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Abstract

Time series factor analysis (TSFA) and its associated statistical theory is developed. Unlike
dynamic factor analysis (DFA), TSFA obviates the need for explicitly modeling the process
dynamics of the underlying phenomena. It also differs from standard factor analysis (FA)
in important respects: the factor model has a nontrivial mean structure, the observations are
allowed to be dependent over time, and the data does not need to be covariance stationary as
long as differenced data satisfies a weak boundedness condition. The effects on the estimation
of parameters and prediction of the factors is discussed.

The statistical properties of the factor score predictor are studied in a simulation study,
both over repeated samples and within a given sample. Some apparent anomalies are found in
simulation experiments and explained analytically.

The main empirical result from this simulation is that, contrary to what is usually expected
in cross-sectional factor analysis, the sampling variability in the (time-invariant) parameters,
which is Op(T−1/2), accounts for most of the prediction errors, and the fundamental inability to
estimate the factors consistently, which accounts for an Op(1) term in the prediction error, turns
out to have only a very small impact for this type of data.

The application motivating this research is the desire to find good measures of
important underlying macro-economic phenomena affecting the financial side of the economy.
Technological innovations in the financial industry pose major problems for the measurement
of monetary aggregates. The TSFA estimation methodology proposed in this paper provides a
way to obtain new measures that are more robust to the effects of financial innovations. The
example application uses the general ideas laid out in Gilbert and Pichette (2003), but explores
the improved estimation methods of TSFA. What was considered an important difficulty in that
paper is now understood and shown not to be a serious problem. The approach has considerable
promise for replacing the monetary aggregates.
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1 Introduction

Standard factor analysis (FA) does not work directly with typical macro-economic time
series because the characteristics of the data usually conflict with the assumptions.
FA (see for example Wansbeek and Meijer, 2000, chap. 7), was developed for
cross-sectional data where the assumptions are often reasonable. Most notably,
FA theory assumes observations are independent and identically distributed (i.i.d.).
Macro-economic data typically trend upwards and are serially dependent, so the i.i.d.
assumption is violated.

Furthermore, most FA applications assume that intercepts are uninteresting free
parameters, which implies that sample means can be subtracted and the centered data
treated as mean zero and i.i.d. Time series applications have two important reasons why
means are of interest and intercepts should be restricted to zero. First, the intuition of
the interpretation is clearer: if the factors are zero, the explained phenomena are also
zero. Second, macro-economic variables are often interpreted in growth rates, and the
mean affects the magnitude of growth rates.

Dynamic factor analysis (DFA), often based on state-space models, was developed
to address these differences (see, e.g., Watson and Engle, 1983; Harvey, 1989; Hamilton,
1994). State space models specify how the observed variables are related to the factors
(the states) and also specify a dynamic model for the factors. Molenaar (1985) proposed
a DFA model with a seemingly different model structure, but his model can be rewritten
in an equivalent state-space form.

The drawback of modeling factor dynamics is that a substantive model of the factors
must be specified. Consequently, parameter estimates of the measurement process,
and resulting factor “predictions” depend critically on the specified dynamic factor
model. This is often undesirable because differences between economic models may be
exaggerated or blurred by the resulting data measurement differences. The possibility
of estimating parameters and predicting factor scores under minimal assumptions about
factor dynamics is explored below. The name time series factor analysis (TSFA)
is used to distinguish these techniques from DFA. This paper develops the TSFA
estimation methodology for integrating time series data. Corrections are also included
to accommodate nonzero means.

An important field of research on factor models for time series is the class of (static
and dynamic) approximate factor models. These models are suitable for time series
data with many series, with relatively few underlying factors. The typical application is
asset return data, with both a large number of time points and a large number of assets
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considered. The large number of series means that asymptotics can be used in which
both dimensions of the data matrix are diverging to infinity. Model assumptions such as
the uncorrelatedness of error terms can then be relaxed and both the parameters and the
underlying factors can be consistently estimated. See, e.g., Chamberlain and Rothchild
(1983), Forni et al. (2000), Bai and Ng (2002), Bai (2003), and Stock and Watson (2005)
for these models. In contrast, TSFA is suitable for a fixed (relatively small) number of
series and therefore relies on somewhat stronger model assumptions.

TSFA should be useful when the researcher does both measurement and modeling,
because specific assumptions about factor dynamics are usually much more fragile than
the assumption that factors exist. With TSFA the factors can be measured before
modeling their dynamics. However, TSFA may be especially important where one
group (e.g., a statistics agency or central bank) measures data for many researchers
to use.

Geweke (1977) also defined a factor analysis model for a multivariate time series
without explicitly specifying the dynamic model for the factors, but he assumed
covariance stationarity. This allowed estimation of parameters in the frequency domain.
In contrast, TSFA does not assume covariance stationarity and estimation is in the time
domain.

TSFA is also closely related to the “P-technique”, proposed by Cattell (1943) and
Cattell et al. (1947), which applied standard FA to multivariate time series. In the
development of P-technique no explicit assumptions were stated and practices were
used for which the methodological basis is questionable. First, the data were not
de-trended. Estimators are shown below to have desirable statistical properties such
as consistency after de-trending, which may not be the case otherwise. Second, a
substantive model was estimated in an attempt to accommodate the dynamic process.
This was done by including exogenous variables and deterministic functions of time
that were treated as additional indicators, and by using a matrix of the largest
cross-correlations rather than an ordinary correlation matrix. That is, if x and y are
two observed variables, Corr(xt, yt) was replaced by Corr(xt, ys), where s is such that
the absolute value of this correlation is maximized. The P-technique, and especially
this implementation, has been heavily criticized by Anderson (1963) and Holtzman
(1962). TSFA does not include exogenous variables and deterministic functions of time,
and only uses a proper covariance matrix (or correlation matrix). Furthermore, data is
de-trended by differencing and weak assumptions under which TSFA gives consistent
estimates are explicitly stated below.

