
 

 

 University of Groningen

Abstract derivations, equational logic and interpolation
Renardel de Lavalette, Gerard R.

Published in:
Structures and Deduction - the Quest for the Essence of Proofs

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Renardel de Lavalette, G. R. (2005). Abstract derivations, equational logic and interpolation. In Structures
and Deduction - the Quest for the Essence of Proofs: satellite workshop of ICALP 2005 University of
Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-01-2023

https://research.rug.nl/en/publications/847797ab-3565-4e31-be42-8083a0847797


Interpolation in equational logic

via abstract derivations

14 July 2005

Gerard R. Renardel de Lavalette

Department of Mathematics and Computing Science
University of Groningen, the Netherlands

Abstract. We define abstract derivations for equational logic and use
them to prove the interpolation property.

1 Introduction

In this paper, we introduce a notion of abstract derivation for equational logic
and use it to prove the interpolation property. The work reported here has the
character of an experiment, intended to sharpen and test our initially rather
vague ideas about abstract derivations. These ideas arose from a feeling of dis-
satisfaction with the low level of abstraction in traditional proof theory, where
derivations are trees consisting of sequents, i.e. strings of symbols, with great
redundancy by repeating in every proof step the parts of a sequent that do
not change. As a consequence, operations on derivations (normalization, e.g. via
cut elimination, interpolant extraction) only admit a precise definition in local
terms, on the level of proof steps, and global properties are left to intuition. More
particular, in [4] and [16] we were able to prove interpolation for several frag-
ments of intuitionistic propositional logic, but we admit that full understanding
of what is really happening on a global level in our proofs is lacking, because of
the reasons sketched above.

The choice for equational logic as a basis for the elaboration of our ideas was
motivated by two reasons. Firstly, the prooftheoretical proof for interpolation
in equational logic by Rodenburg in [12] is rather involved, especially when
compared with the algebraic proof by the same author in [11], and constitutes a
challenge for proof theory to try to fill the gap with model theory. (Recently, we
discovered the unpublished note [15] by Van Oostrom with a more perspicuous
proof based on rewrite theory.) Secondly, equational logic is a very general and
rather strong system: it is undecidable, and virtually all propositional, modal
and linear logics can be embedded in it. Moreover, proof theory for equational
logic seems to be an underdeveloped area of research.

The experiment in abstract derivation design is by no means finished yet, but
we think the time has come to report on the first results. After a short sketch of
the ideas behind abstract derivations and a survey of interpolation in equational



logic, we present the main definitions, prove soundness and completeness, derive
some relevant properties and prove the interpolation theorem. We end with some
suggestions for further research.

1.1 Abstract derivations

The notion of abstract derivation we present here is based on an abstract view on
the traditional notion of derivation for equational logic. We see two fundamental
and general principles at work here. Firstly the idea of matching: e.g. f(s) ≡ f(t)
follows from s ≡ t since the f in f(s) matches the f in f(t). Secondly the idea
of abstraction, or its dual instantiation: r(t) ≡ s(t) follows from r(x) ≡ s(x)
since the latter equation is to be read as ‘r(x) and s(x) are equal for all x’. We
consider the fact that ≡ is an equivalence relation to be less fundamental for the
proof system: it is of course essential for a logic called equational, but another
interesting logic may be obtained if we would replace ≡ by ≤, a partial order.

Now the idea of abstract derivation can be explained as follows. Start with
an abstract representation of terms: the obvious choice is trees consisting of
nodes labeled by signature elements (is there an alternative?). Then abstract
equations become pairs of nodes, and binary relations on nodes are sets of
equations. The proof rules become operations on relations, so e.g. Re, the least
equivalence relation containing R, corresponds with application of the proof
rules of reflexivity, symmetry and transitivity. For the congruence rule, we put
cong(R) = M ∩ lift(R). Here lift(R) is the collection of pairs (k, l) such that
k and l represent terms with an equal number of direct subterms, and for all
k′, l′ representing corresponding direct subterms we have (k′, l′) ∈ R. M is the
matching relation: we have that (k, l) ∈ M implies that k and l are labeled by
the same signature element, but the converse implication does not hold in gen-
eral. The role of M is to regulate the development of the abstract derivation. In
order to deal with the instantiation rule, we work with abstractions, an inverse
of substitutions. Abstractions α are partial mappings from nodes to variables,
and when applied to a term structure T they yield a new term structure Tα

where some terms are replaced by variables. Now an abstract derivation is a
tuple D = 〈T, M, α〉 where T is an abstract term structure, M is a matching re-
lation on K, and α is an abstraction. An operator der(E) = µR.(E ∪ cong(R))e,
defined for E ⊆ K2, yields the set of equalities that are derived in D from E.
Moreover, the abstraction α should be justified by E. See Definition 3 for the
details.

For the moment, we choose to represent the steps in the proof and its
conclusion implicitly: only the premiss E is present in the representation, its
consequences after n proof steps can be computed by applying the operator
λR.(E ∪ cong(R))e n times. For our experiment with interpolation, this repre-
sentation will do, but for other purposes it may be useful to work with other,
more explicit variants.

For conciseness’ sake, we will often drop the epitheton abstract, and refer to
derivations when we mean abstract derivations.



1.2 Equational logic

A signature SIG is a collection of constants and function symbols. The arity of a
signature element s ∈ SIG is given by arity(s) ∈ N. VAR is an infinite collection
of variable symbols, with SIG ∩ VAR = ∅. For variables x ∈ VAR, arity(x) = 0.
Terms built from signature elements and variables are defined as usual; we write
sig(t) for the collection of signature elements that occur in term t. [x := s]t
denotes substitution of term s for all occurrences of variable x in term t, and
[xi := si]i<nt is used for simultaneous substitution. Equations between terms
are denoted by s ≡ t: they are the formulas ϕ of equational logic. Sequents are
of the form Γ ` ϕ where Γ is a collection of equations. As usual, the derivability
relation ` is the least relation satisfying

assumption Γ ` ϕ if ϕ ∈ Γ

reflexivity Γ ` t ≡ t

symmetry Γ ` s ≡ t ⇒ Γ ` t ≡ s

transitivity Γ ` r ≡ s & Γ ` s ≡ t ⇒ Γ ` r ≡ t

congruence Γ ` s0 ≡ t0 & . . .& Γ ` sn−1 ≡ tn−1

⇒ Γ ` f(s0, . . . , sn−1) ≡ f(t1, . . . , tn−1)
instantiation Γ ` ϕ ⇒ Γ ` [x := t]ϕ

The instantiation rule can be generalized to

Γ ` t0 ≡ t1 & Γ ` t1 ≡ t2 & . . . & Γ ` tn−1 ≡ tn & Γ ` ϕ(x, . . . , x)
⇒ Γ ` ϕ(t0, . . . , tn)

which says that we may substitute provably equal terms for different occurrences
of the same variable. Our Definition 3 of abstract derivation is based on a weaker
version of this principle, viz. where the equalities ti ≡ tj are derivable without
using the rules for reflexivity, symmetry and transitivity.

