality (Chapter 3).  

In the second part of this thesis we report our studies on the relation between 

hyperglycemia and outcome. Based on a large body of evidence it is known that 

hyperglycemia at admission is related to mortality. We were able to analyze the effect of 

admission hyperglycemia on myocardial function (Chapter 4.1). The predictive value of 
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admission glucose is not strong and we hypothesized that persistent hyperglycemia in 

both critically ill patients admitted to a Coronary Care Unit (Chapter 5.1) and an Intensive 

Care Unit (Chapter 5.2 and 5.3) could be a better determinant for unfavorable outcome. 

Based on the results found in the above-mentioned studies, we wrote the protocol of the 

GIPS-2 a multi-center trial on the effect of GIK infusion in ST segment elevation MI 

patients without signs of heart-failure and eligible for reperfusion therapy (Chapter 6). 

Finally, this thesis purposes to give future directions for the implementation of metabolic 

interventions in critically ill patients (Chapter 7).  
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Introduction 

 

Treatment strategies for acute ST segment elevation myocardial infarction (MI) have 

evolved over the last 25 years. In the 1950s and 1960s, it was debated whether coronary 

thrombosis was the cause or the consequence of ST segment elevation MI. In the 1960s 

and 1970s, treatment of ST segment elevation MI patients consisted of bed rest for up to a 

month. Mortality was reduced with the emergence of Coronary Care Units and treatment 

of the arrhythmias. Landmark studies by DeWood in the early 1980s showed that 

occlusion of the coronary artery was the critical event leading to ST segment elevation 

MI.1 Reperfusion therapy became the cornerstone of acute treatment for ST segment 

elevation MI. Preferentially, acute coronary reperfusion is nowadays accomplished  (1) 

mechanically by primary percutaneous coronary intervention (PCI), previously called 

primary transluminal coronary angioplasty (PTCA) with or without stenting or (2) 

pharmacologically with intravenous fibrinolytic therapy. Recent evidence suggests that 

apart from improved PCI techniques, adjunctive use of platelet glycoprotein IIb/IIIa 

receptor blockers and metabolic interventions, such as glucose-insulin-potassium (GIK) 

infusion may enhance procedural success and improve clinical outcome. Together these 

developments have stimulated renewed efforts to determine the optimal therapeutic 

strategy for patients with ST segment elevation MI. 

 

Pathophysiology 

 

The first papers on the clinical diagnosis of MI date from the early 20th century. Obrastzow 

and Stracheschenko in 1910 and Herrick in 1912 described the features of a sudden 

obstruction of a coronary artery.2;3  

Myocardial infarction is the consequence of disruption, fissuring or hemorrhage of a 

vulnerable coronary artery plaque, complicated by various degrees of intraluminal 

thrombosis, embolization, and subtotal or total obstruction to perfusion. The residual 

antegrade or collateral flow, and the volume and location of affected myocardium 

determine the characteristics of the clinical presentation. Patients with complete occlusion 

may manifest ST segment elevation MI, if the lesion occludes an artery supplying a 

substantial volume of the myocardium. A similar occlusion in the presence of extensive 

collaterals may present as MI without ST segment elevation. ST segment elevation MI is 

diagnosed by the presence of a clinical syndrome of new-onset ischemia with either rest 

pain or a crescendo pattern of ischemic pain on minimal exertion, and elevated enzymatic 

markers together with electrocardiographic evidence of acute ischemic injury. The 

predictive accuracy of ST segment elevation for a final diagnosis of MI is very high. The 

definition of MI proposed by the European Society of Cardiology (ESC)4, the American 



Metabolic interventions in acute myocardial infarction 

 28 

 113.  Wolk R, Lusawa T, Ceremuzynski L. Effects of glucose-insulin-potassium infusion on QT 

dispersion in patients with acute myocardial infarction. Ann Noninvasive Electrocardiol 

2001;6:50-54. 

 114.  Rowe JW, Tobin JD, Rosa RM, Andres R. Effect of experimental potassium deficiency on 

glucose and insulin metabolism. Metabolism 1980;29:498-502. 

 

 




