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Abstract

Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which
can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or
by directly modeling at the discrete level itself. One of the goals of this paper is to model port-Hamiltonian systems at the discrete level. We
also show that the dynamics of the discrete models we obtain exactly correspond to the dynamics obtained via a usual discretization procedure.
In this sense we offer an alternative to the usual procedure of modeling (at the smooth level) and discretization.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In previous work, see e.g. [6,1,14], it has been shown how
port-based network modeling of complex lumped-parameter
physical systems naturally leads to a generalized Hamilto-
nian formulation of the dynamics. In fact, the Hamiltonian is
given by the total energy of the energy-storing elements in the
system, while the geometric structure, defining together with
the Hamiltonian the dynamics of the system, is given by the
power-conserving interconnection structure of the system, and
is called a Dirac structure. Furthermore, energy-dissipating
elements may be added by terminating some of the system
ports. The resulting class of open dynamical systems has been
called “port-Hamiltonian systems” [14]. The port-Hamiltonian
framework offers many fundamental benefits. Firstly, it is
instrumental in finding the most convenient representation
of the equations of motion of the system; in the format of
purely differential equations or of mixed sets of differential
and algebraic equations (DAEs). From an analysis point of
view it allows to use powerful methods from the theory of
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Hamiltonian systems. Finally, the Hamiltonian structure may be
fruitfully used in control design, e.g. by the explicit use of the
energy function and conserved quantities for the construction of
a Lyapunov function (possibly after the connection with another
port-Hamiltonian controller system), or by directly modifying
by feedback the interconnection and dissipation structure and
shaping the internal energy. We refer to [8,14] for various work
in this direction.

It is well known that for the study of complex physical
systems, numerical simulation plays an important role. A fun-
damental issue in simulation concerns structure preserving
algorithms. Numerous studies, for e.g. [2–5], have shown the
benefits of preserving the continuous structure at the discrete
level. The study of structure preserving algorithms is a well-
established field. One fundamental problem concerns the na-
ture of the discretized system. For example, we may discretize
a Hamiltonian system and ensure that the discretized system
is energy-conserving, and preserves some other conservation
laws. But does this mean that the discretized system is Hamil-
tonian? To answer this we must first of all have a Hamiltonian
theory for discrete systems, this has been accomplished in
[10], we shall recall some of that paper in the next section.
Roughly speaking, [10] defines a discrete differential geome-
try and models physical systems directly at a discrete level in
a Hamiltonian framework. Talasila et al. [10] also proves that
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the discrete models exactly coincide (under some conditions)
with discretized models of the same system. The goal of this
paper is to extend [10] to the port-Hamiltonian setting.

The basic motivation of this paper is to formalize the geomet-
ric/mathematical structure that port-Hamiltonian systems have
at the discrete level. Discrete systems can be obtained in two
ways. Either we can discretize a continuous system (there exist
a variety of techniques for doing so), or we can directly model
the systems at the discrete level. In this paper we proceed along
the latter lines, and we show that the discrete models that we
obtained (via directly modeling at the discrete level) exactly co-
incide, under some conditions, with discretized models—thus
offering an alternative approach towards the modeling and sim-
ulation of port-Hamiltonian systems. This paper is an extension
of [12].

The outline of the paper is as follows. We briefly recall dis-
crete Hamiltonian mechanics and certain geometrical concepts
in Section 2. In Section 3, we discuss the concept of ports in
our discrete setting. Discrete Dirac structures, their representa-
tions and interconnection properties are introduced in Section
4. The interconnection properties of discrete Dirac structure are
derived in Section 5, and discrete port-Hamiltonian systems are
defined in Section 6.

2. Geometry and Hamiltonian mechanics on discrete
spaces

In this section we briefly recall certain concepts of discrete
Hamiltonian mechanics, for more details cf. [10,11]. The first
requirement is to choose an appropriate discrete analogue for
the reals R. We can use discrete lattices (which have a ring
structure), or the space of floating point numbers F which have a
quasi-ring (cf. [10,11]) structure. Since computers uses floating-
point numbers, and since our main focus is numerical simula-
tion, F will be our choice. A discrete vector at the point p ∈ Fn