1.3 Interpolation

Interpolation is the following property;

if Γ, ∆ ` ϕ, then there is a collection of formulae Θ such that
Γ ` θ for every θ ∈ Θ, Θ, ∆ ` ϕ, and sig(Θ) ⊆ sig(Γ ) ∩ sig(∆ ∪ {ϕ}).

Θ is called the interpolant. The first formulation and proof are by Craig in [3],
first for classical predicate logic without function symbols; the case with function
symbols is reduced to the former case by replacing function symbols by pred-
icates. Craig’s proof is prooftheoretical and proceeds via proof normalization.
Since then, interpolation has been shown for many logics, with either prooftheo-
retic or modeltheoretic means. All prooftheoretic proofs work with proof normal-
ization, usually obtained via cut elimination. This can be seen as a disadvantage,
since proof normalization may lead to an exponential increase in size.

Interpolation as defined above does not hold for equational logic, as is shown
in the following simple counterexample: take

Γ = {f(a) ≡ b, f(c) ≡ d}, ∆ = {a ≡ c}, ϕ = (b ≡ d).



The only possible interpolant would be something like (a ≡ c) → (b ≡ d), but
this is not expressible in equational logic.

However, the weaker version of interpolation with ∆ = ∅ is valid for equa-
tional logic. It was first proved by Rodenburg in [11] with a rather short and
perspicuous algebraic proof, using Birkhoff’s HSP theorem. (Birkhoff’s theorem
states that a class of algebras K is equational, i.e. characterized by a set of equa-
tions, iff it is a variety, i.e. closed under homomorphic images, subalgebras, and
direct products; see e.g. [8].) Rodenburg’s proof is not constructive in the sense
that the proof does not contain an effective method to construct the interpolant.
In [12], Rodenburg gives a prooftheoretical proof of the same theorem, which
is constructive but not very perspicuous. The proof transforms a derivation in
equational logic step by step into a derivation in a related system, from which
an interpolant can be obtained easily. (As Rodenburg points out, an apparently
different interpolant construction for equational logic is already implicit in the
proof of the main theorem of [9] by Pigozzi.)

A constructive proof of interpolation for equational logic can also be ex-
tracted from the prooftheoretical proof for interpolation for predicate logic with
function symbols given by Felscher in [6]. This proof (which is also rather in-
volved) does not eliminate function symbols, but uses what is called Takeuti’s
Lemma (Felscher gives the obscure reference [14]) to eliminate spurious function
symbols from a candidate interpolant. Takeuti’s Lemma indicates when, in a
derivation, a term t can be replaced by a variable x, so it is a kind of inverse
substitution property. Part of our proof of the Interpolation theorem is related
to Takeuti’s Lemma.

Let us see what has to be done for the construction of an interpolant for
a provable sequent Γ ` ϕ in equational logic. The general situation is: there
are enough candidate interpolants Θ, e.g. Γ or {ϕ}, but in general they do not
satisfy the signature condition sig(Θ) ⊆ sig(Γ ) ∩ sig(ϕ). This is caused by the
proof rules, which may add signature elements to or eliminate them from the
conclusion (observe that all proof rules leave the premiss Γ intact and only
modify the conclusion ϕ). The congruence rule and the instantiation rule may
add signature elements. In the transitivity rule, the term s is eliminated, and
possibly some signature elements that occur in it. In that sense, the transitivity
rule is comparable with the cut rule of propositional and predicate logic. There
is no Transitivity Elimination Theorem, however, which would help us here.
But we do have a partial result in that direction: Lemma 2, which splits an
abstract derivation in two parts: in the first part no new signature elements
occur, and the second part contains only congruence steps. This lemma is the
first step in the proof of interpolation; we then need abstractions to eliminate
signature elements that were introduced in the conclusion by the instantiation
rule, in a way comparable to Felscher’s use of Takeuti’s Lemma as described in
the previous paragraph.



2 Preliminaries

For any set X , X∗ denotes the collection of finite sequences of elements of X .
If xs ∈ X∗, then lth(xs) is the length of xs, and xsi (where 0 ≤ i < lth(xs))
denotes the i-th element of xs. We write x ∈ xs to denote that x occurs in the
sequence xs, and the empty sequence is denoted by ().

If R ⊆ X × Y is a relation between X and Y , then we can extend R to
R⊗ ⊆ X∗ × Y ∗ by defining

R⊗ = {(xs, ys) | lth(xs) = lth(ys) ∧ ∀i < lth(xs) (xsi, ysi) ∈ R}

and likewise for functions, so

f⊗(x0, . . . , xn−1) = (f(x0), . . . , f(xn−1))

Composition of relations is defined as usual: R · S = {(x, z) | ∃y(xRy ∧ ySz)}.
If f : X → Y , then ker(f) ⊆ X2 is the equivalence relation defined by

ker(f) = {(x, y) | f(x) = f(y)}.

car(R), the carrier of R, is the least set X with R ⊆ X2, so

car(R) = {x | ∃y((x, y) ∈ R ∨ (y, x) ∈ R)}

If f, g are partial functions, then we define f :g (f before g) by

f :g = f ∪ (g �(dom(g) − dom(f)))

Here � denotes restriction: f �X = f ∩(X× rg(f)). Observe that : is associative:
f : (g :h) = (f :g) :h.
We write R+ for the transitive closure of R, R∗ for the reflexive transitive closure,
and Re for the smallest equivalence relation containing R; so Re = (R ∪ R−1)∗.
Let R ⊆ X2 and Y ⊆ X : we define

R respects Y iff R ⊆ Y 2 ∪ (X − Y )2

so if (x, y) ∈ R then x ∈ Y iff y ∈ Y . If f : X
.
→ Z is a partial function,

R respects f iff R ⊆ ker(f) ∪ (X − dom(f))2

Finally, we define an ordering v on set-valued functions f, g:

f v g iff ∀x ∈ dom(f) f(x) ⊆ g(x)

3 Term structures and abstractions

3.1 Forests

The idea to represent terms by trees is straightforward. The context for an
abstract derivation will be a forest, i.e. a collection of trees that represent terms.



A forest is a pair F = 〈K, arg〉, where K is a collection of nodes, and arg : K →
K∗; moreover, the direct subnode relation [arg] on K, defined by

[arg] = {(k, l) | k ∈ arg(l)}

is wellfounded. As a consequence, we have the following subnode induction prin-
ciple for forests: for all L ⊆ K,

∀k(arg(k) ⊆ L → k ∈ L) → L = K (1)

The subnode relation ≤ is defined as the transitive closure of [arg]. The arity of a
node k is defined as the length of its sequence of children: arity(k) = lth(arg(k)).
For 0 ≤ i < arity(k), we write argi(k) for (arg(k))i, the i-th element of arg(k): so
arg(k) = (arg0(k), . . . , argarity(k)−1(k)). A path in F is a finite nonempty sequence

(k0, . . . , kn) ∈ K+ satisfying (ki+1, ki) ∈ [arg] for 0 ≤ i < n, so the steps in a
path go from a node to one of its direct subnodes.