Finally, this paper is related to Spanos (1984), both in terms of methodology and
application. He first estimated a FA model from first differences of a multivariate
time series, and then predicted the factor scores, which he used in a subsequent
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analysis of an economic model. Explicit assumptions are missing, but i.i.d. appears
to be assumed. After model specification, he re-estimated the complete model in a
state-space form without a dynamic factor relationship. In the application to measuring
money, he used only one factor and presumed that this would represent liquidity, as he
thought that this was the most common aspect of the various indicators. In contrast,
below weak assumptions are stated explicitly and subsequent economic models are
not discussed, the properties of the estimators and factor score predictors are studied
through simulation, and in the application a number of different choices (number of
factors, construction of the indicators) are made.

In the example application in section 5, TSFA is illustrated as a way to link measured
data, also called indicators (currency and deposit balances), to the factors which are
the underlying phenomena of interest (the intended use of money for transactions and
savings). Historically, monetary aggregates have been used to measure activity in the
financial side of the economy. Their ability to predict economic activity and inflation
has been subject to much debate. The problems with these traditional measures are
discussed in Gilbert and Pichette (2002, 2003), and in many of the references cited
in those papers. While these traditional measures are now largely unused, we hope
that a better understanding of the financial side of the economy would be useful,
and ultimately lead to models which are better for policy and prediction. Better
measurement is a necessary first step in this process.

The organization of the paper is as follows. Section 2 defines the TSFA model,
states weak regularity assumptions that will be used, and discusses statistical properties
of estimators. Section 3 develops theory for factor score prediction in the given context.
Section 4 gives a Monte Carlo analysis of the techniques, with a sample size and data
as might be expected in many macro-economics problems. Section 5 gives an example
using the application motivating this research, extracting factors from Canadian money
data. Sections 6 discusses the sensitivity of the results to the selected sample. Finally,
section 7 summarizes the results and discusses outstanding issues.

2 Time series factor analysis (TSFA)

The k unobserved processes of interest (the factors) for a sample of T time periods will
be indicated by ξit, t = 1, . . . ,T , i = 1, . . . , k. The M observed processes (the indicators)
will be denoted by yit, t = 1, . . . ,T , i = 1, . . . , M. The factors and indicators for period
t are collected in the (column) vectors ξt and yt, respectively. It is assumed there is a
measurement model relating the indicators to the factors given by

yt = α + Bξt + εt, (1)

5



where α is an M-vector of intercept parameters, B is an M × k matrix parameter
of factor loadings or simply loadings, and εt is a random M-vector of measurement
errors, disturbances, and unique or idiosyncratic factors. In the example application it
is assumed that α = 0 but the theory is developed for the general case.

Equation (1) is a standard FA model except that indicators are indexed by time and
intercepts are explicitly included, whereas in FA means are usually subtracted. The
fact that data are time series is important mainly because economic data are typically
growing and thus not covariance stationary. Other than this, the sequential order of the
data is irrelevant in TSFA as opposed to DFA.

FA is usually applied to cross-sectional data where it is reasonable to assume
i.i.d. observations. Then the mean and covariance are the same for every observation,
which is convenient for parameter estimation. With time series the i.i.d. assumption is
problematic, but it is unnecessary. If the series ξt and εt are serially dependent, but ξt

and εt are uncorrelated (at t) with zero means and constant covariances Γ and Ψ, then
the mean and covariance of yt are µy ≡ α and Σy ≡ BΓB′ + Ψ, respectively. Under some
regularity conditions the sample mean and covariance of y will be consistent estimators
of µy and Σy, and therefore the usual estimators of the parameters (such as ML) are
consistent. This principle is now demonstated under considerably weaker assumptions.

A slightly more general variant of (1) is used:

yt = αt + Bξt + εt, (2)

where αt is a possibly time-varying intercept vector, but loadings are assumed
time-invariant. Many time series integrate of order 1 so the variances of the indicators
increase with time. This violates assumptions for standard estimators where parameters
are constant and moments converge in probability to finite limits (see, e.g., Wansbeek
and Meijer, 2000, p. 234).

Often yt integrates but has a stationary first difference. Thus differencing is a
common practice in time series analysis and the consequences of differencing (2) are
examined. Below it is shown that assuming a stationary differenced series is stronger
than necessary and a weaker form of boundedness suffices. Defining D as the difference
operator (2) becomes

Dyt ≡ yt − yt−1 = (αt − αt−1) + B(ξt − ξt−1) + (εt − εt−1)

or

Dyt = τt + B Dξt + Dεt. (3)

The latter is again an equation with a factor structure, and with the same loadings B.
Thus a standard FA model can be estimated with the differenced data.
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Following are sufficient conditions (assumptions) such that this leads to consistent
estimators of relevant parameters. First, measurement model (2) and hence (3) is
assumed. Second, it is assumed that τt = τ is a constant vector in (3). In the application
αt = 0 and therefore τt = 0 for all t, but the theory is developed with the more
general specification of non-zero but time-constant τ. Third, the following conditions
are assumed:

1. κ ≡ plimT→∞
∑T

t=1 Dξt/T exists and is finite.

2. plimT→∞
∑T

t=1 Dεt/T = 0.

3. Φ ≡ plimT→∞
∑T

t=1(Dξt − κ)(Dξt − κ)′/T exists and is finite and positive definite.

4. Ω ≡ plimT→∞
∑T

t=1 Dεt Dε′t/T exists and is finite and positive definite.

5. plimT→∞
∑T

t=1(Dξt − κ) Dε′t/T = 0.

Although unit roots in Dξt and/or Dεt violate the assumptions, no other explicit
assumptions are made about possible autocorrelation of the differenced data, and these
assumptions allow considerable serial dependence in the variables.1 Furthermore, it is
not assumed that means and variances are constant over time, only that they are bounded
in such a way that the required probability limits exist. This allows, for example,
GARCH processes (Bollerslev, 1986).

