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Abstract— This paper studies a modified version of the
Vicsek’s problem, also known as the “consensus problem.”
Vicsek et al. consider a discrete-time model consisting of n
autonomous agents all moving in the plane with the same speed
but with different headings. Each agent’s heading is updated
using a local rule based on the average of the headings of its
“neighbors.” We consider a modified version of the Vicsek’s
problem in which integer valued delays occur in sensing the
values of headings which are available to agents. By appealing
to the concept of graph composition, we side-step most issues
involving products of stochastic matrices and present a variety
of graph theoretic results which explains how convergence to a
common heading is achieved.

I. INTRODUCTION

Current interest in cooperative control of groups of mobile
autonomous agents has led to the rapid increase in the
application of graph theoretic ideas together with more fa-
miliar dynamical systems concepts to problems of analyzing
and synthesizing a variety of desired group behaviors such
as maintaining a formation, swarming, rendezvousing, or
reaching a consensus. While this in-depth assault on group
coordination using a combination of graph theory and system
theory is in its early stages, it is likely to significantly
expand in the years to come. One line of research which
“graphically” illustrates the combined use of these concepts,
is the recent theoretical work by a number of individuals
[1], [2], [3], [4], [5], [6] which successfully explains the
heading synchronization phenomenon observed in simulation
by Vicsek [7], Reynolds [8] and others more than a decade
ago. Vicsek and co-authors consider a simple discrete-time
model consisting of n autonomous agents or particles all
moving in the plane with the same speed but with different
headings. Each agent’s heading is updated using a local rule
based on the average of its own heading plus the current
headings of its “neighbors.” Agent i’s neighbors at time
t, are those agents, including itself, which are either in or
on a circle of pre-specified radius ri centered at agent i’s
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current position. In their paper, Vicsek et al. provide a variety
of interesting simulation results which demonstrate that the
nearest neighbor rule they are studying can cause all agents to
eventually move in the same direction despite the absence of
centralized coordination and despite the fact that each agent’s
set of nearest neighbors can change with time. A theoretical
explanation for this observed behavior has recently been
given in [1]. The explanation exploits ideas from graph
theory [9] and from the theory of non-homogeneous Markov
chains [10], [11], [12]. With the benefit of hindsight it
is now reasonably clear that it is more the graph theory
than the Markov chains which will prove key as this line
of research advances. An illustration of this is the recent
extension of the findings of [1] which explain the behavior
of Reynolds’ full nonlinear “boid” system [6]. In this paper,
by appealing to the concept of graph composition, we side-
step most issues involving products of stochastic matrices
and present a variety of graph theoretic results which explain
how convergence to a common heading is achieved.

In the past few years many important papers have appeared
[2], [3], [4], [5], [13] which expand the results obtained in
[1] and extend the Vicsek model in many directions. For
example, in a recent paper [5] a modified version of the
Vicsek problem is considered in which integer valued delays
occur in sensing the values of headings which are available
to agents. The aim of this paper is to consider the same
problem, but more from a graph theoretic point of view. This
enables us to relax the conditions stated in [5] under which
consensus is achieved.

The rest of the paper is organized as follows. In section
2, the main convergence result is introduced. In section 3,
we present the state space model of the modified version of
Vicsek’s problem with measurement delays. In sections 4 and
5, several classes of graphs with special structures are defined
and the properties of their composition graphs are studied. In
section 6, we give the proof of our main convergence result.

II. COORDINATION FACING MEASUREMENT DELAYS

We consider a modified version of the Vicsek’s prob-
lem. More precisely we suppose that at each time t ∈
{0, 1, 2, . . .}, the value of neighboring agent j’s headings
which agent i may sense is θj(t − dij(t)) where dij(t) is
a delay whose value at t is some integer between 0 and
mj−1; here mj is a pre-specified positive integer. While well
established principles of feedback control would suggest that
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delays should be dealt with using dynamic compensation, in
this paper we will consider the situation in which the delayed
value of agent j’s heading sensed by agent i at time t is the
value which will be used in the heading update law for agent
i. Let Ni(t) and ni(t) denote the set of labels and the number
of agent i’s neighbors at time t respectively. Thus

θi(t + 1) =
1

ni(t)

⎛
⎝ ∑

j∈Ni(t)

θj(t − dij(t))

⎞
⎠ (1)

where dij(t) ∈ {0, 1, . . . , (mj − 1)} if j �= i and dij(t) = 0
if i = j.

