
 

 

 University of Groningen

Architecture-Centric Evolution
Avgeriou, Paris; Zdun, Uwe; Borne, Isabelle

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Avgeriou, P., Zdun, U., & Borne, I. (2006). Architecture-Centric Evolution: New Issues and Trends. Report
on the Workshop ACE at ECOOP’06. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli
Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/54efabb2-be3a-4dbf-b796-537a9b9ae0cd


Architecture-Centric Evolution: New Issues and Trends
Report on the Workshop ACE at ECOOP’06

Paris Avgeriou1, Uwe Zdun2, and Isabelle Borne3

1 Department of Mathematics and Computing Science,
University of Groningen, the Netherlands

paris@cs.rug.nl
2 Distributed Systems Group,

Vienna University of Technology, Austria
zdun@acm.org

3 VALORIA Laboratory,
University of South-Brittany, France
Isabelle.Borne@univ-ubs.fr

Abstract. Software evolution has largely been focused on low-level implemen-
tation artefacts through refactoring techniques rather than the architectural level.
However code-centric evolution techniques have not managed to effectively solve
the problems that software evolution entails. Instead a paradigm shift is emerg-
ing, where the evolution approaches put software architecture on the spotlight.
This shift focuses on effectively documenting and modifying the architectural
design decisions during system evolution, while synchronizing them with both
the requirements and the implementation. The second workshop on the theme of
Architecture-Centric Evolution attempted to explore the issues that such evolu-
tion approaches are dealing with, as well as the trends that emerge in this area.
The workshop delved into this field, by presenting the latest research advances
and by facilitating discussions between experts.

1 Introduction

Industry and academia have reached consensus that investing into the architecture of
a system during the early phases of the system’s lifecycle is of paramount importance
to object-oriented software development. Moreover, there is an undoubted tendency to
create an engineering discipline on the field of software architecture if we consider
the published textbooks, the international conferences devoted to it, and recognition
of architecting software systems as a professional practice. Evidently, there have been
advances in the field, especially concerning design and evaluation methods, as well
as reusable architectural artefacts such as architectural patterns and frameworks. And
there is growing consensus nowadays about certain aspects of the task of software archi-
tecture description, such as the satisfaction of stakeholders’ concerns through multiple
views, and the use of UML for modelling architectures. Software architecture has be-
come a key issue in the object-oriented community, as architecture is praised for facil-
itating effective communication between the stakeholders of the system, early analysis
of the system, support of qualities and successful evolution of the system.

M. Südholt and C. Consel (Eds.): ECOOP 2006 , LNCS 4379, pp. 97–105, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Ws



98 P. Avgeriou, U. Zdun, and I. Borne

Unfortunately, in practice, the evolution of software systems largely takes place at
the code level. For example, a substantial part of industrial practice of software evolu-
tion concerns storing code artefacts in configuration management systems and applying
refactoring techniques on them. This hinders the development team from having an
overview of the “big picture” and grasping the significant design decisions that appear
only at a higher level of abstraction [4]. As a result, the new design decisions that are
taken during evolution may compromise or even contradict fundamental principles or
constraints of the system’s architecture. Moreover, the most substantial properties of the
system are its non-functional requirements, the so-called “quality attributes”, and the
evolution of such properties can only be tackled at the level of architecture. In essence,
software architecture is good means for facilitating the synchronization of the system
requirements, their evolution, and their implementation during evolution cycles of the
system [2].

The theme of architecture-centric evolution is complex and multi-faceted, both in
its core and in its relevance to other advances of software engineering. Essentially, it
involves at least the following topics:

– Modeling architectures to support evolution of software systems
– Using ADLs or UML to model evolution
– Quality attributes and architectural evaluation in evolution
– Meta-modeling of architectural refactoring
– Architecture model transformations
– Evolution through software architecture patterns
– Architectural design decisions and architectural knowledge in evolution
– Evolution of legacy software through its architecture
– Architecture-centric evolution in the context of service-oriented architectures

(SOA) or model-driven engineering (MDE)
– Software engineering processes and methods for architecture-centric evolution
– Theoretical aspects of architecture-centric evolution, e.g. causes of architectural

changes
– Synchronizing requirements, architecture and code during evolution
– Evolution in product lines and system families
– Case studies of architecture-centric evolution
– Tools that foster architecture-centric evolution

This paper reports on the second workshop in the series of Architecture-Centric
Evolution. The first workshop [5] had focused on the following topics: the metaphor
of evolution, evolving components and product lines, languages to support evolution,
and consistency of artifacts. The second workshop was of a more interactive nature
and the discussion was directed towards the practical means to support evolution. The
workshop consisted of four sessions, each lasting 1.5 hours. The first session included
the presentation of three papers on formal methods, tools and frameworks to support
architecture-centric evolution. The second session revolved around quality attributes in
the evolution context, as well as the impact of aspects in the architectural design. The
third session revolved around the industrial approach to architecture-centric evolution:
tools and methods for architecture-centric evolution that are used in a large company



Architecture-Centric Evolution: New Issues and Trends 99

were presented. The remaining time of the workshop was used to discuss the vari-
ous issues and challenges that came out of the presentations and identify trends and
challenges.

