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Abstract. Interacting with a web service enabled marketplace in order
to achieve a complex task involves sequencing a set of individual service
operations, gathering information from the services, and making choices.
We propose to encode the problem of issuing requests to a composi-
tion of web services as a constraint programming problem. In particular,
we provide algorithms to encode nondeterministic web service business
processes and user goals given in an expressive request language.

1 Introduction

Services are autonomous computational entities which live on a network and in-
teract by asynchronous message passing. Services publish standard interfaces to
enable the discovery, binding and invocation of their services. The most promi-
nent example of services are the XML based set of standards known as web
services. The increasing size of the Internet and the availability of more and
more on-line services, opens a myriad of opportunities for developing loosely
coupled applications based on third party services.

The most interesting open challenge in the field today is the problem of
aggregating several services in order to achieve a complex task, this problem
is known as the service composition problem. There are many dimensions to
this problem which span from selecting services to achieve a goal, considering
non-functional properties of the composition, performing automatic composition
based on semantic descriptions, providing tools for designing compositions, etc.

We concentrate on the problem of enabling a user to express complex requests
against a pre-compiled composition of services in the form of a business process.
If the latter is generic enough to describe all possible interactions with those
web services, what we have is a description of a domain, e.g., of an electronic



marketplace. Then the user request amounts to invoking the appropriate services
following the constraints given by the business process and by the goal of the
user. In this paper, we propose to encode the service domain and the user goal
as constraint programming. In particular, we provide algorithms to move from
service domain representations and goals to a set of constraints. The request
language can express achievement of goals, sequencing of goals, maintaining
of properties, and preferences. Solving of the constraints represents finding an
executable plan to satisfy the user’s request.

The remainder of the paper is organized as follows. Section 2 introduces a
trip organization example which runs throughout the paper. Definitions of the
goal language and planning are provided in Section 3. The algorithms to per-
form the encoding of the problem of interacting with web services as constraint
programming are given and explained in Section 4. Related work in the fields of
constraints, AI and service-oriented computing is surveyed in Section 5. Finally,
Section 6 contains concluding remarks.

2 Organizing a trip

Nowadays standard business and terminology descriptions are given in XML
schemas, e.g., for the automotive industry, tourism industry, chemical industry
and so on (e.g., http://xml.coverpages.org/xmlApplications.html). In the
near future, it is expected that abstract definitions of such business process will
be given in BPEL [2] or similar service choreography languages. Let us consider a
travel marketplace and the organization of a trip. A generic trip organization can
be modeled by a complex business process encompassing several steps. Moving
from one step to another may involve the discovery of information, the choice
of which step to take or even the nondeterminism involved in a step of which
the outcome is not known until execution. In [9], we used a business process for
organizing a trip consisting of 36 states and based on a OTA specification (http:
//www.opentravel.org). Here we look at a subset of that business process which
will help to ground the intuitions behind the proposed encoding.

a1’: bookHotel

a3: reserveFlight

a2: reserveTrain

s1

s2 s3

a1’’: failure

Fig. 1. A component of a travel business process

When deciding on a trip, the user may first want to book the hotel of the
final destination and then book a carrier to reach the location of the hotel. We



represent this business process snippet as a state transition system in Figure 1.
The first action is that of reserving a hotel (state s1). This action may nondeter-
ministically result in the successful booking of the room (state s2) or in a failure
(return to state s1). Finally, there are two ways to reach the state s3 in which a
carrier to arrive at the site of the hotel is booked. One may choose to fly or to
take a train. This is achieved by choosing one of the two actions reserveTrain
or reserveFlight.

Given the above scenario, a specific user may desire to have a hotel reserved;
it can also happen that the user prefers flying to taking a train to her/his final
destination, and to spend no more than 100 euros.

3 Web service interactions as planning and execution

Interacting with a web service enabled marketplace in order to achieve a complex
task involves sequencing a set of individual service operations, gathering infor-
mation from the services and making choices. Planning offers a natural model
for this behavior. The complex task of the user is similar to a planning goal,
while the business process describing the possible behaviors of the marketplace
is similar to a planing domain. The achievement of the user’s goal yields a plan,
that is sequences of actions, and its execution.

We propose to use constraint programming techniques to implement such a
planning model for web service interaction. The service planning domain, i.e.,
the business process, is encoded as a constraint-based problem together with
the encoding of the goal, i.e., the user’s requests. Then, putting together the
encoding of the domain and the encoding of the goal means representing all
possible executions which are plans satisfying the goal.