is a pair (p, q) where q ∈ Fn. We will denote by TpFn the set
defined as the union of all possible vectors defined at the point
p, i.e. TpFn={(p, q) ∈ Fn×Fn} ∼ Fn. Unlike in the smooth set-
ting, there are several representations of discrete vectors. Each
representation corresponds to a certain numerical integration
technique. We recall two representations here, the Euler dis-
crete vector and the Runge–Kutta 2 vector. These correspond to
the Euler forward difference and the second order Runge–Kutta
integration techniques. In [10,11] we have defined others like
Runge–Kutta vectors of any order, Leap-Frog vectors, central
difference vectors etc. Euler vectors or Runge–Kutta 2 vectors
are defined as: v(f (p))= (f (p + �)−f (p))/h, where � is the
smallest possible distance from the point p to the next float-
ing point number. The difference between Euler vectors and
Runge–Kutta two vectors is of course in the actual value of
f (p + �). The point we are trying to make is that discrete vec-
tors have the same finite-difference structure, they only differ
in the values! A discrete vector1 does not satisfy the usual

1 In [10,11] we have shown that a collection of discrete vectors (Euler
vectors, Runge–Kutta vectors etc.) form a ‘discrete’ tangent space.

Leibniz (or product) rule for derivations, rather it is a linear
map vi : Ap(Fn) → F (where Ap is the algebra of functions
defined around the point p) which satisfies themodified Leibniz
rule: v(f · g) = v(f ) · g(p) + Autv(f (p)) · v(g), ∀f, g ∈
Ap(Fn), where Autv is an automorphism which is a linear map
Autv : Ap(Fn) → F, corresponding to the discrete vector v,
defined as: Autv(f (p)) := f (p+�), p ∈ Fn such that Autv(f ·
g) = Autv(f ) · Autv(g); ∀f , g ∈ Ap(Fn).

Discrete covectors are defined as mapping pairs of points (i.e.
discrete vectors) to a floating point number, i.e. v∗ : (p, q) →
F. The set of discrete covectors forms the discrete cotangent
space.

Then, we can define discrete vector fields as the mapping X
which assigns to each point p ∈ Fn a discrete vector, i.e. ∀p ∈
Fn, X(p)= (p, q), q ∈ Fn. The flow of the discrete vector field
X is defined as the sequence of points p0, p1, p2, . . . in Fn such
that X(pi) = (pi, pi+1). Likewise we can define discrete one-
forms as assigning a discrete covector to each point. A function
f : Zn

k → F is said to be discrete-differentiable at p ∈ Zn
k iff

there exists a mapping G : A(Zn
k) → Fn s.t. (f (p+�)−f (p)−

G(f (p) · �))/�=0. Note that the above definition does classify
discrete functions between those that are discrete differentiable
and those which are not. This is easy to see, since we use
floating point numbers, the computation—(f (p + �)− f (p)−
G(f (p) · �))/� can easily result in a floating point overflow.

The discrete exterior differential is a mapping: � :
∧k

(Fn) →∧k+1
(Fn), defined in the following way. Consider, for in-

stance, a function f ∈ A(Fn). The function corresponds to the
assignment of an element of F at each point of the discrete
space. The definition of a discrete one-form implies that we
must construct a covector at each point. We can do that in
many different ways, but if we want to preserve at the discrete
level the smooth property X(f ) = 〈X, �f 〉, the definition of
the exterior differential must take into account the type of
action that vector fields have on functions. For the forward
difference method, this leads us to a definition of the exte-
rior differential such as to define the one-form �f ∈ ∧1

(Fn)

which for every point p ∈ Fn assigns to the one-dimensional
hypersurface (i.e. a link) connecting each pair of points (p, q),
where the pair of points are defining a discrete vector, the value
f (q) − f (p). Hence, in the natural basis, we would obtain
as a representation: �f (p) = ∑

i (f (p + h�i ) − f (p)) dxi ,
where h is the smallest possible distance from the point p to
the next floating point number in the ith direction of the point
p, and �i = [0, . . . , 1, 0, . . . ]T. The concept of discrete man-
ifolds has been introduced in [10,11]. Discrete manifolds are
those that locally look like Fn, on these we can define the dis-
crete analogues of charts. atlases etc. Since Fn has a discrete-
differentiable structure, this structure can be transferred onto
discrete manifolds via chart mappings.

Let us conclude this section with discrete Hamiltonian me-
chanics. One way to do that would be by defining a discrete
Poisson bracket as follows. Let Z be a discrete manifold
and consider the algebra of discrete differentiable functions
A(Z) on Z. Z it is endowed with a Poisson structure if there
exists a mapping from the set of discrete functions A(Z) to the
set of discrete vector fields X(Z) which defines an intrinsic
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operation on the set of discrete functions as follows: {f, g} :=
Xf (g), which satisfies linearity, Xf +g=Xf +Xg , and Xf (g)=
−Xg(f ). A discrete manifold Z whose algebra of functions
A(Z) is endowed with a Poisson bracket is called a discrete
Poisson manifold. And then we can define discrete Hamiltonian
(Poisson) dynamics as follows: for any f ∈ A(Z): �f (t)/�t=
{f, H } ⇒ fn+� = fn + �XH (fn). So in the limit as � → 0 we
recover the definition of dynamics in the smooth case using the
smooth Poisson bracket: ḟ = {f, H } = XH (f ).