The rest of this workshop report is organized as follows: Section 2 outlines the con-
tents of the papers that were presented in the workshop, as well as some of the dis-
cussion they raised. Section 3 describes the findings of the dialogue triggered by the
previous sessions and the conclusions reached by the participants. Finally Section 4
concludes with a brief synopsis of the state-of-the-art and future trends.

2 Issues in Architecture-Centric Evolution

The essence of each paper as well as the key points of the raised discussions are sum-
marized in the sub-sections below. The heading of each sub-section is the title of the
corresponding paper. The papers presented during the workshop are available on-line
at: http://www.cs.rug.nl/ paris/ACE2006/.

2.1 Modelling Software Evolution Using Algebraic Graph Rewriting

Selim Ciraci and Pim van den Broek have worked on an approach to formalize evolution
requests with the help of algebraic graph rewriting. They considered UML class and
interaction diagrams (especially classes, methods and parameters) as the main source
of architectural information and proposed the transformation of these diagrams into
colored graphs. Changes in these diagrams represent changes during system evolution,
which can then be formalized by algebraic graph rewrite rules.

Ciraci and van den Broek claimed that their approach is language-independent and
thus extensible for other kinds of UML diagrams or other Architecture Description Lan-
guage (ADL) representations. As a natural follow-up question, the speaker was asked
whether tool support was possible, given the independence of modeling languages. The
answer was positive and the speaker asserted that tool support can be automated at two
levels: first by converting models made in the specific modeling language to marked
or colored graphs; second by subsequent transformation of the graphs when evolution
requests occur (through the push-out mechanism). There is no automated tool support
but the authors plan to implement appropriate tooling, firstly for the Unified Modeling
Language. At the level of code, refactoring issues can also be tackled by this approach,
as long as there is a possible reverse engineering of the code into the appropriate ADL.

2.2 Meta-architecture Tools: The Working Engines of the Company’s
Architectural Evolution

Ethan Hadar presented an industrial approach on the subject of architectural evolution,
based on the paper he co-authored with Irit Hadar. Their perspective comes from a large
multinational enterprise, that works with multiple different methodologies, products,
product lines, technologies, tools, communities etc. In this context, architecture-centric
evolution becomes a rather complex and risky issue. The speaker presented the Meta-
Architecture tools constructed within their company and the corresponding method of
operations, as well as its challenges and solutions. They focus on Software Architecture



100 P. Avgeriou, U. Zdun, and I. Borne

Analysis and mainly work with three types of diagrams: business services, component
interfaces and deployment. They pay particular attention to the traceability of the differ-
ent artifacts produced. The presenter professed a rather radical view of their approach:
the project management model follows the waterfall lifecycle model, while their devel-
opment is rather agile. Furthermore the models produced are mainly aimed for use by
managers, while the developers work with the source code.

According to the speaker, an architecture-centric evolution approach is not only a
matter of implementing the appropriate methods and tools. Most importantly it is a mat-
ter of aligning the practices and goals of the organization with the corresponding line of
thought. Another important remark is that in the pragmatic constraints of big corporate
software development, research approaches, hypes and fashions are temporary and thus
not so important. Their approach is to combine the best of all worlds. For instance they
try to combine different concepts taken from the fields of Model Driven Architecture,
Aspect-Oriented Programming, Software Architecture, etc., with the ultimate goal to
make them work in practice and when needed.

2.3 Architectural Stability and Middleware: An Architecture-Centric Evolution
Perspective

Rami Bahsoon presented a paper, co-authored by Wolfgang Emmerich, that focuses on
architecture stability: how far a software system can endure changes in requirements,
while leaving the architecture of the software system intact. They argue that architec-
tural stability is more threatened by changes in non-functional rather than in functional
requirements. They studied in particular architectures that are strongly based on middle-
ware, and put specific emphasis on the non-functional requirements that are important in
this area, such as scalability, fault tolerance, etc. The goal is to facilitate their evolution
over time. Bahsoon and Emmerich have shown through a case study, how a software
architecture, when induced by distinct middleware, differs in coping with changes in
these non-functional requirements.