Next we introduce the formal notions of domain and goal that we use in this
paper, and show how we translate them into constraints.

3.1 Service domain and goals

The service planning domain is a state-transition system with one characterizing
peculiarity: nondeterministic actions. Formally, we define such a domain as a
tuple of states, actions, variables, failure states, and an effect function.

Definition 1 (service planning domain). A service planning domain D is a
tuple 〈S,A,V, T , f〉, where:

– S is a set of states;
– A is a set of actions;
– V is a set of variables of arbitrary domains;
– T : S ×A → 2S × S is the transition function;
– f : A× V → V is the effect function.

Note that the transition function maps a state and an action into a set of states
and an individual state. The rationale is that of all the states reached with



an action one of them is a normal outcome state, while all the others represent
some kind of failure states for that action. Moreover, the effect function expresses
every possible action outcome.

Goal Where satisfied Type of goal

vital p In a state where p holds to which there is a
path from the initial state modulo failures

reachability

atomic p In a state where p holds to which there is a
path from the initial state despite failures

reachability

vital-maint p In a state to which there is a path from the
initial state modulo failures. p must hold in all
states along the path

maintainability

atomic-maint p In a state to which there is a path from the
initial state despite failures. p must hold in all
states along the path

maintainability

prefer g1to g2 In states where g1 is satisfied, otherwise the
satisfiability of g2 is checked

preference

optional g States where g is satisfied are checked first, oth-
erwise the goal is ignored

preference

before g1then g2 In states, to which there is a path from the
initial state, such that, states along these path
where g1 is satisfied precede those where g2 is
satisfied

sequencing

achieve-all g1, . . . , gn In states, to which there is a path from the
initial state, such that, there are states along
the path where gi are satisfied

composition

Table 1. Goal language constructs.

The goal language is derived from our earlier work using a model based
planner [9] which in turn is based on temporal logics. Here we give the basic de-
finition of the language and ground the intuitions about the language constructs
in Table 1. The goal language is recursively defined as follows.

Definition 2 (goal language). Basic goals are formed using the following
unary operators: vital p, atomic p, vital-maint p, atomic-maint p, where p
is a proposition. A goal g is a basic goal or a combination of goals using the
following operators: achieve-all g,optional g, before-then g, prefer-to g.

We are now ready to provide a general definition of what a planning problem
is in our setting, that is with respect to our service planning domain and goal.

Definition 3 (service planning problem). A service planning problem is a
tuple P = 〈D, s0, g〉, where D is a domain from Definition 1, s0 is an initial
state, and g is a goal from Definition 2. A set of sequences of actions is a plan
π; this is solution to the planning problem P if all possible executions of the plan,
starting in s0, satisfy g.



For the precise definition of goal satisfaction we refer the reader to [9]. In Sec-
tion 4, we explain how we obtain a plan by translating goals and domains into
numeric constraints.

3.2 Planning a trip

Let us come back to our travel example of Section 2 and define the service
planning domain according to Definition 1. Referring to Figure 1, the set of
states S is {s1, s2, s3}, the set of actions A is {bookHotel a1, reserveTrain
a2, reserveFlight a3 }, while the set of variables is {price, hotelBooked,
trainBooked, flightBooked}. In this example the first variable is a non-negative
integer and all other variables are boolean. As for the transition function, bookHotel
a1 brings the system nondeterministically into two possible states 〈{s1, s2}, s2〉;
s2 is the normal state, while s1 is the failure state. The other two elements of the
transition function are evident from Figure 1. Finally, for the effect functions we
have the following situation, which we present informally:

– normal bookHotel action a′1 increases price and sets the boolean variable
hotelBooked to true (i.e., the value 1);

– failure bookHotel action a′′1 has no effect on the variables;
– reserveTrain action a2 increases the price and sets the boolean variable

trainBooked to true;
– reserveFlight action a3 increases the price and sets the boolean variable

flightBooked to true;

We assume initial values for the variables to be equal to zero. As for the goal
introduced in Section 2 using the goal language of Definition 2, we have:

achieve-all
vitalhotelBooked = 1
atomic-maint price < 100 (goal 1)
prefer vital flightBooked = 1

to vital trainBooked = 1

4 Constraint-based encoding of the service planning
domain

Services offer a set of independently invocable operations. The operations act on
a number of variables whose value may depend on a single service invocation or,
more generally, it may depend on a number of invocations on several independent
services. We model the way in which the values of a variable spanning across
services may change by means of constraints. Additionally, the user has goals
and preferences in achieving complex tasks that guide the service invocations.
We model the latter as additional constraints on the service domain.