In the delay-free version of the problem treated in [1],
dij = 0 for i ∈ {1, . . . , n} and j ∈ Ni(t). Thus in this case
each agent’s heading update equation can be written as

θi(t + 1) =
1

ni(t)

⎛
⎝ ∑

j∈Ni(t)

θj(t)

⎞
⎠ (2)

The explicit forms of the update equations determined by
(1) and (2) respectively depend on the relationships between
neighbors which exist at time t. These relationships can be
conveniently described by a directed graph N(t) with vertex
set V = {1, 2, . . . n} and arc set A(N(t)) ⊂ V × V which
is defined in such a way so that (i, j) is an arc or directed
edge from i to j just in case agent i is a neighbor of agent j
at time t. Thus N(t) is a directed graph on n vertices with at
most one arc connecting each ordered pair of distinct vertices
and with exactly one self-arc at each vertex. We write Gsa

for the set of all such graphs.
Let G be the set of all directed graphs with vertex set V .

Let A(G) denote the set of arcs of G. It is natural to call a
vertex i a neighbor of vertex j in G ∈ G if (i, j) is an arc in
G. In the sequel we will call a vertex i of a directed graph
G, a root of G if for each other vertex j of G, there is a
path from i to j. Thus i is a root of G, if it is the root of
a directed spanning tree of G. We will say that G is rooted
at i if i is in fact a root. Thus G is rooted at i just in case
each other vertex of G is reachable from vertex i along a
path within the graph. G is strongly rooted at i if each other
vertex of G is reachable from vertex i along a path of length
1. Thus G is strongly rooted at i if i is a neighbor of every
other vertex in the graph. By a rooted graph G ∈ G is meant
a graph which possesses at least one root. A strongly rooted
graph is a graph which has at least one vertex at which it is
strongly rooted.

Here we will “combine graphs” using the notion of “graph
composition” rather than the notion of “graph union” used
in [1], [2], [3]. By the composition of graph Gq1 ∈ G with
Gq2 ∈ G, written Gq2 ◦ Gq1 , is meant the directed graph
with vertex set V and arc set defined in such a way so that
(u, v) is an arc of the composition just in case there is a
vertex w such that (u,w) is an arc of Gq1 and (w, v) is
an arc of Gq2 . We say that a finite sequence of directed
graphs Gp1 , Gp2 , . . . , Gpk

from G is jointly rooted if the
composition Gpk

◦ Gpk−1 ◦ · · · ◦ Gp1 is a rooted graph. We
say that an infinite sequence of graphs Gp1 , Gp2 , . . . , in G is

repeatedly jointly rooted if there is a positive integer m for
which each finite sequence Gpm(k−1)+1 , . . . , Gpmk

, k ≥ 1
is jointly rooted.

The main result of [1] is similar to the follows.

Theorem 1: Let the θi(0) be fixed. For any trajectory of
the system determined by (2) along which the sequence of
neighbor graphs N(0), N(1), . . . is repeatedly jointly rooted,
there is a constant θss for which

lim
t→∞ θi(t) = θss (3)

where the limit is approached exponentially fast.

The aim of this paper is to prove that essentially the same
result holds in the face of measurement delays.

Theorem 2: Let the θi(0) be fixed. For any trajectory of
the system determined by (1) along which the sequence of
neighbor graphs N(0), N(1), . . . is repeatedly jointly rooted,
there is a constant θss for which

lim
t→∞ θi(t) = θss (4)

where the limit is approached exponentially fast.

As noted in the introduction, the consensus problem
with measurement delays we’ve been discussing has been
considered previously in [5]. It is possible to compare the
hypotheses of Theorem 2 with the corresponding hypotheses
for exponential convergence stated in [5], namely assump-
tions 2 and 3 of that paper. To do this, let us agree, as before,
to say that the union of a set of graphs Gr1 , Gr2 , . . . , Grk

with vertex set V is that graph with vertex set V and arc
set consisting of the union of the arcs of all of the graphs
Gr1 , Gr2 , . . . , Grk

. Taken together, assumptions 2 and 3 of
[5] are more or less equivalent to assuming that there are
finite positive integers q and s such that the union