Parallel to (1), we have a recursion principle for forests: if f : (K ⊗X) → X ,
where K⊗X = {(k, (x0, . . . , xn−1)) | n = arity(k), x0, . . . , xn−1 ∈ X}, then there
is a unique g : K → X with

g(k) = f(k)(g⊗(arg(k)))

We define the operator lift on relations R ⊆ K2 by

lift(R) = arg · R⊗ · arg−1

As a consequence, we see that

(k, l) ∈ lift(R) ⇔ arity(k) = arity(l) ∧ ∀i < arity(k) (argi(k), argi(l)) ∈ R

lift will be used for the congruence step in derivations.

Definition 1 (Term structures). A term structure over SIG is a triple T =
〈K, arg, σ〉, where 〈K, arg〉 is a forest, and σ : K → SIG ∪ VAR preserves arity.

So a term structure is a forest where every node is labeled with a signature
element or a variable, in such a way that the arity of node and label correspond.
It is clear that every node k represents a term: to obtain this term, we define
(with recursion) the term operator term by

term(k, T ) = (σ(k))(term⊗(arg(k), T ))

The formula operator form is defined on pairs of nodes:

form(k, l, T ) = (term(k, T ) ≡ term(l, T ))

The signature sig(k, T ) of a node k is the signature of the term represented by
k, so sig(k, T ) = sig(term(k, T )). (We trust that this overloading of sig will not
confuse the reader.) Observe that sig satisfies

sig(k, T ) = ({σ(k)} ∩ SIG) ∪
⋃

sig⊗(arg(k), T )



term and sig are extended to sets of nodes by term(L, T ) = {term(k, T ) | k ∈
L}, and similarly for sig. form is extended to relations on nodes: form(R, T ) =
{form(k, l, T ) | (k, l) ∈ R}.

We also define, for Σ ⊆ SIG:

KΣ = {k ∈ K | σ(k) ∈ Σ} = σ−1[Σ]
KΣ = {k ∈ K | sig(k, T ) ⊆ Σ} = sig−1[℘(Σ)]

Observe that KΣ and KΣ are different and even incomparable. KΣ contains all
nodes that represent terms with their principal signature element in Σ, while KΣ

contains nodes representing terms that are made from variables and elements of
Σ. So k ∈ KΣ − KΣ if σ(k) ∈ VAR, and k ∈ KΣ − KΣ if σ(k) ∈ Σ, arg(k) = (l)
and σ(l) ∈ SIG − Σ.

To deal with the instantiation rule of equational logic, we introduce the notion
of abstraction. It is a converse of substitution that we prefer for technical reasons.

Definition 2 (Abstraction). Let T = 〈K, arg, σ〉 be a term structure. A partial
mapping α : K

.
→ VAR is an abstraction of T if rg(α) ∩ rg(σ) = ∅.

Tα, the result of applying α to T , is defined as Tα = 〈K, argα, α :σ〉, where argα

is defined by
argα(k) = () if k ∈ dom(α)

= arg(k) if k 6∈ dom(α)

By the definition of α :σ (see section 2), we have

(α :σ)(k) = α(k) if k ∈ dom(α)
= σ(k) if k 6∈ dom(α)

The idea behind the definition of abstraction is that, for k ∈ dom(α), the term
term(k) represented by k is replaced by the variable α(k). The restriction rg(α)∩
rg(σ) = ∅ ensures that the variables in rg(α) are fresh.

We give an example of a term structure T and an abstraction α in Figure
1. Nodes are indicated by their signature element (and their image under ab-
straction when defined), arrows correspond with arg. The terms represented by

f g

h|x g

a|y b|y c|x

Fig. 1. A term structure with an abstraction.

T are
f(ha, g(b, c)), g(g(b, c), c), ha, g(b, c), a, b, c



and the terms represented by Tα are

f(x, g(y, x)), g(g(y, x), x), x (twice), g(y, x), y (twice)

4 Derivations

Now we can define derivations, the central notion of this paper.

Definition 3 (Derivation). A derivation D is a triple 〈T, M, α〉 where T =
〈K, arg, σ〉 is a term structure, M ⊆ ker(σ) is an equivalence relation on K called
the matching relation and α : K

.
→ VAR is an abstraction of T . The congruence

operator cong, the derivability operator der and the weak derivability operator
der− are defined by:

cong(E) = M ∩ lift(E)
der(E) = µR.(E ∪ cong(R))e

der−(E) = µR.(E ∪ cong(R))

We say that α is justified by E if

ker(α) ⊆ cong(der−(E)) (2)

For a formula ϕ and a collection of formulas Γ , we define abstract derivability
by

Γ `D,E ϕ : D = 〈K, arg, σ, M, α〉 and E ⊆ K2 satisfy
E justifies α, Γ = form(E, T ) and ϕ ∈ form(der(E), T )

Γ `abs ϕ : there are D, E such that Γ `D,E ϕ

So a derivation is a term structure with a matching relation and an abstraction.
The matching relation is a restriction on the possible pairs of terms that may
be proved to be equal via congruence (i.e. via equality of corresponding direct
subterms). We use M in the proof of the interpolation theorem as a locality
restriction, regulating the application of congruence steps in an abstract deriva-
tion. Justification of abstraction α means that E proves ker(α), the equalities
that are implicit in α.

By definition, der(E) is the least equivalence relation containing E and closed
under cong:

der(E) = (E ∪ cong(der(E)))e (3)

if (E ∪ cong(R))e ⊆ R, then der(E) ⊆ R (4)

We shall refer to these as the defining property and the minimality property of
der, respectively. Similarly, we have for der−:

der−(E) = E ∪ cong(der−(E)) (5)

if E ∪ cong(R) ⊆ R, then der−(E) ⊆ R (6)



Moreover, we have

E ⊆ der−(E) = der−(der−(E)) ⊆ der(E) = der(der(E)) (7)

E ⊆ der−(E) ⊆ der(E) ⊆ der(der(E)) and der−(E) ⊆ der−(der−(E)) are ob-
vious. der(der(E)) ⊆ der(E) follows via the minimality property of der from
(der(E) ∪ cong(der(E)))e ⊆ der(E). Similarly for der−(der−(E)) ⊆ der−(E).