In particular in the framework we propose, there are two types of Boolean
variables: controlled variables, denoted by βi, and non-controlled variables, de-
noted by ξi. The underlying idea is that the system is not necessarily free to



choose a specific value for a non-controlled variable, thus a solution to the prob-
lem may be such regardless of the values assigned to the non-controlled variables.

Note 1. In this paper, when we talk about nondeterministic actions we refer to
their outcomes (that is, states) which can be different; yet, once an action is
invoked, we assume that its outcome will be always the same. In other words,
any of its future invocations will produce the same outcome.

The rationale for the framework we propose is that of modeling a service domain
and user’s goal as a set of constraints over controlled and non controlled variables.
The constraints have the following form:

[∀ξi :] cv ./ value (1)

where:

– value is a value from the domain of the variable v,
– cv is a vector of expressions of the form

∑
βi[ξi]ai,k with βi, ξi ∈ {0, 1},

– the ξi are non-controlled variables and the βi are controlled variables,
– ai,k is the effect function of the action ai for the outcome k,
– ./ is either <,>,≥, ≤ or =,
– and [·] denote that the expression is optionally present in the constraint.

Formally, the service constraint problem can be formulated as follows.

Definition 4 (service constraint problem). A service constraint problem is
a tuple CP = 〈β,N , ξ, C〉, where:

– β is a set of controlled boolean variables;
– N is a set of controlled variables ranging over natural numbers;
– ξ is a set of non-controlled boolean variables;
– C is a set of constraints, as in Equation 1, in which (i) if a non-controlled

variable occurs then it is universally quantified, (ii) otherwise a value is
available and substituted for the variable.

A solution to a service constraint problem is an assignment to controlled variables
such that all constraints are satisfied.

To arrive at the encoding of the service interaction problem as a set of constraints
of the form of Equation 1, we follow a two phase process. In the first phase, one
encodes the service planning domain, while in the second phase one encodes the
goal.

Phase 1. Domain encoding: the service domain is encoded as a vector of
constraints C. Effect functions can be partially specified as numeric values.

Phase 2. Goal encoding: the encoding is completed when the goal is given;
then the required symbols and universal quantifiers are added.



4.1 Phase 1: domain encoding

During Phase 1 the service domain is encoded. Starting from a service domain
as in Definition 1, we arrive at a set of expressions cv as in Equation (1) plus
a set of linear constraints of the form

∑
βi ≤ 1. In the following, we adopt the

notation of Equation (1); in addition, n is a natural number that specifies how
many times a cycle is followed, while ai is overloaded to represent not only the
action, but also its effects. From here onwards, we only consider linear effect
functions.

The encoding is generated following an algorithm that recursively visits the
service domain D, separately keeping track of cycles, and returns a set of con-
straints. The algorithm (Algorithm 1) begins from an initial state s ∈ S from
the service planning domain D, and an empty path P (which represents the
working path followed on the graph), and returns a vector of constraints; that
is, one constraint for every variable in the domain V. It also updates a global
cycle data structure to record constraints associated with cycles. The algorithm
uses a set of variables to mark states as visited in order to detect directed and
undirected cycles. Let us consider the various cases of the algorithm, for which
we also provide a pictorial explanation in Table 2.
Base case. If the degree of the arcs leaving the state s is 0, then there is no
constraint to be returned. Table 2.(A) illustrates this situation. Also the case of
the directed cycle, which is presented below, is a base case.
Cycles. With the path sequence P and the visited variables one detects cycles
in the state-action graphs. We distinguish two types of cycles: undirected ones
and directed ones. In the first case, we simply ‘duplicate’ the state and proceed
in our analysis; in the second case, we add counters to represent the number of
times the cycle is followed.
Cycles: state splitting. If one has already visited a state, but the state is not
part of the current path P , we have detected an undirected cycle. To proceed we
need to duplicate the state s already visited by creating state s′ and recursively
encode the duplicated state. This situation is illustrated in Table 2.(E). There
is no specific encoding for this case.
Cycles: directed cycle. If one has already visited a state and the state is part
of the current path P , we have detected a directed cycle. The Algorithm 3 is
invoked to encode the cycle constraint which is added to the step where the cycle
originated. The constraint resulting from the invocation of the cycle algorithm is
stored in the global variable cycle together with information on where the cycle
began (given by the state s and path P ). No constraint is directly added to the
expression, so the return value of this case is ∅.