Typically ξt is a random vector but alternatively it might be a series of given
constants, in which case the measurement model is interpreted as a functional model not
a structural model and “plim” has the same meaning as “lim” (Wansbeek and Meijer,
2000, pp. 11–12).

The conditions 2 and 5 are implied by the alternative condition E(Dεt | Dξt) = 0,
combined with the finiteness of Φ and Ω. This is a substantively more meaningful
assumption than 2 and 5 and therefore is assumed to be satisfied as well.

The sample mean and covariance of the differenced series Dyt will be denoted by
Dy and SDy, respectively. That is,

Dy ≡ 1
T

T∑

t=1

Dyt

1If unit roots are present in the differenced series, the data can be differenced a second time, and the
assumptions then apply to the twice differenced variables. The theory discussed here then also fully applies
to the resulting analysis. This process can be repeated until no unit roots are present anymore.
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and

SDy ≡ 1
T

T∑

t=1

(Dyt − Dy)(Dyt − Dy)′.

From the stated assumptions, it follows that

plim
T→∞

Dy = µ ≡ τ + Bκ (4)

and

plim
T→∞

SDy = Σ ≡ BΦB′ + Ω. (5)

Conventional FA estimators (such as ML) use the sample covariance to estimate the
loadings B, the factor covariance Φ, and the error covariance Ω. From (5) it follows
that these estimators must also be consistent when SDy is used as the sample covariance.
Neither normality nor serial independence are required for this result. However, just
as in standard FA, consistency is only obtained if B, Φ, and Ω are identified from this
equation (i.e., they are uniquely determined if Σ is known). Therefore it is assumed that
this is the case. In the example in section 5, as in most applications, Ω is assumed to be
diagonal. Then, if the Ledermann bound

(M − k)2 ≥ M + k

is satisfied, Ω is generally identified (Wansbeek and Meijer, 2000, pp. 169–170). As in
standard FA, the parameter matrices B and Φ are uniquely defined either by imposing
restrictions on their elements or by choosing a rotation method (see, e.g., Browne, 2001;
Loehlin, 1987, chap. 6).

Given estimators B̂, Φ̂, and Ω̂, estimators for τ and/or κ can be obtained from (4).
The number of sample means in this equation is smaller than the number of parameters
and therefore some restrictions must be imposed. In a typical FA model, the intercepts
are free parameters, so that the means of the factors can be arbitrarily but conveniently
restricted to zero, giving the restriction κ = 0 and estimator τ̂ = Dy. This illustrates
why the means are usually neglected in FA applications. When τ = 0 and κ is not zero,
a natural and consistent estimator of κ is the GLS estimator

κ̂ = (B̂′Ω̂−1B̂)−1B̂′Ω̂−1Dy.

It is also possible to estimate all parameters jointly from the mean and covariance
structure, i.e., use (4) and (5) jointly. Some experimentation with this did not lead to
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improved estimators and attention is restricted to a standard covariance-based estimator
of free parameters in B, Φ, and Ω. In particular, the maximum likelihood estimator
found by minimizing

L ≡ log det Σ + tr(Σ−1SDy) (6)

as a function of the parameters is used. Here, although not made explicit in the notation,
Σ is a function of the parameters, as given in (5). Resulting consistent estimators will
not be full maximum likelihood, but quasi maximum likelihood in the sense of White
(1982). This is because the data are typically not normally distributed, may be serially
dependent, and (4) may give additional information on the parameters (e.g., if τ = 0),
which is unused in the estimation.

Under weak assumptions, the central limit theorem implies that the elements of
the sample covariance SDy are jointly asymptotically normally distributed. Let sDy be
the vector consisting of all unique (nonduplicated) elements of SDy, and let σ0 be its
probability limit. Then √

T (sDy − σ0)
d−→ N(0,Υ0) (7)

for some finite positive definite matrix Υ0. Υ0 can be estimated consistently by a
heteroskedasticity and autocorrelation consistent (HAC) covariance estimator, such
as the Newey-West estimator (Newey and West, 1987). See Andrews (1991) and
Wansbeek and Meijer (2000, pp. 249–252) for a discussion of HAC estimators and
De Jong and Davidson (2000) for a very general consistency result for HAC estimators.

Stack B, Φ, and Ω in the parameter vector θ and denote the population value θ0. The
estimator θ̂ of θ is a function of sDy. Combining the implicit function theorem and the
delta method with (7), gives

√
T (θ̂ − θ0)

d−→ N(0, J0Υ0J′0),

where J0 ≡ plimT→∞ ∂θ̂/∂s′Dy. Formulas for ∂θ̂/∂s′Dy were given by Shapiro (1983) for
the case in which identification is obtained by explicit restrictions on the parameters.
Archer and Jennrich (1973) and Jennrich (1973) derived formulas for the case in which
a rotation method is used to obtain uniquely defined parameters. Standard errors of the
parameter estimators are now straightforwardly obtained and Wald and LM tests can be
routinely applied if desired.

3 Predicting factor scores

In many cases one is not only interested in the model parameters, such as B, but also,
or even primarily, in the realized values of the factors, the factor scores. The factors are

9



unobserved, i.e., they are latent variables, and their values generally cannot be estimated
consistently. They can, however, be “predicted.” This is prediction for the same time
period and should not be confused with prediction of the future (i.e., forecasting). In
the economics and time series literature the term estimation is often used with indirectly
measured latent variables, which often correspond to the states of state space models.
Technically these are not estimates, since they do not converge to the values of the
latent variables with increasing time, but the terminology does have the advantage of
more easily distinguishing prediction of the future from prediction of the present and
past.

Factor prediction error is due to two sources: (1) estimation error in the parameters,
and (2) inability to obtain perfect predictions even if parameters are known. Parameter
estimation error is of order Op(T−1/2) and in large samples this error should be small.
The second source of error does not diminish with sample size, because, without
assumptions about dynamic dependencies of the observations, ys for s , t do not
provide information about ξt. Therefore, all usable information about ξt is contained
in yt and this information does not increase with sample size. It follows that this error is
Op(1). Consequently, in large samples the prediction error is dominated by the second
source of error. Discussion in the literature focuses on asymptotics, so parameters are
assumed known.