Bahsoon was asked about the relation of their approach to architectural patterns and
styles, since they, just as middlewares, determine a great part of the system architecture.
The presenter responded that architectural patterns have a large impact on architectural
stability and therefore the system evolution. However, which architectural patterns are
more stable in face of change, is still an open research question. It would thus be fruitful
to conduct impact studies of architectural patterns to the system evolution and perhaps
classify the patterns in this respect.

The discussion then revolved around the applicability of their approach with respect
to the architectural documentation of middleware. In specific the question was raised
whether, there exist documented reference architectures for middleware that can be
reused in designing and evaluating the overall software system architecture. According
to the speaker’s experience, middleware architectures were rarely publicly documented,
and the non-functional requirements (quality attributes) are difficult to assess. The only
viable way is to study and use the middleware extensively.

The evolution of the middleware itself is not tackled in this approach, even though
it apparently has a large impact on the overall system evolution. In principle, one can



Architecture-Centric Evolution: New Issues and Trends 101

either treat it as a black box, waiting for the community to evolve it, or continue the
development of the middleware with own resources.

2.4 Change Impact Analysis of Crosscutting in Software Architectural Design

Klaas van den Berg presented an approach for impact analysis of crosscutting depen-
dencies in architectural design. According to the presenter, the analysis of the impact
of changes in requirements can be based on the traceability of architectural design ele-
ments. Especially the crosscutting dependencies between the design elements may have
a strong influence on the modifiability of software architectures. The proposed impact
analysis is supported by a matrix representation of dependencies.

The presenter argued that crosscutting concerns must be represented at two levels:
source and target. Source elements crosscut with respect to their mapping to the target
elements. The type of dependencies between source and target are very important in this
respect and one must explicitly define them or one must justify why one did not define
them. Eventually there are numerous inter-level and intra-level dependencies that can
be traced, but not all of them should be traced. Van de Berg stressed the importance to
define the goal of traceability: why artifacts need to be traced (e.g. for testing or analysis
purposes).

2.5 Using ATAM to Evaluate a Game-Based Architecture

Ahmed BinSubaih presented the next paper co-authored by Steve Maddock. Their re-
search work examines the suitability of employing an off-the-shelf software architec-
ture evaluation method, ATAM, in order to assess systems in the gaming domain. They
conducted a case study of a specific game-based architecture, evaluating it for its key
drivers. Their findings were encouraging, as the method can clearly reveal the strengths
and weaknesses of the architecture, which can then be guarded and addressed respec-
tively before evolving the architecture further. In addition they proposed a small exten-
sion to the method: a view that consolidates disparate outputs generated by ATAM.

The discussion that followed concerned the issue of traceability, and in particular that
of the architectural decisions. The application of ATAM produced backwards traceabil-
ity of the decisions to the requirements. However, the presenter agreed with the par-
ticipants that architectural decisions should also be traced forward to the architectural
models, to facilitate successful evolution.

2.6 Safe Integration of New Concerns in a Software Architecture: Overview of
the Implementation

Olivier Barais presented a paper co-authored by Hanh-Missi Tran, Anne-Francoise Le
Meur, and Laurence Duchien. This research concerned a framework for integrating new
concerns into a software architecture, by factorizing the implementation of concerns into
separate units, called ‘patterns’. Their approach describes a rule language, that prevents
erroneous concern integrations from being expressed, detects others by static verifica-
tions and identifies compatible join points between a ‘pattern’ and a basis architecture.

The presenter claimed that reusing components depends on a number of factors:
making explicit all the dependencies of a component; separating the concerns in the



102 P. Avgeriou, U. Zdun, and I. Borne

software architecture; modularizing concerns in the form of aspects; applying an iter-
ative integration process. The workshop participants discussed the notion of architec-
tural mismatches caused by the assumptions made when integrating new components.
The presenter argued that this approach provides a solution by making the assumptions
explicit through both a static and a behavioral model, plus the necessary transforma-
tion rules. The presenter noted that the shortcoming of the approach is the focus on
static analysis, since the mismatches cannot be explicitly documented and then tested at
run-time.

The participants argued that the proposed approach has a shortcoming in the indus-
trial context: one cannot really stop the development and freeze the code before a new
component or aspect can be integrated. First, because there are many changes coming
from different places that need to be accommodated simultaneously. Second, because
not all ‘patterns’ and not all changes can be found and automatically accommodated;
there needs to be some extent of manual intervention. The industrial point of view in
such cases is to avoid automating everything; instead to allow for as much flexibility as
possible.