4.1 Examples of abstract derivations

We give a simple example of an abstract derivation in Figure 2. It represents a
derivation of the sequent

a ≡ b, b ≡ c, g1x ≡ g2x, g2hy ≡ d ` fg1hka ≡ fd

As in the previous example, nodes are indicated by their signature element and
their variable if any, and arrows correspond with arg. Moreover, single lines
represent the matching relation M and double lines the equality relation E.
Since all functions are unary, the diagram is planar.

f f

g1 g2 g2 d

h|x h|x h

k k k|y

a b c c

Fig. 2. A simple derivation

We give another derivation which is slightly more involved since it contains
a binary function: see Figure 3. It represents

a ≡ f(x, x), y ≡ hgy, f(z, ghz) ≡ b ` a ≡ b

As a third example, we present in Figure 4 a derivation of the property (a−1)−1 =



a f f b

g|x g

g|x g|z

c|y h h

c c

g g|z

c|y c

Fig. 3. A derivation with a binary function

a in group theory. In the usual algebraic notation, this reads

x = xe, e = x−1x, x(yz) = (xy)z, ex = x ` (a−1)−1 = a

We use the following signature elements, all in prefix notation: m for multiplica-
tion, i for inverse, e for the unit element and a as a constant. Then the following
sequent is derivable:

x ≡ m(x, e), e ≡ m(ix, x),
m(x, m(y, z)) ≡ m(m(x, y), z), m(e, x) ≡ x ` iia ≡ a

When we forget the abstraction and focus on the basic derivation, we have
the following derivable sequent:

iia ≡ m(iia, e), e ≡ m(ia, a),
m(iia, m(ia, a)) ≡ m(m(iia, ia), a)
m(iia, ia) ≡ e, m(e, a) ≡ a ` iia ≡ a

this is represented by the compact basic derivation in Figure 5:

4.2 Discussion about justification

The choice for (2), the definition of justification, is one from several alternatives.
The most conservative choice is

ker(α) ⊆ der−(∅) (8)



i|x1

i i|x1 i|x3 i|x3 i

i i|y3 i|y3 i|x4

i i i i|x4

m m m m

m m m m

a|x5

a|x2 a|z3 a|z3 a|x5

a

a|x2 a a a

a a a a

e e

Fig. 4. Derivation for (a−1)−1 = a

m m

m m m me e

i i a

Fig. 5. Compact basic derivation for (a−1)−1 = a

since der−(∅) = der(∅) = ker(λk.term(k, T )) is the collection of pairs of provably
identical terms, an abstraction α satisfying (8) replaces only provably identical
terms by some variable x. This corresponds with the usual instantiation rule
Γ ` ϕ ⇒ Γ ` [x := t]ϕ. However, this weak notion of justification would
complicate the proof of the interpolation theorem, since the obvious abstraction
required for the interpolant may identify non-identical terms.

A more radical condition is

ker(α) ⊆ der(E) (9)

This condition may seem appealing: α replaces provably equal terms by a vari-
able, so it corresponds to the general instantiation rule discussed in Section 1.2.
It is unsound, however. The proof of the equalities of the terms that are identified
by α may depend on equations that are being affected by the same α: this may



be harmless, but only if the dependencies generated here form a wellordering.
This can be violated easily, however, as the example in figure 6 illustrates.

f g

h|x h|x

c d

Fig. 6. Counterexample for the justification condition kerα ⊆ cong(der(E))

It is an example of a basic derivation 〈T, M〉 and an abstraction α with
ker(α) ⊆ cong(der(E)), while form(E, Tα) |= form(der(E), T ) is false. The basic
derivation represents

c ≡ fhc, fhc ≡ ghd, ghd ≡ d ` c ≡ d

which is correct, but when we apply the abstraction, we get

c ≡ fhc, fx ≡ gx, ghd ≡ d ` c ≡ d

which is not valid.
One way to impose the required wellordering on the dependencies generated

by an abstraction is to extend abstract derivations with a wellordering ≺ on
the pairs (k, l) ∈ E that represent equations, and to require that the equality
of terms that occur in the equation represented by (k, l) and that are subsumed
by α, are provable using only equations (k′, l′) ≺ (k, l). This approach requires
quite some overhead, however. In this paper, we decided to work with a simpler
solution: use a wellordering that is already present in the notion of derivations,
viz. the subnode order ≤ generated by arg. This leads to the original condition
(2).

In [5], an earlier version of this paper, we imposed the wellordering on de-
pendencies by requiring that der(E)· <1 is a wellordering, where <1 is the direct
subnode relation. This works well in the proofs for soundness and interpolation,
but it leads to a notion of derivability that is too weak. There are derivations
in equational logic that cannot be brought in a form where der(E)· <1 is well-
founded: an example is the derivable sequent a ≡ f(x, x), y ≡ hgy, f(z, ghz) ≡
b ` a ≡ b that is represented in Figure 3.

5 Correspondence with ordinary derivability

In this section, we show that the two derivability notions ` and `abs coincide.
This will be done via the completeness property of equational logic w.r.t. alge-
braic structures. We start with the interpretation of abstract term structures.



Definition 4. Let a signature SIG and a collection VAR of variables be given.
An interpretation in universe U is a mapping I : SIG∪VAR →

⋃
n(Un → U) that

respects arity, i.e. if I(f) ∈ (U arity(f) → U). We write Int(SIG, U) for the col-
lection of all interpretations of SIG in U . Two interpretations I, J ∈ Int(SIG, U)
are similar, denoted by I ∼ J , when their restriction to SIG is equal:

I ∼ J ⇔ ∀f ∈ SIG I(f) = J(f)

Now let some term structure T = 〈K, arg, σ〉 be given, with rg(σ) ⊆ SIG ∪ VAR.
A model M = 〈U, I〉 for T consists of a universe U 6= ∅ and a signature inter-
pretation I ∈ Int(SIG, U). With recursion, we define Iσ : K → U :

Iσ(k) = I(σ(k))(I
⊗

σ (arg(k)))

Validity for relations E in abstract term structures T is defined by

〈U, I〉 |= (E, T ) iff E ⊆ ker(Iσ)
〈U, I〉 |= ∀(E, T ) iff ∀J ∼ I 〈U, J〉 |= (E, T )

For formula ϕ and collection of formulas Γ , we define

Γ |=abs ϕ : there is an abstract term structure T = 〈K, abs, σ〉
and an abstraction α with E ⊆ K2, k, l ∈ K such that
form(E, Tα) = Γ, form((k, l), T ) = ϕ and
∀(E, Tα) |= ((k, l), T )

Observe that we have, for abstraction α:

〈U, I〉 |= (E, Tα) iff E ⊆ ker(Iα :σ)

We shall show the following correspondences between (abstract) derivability and
validity:

Γ `abs ϕ ⇔ Γ ` ϕ ⇔ Γ |= ϕ ⇔ Γ |=abs ϕ (10)

The second equivalence (between ` and |=) is the well known completeness of
equational logic w.r.t. algebraic structures, the third equivalence (between |=
and |=abs) follows directly from Definition 4. We establish the first equivalence
between `abs and ` by proving firstly the soundness of `abs w.r.t. |=abs, and then
the implication Γ ` ϕ ⇒ Γ `abs ϕ.