Compared to standard factor score prediction literature, (2) is different in that
means and intercepts can be nonzero. Standard formulas must be slightly adapted
to accommodate this. Anderson and Rubin (1956) provided formulas for nonzero
intercepts, but still assumed zero means of the factors. The extension to nonzero means
is given below. As in standard factor score prediction, attention is restricted to linear
predictors. Nonlinear predictors have been proposed in Meijer and Wansbeek (1999).

The easiest way to find suitable factor score predictors when intercepts and means
are possibly nonzero is to transform the model such that the means and intercepts are
zero, then apply the standard predictors to the transformed model and transform back.
Starting from the model (2) with possibly nonzero means and intercepts, the transformed
model is

yt − αt − Bγt = B(ξt − γt) + εt, (8)

where γt ≡ E(ξt) and using the assumption E(εt) = 0. When the parameters are assumed
known, as discussed above, the left-hand side of (8) is a vector of observed indicators
with mean zero, and ξt − γt in the right-hand side is a vector of factors with mean zero.

The two most frequently used factor score predictors for a model with zero means
and intercepts are the regression predictor and the Bartlett predictor. See, e.g.,
Wansbeek and Meijer (2000, pp. 164–166) for their derivation.

Applied to (8), the regression predictor for the zero-mean factor (ξt − γt) is
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ΓtB′Σ−1
yt (yt − αt − Bγt), so that the resulting regression predictor for ξt is

ξ̂R
t = γt + ΓtB′Σ−1

yt (yt − αt − Bγt),

where Γt ≡ Cov(ξt) and Σyt ≡ Cov(yt). Similarly, the Bartlett predictor for (ξt − γt) is
(B′Ψ−1

t B)−1B′Ψ−1
t (yt − αt − Bγt), so that the resulting Bartlett predictor for ξt is

ξ̂B
t = (B′Ψ−1

t B)−1B′Ψ−1
t (yt − αt),

where Ψt ≡ Cov(εt). The (unconditional) means and covariance matrices of the
predictors are

E(ξ̂R
t ) = ΓtB′Σ−1

yt (αt + Bγt) − ΓtB′Σ−1
yt αt − (ΓtB′Σ−1

yt B − Ik)γt

= γt

Cov(ξ̂R
t ) = ΓtB′Σ−1

yt (Σyt)Σ−1
yt BΓt

= Γt − Λ−1

< Γt

and

E(ξ̂B
t ) = (B′Ψ−1

t B)−1B′Ψ−1
t (αt + Bγt) − (B′Ψ−1

t B)−1B′Ψ−1
t αt

= γt

Cov(ξ̂B
t ) = (B′Ψ−1

t B)−1B′Ψ−1
t (Σyt)Ψ−1

t B(B′Ψ−1
t B)−1

= Γt + (B′Ψ−1
t B)−1

> Γt,

where Λ ≡ Γ−1
t + B′Ψ−1

t B and Λ−1 = Γt − ΓtB′Σ−1
yt BΓt, cf. Wansbeek and Meijer (2000,

pp. 164–165), and matrix inequalities are in the sense of Löwner (1934), i.e., A < B
means that B − A is positive definite. Thus, the means of the predictors are the same as
the mean of ξt, but the variances are different.2

Both predictors require knowledge of αt, the intercept, and Ψt, the covariance of
εt. In addition to this, the regression predictor requires knowledge of γt and Γt, the
mean and covariance of ξt, whereas the Bartlett predictor does not. This is an important
difference, because these are generally not known and assumptions about ξt are to be
minimized. Moreover, with an integrated series, γt and Γt increase with t and any

2Covariance preserving predictors are not used here but can be developed if it is desirable that the
predictors have the same covariance as the factors. See Ten Berge et al. (1999).
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assumptions become more problematic. In the functional model view mentioned earlier,
it is even more questionable whether the MSE optimality of the regression predictor is
meaningful. In this case, the Bartlett predictor is a perfectly natural estimator of an
unknown vector.

Knowledge of Ψt is still needed for the Bartlett predictor. However, it is
substantively and interpretationally convenient to assume Ψt ≡ Cov(εt) = Ψ is a
time-invariant diagonal matrix and εt and εs are independent for t , s. This assumption
about εt implies that the covariance of Dεt is Ω = 2Ψ. It now follows that Ψt may
be replaced by Ω in the definition of the Bartlett predictor. Because Ω is consistently
estimated from the differenced data, it may be assumed known asymptotically. If the
i.i.d. assumption about ε is not met, and any positive definite weight matrix W is inserted
for Ψ−1

t in the computation of the Bartlett predictor, this predictor is still unbiased,
although not optimally efficient. This follows from standard GLS regression theory.
Therefore, the Bartlett predictor with Ω−1 inserted for Ψ−1

t generally makes sense and
will have relatively good properties even in the non-i.i.d. case.

When it is assumed that αt = α = 0, the regression predictor becomes

ξ̂R
t = γt + ΓtB′Σ−1

yt (yt − Bγt)

and the Bartlett predictor becomes

ξ̂B
t = (B′Ψ−1

t B)−1B′Ψ−1
t yt

or
ξ̂B

t = (B′Ω−1B)−1B′Ω−1yt.

The latter formula does not contain any possibly time-varying parameters. This further
enhances the advantage of the Bartlett predictor over the regression predictor, because
the Bartlett predictor can be computed by using just the estimation results from the
factor analysis of the differenced series, in particular B and Ω. From this it is clear that
we have a strong preference for the Bartlett predictor in a time-series context.