G(k) ∆= N((k + 1)q − 1) ∪ N((k + 1)q − 2) ∪ · · · ∪ N(kq)

is strongly connected and independent of k for k ≥ s.
By way of comparison, the hypothesis of Theorem 2 is
equivalent to assuming that there is a finite positive integer
q such that the composition

Ḡ(k) ∆= N((k + 1)q − 1) ◦ N((k + 1)q − 2) ◦ · · · ◦ N(kq)

is rooted for k ≥ 0. The latter assumption is weaker than
the former for several reasons. First, the arc set of G(k) is
always a subset of the arc set of Ḡ(k) and in some cases the
containment may be strict. Second, Ḡ(k) is not assumed to
be independent of k, even for k sufficiently large, whereas
G(k) is; in other words, Ḡ(k) is not assumed to converge
whereas G(k) is. Third, each G(k) is assumed to be strongly
connected whereas each Ḡ(k) need only be rooted; note that
a strongly connected graph is a special type of rooted graph
in which every vertex is a root. Perhaps most important about
Theorem 2 and the development which justifies it, is that
the underlying structural properties of the graphs involved
required for consensus are explicitly determined.
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III. STATE SPACE SYSTEM

It is possible to represent the agent system defined by (1)
using a state space model. Towards this end, let Ḡ denote the
set of all directed graphs with vertex set V̄ = V1∪V2∪· · ·∪Vn

where Vi = {vi1 . . . , vimi
}. Here vertex vij labels the jth

possible delay value of agent i, namely j−1. We sometimes
write i for vi1, i ∈ {1, 2, . . . , n}, V for the subset of vertices
{v11, v21, . . . , vn1}, and think of vi1 as an alternative label
of agent i.

To take account of the fact that each agent can use its
own current heading in its update formula (1), we will utilize
those graphs in Ḡ which have self arcs at each vertex in V .
We will also require the arc set of each such graph to have,
for i ∈ {1, 2, . . . , n}, an arc from each vertex vij ∈ Vi except
the last, to its successor vi(j+1) ∈ Vi. Finally we stipulate
that for each i ∈ {1, 2, . . . , n}, each vertex vij with j > 1
has in-degree of exactly 1. In the sequel we call any such
graph a delay graph and write D for the subset of all such
graphs. Note that there are graphs in D possessing vertices
without self-arcs. Nonetheless each vertex of each graph in
D has positive in-degree.

The specific delay graph representing the sensed headings
the agents use at time t to update their own headings
according to (1), is that graph D(t) ∈ D whose arc set
contains an arc from vik ∈ Vi to vj1 ∈ V if agent j
uses θi(t + 1 − k) to update. There is a simple relationship
between D(t) and the neighbor graph N(t) defined earlier.
In particular,

N(t) = Q(D(t)) (5)

where Q(D(t)) is the “quotient graph” of D(t). By the
quotient graph of any G ∈ Ḡ, written Q(G), is meant that
directed graph in G with vertex set V whose arc set consists
of those arcs (i, j) for which G has an arc from some
vertex in Vi to some vertex in Vj . The quotient graph of
D(t) thus models which headings are being used by each
agent in updates at time t without describing the specific
delayed headings actually being used. The following is an
example of a delay graph (left) and its quotient graph (right).

v11

v12

v13

v21

v22

v23

v31

v32

v24

1 2 3

The set of agent heading update rules defined by (1) can
be written in state form. Towards this end define θ(t) to be
that (m1 + m2 + · · · + mi) vector whose first m1 elements
are θ1(t) to θ1(t + 1 − m1), whose next m2 elements are
θ2(t) to θ2(t + 1 − m2) and so on. Order the vertices of V̄
as v11, . . . , v1m1 , v21, . . . , v2m2 , . . . , vn1, . . . , vnmn and with
respect to this ordering define for each graph D ∈ D, the
flocking matrix

F = D−1A′ (6)

where A′ is the transpose of the adjacency matrix of D and
D the diagonal matrix whose ijth diagonal element is the
in-degree of vertex vij within the graph. Any n×n stochastic
matrix S determines a directed graph γ(S) with vertex set
{1, 2, . . . , n} and arc set defined is such a way so that (i, j)
is an arc of γ(S) from i to j just in case the jith entry of S
is non-zero. It is known [14] that for a set of n×n stochastic
matrices S1, S2, . . . , Sp

γ(Sp · · ·S2S1) = γ(Sp) ◦ · · · ◦ γ(S2) ◦ γ(S1) (7)

One can check that γ(F ) = D and

θ(t + 1) = F (t)θ(t), t ∈ {0, 1, 2, . . .} (8)

Let F̄ denote the set of all such F . As before our
goal is to characterize the sequences of neighbor graphs
N(0), N(1), . . . for which all entries of θ(t) converge to a
common steady state value.