Theorem 1 (Soundness). Abstract derivations are sound: if Γ `abs ϕ then
Γ |=abs ϕ

Proof. Assume that Γ `abs ϕ, i.e. there is a derivation D = 〈T, M, α〉 with
E ⊆ K2, Γ = term(E, Tα), ϕ ∈ term(der(E), T ) and E justifies α. By the
definition of |=abs, it suffices to show, for all M = 〈U, I〉:

if ∀J ∼ I E ⊆ ker(Jα :σ), then der(E) ⊆ ker(Iσ).



So let M = 〈U, I〉 be given, and assume

∀J ∼ I E ⊆ ker(Jα :σ); (11)

we set out to show der(E) ⊆ ker(Iσ). Now ker(Iσ) is an equivalence relation and
hence closed under ·e, and one easily verifies that ker(Iσ) is closed under cong.
So by (4) it suffices to show that E ⊆ ker(Iσ). In order to show E ⊆ ker(Iσ), we
shall construct a J with J ∼ I, hence E ⊆ ker(Jα :σ) by (11); and E ⊆ ker(Iσ)
then follows if we can show

∀k ∈ K Iσ(k) = Jα :σ(k) (12)

Let η : rg(α) → K be a right inverse of α, i.e. ∀x ∈ rg(α) α(η(x)) = x. Define J

by
J(s) = I(s) if s ∈ SIG

J(x) = I(x) if x ∈ VAR − rg(α)

J(x) = Iσ(η(x)) if x ∈ rg(α)

Then J ∼ I, so by (11) we have E ⊆ ker(Jα :σ). Now we define

L1 = {k | Iσ(k) = Jα :σ(k)}
L2 = {k | ∀l((k, l) ∈ der−(E) ⇒ Iσ(k) = Iσ(l))}

and observe that L1 = K implies (12) and the theorem follows. We shall prove
L1 ∩ L2 = K with induction over the subnode relation, where L2 is used for
induction loading. So we shall show, for all k:

arg(k) ⊆ L1 ∩ L2 ⇒ k ∈ L1 ∩ L2 (13)

This follows from

arg(k) ⊆ L1 ∩ L2 ⇒ k ∈ L1 (14)

k ∈ L1 & arg(k) ⊆ L2 ⇒ k ∈ L2 (15)

First we prove (14). Let k be given with arg(k) ⊆ L1∩L2. We distinguish between
k ∈ dom(α) and k 6∈ dom(α), and in both cases we prove Jα :σ(k) = Iσ(k). If
k ∈ dom(α), then

arg(k) ⊆ L2

⇒ {definition of L2}
∀l((k, l) ∈ cong(der−(E)) ⇒ Iσ(k) = Iσ(l))

⇒ {α is justified, so ker(α) ⊆ cong(der−(E))}
∀l((k, l) ∈ ker(α) ⇒ Iσ(k) = Iσ(l))

⇒ {α(η(α(k))) = α(k), so (η(α(k)), k) ∈ ker(α)}
Iσ(η(α(k))) = Iσ(k)

⇔ {definition of J}
J(α(k)) = Iσ(k)

⇔ {k ∈ dom(α)}
Jα :σ(k) = Iσ(k)



If k 6∈ dom(α), then

arg(k) ⊆ L1

⇒ {definition of L1}

I(σ(k))J
⊗

α :σ(arg(k)) = Iσ(k)
⇔ {I ∼ J}

J(σ(k))J
⊗

α :σ(arg(k)) = Iσ(k)
⇔ {k 6∈ dom(α)}

Jα :σ(k) = Iσ(k)

This ends the proof of (14). We turn to (15), and assume k ∈ L1 and arg(k) ⊆ L2.
Now

(k, l) ∈ der−(E)
⇒ {der−(E) = E ∪ cong(der−(E))}

(k, l) ∈ E ∨ (k, l) ∈ cong(der−(E))

⇒ {E ⊆ ker(Jα :σ) by (11), and k ∈ L1}
Iσ(k) = Iσ(l) ∨ (k, l) ∈ cong(der−(E))

⇒ {arg(k) ⊆ L2}

Iσ(k) = Iσ(l) ∨ (σ(k) = σ(l) & I
⊗

σ (arg(k) = I
⊗

σ (arg(l)))
⇒ {}

Iσ(k) = Iσ(l)

So k ∈ L2 and we have proved (15). This ends the proof.

Theorem 2 (derivability implies abstract derivability). If Γ ` ϕ, then
Γ `abs ϕ.

Proof. Assume that Γ ` ϕ. We must show that there is a derivation D =
〈T, M, α〉 and E ⊆ K2 with

E justifies α, form(E, Tα) = Γ and ϕ ∈ form(der(E), T )

This is done via induction over a derivation of Γ `EQL ϕ. We apply some induc-
tion loading and claim that also M = ker(σ) and ker(α) ⊆ der(∅). So justification
is always OK; since M equals ker(σ), we shall drop M from the notation for
derivations in this proof, and write D = 〈T, α〉. When we consider two or more
term structures in the same context, we assume that they are disjoint; similarly,
we assume that different abstractions in the same context have disjoint ranges.

The union of two term structures T1 = 〈K1, arg1, σ1〉, T2 = 〈K2, arg2, σ2〉 is
defined as T = T1 ∪ T2 = 〈K1 ∪ K2, arg1 ∪ arg2, σ1 ∪ σ2〉; since we assume that
K1 ∩K2 = ∅, we have that arg1 ∪ arg2 and σ1 ∪σ2 are functions and T is a term
structure. Similarly, the union of two derivations D1 = 〈T1, α1〉, D2 = 〈T2, α2〉
is defined as D = D1 ∪ D2 = 〈T1 ∪ T2, α1 ∪ α2〉. If cong, cong1, cong2 are the
congruence operators associated with D, D1 and D2, respectively, then we have
cong1tcong2 v cong because of monotonicity; similarly for derivability. Similarly
for unions of more than two term structures or derivations.

Finally, before we start with the proof of the induction steps, we observe
that, for every collection of formulas Γ , there is a term structure T with domain
K and a relation E ⊆ K2 with form(E, T ) = Γ .



assumption: (s ≡ t) ∈ Γ , so Γ ` s ≡ t.
Put D = 〈T, ∅〉, where T be a term structure with E ⊆ K2 such that form(E, T ) =
Γ .

reflexivity: Γ ` t ≡ t.
Put D = 〈T, ∅〉, where T be a term structure with E ⊆ K2 such that form(E, T ) =
Γ , and with k ∈ T such that term(k) = t.

symmetry: Γ ` s ≡ t ⇒ Γ ` t ≡ s.
Follows from the induction hypothesis and the symmetry of der(E).

transitivity: Γ ` r ≡ s & Γ ` s ≡ t ⇒ Γ ` r ≡ t.
By induction hypothesis, we have derivations D1 = 〈T1, α1〉, D2 = 〈T2, α2〉, E1 ⊆
K2

1 , E2 ⊆ K2
2 , k1, l1 ∈ K1, k2, l2 ∈ K2 with form(E1, T1,α1

) = form(E2, T2,α2
) =

Γ , (l1, k1) ∈ der1(E1), (k2, l2) ∈ der2(E2), term(l1, T1) = r, term(k1, T1) =
term(k2, T2) = s, term(l2, T2) = t.