3. The concept of ports in a discrete setting

Our approach to defining ports in the discrete setting follows
the same mathematical ideas present in the smooth setting, cf.
[6,1]. Physical systems can be interconnected to each other
by means of power ports, essentially meaning that the inter-
connection is facilitated by an exchange of power between
the systems. The constitutive phenomena in network models
of physical systems is the storage of energy, defined by the
energetic states (or energy variables) of the system denoted by
x ∈ Rn and by an energy function H(x). In open systems the
states can undergo changes with time, this can be described
using port (or external) variables as follows: f = dx/dt ,
e = dH(x). f, e called the flow and effort variables, are
power-conjugated variables, since their duality product is the
time variation of the energy function, i.e. the power flow into
the energy storage ports is 〈�H/�x|dx/dt〉 = dH/dt . Hence
these power-conjugated variables can be used to describe the
interconnection of physical systems.

The general idea for either the smooth or the discrete set-
ting is basically the same. There are some important technical
differences of course, for example the port variables do not
belong to vector (and dual vector) spaces, they belong to free
quasi-modules (and their duals). In Section 4, we discuss the
mathematical details.

But what about the physical picture? What do ports mean
in the discrete setting? Given two systems with their external
powers defined by P1 = 〈e1|f1〉 and P2 = 〈e2|f2〉; for a power
conserving interconnection we demand P1 =−P2. Now a flow
(a discrete vector) is defined by a pair of points f1 := (p, q)

and the effort (a discrete covector) is defined as e1 : (p, q) →
F, and the following definition shows how the physical power
is related to this pair of points via the flow and effort. We have:

Definition 1. The power of a discrete physical system defined
on a discrete manifold Z at a point p is defined as Pp :=
(p, q)

f
e , and this is to be understood as follows: (p, q) deter-

mines the flow f, and the effort e at p is simply the dual of f at
p, and the product of this flow and effort is then the power at
the point p.

But this is not all, in general there are at least two ways of
interpreting the above definition when we consider intercon-
nection of systems. One way is as follows: consider two sys-
tems interconnected via the flows f1 := (p, q), f2 := (p̄, q̄).
For defining a formal power-conserving interconnection the in-
terconnecting flows and efforts must be equal to each other.

We require f1 = −f2, and one way to do this could be as fol-
lows: the second point ‘q’ required for defining f1 is identified
with the first point ‘p̄’ required for defining f2, and the sec-
ond point ‘q̄’ required for defining f2 is identified with the first
point ‘p’ required for defining f1. So q�p̄ and q̄�p. Which
means that any function takes the same value on p and q̄, and
likewise for p̄, q. And hence the flows (velocities) are the same,
with opposite directions of course. The opposite direction is
just a sign convention.

Our systems are defined on manifolds with boundary. So
another way of equating the flows would be to simply define
p=q̄ and q=p̄. So then we have (p, q) =: f1=−f2 := (q, p).

So then what is the difference between these two ways of
equating the flows? In the second case, if we extend the idea
to all points in the boundaries of the two (or more) systems,
we are essentially dealing with different manifolds having a
common boundary. In the first case the manifolds need not
have a common boundary. There are physical examples for
each of the two ideas. Consider two devices interacting with
each other by emitting electromagnetic waves through a lossless
media—since the power at the two ports will be the same,
an identification of the points of the boundary is enough to
describe the port variables. Consider the interconnection of two
transmission lines, in this case a common boundary is required.
So depending on the type of physical interconnection we need
to choose from one of the two ideas of ports.

4. Discrete Dirac structures

In this section we focus on the mathematical formalization
of power-conserving interconnections in a discrete setting. The
exposition in this section is very similar to the smooth setting,
refer to [13,1] for the formulation in the smooth setting. The
interconnection of discrete physical systems can be formalized
by discrete-Dirac structures, first we consider the special case
of constant discrete-Dirac structures. Consider a free quasi-
module Fn and its dual Fn∗. We call the product space Fn ×Fn∗
as the space of power variables and on this product space we
define the power as: P = 〈e|f 〉, (f, e) ∈ Fn × Fn∗, with P
taking values in F. Fn is called the space of flows, and Fn∗ the
space of efforts. On Fn ×Fn∗ there exists a canonically defined
bilinear form 〈〈, 〉〉 given by:

〈〈(f1, e1), (f2, e2)〉〉 := 〈e1|f2〉 + 〈e2|f1〉,
∀(f1, e1), (f2, e2) ∈ Fn × Fn∗.