There are a number of similarities and a number of dif-
ferences between the situation under consideration here and
the delay-free situation considered in [14]. For example, the
notion of graph composition defined earlier can be defined in
the obvious way for graphs in Ḡ. On the other hand, unlike
the situation in the delay-free case, the set of graphs used
to model the system under consideration, namely the set of
delay graphs D, is not closed under composition except in
the special case when all of the delays are at most 1; i.e.,
when all of the mi ≤ 2. In order to characterize the smallest
subset of Ḡ containing D which is closed under composition,
we will need several new concepts.

IV. HIERARCHICAL GRAPHS

As before, let G be the set of all directed graphs with
vertex set V = {1, 2, . . . n}. Let us agree to say that a
rooted graph G ∈ G is a hierarchical graph with hierarchy
{v1, v2, . . . , vn} if it is possible to re-label the vertices in V
as v1, v2, . . . vn in such a way so that v1 is a root of G with
a self-arc and for i > 1, vi has a neighbor vj “lower ” in the
hierarchy where by lower we mean j < i. It is clear that any
graph in G with a root possessing a self-arc is hierarchical.
Note that a graph may have more than one hierarchy and
two graphs with the same hierarchy need not be equal. Note
also that even though rooted graphs with the same hierarchy
share a common root, examples show that the composition
of hierarchical graphs in G need not be hierarchical or even
rooted. On the other hand the composition of two rooted
graphs in G with the same hierarchy is always a graph
with the same hierarchy. To understand why this is so,
consider two graphs G1 and G2 in G with the same hierarchy
{v1, v2, . . . , vn}. Note first that v1 has a self -arc in G2 ◦G1

because v1 has self arcs in G1 and G2. Next pick any vertex
vi in V other than v1. By definition, there must exist vertex
vj lower in the hierarchy than vi such that (vj , vi) is an arc
of G2. If vj = v1, then (v1, vi) is an arc in G2 ◦G1 because
v1 has a self-arc in G1. On the other hand, if vj �= v1,
then there must exist a vertex vk lower in the hierarchy than
vj such that (vk, vj) is an arc of G1. It follows from the
definition of composition that in this case (vk, vi) is an arc
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in G2 ◦ G1. Thus vi has a neighbor in G2 ◦ G1 which is
lower in the hierarchy than vi. Since this is true for all vi,
G2 ◦ G1 must have the same hierarchy as G1 and G2. This
proves the claim that composition of two rooted graphs with
the same hierarchy is a graph with the same hierarchy.

Our objective is to show that the composition of a suffi-
ciently large number of graphs in G with the same hierarchy
is strongly rooted. Note that the fact that the composition
of (n − 1)2 rooted graphs in Gsa is strongly rooted [14],
cannot be used to reach this conclusion because the vi in the
graphs under consideration here do not all necessarily have
self-arcs.

The following proposition says that the composition of
a sufficiently large number of graphs in G with the same
hierarchy is strongly rooted.

Proposition 1: Let G1, G2, . . . Gm denote a set of rooted
graphs in G which all have the same hierarchy. If m ≥ n−1
then Gm ◦ · · ·G2 ◦ G1 is strongly rooted.
The proof of this proposition appears in [15].