Define D = 〈T1 ∪ T2, α1 ∪ α2〉 and E = E1 ∪ E2, then Γ = der(E) and
(l1, k1), (k2, l2) ∈ der(E1 ∪ E2). Since also (k1, k2) ∈ der(∅) ⊆ der(E1 ∪ E2), we
have (by transitivity of der(E1 ∪ E2)) that (l1, l2) ∈ der(E1 ∪ E2), so (r ≡ t) ∈
form(der(E1 ∪ E2), T1 ∪ T2).

congruence: Γ ` si ≡ ti for i with 0 ≤ i < n ⇒ Γ ` f(s0, . . . , sn−1) ≡
f(t0, . . . , tn−1)
For i = 0, . . . , n − 1 we have, by induction hypothesis, derivations Di = 〈Ti, αi〉
with Ei ⊆ K2

i , form(Ei, Ti,αi
) = Γ and ki, li ∈ Ki with (ki, li) ∈ deri(Ei), term(ki, Ti) =

si, term(li, Ti) = ti.

Let k, l be fresh nodes, i.e. not in K0, . . . , Kn−1. Now define D = 〈K, arg, σ, α〉
by

K = K0 ∪ · · · ∪ Kn−1 ∪ {k, l}
arg = arg0 ∪ · · · ∪ argn−1 ∪ {(k, (k0, . . . , kn−1)), (l, (l0, . . . , ln−1))}
σ = σ0 ∪ · · · ∪ σn−1 ∪ {(k, f), (l, f)}
α = α0 ∪ · · · ∪ αn−1

and define E = E0∪· · ·∪En−1. We observe that form(E, Tα) = form(E0, T0,α0
)∪

· · · ∪ form(En−1, Tn−1,αn−1
) ⊆ Γ . Also, (f(s0, . . . , sn−1) ≡ f(t0, . . . , tn−1)) =

form((k, l), T ) ∈ form(der(E), T ), since (k, l) ∈ cong({(k0, l0), . . . , (kn−1, ln−1)}) ⊆
cong(der(E)) ⊆ der(E).

instantiation: Γ ` r ≡ s ⇒ Γ ` [x := t]r ≡ [x := t]s
By induction hypothesis, we have a derivation D1 = 〈K1, arg1, σ1, α1〉 with E1 ⊆
K2

1 , k′, l′ ∈ K1 such that form(E1, T1,α1
) = Γ , (k′, l′) ∈ der1(E1), term(k′, T1) =

r, term(l′, T1) = s. Let t = f(t0, . . . , tn−1) (so n is the arity of f). Let T2 =
〈K2, arg2, σ2〉 be a term structure with k0, . . . kn−1 ∈ K2, term(ki, T2) = ti for i



with 0 ≤ i < n. Define T = 〈K1 ∪ K2, arg, σ〉 where arg, σ are defined by

arg(k) = (k0, . . . , kn−1) if k ∈ K1 and σ1(k) = x

= arg1(k) if k ∈ K1 and σ1(k) 6= x

= arg2(k) if k ∈ K2

σ(k) = f if k ∈ K1 and σ1(k) = x

= σ1(k) if k ∈ K1 and σ1(k) 6= x

= σ2(k) if k ∈ K2

and define α by

dom(α) = dom(α1) ∪ {k ∈ K1 | σ1(k) = x}
α(k) = α1(k) if k ∈ dom(α1)

= x if k 6∈ dom(α1) and σ1(k) = x

form(E1, Tα) = form(E1, T1,α1
) is easily verified, so we have form(E1, Tα) = Γ .

([x := t]r ≡ [x := t]s) ∈ form(der(E1), T ) follows from term(k′, T ) = [x := t]r,
term(l′, T ) = [x := t]s and the fact that der1(E1) ⊆ der(E1)∩K2

1 . This inclusion
is proved using the minimality property for der1, using

cong1(der(E1) ∩ K2
1 ) ∩ K2

1 ⊆ cong(der(E1) ∩ K2
1 )

To see that this holds, observe that cong and cong1 only diverge for (k, l)
with σ1(k) = σ1(l) = x, and then arg(k) = arg(l) = (k0, . . . , kn−1), so indeed
(arg(k), arg(l)) ∈ (der(E1) ∩ K2

1)⊗.

6 Some properties of derivations

In this section, we prove some properties of abstract derivations. They provide
insight in the nature of derivations, and they will be applied in the proof of the
Interpolation theorem given in the next section. First we define the restriction
of a term structure and a (basic) derivation.

Definition 5 (Restriction). Let T = 〈K, arg, σ〉 be a term structure, and D =
〈T, M, α〉 a derivation. Let L ⊆ K be arg-closed. Then the restriction TL of T ,
and DL of D to L are defined by

TL = 〈L, arg �L, σ �L〉
DL = 〈TL, M ∩ L2, α�L〉

Lemma 1 (intersection and restriction). If L ⊆ K is arg-closed, then

der−L (E ∩ L2) = der−(E ∩ L2) ∩ L2 = der−(E) ∩ L2

Proof. The first inclusion follows from der−L v der−, the second from monotonic-
ity of der−, so it suffices to show der−(E) ∩ L2 ⊆ der−L (E ∩ L2). We prove this
using the property

L arg-closed ⇒ cong(R) ∩ L2 = congL(R ∩ L2) ⊆ cong(R ∩ L2) (16)

which is verified easily. Now



der−(E) ∩ L2 ⊆ der−L (E ∩ L2)
⇔ {elementary set theory}

der−(E) ⊆ der−L (E ∩ L2) ∪ (K2 − L2)
⇐ {minimality property of der−}

E ∪ cong(der−L (E ∩ L2) ∪ (K2 − L2)) ⊆ der−L (E ∩ L2) ∪ (K2 − L2)
⇔ {elementary set theory}

(E ∩ L2) ∪ (cong(der−L (E ∩ L2) ∪ (K2 − L2)) ∩ L2) ⊆ der−L (E ∩ L2)
⇔ {(16)}

(E ∩ L2) ∪ cong(der−L (E ∩ L2)) ⊆ der−L (E ∩ L2)
⇔ {defining property of der−L}

true

The next Lemma indicates how we can reduce der to der− without affecting
the signature.