The Algorithm 3 works by first identifying the cycle. This is done by going
backwards in the path P until the same state as the last one is found. Then all the
actions involved in the cycle are identified. For each one of the actions which is
nondeterministic we add a non-controlled variable ξj which multiplies the whole
expression, because a cycle is only possible if corresponding nondeterministic
actions keep inside the cycle. Then we sum all the actions effects involved in the



Domain Type of action Encoding

(A)
s No action ∅

(B)

s1

s2
a

Single deterministic ac-
tion

βa

(C)

s1

s2

a1

s3

a2

Deterministic branch
point

β1a1 + β2a2

β1 + β2 ≤ 1

(D) s2

a’

s3

a’’

s1 Nondeterministic
branch point

β(ξ1a
′ + ξ2a

′′)
ξ1 + ξ2 = 1

(E)

s1 s2

s3

s1

s ’
3

s2

s ’’
3

a1 a2
a1 a2

s0 s0 Cycle: state splitting ∅

(F)

s1

s3

s2

s4

s5

a1 a2

a3

a’4
a’’4

Cycle: directed cycle nξ(a1 + a2 + a′4)

Table 2. Encoding examples of the service domain.



cycle. Finally, we multiply the whole expression for a natural number n which
represents the number of times the cycle is followed.

Table 2.(F) exemplifies a cycle situation in which there are simple deter-
ministic actions (a1), actions taking out of the cycle (a3), and nondeterministic
actions that ‘might’ lead out of the cycle (a′′4). The expression on the right in
Table 2.(F) is what is added to variable cycle.
Branch point. Of all the actions leaving from the current state one of these
will be performed at the next step. The constraint is a sum of all the possible
executed actions which calls the function add-single-action (Algorithm 2)
containing a mutual recursive call. If there is a cycle associated to the current
state in the path, then also the cycle constraint is added by the get function.
With the βi one pinpoints which one of the actions is actually executed (at most
one β is set to one and all the others to 0).

Algorithm 2 distinguishes between the case the action is deterministic and
nondeterministic. In the latter case, non-controlled variables ξi are introduced for
every possible outcome of the nondeterministic action. Only one of the outcomes
will occur. If, on the other hand, the action is deterministic, mutual recursion is
called on the next state of the domain to which the action leads. In Table 2.(B
& C) examples of one and two deterministic actions are presented, respectively.
In Table 2.(D) the case of a nondeterministic action with two possible outcomes
is shown.

Algorithm 1 encode(state s, domain D, path P ): constraint
if degree(s) == 0 then

// recursion base case
return ∅

end if
P = P ∪ s
if s is visited ∧ s ∈ P then

// visited state: cycle is added, base case
put(s,P,add-cycle(s, D, P ),cycle)
return ∅

end if
if s is visited ∧ s 6∈ P then

// visited state: splitting point
s′ = split(s)
return encode(s′, D, P )

end if
set visited s
// branch point

c =
Pdegree(s) βi add-single-action(s, D, ai, P)+get(s,P,cycle)Pdegree(s) βi ≤ 1, βi ∈ {0, 1}

P = P\s
return c



Algorithm 2 add-single-action(state s, domain D, action a, path P ): con-
straint

if a is nondeterministic then
// nondeterministic branch point

return
Poutcomes(a) ξi add-single-action(s, D, a′i, P)

S
SPoutcomes(a) ξi = 1, ξi ∈ {0, 1}

end if
// single deterministic action outcome
snext = get-next-state(s, D, a)
return a + encode(snext,D, P )

Algorithm 3 add-cycle(state s, domain D, path P ): constraint
// identify last cycle in the path
P = 〈. . . s, t1, . . . , tr, s〉;
// let ai be the action going from state ti to ti+1

∀ nondeterministic actions ad a ξj

return n
Q

ξj ·
Pr+1 ai

4.2 Phase 2: goal encoding

During the second phase of the encoding of the service planning problem, one
takes a goal and the encoding of the service domain, and produces a set of
constraints which represent how to achieve the user’s goal. The goal is expressed
in the goal language of Definition 2. By parsing the goal, Algorithm 4 works on
the constraints generated in Phase 1 and generates a set of constraints of the
form of Equation 1.