V. THE CLOSURE OF D
We now return to the study of the graphs in D. As before

D is the subset of Ḡ consisting of those graphs which (i)
have self arcs at each vertex in V = {v11, v21, . . . , vn1}, (ii)
for each i ∈ {1, 2, . . . , n}, have an arc from each vertex
vij ∈ Vi except the last, to its successor vi(j+1) ∈ Vi, and
(iii) for each i ∈ {1, 2, . . . , n}, each vertex vij with j > 1
has in-degree of exactly 1. It can easily be shown by example
that D is not closed under composition. We deal with this
problem as follows. First, let us agree to say that a vertex v
in a graph G ∈ Ḡ is a neighbor of a subset of G’s vertices
U , if v is a neighbor of at least one vertex in U . Next, we
say that a graph G ∈ Ḡ is an extended delay graph if for
each i ∈ {1, 2, . . . , n}, (i) every neighbor of Vi which is not
in Vi is a neighbor of vi1 and (ii) the subgraph of G induced
by Vi has {vi1 . . . , vimi} as a hierarchy. We write D̄ for the
set of all extended delay graphs in Ḡ. It is easy to see that
every delay graph is an extended delay graph. The converse
however is not true. The set of extended delay graphs has
the following property.

Proposition 2: D̄ is closed under composition.
In the light of this proposition it is natural to call D̄ the
closure of D. To prove the proposition, we will need the
following fact.

Lemma 1: Let G1, G2, . . . , Gq be any sequence of q > 1
directed graphs with vertex set V . For i ∈ {1, 2, . . . , q}, let
Ḡi be the subgraph of Gi induced by U ⊂ V . Then Ḡq ◦· · ·◦
Ḡ2 ◦ Ḡ1 is contained in the subgraph of Gq ◦ · · · ◦ G2 ◦ G1

induced by U .
The proof of Lemma 1 appears in [15].

Proof of Proposition 2: Let G1 and G2 be two extended
delay graphs in D̄. It will first be shown that for each i ∈
{1, 2, . . . , n}, every neighbor of Vi which is not in Vi is a
neighbor of vi1 in G2 ◦ G1 . Fix i ∈ {1, 2, . . . , n} and let
v be a neighbor of Vi in G2 ◦ G1 which is not in Vi. Then
(v, k) ∈ A(G2 ◦G1) for some k ∈ Vi. Thus there is a s ∈ V̄
such that (v, s) ∈ A(G1) and (s, k) ∈ A(G2). If s �∈ Vi, then

(s, vi1) ∈ A(G2) because G2 is an extended delay graph.
Thus in this case (v, vi1) ∈ A(G2 ◦ G1) because of the
definition of composition. If, on the other hand, s ∈ Vi, then
(v, vi1) ∈ A(G1) because G1 is an extended delay graph.
Thus in this case (v, vi1) ∈ A(G2 ◦ G1) because vi1 has a
self-arc in G2. This proves that every neighbor of Vi which
is not in Vi is a neighbor of vi1 in G2◦G1. Since this must be
true for each i ∈ {1, 2, . . . , n}, G2 ◦G1 has the first property
defining extended delay graphs in D̄.

To establish the second property, we exploit the fact that
the composition of two graphs with the same hierarchy
is a graph with the same hierarchy. Thus for any integer
i ∈ {1, 2, . . . , n}, the composition of the subgraphs of G1

and G2 respectively induced by Vi must have the hierarchy
{vi1, vi2, . . . , vimi

}. But by Lemma 1, for any integer i ∈
{1, 2, . . . , n}, the composition of the subgraphs of G1 and
G2 respectively induced by Vi, is contained in the subgraph
of the composition of G1 and G2 induced by Vi. This implies
that for i ∈ {1, 2, . . . , n}, the subgraph of the composition
of G1 and G2 induced by Vi has {vi1, vi2, . . . , vimi} as a
hierarchy.

Our main result regarding extended delay graphs is as
follows.

Proposition 3: Let m be the largest integer in the set
{m1,m2, . . . ,mn}. The composition of any set of at least
m(n − 1)2 + m − 1 extended delay graphs will be strongly
rooted if the quotient graph of each of the graphs in the
composition is rooted.

To prove this proposition we will need several more
concepts. Let us agree to say that a extended delay graph
G ∈ D̄ has strongly rooted hierarchies if for each i ∈ V , the
subgraph of G induced by Vi is strongly rooted. Proposition 1
states that a hierarchical graph on mi vertices will be strongly
rooted if it is the composition of at least mi−1 rooted graphs
with the same hierarchy. This and Lemma 1 imply that the
subgraph of the composition of at least mi − 1 extended
delay graphs induced by Vi will be strongly rooted. We are
led to the following lemma.

Lemma 2: Any composition of at least m − 1 extended
delay graphs in D̄ has strongly rooted hierarchies.