Definition 2. A constant discrete Dirac structure on a finite-
dimensional q-module Fn is a n-dimensional subspace D ⊂
Fn × Fn∗ with the property that

〈e1|f2〉 + 〈e2|f1〉 = 0, ∀(f1, e1), (f2, e2) ∈ D, (1)

where 〈|〉 denotes the natural pairing between Fn and Fn∗.

Proposition 1. A constant Dirac structure on Fn is an n-
dimensional subspace D ⊂ Fn × Fn∗ with the property that:
〈e|f 〉 = 0, ∀(f, e) ∈ D.



V. Talasila et al. / Systems & Control Letters 55 (2006) 478–486 481

Proof. Let (f1, e1)=(f2, e2) then (1) gives 〈e1|f1〉+〈e1|f1〉=0
and hence 〈e|f 〉 = 0. Conversely, by linearity for all
(f1, e1), (f2, e2) ∈ D we have

0 = 〈e1 + e2|f1 + f2〉 = 〈e1|f1〉 + 〈e2|f1〉
+ 〈e1|f2〉 + 〈e2|f2〉 = 〈e2|f1〉 + 〈e1|f2〉. �

4.1. Representations of Dirac structures

The following representation will be used later on to prove
that interconnection of Dirac structures results again in a Dirac
structure. Again, the setting is very similar to the smooth set-
ting of [13,1]. Consider an n-dimensional q-module Fn and its
dual n-dimensional q-module Fn∗. Also consider linear maps
F : Fn → W , E : Fn∗ → W , with W an n-dimensional q-
module. Then define F + E : Fn × Fn∗ → W as: (f, e) ∈
Fn × Fn∗ F+E
−→ F(f ) + E(e) ∈ W . Then we have:

Proposition 2.

• Every Dirac structure D ⊂ Fn × Fn∗ can be written as D=
ker(F + E) for linear maps as defined above. Furthermore
any such E and F satisfy: EF∗ + FE∗ = 0.

• Every n-dimensional subspace D = ker(F + E) defined by
the above linear maps and satisfying EFT +FET =0, defines
a Dirac structure.

• D can be written in an image representation as: D={(f, e) ∈
Fn × Fn∗|f = ET�, e = F T�, � ∈ Fn}.

Proof. The proof is very similar to that in [13], so we only
present one technical detail important for our discrete setting.
In the smooth setting, to simplify the proof, [13] identify Fn

with Rn and also Fn∗ with Rn, and this was done using the
Euclidean inner product on the reals. In our discrete setting we
identity Fn with Fn and also Fn∗ with Fn. To do this on our
discrete spaces is quite simple—we restrict the Euclidean inner
product of the reals to the floating point spaces (giving rise to
a restricted metric on Fn). And then the rest of the proof is the
same. �

4.2. Non-constant discrete Dirac structures

In many physical systems the power-conserving interconnec-
tion is modulated by the energy variables, in which case the def-
inition of a constant Dirac structure, as in Definition 2, has to be
generalized to a general Dirac structure on a discrete manifold.
Let Z be a discrete manifold and A(Z) the algebra of func-
tions on Z. Consider the space of discrete vector fields X(A)

and the space of discrete 1-forms �1(A). On X(A) × �1(A)

consider the following bilinear form: 〈〈(X1, �1), (X2, �2)〉〉 =
〈�2|X1〉 + 〈�1|X2〉.

Definition 3. A generalized Dirac structure on an n-
dimensional discrete manifold, is a n-dimensional linear

subspace D ⊂ X(A) × �1(A), such that D = D⊥, where

D⊥ = {(Y, �) ∈ X(A) × �1(A)|〈�|X〉 + 〈�|Y 〉 = 0,

∀(X, �) ∈ D}. (2)

Since D = D⊥ it immediately follows, take (Y, �) = (X, �)

and using (2), that 〈�|X〉 = 0, ∀(X, �) ∈ D. This implies
that a generalized Dirac structure D on a discrete manifold Z
pointwise defines a constant Dirac structure on TlZ for every
l ∈ Z as defined in Definition 2.