This approach raises the process issues of architecture-centric evolution. The techni-
cal solutions need to be aligned to the pragmatic constraints, as they occur for instance
in the industry. The importance of making the architectural knowledge explicit and
sharing it with the stakeholders comes out as a necessity.

2.7 A Generic Framework for Integrating New Functionalities into Software
Architectures

Guillaume Waignier presented a paper co-authored by Anne-Francoise Le Meur and
Laurence Duchien, that was closely related to the previous presentation. The presen-
tation concerned the evolution of software through a generic framework for automati-
cally integrating new functionalities into an architecture description. In contrast to the
previous presentation that was bound to a specific Architecture Description Language
(ADL), this approach is ADL-independent. The research group conducted a domain
analysis on ADLs and came up with a generic ADL model to manipulate and reason
about architectural elements involved in integration. Their approach is complemented
by high-level abstractions to describe different kinds of integration, as well as a generic
integration engine.

The presenter stressed the added value of this approach: the focus on integration is-
sues, when defining the common metamodel of Architecture Description Languages.
The workshop participants noticed the lack of explicit Quality Attributes in the meta-
model. The presenter explained that quality attributes can be dealt with in the tradi-
tional way: by combining their approach with an architecture evaluation method, such
as ATAM. The proposed approach can however provide hints about a specific quality
attribute: consistency of the architecture. Consistency can be automatically checked and
furthermore it be associated to architectural tactics and patterns.

Finally, the participants discussed the issue of runtime reconfiguration with specific
focus on integrating the components of the ‘pattern’ during runtime. This issue could
also be dealt with in this approach, as long as the sequence of modifications is strictly
kept.



Architecture-Centric Evolution: New Issues and Trends 103

3 Discussion and Outcomes

The last part of the workshop was a discussion session, in which we summarized the
participants’ insights into architecture-centric evolution gained from the presentations
and discussions, and elaborated on the different concerns that arose.

First the workshop members agreed on the importance of tools on architecture-
centric evolution. In fact, the different approaches seemed to have commonalities in the
tools that support them. We can extract some useful conclusions by examining closer
what exactly the different tools support and what kind of target users they are aimed at.

A recurring topic during the workshop was the gap between the industry and
academia. It is a rather typical software engineering phenomenon: the distance between
the researchers who propose novel methods and tools and the potential adopters in
the industry is substantial. The academic approach on architecture-centric evolution
is mostly theoretical and considers the processes and the models that need to be
formalized to result in automatic or semi-automatic tools to help the developers. In
the industry, economical and timing issues are crucial and consequently the area of
software architecture and evolution is viewed from a pragmatic perspective.

Another significant parameter that was discussed is that of human behavior, e.g.
communication issues between different stakeholders, the way architects take decisions
etc. Just like any field of software engineering, the human aspect must be taken under
consideration when dealing with architecture-centric evolution.

The workshop focused mostly on technological issues and approaches, but also there
are important process issues and organization issues. It is quite common that these two
worlds, technology and organization, are studied separately. To overcome this problem,
the idea was discussed to apply something analogous to the architecture-business cycle
[1] in order to bridge the gap between technology and process/organization. The result
would be a paradigm that makes explicit the influence of one to another and vice versa
in an iterative cycle.

During the workshop, some approaches were presented on automating the evolution-
ary mechanisms, e.g. the integration of aspects on an entire software architecture all at
once. Integration concerns various kinds of elements, mainly components and objects,
according to different techniques (e.g. marked graphs, separation of concerns). The par-
ticipants agreed that we should not over-automate but rather allow for some flexibility
in order to incorporate more human intervention and manual work into the processes.
Architects and designers should be able to take decisions when appropriate. We should
strike a balance between automation and manual work.

Another issue that is considered a ‘hot’ research topic, dynamic evolution, and par-
ticularly dynamic reconfiguration, is necessary and urgent for modern software devel-
opment. However the workshop members were skeptical about how to implement such
a mechanism due to unsolved problems, e.g. monitoring the run-time system, quality of
service evaluation, etc. This is a crucial topic in cases where the system needs to evolve
without being shut down, but indeed, its implementation is still problematic.

The workshop participants pondered over the meaning of architecture-centric evo-
lution and how to achieve it. A simplistic but perhaps naive opinion that has been
proposed in the past, is merely to synchronize architectural documentation when the
software product is evolved. This can be achieved either by documenting the decisions



104 P. Avgeriou, U. Zdun, and I. Borne

taken by the developers, or after the fact, through reverse-engineering. However, this
leads to code-centric rather than architecture-centric evolution. Updating the architec-
ture document in this case is a side-effect of changing the code. Architecture is not
in the center but is a by-product, a documentation outcome. A paradigm shift is nec-
essary in order to move away from this code-centric approach and strive towards a
real architecture-centric one. In architecture-centric evolution, the role of architecture
is central to facilitating evolution. It is the starting point of incorporating changes and
all other artifacts should follow. There are two trends towards this goal, that were iden-
tified during the presentations but also during the plenary discussion: the importance of
traceability, and the emergence of the aspect-oriented paradigm.