We present the encoding of the goal into the domain by following Algorithm 4.
The algorithm parses the goal recursively distinguishing the cases of the various
operators and updating the set of constraints. Every time a new basic goal
constraint is added, a new set of controlled variables is introduced. Relations
between controlled variables of different sub-goals are defined by achieve-all
and before-then .

vital v ./ v0. If the goal is vital with respect to the variable v constrained by
the ./ operator on the v0 value, then we take the v line in the constraint
vector c (denoted by cv) and we add it to the constraints set cv ./ v0. Since
the goal is vital we also set all variables ξv associated with cv to ξ0

v , by
which we mean that the normal execution must be followed, in place of the
nondeterministic failure ones.

atomic v ./ v0. This case is analogous to the vital one, with the difference that
all nondeterministic executions must be considered, therefore we come to a
universal quantification over the nondeterministic variables ξ.

vital-maint v ./ v0. For maintainability goals we need to keep track of all the
states visited during a plan execution. This information is what is stored in
the set P in Algorithm 1. Thus, we quantify over the execution steps and
we repeat the constraint as for the vital case above for each step.



atomic-maint v ./ v0. This case is analogous to the maintainability vital one,
with the difference that all nondeterministic executions must be considered,
therefore we come to a universal quantification over the nondeterministic
variables ξ.

Now we consider the operators which aggregate basic sub-goals.

achieve-all g1 . . . , gn. First, recursion is called for all sub-goals g1, . . . , gn. Sec-
ond, one considers all pairs of basic goals coming from the recursive call and
all execution steps (as done for the maintainability goals). In all these cases,
if during the execution some choices have been made for the same branch
point among different sub-goals, these choices have to be the same. There-
fore, we add expression forcing the choices for the execution of any subgoals
to be the same to the set of constraints. The expressions introduce the exe-
cution choice variable u. Suppose that uj , j ∈ {1, 2} denotes the branch that
has been chosen by the procedure that tries to satisfy an j-th goal, uj = 0
defines that there were no choice made. Then the following constraints ar
added: u1 6= 0 ∧ u2 6= 0 ⇒ u1 = u2.

before g1then g2. The principle behind the before-then operator is similar to
that of the achieve-all, with the difference that one forces the ordering of
the satisfaction of the subgoals. Again, first we recur on the subgoals, then
we introduce the execution choice variables u. The second subgoal g2 should
repeat the path of the first subgoal g1, until the first is satisfied, and only
then the second expression is checked. This is ensured by expressions of the
form: u1 6= 0 ⇒ u1 = u2 which are added to the set of constraints.

prefer g1to g2. Preferences are handled not as additional constraints, but rather
appropriately instantiating the variables. The first step is to recur on the two
subgoals g1 and g2. Then the goals g1 and g2 are placed in a disjunction.
When constraints are checked for satisfiability, variables are assigned in pref-
erence order. Optional goals are a sub-case of the prefer-to goal, in which g2

is simply true.

4.3 The example encoded

Let us come back to the travel example of Sections 2 and 3.2 and show how
Algorithms 1–4 encode it into a constraint-based problem. Algorithm 1 takes
the domain exemplified in Figure 1 and the initial state s1 and produces the
following constraints: β1(ξ1nafail

1 + ξ2(aok
1 + β2a2 + β3a3)) which represents the

paths from state s1 to s3 with n being the number of times the cycle is followed.
Additionally, it also produces the constraints on the choice variables β1, β2, β3 ∈
{0, 1}, β2 + β3 ≤ 1, and the constraints on the non-controlled variables ξ1, ξ2 ∈
{0, 1}, ξ1 + ξ2 = 1. ξ1, ξ2.

Consider again the goal (goal 1) in Section 3.2, Algorithm 4 takes the con-
straints set above and the goal, and builds a service constraint problem. For
each basic goal a new set of free variables is introduced. The first subgoal to be
parsed is vitalhotelBooked = 1. Since the hotelBooked variable is influenced