4 Simulation study

The precision of estimators and factor score predictors is assessed with a small
simulation study. To give a realistic view, the simulation used true factors ξ̃t and
model parameters based on those estimated from a real data set. The real estimation
is described in section 5. There are M = 6 indicators and k = 2 factors, and data for
T = 215 consecutive months. These true factors and parameters were used to generate
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new samples. In this way, the new samples should be similar to data encountered in
practice. Simulated data was generated for 100 replications (samples).

Parameters were estimated with standard ML applied to the differenced data, as
discussed in section 2. The direct oblimin (quartimin) rotation method with Kaiser
normalization was used (Wansbeek and Meijer, 2000, pp. 168–169). This is a common
rotation method if the factors are not assumed (contemporaneously) uncorrelated. It
usually gives clearly interpretable results. The factor score predictor was the Bartlett
predictor, as argued in the previous section. However, as shown there, the covariance
of these predictors is larger than the covariance of the actual factors. Therefore, the
predicted scores were linearly transformed such that the (sample) covariance of their
first differences was exactly equal to the estimated covariance Φ̂ of the first differences
of the factors. Otherwise, the true parameter values in the simulation would not equal
the estimates from the real data.

All replications used the same values of the factors and thus implications of the
simulation are conditional upon these. They are depicted by the solid lines in figure 1,
whereas their first differences are depicted by the solid lines in figure 2. These figures
suggest that the factors are trending and have a unit root and that their first differences
have some negative serial correlation.

New values ε(r)
t of the errors, where r is the replication number, were drawn from

a normal distribution with mean zero and covariance Ψ̂ = 1
2Ω̂ given by the estimated

covariance from the original data. New sample data were subsequently obtained from

y(r)
t = B̂ξ̃t + ε(r)

t ,

where B̂ is the estimated loadings from the original data.
Estimation and factor score prediction from the simulated data was done as

estimation and factor score prediction for the original data, but the transformation of
the factor score predictors was omitted, because this would make the predictors biased.
(This is also omitted in the application described in the next section.)

Computation was done with the software R (R Development Core Team, 2004),
using the gpa functions of Bernaards and Jennrich (in press) for the rotations.3

The first replication

The first generated sample illustrates what can be expected in an empirical situation.
This sample was used to estimate the parameters B and Ω and calculate predicted factor
scores. Figure 1 depicts true factor scores (solid lines) and Bartlett predictions (heavy

3We would like to thank Coen A. Bernaards and Robert I. Jennrich for extensive discussions about their
code.
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dashed lines), using sample estimates of the parameters. Other lines will be discussed
further below.

There appears to be a large and systematic bias in the predicted scores. To analyze
this, consider the Bartlett prediction error:

ξ̂t − ξt = (B̂′Ω̂−1B̂)−1B̂′Ω̂−1yt − ξt

= (B̂′Ω̂−1B̂)−1B̂′Ω̂−1(Bξt + εt) − ξt

= −L̂′(B̂ − B)ξt + L̂′εt, (9)

where L̂′ = (B̂′Ω̂−1B̂)−1B̂′Ω̂−1. The first term on the right-hand side of (9) is Op(T−1/2),
and zero if B̂ = B. The second term is Op(1) and does not converge to zero with
increasing sample size unless L′εt = 0, where L′ = (B′Ω−1B)−1B′Ω−1, but this can be
neglected as it has zero probability.

Since εt in the simulation are i.i.d. with mean zero, the second term in (9) is
nonsystematic with a zero mean. Therefore, the systematic error cannot be due to this
term and must come from the first one. There is a thin dashed line in figure 1 which is
virtually indistinguishable from the true value. It plots the predicted scores that would
result if the true parameter values B and Ω are used instead of their sample estimates
in the computation of the predicted factor scores. Predictions are extremely good and
there is no noticeable bias. This illustrates that the prediction errors are largely due to
estimation errors of the parameters. Apparently, the sample size is (much) too small for
the asymptotic analysis of the prediction error. Asymptotically, the estimation error is a
negligible part of the prediction error, because the former is Op(T−1/2) and the latter is
Op(1), but here the estimation error explains almost all of the prediction error.

The systematic nature of the prediction errors is explained by the positivity of ξt and
the fact that L̂′(B̂ − B) is a constant matrix in a given sample. Thus errors tend to have
the same sign for all t. Moreover, if the ξt are serially dependent, the prediction errors
will also be serially dependent and prediction errors of consecutive time points tend to
be approximately the same. Finally, because ξt is generally increasing with t, it follows
from (9) that the prediction errors become larger for more recent time points.

The effect is much smaller when comparing first differences of the predicted factor
scores with the first differences of the true factor scores, because the first differences can
be negative as well and they are considerably less serially dependent. This is illustrated
in figure 2.

Observable bias and bias correction

From the factor score predictions ξ̂t, predicted values of indicators can be computed by

ŷt = B̂ξ̂t, (10)
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Figure 1: True factor scores (solid lines); Bartlett factor score predictions (using sample
estimates of the parameters; heavy dashed lines) in the first replication; Bartlett factor
score predictions (using true values of the parameters; thin dashed lines) in the first
replication; Bartlett factor score predictions (means and means ± 2 s.d.), using 100
replications (dot-dashed and dotted lines).
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Figure 2: First differences of true factor scores (solid lines) vs. first differences of
Bartlett factor score predictions (dashed lines) in the first replication.
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and these can be compared with observed values of the indicators. The TSFA model
does not assume that the errors εt should be small, it only assumes that they are
uncorrelated (at the same time point) and have mean zero. But this comparison gives
an indication about the fit of the model, in addition to likelihood ratio statistics and
other fit measures. For the first replication, the predicted values of indicators 1–3 are
plotted with the observed values in figure 3 and the predicted values of indicators 4–6
are plotted with the observed values in figure 4. Here, it can be seen that the results for
the first three indicators are representative of the other indicators, so in the sequel, the
figures of indicators 4–6 are omitted for space considerations.