To proceed we will need one more type of graph which
is uniquely determined by a given graph in Ḡ. By the agent
subgraph of G ∈ Ḡ is meant the subgraph of G induced by
V . Note that while the quotient graph of G describes relations
between distinct agent hierarchies, the agent subgraph of
G only captures the relationships between the roots of the
hierarchies. Note in addition that both the agent subgraph of
G and the quotient graph of G are graphs in Gsa because all
n vertices of G in V have self arcs.

Lemma 3: Let Gp and Gq be extended delay graphs in
D̄. If Gp has a strongly rooted agent subgraph and Gq has
strongly rooted hierarchies, then the composition Gq ◦Gp is
strongly rooted.

Lemma 4: The agent subgraph of any composition of at
least (n − 1)2 extended delay graphs in D̄ will be strongly
rooted if the agent subgraph of each of the graphs in the
composition is rooted.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThB11.3

3378



Lemma 5: Let Gp and Gq be extended delay graphs in D̄.
If Gp has strongly rooted hierarchies and Gq has a rooted
quotient graph, then the agent subgraph of the composition
Gq ◦ Gp is rooted.
The proofs of lemmas 3, 4 and 5 appear in [15].

Proof of Proposition 3: Let G1, G2, . . . Gs be a sequence
of at least m(n − 1)2 + m − 1 extended delay graphs with
rooted quotient graphs. The graph Gs ◦ · · ·G(m(n−1)2+1) is
composed of at least m−1 extended delay graphs. Therefore
Gs ◦ · · ·G(m(n−1)2+1) must have strongly rooted hierarchies
because of Lemma 2. In view of Lemma 3, to complete the
proof it is enough to show that Gm(n−1)2 ◦ · · · ◦ G1 has a
strongly rooted agent subgraph. But Gm(n−1)2 ◦ · · · ◦ G1 is
the composition of (n−1)2 graphs, each itself a composition
of m extended delay graphs with rooted quotient graphs.
In view of Lemma 4, to complete the proof it is enough
to show that the agent subgraph of any composition of m
extended delay graphs is rooted if each quotient graph of
each extended delay graph in the composition is rooted. Let
H1, H2, . . . , Hm be such a family of extended delay graphs.
By assumption, Hm has a rooted quotient graph. In view of
Lemma 5, the agent subgraph of Hm ◦Hm−1 ◦ · · · ◦H1 will
be rooted if Hm−1 ◦ · · · ◦H1 has strongly rooted hierarchies.
But Hm−1 ◦ · · · ◦H1 has this property because of Lemma 2.

Finally we will need the following fact.
Proposition 4: Let G1, . . . , Gr be a sequence of extended

delay graphs in D̄. If the composition Q(Gr) ◦ · · · ◦ Q(G1)
is rooted then so is the quotient graph Q(Gr ◦ · · · ◦ G1).
This proposition is a direct consequence of the following
lemma.

Lemma 6: Let Gp, Gq be two extended delay graphs in
D̄. For each arc (i, j) in the composition Q(Gq) ◦ Q(Gp),
there is a path from i to j in the quotient graph Q(Gq ◦Gp).
The proof of Lemma 6 appears in [15].

Proof of Proposition 4: To prove the proposition it is
enough to show that if Q(Gr) ◦ · · · ◦Q(G1) contains a path
from some i ∈ V to some j ∈ V , then Q(Gr ◦ · · · ◦ G1)
also contains a path from i to j. As a first step towards
this end, we claim that if Gp, Gq are graphs in D̄ for which
Q(Gq)◦Q(Gp) contains a path from u to v, for some u, v ∈
V , then Q(Gq◦Gp) also contains a path from u to v. To prove
that this is so, fix u, v ∈ V and Gp, Gq ∈ D̄ and suppose that
Q(Gq)◦Q(Gp) contains a path from u to v. Then there must
be a positive integer s and vertices k1, k2, . . . , ks ending at
ks = v, for which (u, k1), (k1, k2), . . . , (ks−1, ks) are arcs
in Q(Gq)◦Q(Gp). In view of Lemma 6, there must be paths
in Q(Gq ◦Gp) from i to k1, k1 to k2,. . . , and ks−1 to ks. It
follows that there must be a path in Q(Gq ◦ Gp) from i to
j. Thus the claim is established.