Algorithm 4 encode-goal(constraint c, goal g): goalset
// reachability goals
if g is ‘vital v ./ v0’ then

c
S

ξv = ξ0
v , cv ./ v0

return {g}
end if
if g is ‘atomic v ./ v0’ then

c
S ∀ξ cv ./ v0

return {g}
end if
// maintainability goals
if g is ‘vital-maint v ./ v0’ then

for all steps ti do
c
S

ξv = ξ0
v , cv(ti) ./ v0

end for
return {g}

end if
if g is ‘atomic-maint v ./ v0’ then

for all steps ti do
c
S ∀ξ cv(ti) ./ v0

end for
return {g}

end if
if g is ‘achieve-all g1, . . . , gn’ then

Gi = encode-goal(c, gi)
for all gi ∈ Gi, gj ∈ Gj , i 6= j, steps tk do

c
S

uk(gi) 6= 0 ∧ uk(gj) 6= 0 ⇒ uk(gi) = uk(gj)
end for
return {G1, . . . , Gn}

end if
if g is ‘before g1then g2’ then

Gi = encode-goal(c, gi), i ∈ {0, 1}
for all g1 ∈ G1, g2 ∈ G2, steps ti do

c
S

ui(g
1) 6= 0 ⇒ ui(g

1) = ui(g
2)

end for
return {G1, G2}

end if
if g is ‘prefer g1to g2’ then

Gi = encode-goal(c, gi), i ∈ {0, 1}
raise-priority(G1, G2)
return {G1, G2}

end if
if g is ‘optional g1’ then

return encode-goal(c, prefer g1to>)
end if



only by aok
1 outcome, then the constraint is β′1ξ2a

ok
1 = 1 and the non-controlled

variables are assigned to normal execution, i.e., ξ2 = 1, ξ1 = 0.
The other vital goals are treated similarly. For vital flightBooked = 1 we

have β′′′1 ξ2β
′′′
3 = 1 and ξ2 = 1, ξ1 = 0, while for vital trainBooked = 1 we have

βiv
1 ξ2β

iv
2 = 1 and ξ2 = 1, ξ1 = 0.

The atomic goal atomic-maint price < 100 is slightly different as price <
100 has to be checked for each state. Since it is an atomic goal, we have to
introduce a universal quantification over the non-controlled variables. This goal
leads to the following set of constraints: ∀ξ : s′1 : 0 < 100, s′′1 : β′′1 ξ1nafail

1 <

100, s2 : β′′1 (ξ1nafail
1 +ξ2(aok

1 ) < 100, s3 : β′′1 (ξ1nafail
1 +ξ2(aok

1 +β′′2 a2 +β′′3 a3)) <
100.

The goal of preferring flying over taking the train does not add any con-
straints, but defines ordering of instatiation between the variables β′′′i over βiv

i

for all i ∈ {1, .., 3}. Finally, achieve-all adds the relations between the branch
choices, that is, the last 6 constraints in Equation 4.3. Summarizing, the encoding
of the travel example of Figure 1 and (goal 1) is the following:





β′1ξ2 = 1, if ξ2 = 1, ξ1 = 0
∀ξ : 0 < 100
∀ξ : β′′1 ξ1nafail

1 < 100
∀ξ : β′′1 (ξ1nafail

1 + ξ2(aok
1 ) < 100

∀ξ : β′′1 (ξ1nafail
1 +

+ξ2(aok
1 + β′′2 a2 + β′′3 a3)) < 100

β′′′1 ξ2β
′′′
3 = 1 if ξ2 = 1, ξ1 = 0∨

∨βiv
1 ξ2β

iv
2 = 1 if ξ2 = 1, ξ1 = 0





∀j ∈ {1, .., 4}β
(j)
1 ≤ 1 ∧ β

(j)
2 + β

(j)
3 ≤ 1

∀i ∈ {1, .., 3}β′i 6= 0 ∧ β′′i 6= 0 ⇒ β′i = β′′i
∀i ∈ {1, .., 3}β′i 6= 0 ∧ β′′′i 6= 0 ⇒ β′i = β′′′i

∀i ∈ {1, .., 3}β′i 6= 0 ∧ βiv
i 6= 0 ⇒ β′i = βiv

i

∀i ∈ {1, .., 3}β′′i 6= 0 ∧ β′′′i 6= 0 ⇒ β′′i = β′′′i

∀i ∈ {1, .., 3}β′′i 6= 0 ∧ βiv
i 6= 0 ⇒ β′′i = βiv

i

∀i ∈ {1, .., 3}β′′′i 6= 0 ∧ βiv
i 6= 0 ⇒ β′′′i = βiv

i

One of the possible solutions is the following assignment of controlled vari-
ables: β

(j)
1 = 1, β

(j)
2 = 0, β

(j)
3 = 1, for all j ∈ {1, .., 4}. This corresponds to the ex-

ecution of booking the hotel (bookHotel) and reserving a flight (reserveFlight)
assuming that the total price is less than 100. On the contrary, suppose that the
flight price is 200, thus violating the price constraint, then the above assignment
is no longer a solution. By the preference ordering, we still have an assignment
which is a solution by using the train (reserveTrain) instead of the plane as-
suming that the total cost is less than 100: β

(j)
1 = 1, β

(j)
2 = 1, β

(j)
3 = 0, for all

j ∈ {1, .., 4}.