First, the lack of effective traceability, was a recurring problem identified that cur-
rently hinders architecture-centric evolution. Traceability can be defined as “the degree
to which a relationship can be established between two or more products of the develop-
ment process, especially products having a predecessor-successor or master-subordinate
relationship to one another” [3]. In the case of architecture-centric evolution, traceabil-
ity is key in synchronizing the requirements specification, the architecture description,
and the code. These three types of artifacts need to be traced backward and forward in
order to keep them synchronized when one of them changes. This issue was also largely
discussed in the first ACE workshop [5], where the consistency of artifacts between
evolution was deemed of paramount importance. It is common place that traceability
methods still need to be developed before they can successfully support Architecture-
Centric Evolution.

Second, the role of aspects as a means to better manage evolution was largely
discussed during the workshop. The rationale is that when we try to incorporate new
requirements or concerns, these may be crosscutting in the architecture and need to be
implemented horizontally. On the one hand, we must integrate them into the architecture
by the means of a weaver. On the other hand, architectural artifacts must be connected
(i.e. traceable) to other levels (e.g. to requirements and to the implementation), as
well as to evolution versions and we can define crosscutting dependencies between
the architectural artifacts. It is, however, not necessary that roundtrip traceability is
supported.

4 Epilogue

The second workshop on the theme of Architecture-Centric Evolution (ACE 2006)
hosted interesting presentations and discussions. The authors of the papers mainly fo-
cused on specific techniques and approaches from a technical point of view. We can
claim that there are good practical and research solutions for particular technical prob-
lems. However, architecture-centric evolution is still quite preliminary and there are
numerous open research issues that must be addressed. Specific issues that recurrently
came up during the presentations and discussions were: how to connect architectural
evolution and quality attributes; how to bridge the gap between research and prac-
tice; what is the role of aspects in architectural evolution; how to include organiza-
tional aspects and keep consensus between all stakeholders of a system. Even though
architecture-centric evolution is still a young approach, there was consent among the



Architecture-Centric Evolution: New Issues and Trends 105

participants that the approach is gaining importance both in research and practice. This
is also apparent by the number of research projects, scientific papers, technical reports
and tools that appear in this multi-faceted area.

References

1. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice 2nd Edition. Addison
Wesley, Reading, MA, USA, 2003.

2. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architectures: Views and Beyond. Addison-Wesley, 2002.

3. Institute of Electrical and Electronics Engineers. A Compilation of IEEE standard Computer
Glossaries. IEEE, New York, NY, USA, 1990.

4. A. G. J. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer. Tool support for architectural
decisions. In 6th IEEE/IFIP Working Conference on Software Architecture (WICSA), Mumbai,
India, January 2007.

5. U. Zdun and P. Avgeriou. Architecture-centric evolution. In ECOOP 2005 Workshop Reader,
LNCS. Springer, 2006.

Appendix: Acknowledgement

We extend our thanks to all those who have participated in the organization of this
workshop, particularly to the program committee, which is comprised of:

– Goedicke Michael, University of Essen, Germany
– Yann-Gael Gueheneuc, University of Montreal, Canada
– Guelfi Nicolas, University of Luxembourg, Luxembourg
– Dieter Hammer, University of Groningen, the Netherlands
– Heckel Reiko, University of Leicester, UK
– Laemmel Ralf, Microsoft Corporation, USA
– Oberleitner Joe, Technical University of Vienna, Austria
– Nicolas Revault, University of Cergy Pontoise, France
– Wermelinger Michel, Open University, UK


	Introduction
	Issues in Architecture-Centric Evolution
	Modelling Software Evolution Using Algebraic Graph Rewriting
	Meta-architecture Tools: The Working Engines of the Company's Architectural Evolution
	Architectural Stability and Middleware: An Architecture-Centric Evolution Perspective
	Change Impact Analysis of Crosscutting in Software Architectural Design
	Using ATAM to Evaluate a Game-Based Architecture
	Safe Integration of New Concerns in a Software Architecture: Overview of the Implementation
	A Generic Framework for Integrating New Functionalities into Software Architectures

	Discussion and Outcomes
	Epilogue