Lemma 2 (reduction of der to der−). Let B = 〈T, M, α〉 be a derivation, and
E ⊆ K2. Then there is a relation E′ ⊆ der(E) satisfying der(E) = der−(E′) and
sig(E′) ⊆ sig(E).

Proof. Let E′ = der(E)∩K2
Σ

with Σ := sig(E). sig(E′) ⊆ sig(E) is evident, and

der−(E′) ⊆ der(E′) ⊆ der(der(E)) = der(E). So we only have to show

der(E) ⊆ der−(E′) (17)

We observe that E ⊆ der(E) ∩ KΣ ⊆ der−(der(E) ∩ KΣ) = der−(E′) and that
der−(E′) is closed under cong. So for (17) it suffices to show that der−(E′) is
an equivalence relation. Reflexivity of der−(E′) follows from ∀k ∈ K (k, k) ∈
der−(∅), which is proved straightforwardly with subnode induction. Symmetry
of der−(E′) follows from the symmetry of E′ and the fact that cong preserves
symmetry. Transitivity is more work. First we prove

der−(E′) ⊆ E′ ∪ (K − KΣ)2 (18)

This is done as follows, using the property that

cong preserves KΣ-respect (19)

(i.e. if R ⊆ K2
Σ
∪(K−KΣ)2, then cong(R) ⊆ K2

Σ
∪(K−KΣ)2), which is verified

easily. Now

der−(E′) ⊆ E′ ∪ (K − KΣ)2

⇔ {minimality property of der−}
E′ ∪ cong(E′ ∪ (K − KΣ)2) ⊆ E′ ∪ (K − KΣ)2

⇐ {elementary set theory}
cong(E′ ∪ (K − KΣ)2) − (K − KΣ)2 ⊆ E′

⇐ {(19)}
cong(E′ ∪ (K − KΣ)2) ∩ K2

Σ
⊆ E′

⇐ {definition of E′ and (16)}



cong(der(E) ∩ K2
Σ

) ⊆ der(E)

⇐ {property of der(E)}
true

Now we claim

∀l ∈ K∀km ∈ K((k, l), (l, m) ∈ der−(E′) ⇒ (k, m) ∈ der−(E′)) (20)

It is clear that this implies that der−(E′) is transitive. We prove (20) with
induction over the subnode ordering ≤. Assume (k, l), (l, m) ∈ der−(E) and
recall that der−(E′) = E′ ∪ cong(der−(E′)). We distinguish two cases.

1. (k, l) ∈ E′ or (l, m) ∈ E′. Then sig(l) ⊆ Σ, so (k, l), (l, m) ∈ der−(E′)−(K−
KΣ)2. By (18), we get (k, l), (l, m) ∈ E′, so (k, l) ∈ E′ ⊆ der−(E′) since E′

is an equivalence relation.
2. (k, l), (l, m) ∈ cong(der−(E′)), so for some n we have lth(k) = lth(l) =

lth(m) = n and ∀i < n (argi(k), argi(l)), (argi(l), argi(m)) ∈ der−(E′). By
the induction hypothesis, we have (since argi(l) < l for 0 ≤ i < n) ∀i <

n(argi(k), argi(m)) ∈ der−(E′), so (k, m) ∈ cong(der−(E′)) ⊆ der−(E′).

This ends the proof.

In Definition 2, we defined application of an abstraction to a term structure.
We extend this now to basic derivations.

Definition 6 (applicability). Let D = 〈T, M〉 be a basic derivation, and α an
abstraction of T . We call α applicable to D if

M respects α (i.e. M ⊆ ker(α) ∪ (K − dom(α))2).

The result of applying α to D is the basic derivation Dα = 〈Tα, M〉. The associ-
ated congruence and derivability operations are denoted congα, derα and der−α .

Lemma 3 (applicability). If abstraction α is applicable to basic derivation
D, then Dα is a derivation. Moreover, cong v congα and hence der v derα,
der− v der−α .

Proof. It is easy to see that if α is applicable to B, then Bα is a derivation: for
M ⊆ ker(α) ∪ (K − dom(α))2 and M ⊆ ker(σ) imply that M ⊆ ker(α :σ).

To show that cong v congα, we argue as follows. Let (k, l) ∈ cong(R), so
(k, l) ∈ M and (arg(k), arg(l)) ∈ R⊗. We want

(argα(k), argα(l)) ∈ R⊗ (21)

M respects α and hence dom(α), so either k, l ∈ dom(α) or k, l 6∈ dom(α). If
k, l ∈ dom(α) then argα(k) = argα(l) = (), so (21) holds. If k, l 6∈ dom(α) then
argα(k) = arg(k), argα(l) = arg(l) and again we have (21).

So ∀R ⊆ K2 cong(R) ⊆ congα(R), i.e. cong v congα. der v derα, der− v
der−α follow from this by monotonicity.



Finally, we introduce the notion of parsimony.

Definition 7 (Parsimony). Derivation D = 〈T, M, α〉 is parsimonious with
respect to E ⊆ K2 (E-parsimonious) if M ⊆ lift(der(E));.

The idea is that, in an E-parsimonious derivation, the matching relation M

is minimal: all pairs (k, l) ∈ M are needed to establish der(E). This is made
explicit in the first part of the next lemma. The second part shows that we may
always assume that a derivation is parsimonious: for if it is not, we can make it
parsimonious without changing der(E).

Lemma 4 (Parsimony). Let D = 〈T, M, α〉 be a derivation.

1. If D is E-parsimonious, then der(E) = (E ∪ M)e.
2. There is an E-parsimonious basic derivation D′ = 〈T, M ′α〉 with derivation

operator der′ such that der(E) = der′(E).

Proof. 1. If D is E-parsimonious, then M ⊆ lift(der(E)), so M = M∩lift(der(E)) =
cong(der(E)), hence (E ∪ M)e = (E ∪ cong(der(E)))e = der(E).

2. Define M ′ = cong(der(E)). Then M ′ ⊆ M , so by monotonicity we have
der′(E) ⊆ der(E). The other inclusion der(E) ⊆ der′(E) follows via the min-
imality property of der, provided der′(E) is closed under cong. Since der′(E)
is closed under cong′, it suffices to show cong(der′(E)) ⊆ cong′(der′(E)), i.e.

M ∩ lift(der′(E)) ⊆ (M ∩ lift(der(E))) ∩ lift(der′(E))

and this follows via monotonicity from der′(E) ⊆ der(E).

7 Interpolation

The following version of interpolation holds for equational logic.

Theorem 3. If Γ ` ϕ, then there is a collection Θ of formulas such that

1. Γ ` Θ (i.e. Γ ` θ for every θ ∈ Θ),
2. Θ `− ϕ, and
3. sig(Θ) ⊆ sig(Γ ) ∩ sig(ϕ).