5 Related work

In the area of constraint satisfaction, the motivations that led to the framework
of open constraint satisfaction problems are common to ours. In particular, as
the author of [14] pinpoints, for one party in the service “it is often impractical
[. . . ] to provide the other parties [. . . ] with full information on its own con-
straints” and thus each party “has to solve its constraint satisfaction problem



without complete knowledge”; we refer the reader to [6] for other work related
to the framework of open constraint satisfaction problems. Another track of the
constraint literature is focused on the resource allocation problem in a distrib-
uted scenario, and its optimization (e.g., [7]); however this is not an issue in this
paper, as we abstract from this problem.

In fact, in this paper we are concerned with web service oriented business
processes and interactions with them, and we proposed a modeling as constraint-
based problems. Instead of having “external constraints” as, for instance, in the
open constraint setting of [14], we introduced two sorts of variables in our model:
variables the constraint system is free to choose values for, and variables that only
external parties can choose values for. Accordingly the latter are called “non-
controlled variables”, and any solution to the problem should be independent of
their possible values.

In service-oriented computing several initiatives have been proposed to man-
age and interact with web service compositions. There are approaches based on
formal logics [3, 11, 12]) or other approaches based on logic programming for-
malisms (e.g., [10]). All these approaches work under the assumption of having
available rich semantic service description and run-time information. In contrast
to this, in a pure service-oriented environment on the one hand, there is little se-
mantic description and, on the other hand, one deals with incomplete knowledge
about service behavior.

Artificial Intelligence techniques can provide a solution to the problem of
service composition. In particular, there have been several proposals using AI
planning. In [13], a review of web service composition techniques is presented
and it is argued that planning techniques can help tackling the problem of au-
tomatic web service composition. In particular, Knoblock et al. [8] use a form
of template planning based on hierarchical task networks and constraint sat-
isfaction. The authors focus on information gathering and integration rather
than on service composition. Encoding planning problems as constraints is not
new. For instance, [4] introduce temporal constraint networks, while planning as
constraint satisfaction is proposed in [5].

In [1], we proposed a hybrid approach to web service composition and in-
teraction based on both planning and constraint satisfaction. In that work con-
straint satisfaction was used to select the best plan instance of those generated
by the planner and with values coming from interactions with web service imple-
mentations. In [9], we concentrated on interleaving planning and execution for
satisfying user requests. In the latter work constraint satisfaction was not used,
rather a planner was adapted in order to deal with numeric responses from web
service instances.

6 Concluding remarks

We proposed an approach to planning interactions with web services based on
a constraint programming encoding. The key characteristics of the encoding
are its dealing with nondeterminism, its being unbounded, its representing the



possible executions on the domain including traversal properties. We provided
algorithms for encoding state representations of the domain together with user
requests given in an expressive goal language. The proposed encoding is partic-
ularly suited to deal with web service enabled marketplace and give the user the
possibility to satisfy his/her desires.

This is a major improvement with respect to the previous frameworks to
deal with web service requests based on a model based planner [9]. In particular,
with the proposed approach we deal with numeric values in place of considering
boolean conditions coming from the satisfaction of an expression; we handle pref-
erence goals by ordering variable assignments; while keeping the desired prop-
erties of dealing with nondetermisim, having primitives for execution properties
(e.g., vital-maint goals) and having a framework to execute the requests.

This is an initial proposal to use constraints to encode the satisfaction of a
user’s request with respect to a set of autonomous web services. A number of is-
sues are open for further investigation. Most notably, we have not yet considered
issues of efficiency of the proposed algorithms with respect to the minimality of
the encoding or of the propagation complexity or execution time. We have not
considered the framework in the context of interleaving planning and execution,
nor with respect to run-time information gathering. The latter is a crucial issue
for the success of the approach as in the web service context some information
is gathered only at run-time and there is constant need for replanning. We have
preliminary results in extending the presented work in this direction.
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