The systematic factor score prediction errors largely carry over to prediction errors
in observed indicators. The latter, being observed, suggests that some kind of bias
correction might be performed, so that indicator prediction errors vanish. This might
then reduce systematic errors in predictors, but this is a false hope. The differences
between the measured values of the indicators and their predicted values are

yt − ŷt = yt − B̂ξ̂t.

It seems natural to define the optimal predictors as the ones that minimize a generalized
least squares function

F ≡ (yt − ŷt)′W(yt − ŷt),

where W is a weight matrix. From standard regression theory the optimal predictor is

ξ̂t = (B̂′WB̂)−1B̂′Wyt.

Analogous to GLS regression theory, it is natural to choose W = Ω̂−1 here.
Consequently, the optimal factor score predictor is the Bartlett predictor. Given that
the analysis did not involve the other observations, this predictor is optimal for each
observation separately and therefore for all observations jointly as well. Although it
looks like there is a systematic bias in the predictors and this is carried over to the
predicted indicators, it is not possible to obtain a better (bias-corrected) factor score
predictor that reduces the bias in the observed indicators.

More replications

Moving on to consider all 100 replications, table 1 shows the bias and variability of
estimated loadings. With the possible exception of the bottom-left element there are no
substantial biases. However, there is a large variability in the estimates.

Figure 1 plots the means (across replications) of the predictions with the dot-dashed
line and the means plus and minus 2 times the standard deviations with the dotted lines.
The latter two give an impression of the variability of the predictors around the means.
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Figure 3: Observed (solid lines) vs. predicted values (dashed lines) of indicators 1–3 in
the first replication.
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parameters; dashed lines) of indicators 4–6 in the first replication.
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Table 1: Bias and variability in the factor loadings estimates.
Indicator True values Bias Standard deviation

Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2
1 8.8 5.2 -0.4 -0.7 2.1 2.9
2 23.8 -12.6 -2.5 0.4 5.9 8.9
3 5.2 -2.0 -0.4 -0.1 1.5 1.9
4 36.8 16.9 -1.3 -2.5 6.9 11.0
5 -2.8 31.0 1.0 0.4 9.6 10.5
6 2.6 47.6 2.5 -0.4 12.4 17.4

The figure shows that the systematic prediction errors encountered before are not
due to a bias, because there is little sign of bias across replications (with the possible
exception of a small bias in the second factor in later time points). This corroborates
the earlier analysis. However, there is considerable variability around the means which,
from the earlier analysis, is mainly due to the large variability in the parameter estimates
(especially the factor loadings).

5 Application to money data

In this section the techniques developed in sections 2 and 3 are applied to the Canadian
money data. This updates the application described in Gilbert and Pichette (2003) using
estimation techniques developed above. Also, a different rotation criterion is used, but
rotation is not the primary focus of the current work.

As previously mentioned, there are problems with current monetary aggregates, and
predictors based on TSFA may better measure the concepts of interest. The intention is
to eventually replace traditional monetary aggregates with index measures using TSFA.
That is, aggregates will be replaced with factors which are the latent variables explaining
shifts in the financial assets of the population. These factors are predicted using the
component data from the monetary aggregates as the indicators.

The indicators are organized into six categories. Data is measured in a larger
number of categories, but shifts between indicators for reasons other than fundamental
macro-economic behaviour will interfere with extracting the factors of interest. Thus
it is necessary to combine asset categories among which there have been important
shifts for other reasons. For example, Canadian Savings Bonds are no longer widely
used and people have shifted to mutual funds. Instruments typically thought to be
savings are grouped together and called investment. The six indicators are currency,
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personal chequing deposits, non-bank chequing deposits, non-personal demand and
notice deposits, non-personal term deposits, and investment. Non-personal accounts
mostly belong to businesses. In Canada, trust companies, credit unions, and some
other financial institutions are not grouped with banks, so the term “non-bank” refers
to deposits at these institutions. Considerably more detail about the data is provided in
Gilbert and Pichette (2003) and in Kottaras (2003). To remove factors that are not the
main interest, the data is per capita and measured in real Canadian dollars. Data is for
the 215 months from January 1986 to November 2003.

Some indicators show no seasonality, while others do. For example, currency has
marked seasonal peaks at Christmas and in September. These different patterns in the
indicators may reflect differences in the factors. Thus seasonality may help distinguish
the factors of interest, and therefore the data is not seasonally adjusted. For economic
modeling the predicted factor scores could be seasonally adjusted.

Eigenvalues of the sample correlation matrix of differenced indicators give a rough
idea of the number of factors to consider. These are 2.08, 1.39, 0.85, 0.69, 0.65,
and 0.33. A conventional rule of thumb is that the number of factors should be
equal to the number of eigenvalues larger than 1, suggesting at least 2 factors. One
factor representing transactions money (assets intended for imminent transactions),
and another representing savings (assets intended for longer term investment) was
anticipated. However, the third eigenvalue is close to 1 suggesting a possible third factor.
For example, corporate finances may be arranged differently than personal finances.
Some preliminary experimentation with a third factor seems to suggest this. However,
extracting three factors from six indicators causes statistical difficulties (the Ledermann
bound is satisfied as an equality). Therefore, this possibility is left for later study with
additional indicators.

A direct oblimin (quartimin) rotation was used to obtain a unique solution. This is
arguably the most common non-orthogonal rotation method. The oblimin objective is
to give loadings that weight heavily on one factor or the other. This may be appropriate
for currency and investment, at the two ends of the scale, but is probably not appropriate
for some deposit types in between. Modern deposit accounts can both pay good interest
rates and allow the convenience of point-of-sale payments, so they may be used for both
savings and transactions. Therefore, rotation criteria will be examined more carefully
in future work.