Example 1. Let J (l) : T ∗
l Z → TlZ, l ∈ Z, be a skew-

symmetric bilinear map. Then

D = {(X, �) ∈ X(A) × �1(A)|Xl = Jl�l , ∀l ∈ Z}
is a generalized Dirac structure on Z. This corresponds to a
generalized discrete Poisson structure (Z, {·, ·}), where Jl is the
structure matrix of the discrete Poisson bracket {·, ·} : A(Z) ×
A(Z) → A(Z), i.e.

{h1, h2}l = 〈dh1|J dh2〉l , h1, h2 ∈ A(Z), ∀l ∈ Z.

Using Proposition 2 we immediately obtain the following
representation of generalized Dirac structures on discrete man-
ifolds:

Proposition 3. Let D be an n-dimensional generalized Dirac
structure on an n-dimensional discrete manifold Z. Let z =
(z1, z2, . . . , zn) be local coordinates for Z. Then locally there
exist n × n matrices (more correctly ‘module’ elements) E(z)

and F(z) such that

D(z) = {(f, e) ∈ TzZ × T ∗
z Z|F(z)f + E(z)e = 0}

with

E(z)F ∗(z) + F(z)E∗(z) = 0.

Corresponding to a generalized Dirac structure D on a
discrete manifold Z we can define certain discrete (co)-
distributions, cf. [1] for details in the smooth setting, we
present one important co-distribution

P1 = {� ∈ �1(A)|∃X ∈ X(A) such that (X, �) ∈ D}.
We can define a discrete Poisson bracket on so-called admissi-
ble functions, as follows.

Definition 4. A discrete function h ∈ A(Z) is said to be admis-
sible if there exists a discrete vector field X such that (X, �h) ∈
D.

Using the co-distribution we defined above we see that the
space of all admissible functions is given by AD = {h ∈
A(Z)|�h ∈ P1}. Then we have:

Proposition 4. On AD with (X1, �h1), (X2, �h2) ∈ D, there
is a well-defined Poisson bracket given by {h1, h2}D=〈�h1|X2〉
if and only if Aut�h3 = AutXh3 .



482 V. Talasila et al. / Systems & Control Letters 55 (2006) 478–486

Proof. {h1, h2}D must satisfy the properties of a discrete Pois-
son bracket. Bilinearity of {·, ·} follows from the bilinearity of
〈|〉. Skew-symmetry is due to the following:

(X1, �h1), (X2, �h2) ∈ D ⇒ 〈�h1|X2〉 + 〈�h2|X1〉 = 0.

Finally, take arbitrary (X1, �h1), (X2, �h2), (X3, �h3) ∈ D.
Then the modified Leibniz rule is

{h1, h2h3}D = − 〈�(h2 · h3)|X1〉
= − 〈(�h2) · h3 + Aut�(h2) · �h3|X1〉
= h3 · {h1, h2}D + Aut�h3(h2) · {h1, h3}D
= h3 · {h1, h2}D+AutXh3(h2) · {h1, h3}D. �

5. Interconnection of discrete Dirac structures

In this subsection, we discuss the interconnection properties
of discrete Dirac structures. In the smooth setting a fundamental
result in the framework of port-Hamiltonian systems is that the
interconnection of a number of Dirac structures results again in
a Dirac structure. Physically, it is clear that the composition of
a number of power-conserving interconnections should result
again in a power-conserving interconnection. In the smooth
setting this has been formally proved, cf. [13]. The question
now is if the same property would hold true for discrete models.
We consider the composition of two discrete Dirac structures
with partially shared variables as in Fig. 1.

We follow the same sign conventions as in [15] for the power
flow corresponding to the power variables (f2, e2) ∈ Db. Then
the interconnection Da‖Db of the Dirac structures Da and Db

is defined as

Da‖Db := {(f1, e1, f3, e3) ∈ F1 × F∗
1 × F3

× F∗
3|∃(f2, e2) ∈ F2 × F∗

2 s.t.

(f1, e1, f2, e2) ∈ Da and (−f2, e2, f3, e3) ∈ Db}.
First we will need the following result:

Lemma 1. Given � ∈ Fr×1, C ∈ Fl×r

(∃� s.t. C� = d) ⇔ (∀� s.t. �TC = 0 ⇒ �Td = 0).

Proof. Let us prove first from left to right, this is simple.

C� = d ⇒ �∗C� = �∗d, ∀� if ∀�, �∗C = 0 ⇒ �∗d = 0.

f
1

f
b

e1 ea eb

f
3

e3

f
a

DA DB

Fig. 1. Composition of Dirac structures.