Proof. Assume Γ ` ϕ, so by Theorem 2 there is a derivation D = 〈T, M, α〉 with
E ⊆ K2, ker(α) ⊆ cong(der−(E)), form(E, Tα) = Γ and (k, l) ∈ der(E) with
form((k, l), T ) = ϕ. Define

Σ := sig(E), Σ− := sigα(E), Π := sig({k, l}).

So sig(Γ ) = Σ− ⊆ Σ and sig(ϕ) = Π . In a first attempt to find Θ, we consider
Θ0 = form(I), where

I = der(E) ∩ K2
Σ∩Π

Then I ⊆ der(E), so Γ `abs Θ0. Using Lemma 2 and Lemma 1, we see that

der−(I) ∩ K2
Π

= der(E) ∩ K2
Π

(22)



So (k, l) ∈ der−(I) and we have Θ0 `abs ϕ. However, sig(Θ0) = sig(I) = Σ ∩ Π

and this is in general not contained in sig(Γ )∩sig(ϕ) = Σ−∩Π . To get rid of the
signature elements in Σ−Σ−∩Π that occur in Θ0, we introduce an abstraction
β with dom(β) = KΣ−Σ−∩Π and define Θ = formβ(I). Now sig(Θ) = sigβ(I) =
(Σ ∩ Π) − (Σ − Σ− ∩ Π) = Σ− ∩ Π , and we realized the third part of the
Theorem.

We turn to the first part, Γ ` Θ. To realize this, we want β to be applicable
to D, so we define

ker(β) = M ∩ K2
Σ−Σ−∩Π (23)

Since VAR is infinite, such a β can be found. By Lemma 3, we have cong v
congβ , der− v der−β , so ker(α) ⊆ congβ(der−β (E)). Hence E1 justifies α in Dβ =
〈Tβ , M, α〉, and we have form(E, Tα :β) `EQL form(I, Tβ) = Θ. This leads to
Γ `abs Θ provided form(E, Tα :β) = form(E, Tα). This last property follows from

∀k ∈ car(E) term(k, Tα :β) = term(k, Tα)

We argue towards contradiction, so assume k′ ∈ car(E) be a node with term(k′, Tα :β) 6=
term(k′, Tα). Then there is a path in K − dom(α) from k′ to some l′ ∈ dom(β).
But then σ(k′) ∈ sig(E, Tα) = Σ− and σ(k′) ∈ dom(β) = Σ − Σ− ∩ Π and we
have a contradiction. So we have proved Γ `abs Θ, and with (10) we conclude
Γ ` Θ.

Finally we show the second part, Θ ` ϕ. For the first step, we assume (thanks
to Lemma 4) that B is parsimonious, so M = cong(der(E)). This leaves us
to verify that cong(der(E)) ⊆ cong(der−(I)). This does not hold in D itself,
but by (22) we can close the gap by restriction to KΠ . So we define D′ =
〈TK

Π
, M ∩ K2

Π
, β′〉, where β′ = β �KΠ . Let cong′, der′−, term′ be the operators

associated with D′, then by Lemma 1 we have indeed cong(der−(E′)) ∩ K2
Π

=

cong′(der′−(E′ ∩ K2
Π

)) = cong′(der′−(I)). So I justifies β′ in D′ and we have

(k, l) ∈ der′−(I). Hence Θ `abs ϕ, and Θ ` ϕ via (10).

We illustrate this with the abstract derivation of the sequent

a ≡ b, b ≡ c, g1x ≡ g2x, g2hy ≡ d ` fg1hka ≡ fd

given in Figure 2. For reasons of perspicuity, we omit trivial equalities of the
form t ≡ t, and we also omit t ≡ s if s ≡ t is present. Now

Σ = {a, b, c, d, g1, g2, h, k}
Σ− = {a, b, c, d, g1, g2, h} = Σ − {k}
Π = {a, d, f, g1, h, k}

and

form(der(E), T ) = {a ≡ b, b ≡ c, a ≡ c, ka ≡ kc, hka ≡ hkc,

g1hka ≡ g2hkc, g2hka ≡ d, g1hka ≡ d, fg1hka ≡ fd}

so we have Θ0 = {g1hka ≡ d}, and Θ = {g1hy ≡ d} is the interpolant.



8 Concluding remarks

We presented abstract derivations for equational logic and established some in-
teresting properties which we applied in a proof of the Interpolation theorem.
The proof is constructive in that the interpolant is given explicitly, using global
operations on the relations that represent equations. We see this as an advan-
tage over other proofs for the same theorem, which are either not constructive
or proceed via incremental proof transformations.

We finish with some ideas for further research. In [15], Van Oostrom shows
that, somewhat surprisingly, interpolation does not hold in the logic of partial
order with monotonic functions (called rewrite logic in [15]). It is defined as
equational logic with ≤ instead of ≡ and without the symmetry rule. As a
counterexample to interpolation, we have the following provable sequent (a slight
simplification of the example given by Van Oostrom):

a ≤ c, b ≤ c, f(x, x) ≤ d ` f(ha, hb) ≤ d

The only possible interpolant would be something like ∃x(ha ≤ x ∧ hb ≤ x),
but this is not expressible in the logic. However, partial order is definable in
equational logic in the presence of a binary operator u which behaves like a
supremum operator, by s ≤ t iff s u t ≡ s. We conjecture that a partial inter-
polation result can be obtained for partial order logic via an embedding of the
logic in equational logic with u.

We chose equational logic for its general nature, in the sense that equality is
a fundamental notion, and many logics can be naturally embedded in equational
logic. But it remains to be investigated what happens with derivations in these
embeddings. It may also be interesting to extend the notion of abstract terms
and to allow for bags or sets instead of sequences as the datatype for the imme-
diate subterms of a compound term: by doing so, properties like commutativity,
associativity and idempotency can be ’hardwired’ in the abstract terms. Another
idea is to replace term structures by sequent structures (after all, sequents can
be considered as a kind of generalized terms) so as to investigate sequent-based
derivation systems. The representation of quantifiers is an open question.

Furthermore, there is conditional equational logic, where implications (s0 ≡
t0 ∧ . . . sn−1 ≡ tn−1) → s ≡ t are allowed: Rodenburg proved interpolation in
[10] via an adaptation of the algebraic proof for equational logic in [11], but
a prooftheoretic proof has not been given yet. Another direction for research
is proof complexity. In principle, abstract derivations allow for efficient repre-
sentation of proofs by sharing of subterms: the question is how efficient this
representation is. Are they comparable with extended Frege systems, as defined
by Cook and Reckhow in [2]? Are there general methods to reduce the size of
derivations? The relation between abstract derivations and other alternative rep-
resentation of proofs, like proof nets (see [7]) and deep derivations (see [1], [13]),
is another open question.

Three anonymous referees and Piet Rodenburg are acknowledged for their
constructive criticism on an earlier version of this paper.
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