The model chi-square (likelihood ratio statistic) is 3.19 with 4 degrees of freedom.
The comparative fit index (CFI, a pseudo-R2) is 1.0, because the model chi-square is less
than its degrees of freedom. See Wansbeek and Meijer (2000, chap. 10) for a discussion
of these and other fit measures. Although the assumptions on which these statistics
are based (normally distributed i.i.d. data) are not met, and thus standard p-values are
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Table 2: Estimation results for differenced data.
Indicator Unstandardized Standardized Communality

loadings loadings
Factor 1 Factor 2 Factor 1 Factor 2

Currency 8.84 5.20 0.66 0.39 0.59
Personal cheq. 23.82 -12.57 0.54 -0.28 0.37
NonbankCheq 5.18 -1.97 0.48 -0.18 0.26
N-P demand and notice 36.78 16.94 0.77 0.35 0.72
N-P term -2.84 31.02 -0.04 0.44 0.20
Investment 2.60 47.63 0.02 0.40 0.16

incorrect, these findings indicate that the model fits very well.
The estimation results are shown in table 2. The two left columns are the estimated

(unstandardized) loadings. These are the same as the loadings used previously to
generate simulated data, because of the way that those loadings were constructed. The
next two columns are the loadings of the standardized solution (scaled so that each
series in the factors and data has variance 1.0). These are typically easier to interpret,
because a larger (in absolute size) loading indicates a stronger relationship. Loadings
of the standardized solution are typically between −1 and 1. This is necessarily the
case for orthogonal solutions, because then the loadings are the correlations between
the indicators and the factors. In principle, absolute loadings could be larger than 1
for oblique rotations such as oblimin, but such large loadings are rare. The estimated
correlation between the two (differenced) factors is 0.0095, so the solution is nearly
orthogonal. The last column gives the communalities. The communality of an indicator
is its common variance (i.e., the variance explained by the factors) expressed as a
fraction of its total variance. Thus, it is the R2 of the regression of the indicator on
the factors.

The communalities of most indicators are quite low compared to the communalities
commonly encountered in cross-sectional analyses (e.g., De Haan et al., 2003). This is
due to the differencing of the data, which tends to reduce the variability of the factors
considerably and tends to increase the variability of the random errors. The combined
effect of this is a reduction in the communality, which is the relative contribution of
the factors. This effect is similar to the effect commonly encountered in panel data
regressions, where the R2 is much smaller for models in first differences than it is for
models in levels. Tentative communalities are computed for the undifferenced data
under the assumptions that the random errors are i.i.d. and the relevant covariance of
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the factors is the covariance of the factor scores that were used in the simulation. The
resulting communalities are 0.998, 0.992, 0.979, 0.999, 0.996, and 0.995, respectively,
which illustrates the dramatic effect of differencing. We do not regard the low
communalities for the differenced data as problematic. Extremely high communalities
for the undifferenced data may be due to truly common factors as well as a spurious
time dependence. One advantage of the differencing is that the latter is also removed
and thus has no detrimental effect on parameter estimation.

The last two indicators only load on the second factor, which can therefore be
interpreted as the savings factor, as anticipated. The relatively high loadings of the first
few indicators on the first factor give some credence to its interpretation as transactions
money. However, the moderately high loadings of the first and fourth indicators on
the second factor, and the moderately high negative loadings of the second and third
indicators on the second factor complicate the tentative interpretation of the factors.
Even disregarding the difficulty interpreting negative loadings in this application, it
would mean that currency is used for savings much more than usually thought. Another
possibility would be that the oblimin rotation does not give the substantively best
solution and another rotation would represent transactions money and savings money
better. A more likely possibility is that there needs to be a third factor. For example,
corporate financial behaviour may be very different from personal behavior. This
conclusion is also suggested by the fact that non-personal demand and notice deposits
also load heavily on the first factor.

Three factors is the Ledermann bound with six data series, which means that the
covariance structure would be perfectly explained by the factors, regardless of the data.
Therefore, it is difficult to assess the fit of the model with 3 factors. Furthermore, results
may not be very meaningful due to overfitting. In future research this will be addressed
by adding credit series.

Despite these problems, the Bartlett predictor will be illustrated. The data explained
by two factors, using formula (10), which has the obvious shortcomings discussed
earlier (but does not depend on the specific rotation method chosen), is shown in
figure 5. This figure shows systematic discrepancies that are qualitatively similar to the
corresponding results from the simulation study (figure 3). Furthermore, the seasonal
pattern in currency is also clearly present in its prediction, whereas for investment
(figure omitted) neither the observed indicator nor its prediction exhibits seasonality.
The differenced version, which suggests that the factors capture movements fairly well,
is shown in figure 6.

While the estimates are preliminary in several ways, it is still interesting to compare
the results with other measures. The predicted factor scores are shown in figure 7,
plotted against real per capita M1 and real per capita M2++. The predictors are scaled to
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Figure 5: Explained money indicators 1–3 (solid lines: observed, dashed lines:
predicted).
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Figure 6: Explained money indicators 1–3, differenced (solid lines: observed, dashed
lines: predicted).
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have the same average values as M1 and M2++. The savings predictor has a much more
dynamic path than M2++, and is also roughly consistent with what one might expect
for savings given the Canadian business cycle. The first predictor has less pronounced
growth than M1 in the second half of the sample. If one thinks that transactions money
growth should be correlated with inflation then this less pronounced growth is certainly
consistent with observed inflation. However, the drop of inflation in the late 1980’s is
not so clearly reflected.

The differenced predictors and differenced real per capita M1 and real per capita
M2++ are shown in figure 8. The differenced first predictor looks surprisingly close
to differenced M1, but this is more apparent than real, because the differenced first
predictor is lower on average. One would expect a transaction money measure to be
not too unlike M1 but, given that this whole research program was initiated because of
dissatisfaction with M1 and other narrow aggregates, one might expect that it should not
be too close either. Thus it is hard to pass judgement on this initial result. The second
predictor shows considerably more volatility than M2++, and again it is difficult to
immediately judge whether that is good or bad.