Now the other way. Suppose C� �= d, then d /∈ span(Ci). Define
Ĉ := {�|�∗C = 0}.
⇒ Ĉ⊥ = span(Ci) ⇒ d /∈ Ĉ⊥ ⇒ ∃�∗ ∈ Ĉ s.t. �∗d �= 0.

Hence proved. �

With the above result we can now prove the following:

Theorem 1. Let Da,Db be Dirac structures w.r.t. F1 ×F∗
1 ×

F2 ×F∗
2 and F2 ×F∗

2 ×F3 ×F∗
3. Then Da‖Db is a Dirac

structure with respect to the bilinear form on F1 ×F∗
1 ×F3 ×

F∗
3.

Proof. The proof presented here follows the same spirit as the
proof for the smooth setting, cf. [15]. Consider the Dirac struc-
tures Da and Db defined in matrix (more correctly—‘module’)
kernel representation by

Da = {(f1, e1, fa, ea) ∈ F1 × F∗
1 × F2 × F∗

2|F1f1

+ E1e1 + F2afa + E2aea = 0},
Db = {(fb, eb, f3, e3) ∈ F2 × F∗

2 × F3 × F∗
3|F2bfb

+ E2beb + F3f3 + E3e3 = 0}.
Using Proposition 2, we can easily see that Da and Db are
alternatively given in the ‘matrix’ image representation as:

Da = [E∗
1 F ∗

1 E∗
2a F ∗

2a 0 0]∗,

Db = [0 0 E∗
2b F ∗

2b E∗
3 F ∗

3 ]∗.

Hence,

(f1, e1, f3, e3) ∈ Da‖Db

⇔ ∃�a, �b s.t. [f1 e1 0 0 f3 e3]∗

=
[
E∗

1 F ∗
1 E∗

2a F ∗
2a 0 0

0 0 E∗
2b −F ∗

2b E∗
3 F ∗

3

]∗ [
�a

�b

]

⇔ ∀(�1, �1, �2, �2, �3, �3) s.t. (�∗
1�

∗
1�

∗
2�

∗
2�

∗
3�

∗
3)

×
[
E∗

1 F ∗
1 E∗

2a F ∗
2a 0 0

0 0 E∗
2b −F ∗

2b E∗
3 F ∗

3

]∗
= 0,

�∗
1f1 + �∗

1e1 + �∗
3f3 + �∗

3e3 = 0

⇔ ∀(�1, �1, �2, �2, �3, �3) s.t.

×
[
F1 E1 F2a E2a 0 0
0 0 −F2b E2b F3 E3

]
⎡
⎢⎢⎢⎢⎢⎣

�1
�1
�2
�2
�3
�3

⎤
⎥⎥⎥⎥⎥⎦

= 0,
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�∗
1f1 + �∗

1e1 + �∗
3f3 + �∗

3e3 = 0

⇔ ∀(�1, �1, �2, �2, �3, �3) ∈ Da‖Db,

�∗
1f1 + �∗

1e1 + �∗
3f3 + �∗

3e3 = 0

⇔ (f1, e1, f3, e3) ∈ (Da‖Db)
⊥.

Thus Da‖Db = (Da‖Db)
⊥, and hence it is a Dirac

structure. �

6. Discrete port-Hamiltonian systems

In the modular approach to modeling physical systems the
system under consideration is regarded as obtained from the
interconnection of simpler sub-systems. These interconnections
in general, give rise to algebraic constraints between the state-
variables of the systems, thus making the final system model
implicit. In this section we formalize such implicit physical
systems using the concept of discrete Dirac structures.

From a network modeling perspective a finite-dimensional
physical system is naturally described by a set of energy-storing
elements, a set of energy-dissipating elements and a set of ex-
ternal ports (via which the interaction with the environment
can take place)—interconnected to each other by a power-
conserving interconnection as in Fig. 2. Associated with the
energy storing elements are energy variables z1, . . . , zn being
coordinates for some n-dimensional state discrete-manifold Z,
and a total energy H : Z → F. First we formalize the power-
conserving interconnection by a constant Dirac structure D on
the finite-dimensional space F := FS × FR × FP , with
FS denoting the space of flows fS connected to the energy-
storing elements, FR denoting the space of flows fR con-
nected to the energy dissipating elements, and FP denoting
the space of external flows fP which can be connected to the
environment. Dually we write E := ES × ER × EP with the
efforts eS ∈ ES, eR ∈ ER, eP ∈ EP being the corresponding
dual variables of fS ∈ FS, fR ∈ FR, fP ∈ FP , i.e. with
ES = F∗