6 Sensitivity to sample period and size

This section provides an indication of the extent to which sample size and the selected
sample period may influence results. By most accounts, the most recent data, starting
in the mid-1990s, has been problematic because of financial innovations. Figures
in this section shows the results estimated on different sub-samples: (1) January
1986–December 1989, (2) January 1986–December 1994, (3) January 1995–November
2003, and (4) January 2001–November 2003. Parameter estimators based on a (smaller)
subsample are more variable than estimators based on the whole sample, so differences
are expected.

Figures 9 and 10 show the predictions of the indicators and their first differences,
according to formula (10). Although predictions for some periods appear to better
than for others, this appears not to be systematic across indicators and is most likely
due to the variability. So the level data generally has the same problems illustrated
previously. The differenced data is relatively well explained on all subsamples. Most
importantly, there is no convincing evidence that the predictions from the subsamples
are noticably better than those from the complete sample, which gives some indication
that the measurement model does not vary over time.

The predictors are shown in figure 11. The results from different subsamples are
not extremely different from results for the complete sample, with the exception of
the post-2001 subsample. This is the smallest subsample (T = 35), so is probably
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Figure 7: M1 and M2++ (solid) and scaled Bartlett predictors (dashed).

27



1990 1995 2000

−
15

0
−

50
50

15
0

R
ea

l p
er

C
ap

ita
 M

1

1990 1995 2000

−
20

00
0

20
00

R
ea

l p
er

 C
ap

ita
 M

2+
+

Figure 8: Differenced M1 and M2++ (solid) and scaled Bartlett predictors (dashed).
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Figure 9: Explained money indicators 1–3, full sample and sub-samples (solid:
observed, other: predicted using different subsamples).
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Figure 10: Explained money indicators 1–3, differenced, full sample and sub-samples
(solid: observed, other: predicted using different subsamples).
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Figure 11: Bartlett predictors based on full sample and sub-samples.
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due to variability in the loadings estimators. The differenced predictors are not shown
(for space considerations) but are very similar on all subsamples, which suggests the
technique is not overly sensitive to the selected sample. This is extremely encouraging,
given that so much earlier work with the monetary aggregates over this period has
suggested that structural change is an important issue.

7 Discussion

This paper presents a methodology which we have called time series factor analysis
(TSFA) to distinguish it from dynamic factor analysis (DFA) and from standard
(cross-sectional) factor analysis (FA). Compared to standard FA, data are differenced
first, because time series data are often integrating. Moreover, a considerably weaker
set of assumptions than for standard FA are shown to ensure parameter estimator
consistency. Compared to DFA, the dynamics of the factors are not estimated. The
reason for not doing this is to more clearly separate the measurement problem from the
economic modeling problem.

Extracting the factors while making as few assumptions as possible about their
dynamics can be important for a number of reasons. The most important is that
specific assumptions about the dynamics of the model are usually much more fragile
than the assumption that factors exist. When modeling and estimating both jointly,
misspecification of the dynamic model for the factors may lead to distorted estimators
for the measurement (factor analysis) part of the model. With TSFA, factors are
established and measured fairly well before modeling their dynamics. TSFA may also
be important in situations where one group (a statistics agency or central bank) measures
the data and many researchers use it.

It is expected that TSFA is less efficient than DFA if the latter uses the correct
specification of the dynamic process generating the factors. On the other hand, if DFA is
based on a misspecified dynamic model, TSFA is expected to give better results. Hence,
an important question is how large these losses and gains are. Some very preliminary
simulations suggest that the efficiency loss of TSFA compared to a completely correctly
specified DFA analysis may not be large, whereas DFA may give seriously biased
results if the model for the factors is misspecified by omitting a seasonal component. A
detailed study of the conditions under which TSFA is much better or worse than DFA
is, however, beyond the scope of the current paper.

It is hoped that TSFA will measure factors that are better data for economic
modeling than aggregates currently used. The TSFA and the subsequent economic
modeling together would then be similar to DFA, but the TSFA step does not
pre-suppose an economic model. Moreover, different economic models can be
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compared more easily, because these use the same data.
The techniques developed for TSFA use standard factor analysis theory but are

different in important respects: the data does not need to be covariance stationary
(although the differenced data must satisfy a weak boundedness condition), there is
a nontrivial mean structure, and the observations are allowed to be dependent over
time. The effects of these on parameter estimation and factor score prediction have
been discussed.

A striking empirical result is that the sampling variability in the parameters accounts
for most of the errors in the factor score predictions, and the fundamental inability to
estimate the factors consistently has only a very small impact for this type of data.
However, the differenced factors appear to be estimated well, and in many respects this
is even more important than estimating the levels precisely. If the indexes are pegged at
a reasonable level then growth rates will be in a reasonable range.

Factor rotation still needs to be examined more closely. Results here are based on
an oblimin rotation. This is appropriate if indicator data should load almost exclusively
on one factor or the other. For several of the indicator series this may not be appropriate.
Other rotation criteria will be considerd in future research.

The number of factors has been assumed here to be two, but there are indications
that three factors may be needed. With only six indicators available, however, this
gives a saturated, just-identified model that fits the observed covariance perfectly,
regardless of the data. This leads to unreliable results and overfitting. This may best
be accommodated by adding credit data. The Ledermann bound for six data series is
three factors. Adding six credit series would give 12 in total, and a Ledermann bound
between 7 and 8 factors. Since one would expect some factors to explain both credit
and money behaviour, this seems like an attractive option.

There are also questions concerning structural breaks: whether they need to be
considered, and if so, determining where they occur. Casual consideration of the results
presented here suggests that structural breaks may not be a problem, but research on the
monetary aggregates over this period has usually been frustrated by model breakdowns
that are often attributed to structural breaks, so further investigation of this would be
appropriate.

The estimation methodology should be applicable to a much larger range of
problems than the application considered here, and indications are that it can work very
well. The application to measuring money shows much promise and may provide a
measure of a more fundamental underlying economic phenomena than conventional
monetary aggregates.
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