S,ER = F∗
R,EP = F∗

P

Definition 5. Let Z be a discrete n-dimensional manifold of
energy variables, and let H : Z → F be a discrete Hamiltonian.
Furthermore, let FP be the space of external flows f, with EP

the dual space of external effort e. Consider a Dirac structure on

Resistive
Elements

interconnection
conserving

Power −energy −
storing
elements

ports

Fig. 2. Network description of physical systems.

the product space Z × FP , only depending on z.The implicit
discrete port-Hamiltonian system corresponding to Z, D, H

and FP is defined by the specification(
−�z

�t
, f, zH(z), e

)
∈ D(z).

Note that the minus sign in front of the flow �z/�t physically
means that the ingoing power is positive. The efforts and flows
corresponding to the energy-storing elements are given as fS =
�z/�t , e(z) = zH(z), and then it follows that the physical
system is described by the set of Difference algebraic equations

Fz

�z(t)

�t
+ Ez zH(z) + Ff (t) + Ee(t) = 0.

In the smooth setting the next step would be to define the en-
ergy balance as follows. For all (−X, f, �, e) ∈ D we have:
−〈�|X〉 + 〈e|f 〉 = 0, due to which it follows that an implicit
smooth port-Hamiltonian system satisfies the energy balance,
cf. [1,13], dH/dt = (�H/�x)ẋ = eTf . In the above computa-
tion one uses the chain rule for differentiation. The chain rule
however does not work in the discrete setting. Let us see this
with a very simple example: for instance, consider the action
of a derivation on the function f (x) = x2. From the definition
of twisted derivation we have: X(f )(x) = X(x2) = X(x) · x +
AutX(x) ·X(x). Only if AutX(x)=x for any vector field X, the
chain rule is satisfied. So in general we do not have a discrete
version of the chain rule. What does this imply?

First of all note that in the discrete case we do have the
following: for all (−X, f, �, e) ∈ D we have

−〈�|X〉 + 〈e|f 〉 = 0 ⇒ − zH(z) · �z

�t
+ eTf = 0.

However �H/�t �= zH(z)�z/�t , since the chain rule is not
valid in the discrete setting. And indeed, it is well known that
there exist no basic integration techniques (like Euler integra-
tion, Runge–Kutta etc.) that preserve the energy balance rela-
tion. There exist many special integration techniques that do
preserve the energy balance, but these techniques dramatically
alter the geometric structure of the Dirac framework. We have
discussed these aspects in [10,11] on discrete Hamiltonian sys-
tems where we showed how the Poisson structure can get dra-
matically modified under structure preserving algorithms. Sim-
ilar analysis also holds for Dirac structures, this will be the
subject of future work. In any case, in general we would have
an energy relation of the following type:

�H

�t
= − zH(z) · �z

�t
+ eTf − H̃ = 0,

where H̃ is the extra energy that is created in the system as a
result of the discrete process. In the continuum limit H̃ → 0.

6.1. Explicit port-Hamiltonian systems as a special case of
implicit port-Hamiltonian systems

The following discussion follows the same lines as in the
smooth setting, cf. [1]. A discrete Hamiltonian system with
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collocated inputs and outputs can be described by

�q

�t
= pH(q, p),

�p

�t
= − qH(q, p) + B(q)u,

y = B∗(q) pH(q, p).

An important generalization of the class of Hamiltonian sys-
tems described above can be given as follows. Let Z be the
discrete manifold of energy variables. Then the following is
called an explicit port-Hamiltonian system:

�z

�t
= J (z) zH(z) + g(z)u, z ∈ Z, u ∈ Fm,

y = gT(z) zH(z), y ∈ Fm, (3)

where J (z) is an n×n structure matrix corresponding to a dis-
crete Poisson bracket defined on A(Z). Now we show that Defi-
nition 5 generalizes the notion of an (explicit) port-Hamiltonian
system (3).

Proposition 5. In the case of (3) the Dirac structure D on
Z × F is given by (X, f, �, −e) ∈ D iff

X(z) = J (z)�(z) + g(z)f ,

e = gT(z)�(z), z ∈ Z. (4)

Proof. Indeed, let (X, f, �, −e) ∈ D⊥; i.e.

〈�̂|X〉 + 〈�|X̂〉 − 〈ê|f 〉 − 〈e|f̂ 〉 = 0 (5)

for all (X̂, f̂ , �̂, −ê) satisfying (3). By first taking f̂ = 0 we
obtain

�̂T
(z)X(z) + �T(z)J (z)�̂T

(z) − �̂T
(z)g(z)f = 0

for all �̂, and thus X(z) = J (z)�(z) + g(z)f , and substituting
this in (5) gives

�̂T
(z)g(z)f + �T(z)g(z)f̂ − �̂T

(z)g(z)f − eTf̂ = 0

for all f̂ , implying that e=gT(z)�(z), and thus (X, f, �, −e) ∈
D. �

Remark 1 (Discrete port-Hamiltonian systems with dissipa-
tion). We can generalize (3) to include dissipative elements by
modifying the g(z)u and the y terms as follows:

[g(z) gR(z)]
[

u

uR

]
= g(z)u + gR(z)uR ,

[
y

yR

]
=

[
g∗(z) zH(z)

g∗
R(z) zH(z)

]
.

Here uR, yR denote the power variables at the ports which are
terminated by static resistive elements:

uR = −F(yR),

where the resistive element F : Fmr → Fmr satisfies:

y∗
RF(yR)�0, yR ∈ Fmr .

R

L

C

V

Fig. 3. A driven RLC circuit.

7. Examples

In this section, we present two examples of the modeling
and simulation of port-Hamiltonian systems in the discrete set-
ting. We will show that the simulations from our discrete model
exactly coincide with the simulations that we get via a corre-
sponding discretization technique.

Example 2. Consider the electrical circuit shown in Fig. 3.
For notational simplicity we assume L = C = 1. The Hamil-

tonian function is given by: H(q, �) = 1
2 (q2 + �2). Then the

discrete dynamics are, using the Dirac structure, given by

�q

�t
= �H − 1

R
�H ,

��

�t
= − qH + V .

Note that qH = q(q2/2) = ((q + �)2 − q2)/2� = q + �/2.
However since � is extremely small (on the order of 10×−16)
so, for the examples considered here it does not affect the sim-
ulation results, and hence we can safely ignore the � terms. So

qH = q and �H = �. Let us use a Runge–Kutta 2 dis-
crete vector, and let us compare the simulation results with
the usual second order Runge–Kutta technique. The simula-
tion results in Fig. 4 show an exact matching between the two
approaches.

Example 3. Now we model the Van der Pol circuit in our
discrete setting. The Hamiltonian is: H(q, �) = 1

2 (q2 + �2).
The discrete dynamics are defined as follows:

�q

�t
= �H + Ep · q · (1 − �2),

��

�t
= qH .

The simulation results are shown in Fig. 5 and we have used
the Runge–Kutta 2 discrete vector, again the comparison
with a second order Runge–Kutta technique shows an exact
matching.

8. Conclusions and future work

In this paper, we provided an alternative to the usual two stage
process of modeling and discretization of port-Hamiltonian
systems—we defined a framework for the discrete modeling of
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Fig. 4. Discrete dynamics of a driven RLC circuit—left figure is a comparison of the time response, figure on the right is a comparison of the phase plots.
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Fig. 5. Hopf bifurcation in the discrete dynamics of the Van der Pol circuit. Comparison of the phase plots and the time responses.

such systems, so as to provide models that are trivially imple-
mentable on computers for either numerical simulation or digi-
tal control (for other approaches to control of sampled-data sys-
tems, refer to [7]). Moreover all of the geometric/mathematical
structure, and the corresponding analysis, presented in this
paper is also perfectly valid for discretized port-Hamiltonian
systems.

This paper is the first stage of the process of formaliz-
ing the discrete structure of port-Hamiltonian systems which
we would later like to use for modular simulation. The port-
Hamiltonian framework is suitable for the modular approach
to modeling complex physical systems. Regarding simulation,
it is well known that basic integration algorithms do not pre-
serve important structure. It is much harder to design structure
preserving algorithms (for more details on structure preserving
algorithms in a Hamiltonian context, please refer to [9]) for an
entire discretized system, than designing structure preserving

algorithms for each individual discretized submodel and then
interconnecting all these discrete submodels. Of course, to do
so we need a formal interconnection theory at the discrete level,
which we have provided in this paper. Our future work will con-
cern developing the concept of modular simulations. Another
area of interest is in applications like haptics and telemanipu-
lation, wherein we are required to interconnect a smooth port-
Hamiltonian system with a discrete one. In this case it can be
of benefit to understand the structure of the discrete system, so
that the interconnection of a discrete port-Hamiltonian system
with a smooth port-Hamiltonian system may be formalized.
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