It will now be shown by induction for each s ∈ {2, . . . , m}
that if Q(Gs) ◦ · · · ◦ Q(G1) contains a path from i to
some js ∈ V , then Q(Gr ◦ · · · ◦ G1) also contains a path
from i to js. In view of the claim just proved above,
the assertion is true if s = 2. Suppose the assertion is
true for all s ∈ {2, 3, . . . , t} where t is some integer in
{2, . . . , r−1}. Suppose that Q(Gt+1)◦ · · · ◦Q(G1) contains

a path from i to jt+1. Then there must be an integer k
such that Q(Gt) ◦ · · · ◦ Q(G1) contains a path from i to
k and Q(Gt+1) contains a path from k to jt+1. In view
of the inductive hypothesis, Q(Gt ◦ · · · ◦ G1) contains a
path from i to k. Therefore Q(Gt+1) ◦ Q(Gt ◦ · · · ◦ G1)
has a path from i to jt+1. Hence the claim established at the
beginning of this proof applies and it can be concluded that
Q(Gt+1 ◦Gt ◦ · · · ◦G1) has a path from i to jt+1. Therefore
by induction the aforementioned assertion is true.

VI. PROOF OF CONVERGENCE

Our aim is to make use of the properties of extended delay
graphs just derived to prove Theorem 2. We will also need
the following result from [14].

Proposition 5: Let Ssr be any closed set of stochastic
matrices which are all of the same size and whose graphs
γ(S), S ∈ Ssr are all strongly rooted. As j → ∞, any
product Sj · · ·S1 of matrices from Ssr converges exponen-
tially fast to a matrix of the form 1c at a rate no slower
than λ, where c is a non-negative row vector depending on
the sequence and λ is a non-negative constant less than 1
depending only on Ssr.

Proof of Theorem 2: In view of (8), θ(t) = F (t −
1) · · ·F (0)θ(0). Thus to prove the theorem it suffices to
prove that as t → ∞ the matrix product F (t) · · ·F (0)
converges exponentially fast to a matrix of the form 1c .

By hypothesis, the sequence of neighbor graphs
N(0), N(1), . . . , is repeatedly jointly rooted by subsequences
of length q. This means that each of the sequences
N(kq), . . . , N((k + 1)q − 1), k ≥ 0, is jointly rooted. Let
D(t) = γ(F (t)), t ≥ 0. In view of (5), N(t) = Q(D(t)), t ≥
0. Thus each of the sequences Q(D(kq)), . . . , Q(D((k +
1)q − 1)), k ≥ 0, is jointly rooted, so each composition
Q(D((k + 1)q − 1)) ◦ · · · ◦ Q(D(kq)) is a rooted graph. In
view of Proposition 4, each graph Q(D((k + 1)q− 1) ◦ · · · ◦
D(kq)), k ≥ 0 is also rooted.

Set p = (m(n − 1)2 + m − 1)q where m is the largest
integer in the set {m1,m2, . . . , mn}. In view of Proposition
3, each of the graphs D((k + 1)p− 1) ◦ · · · ◦D(kp)), k ≥ 0
is strongly rooted. Let F(p) denote the set of all products of
p matrices from F̄ which have the additional property that
each such product has a strongly rooted graph. Then F(p)
is finite and therefore compact, because F̄ is.

For k ≥ 0, define

S(k) = F ((k + 1)p − 1) · · ·F (kp) (9)

In view of (7) and the fact that γ(F (t)) = D(t), t ≥ 0,
it must be true that γ(S(k)) = D((k + 1)p − 1) ◦ · · · ◦
D(kp), k ≥ 0. Thus each S(k) has a strongly rooted graph.
Moreover, each such S(k) is the product of p matrices from
F̄ . Therefore S(k) ∈ F(p), k ≥ 0. Therefore Proposition
5 applies with Ssr = F(p) so it can be concluded that the
matrix product S(k) · · ·S(0) converges exponentially fast as
k → ∞ to a matrix of the form 1c as k → ∞.

In view of the definition of S(k) it is clear that for any
t, there is an integer k(t) and a stochastic matrix Ŝ(t)
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composed of the product of at most p − 1 matrices from
F̄ such that

F (t) · · ·F (1) = Ŝ(t)S(k(t)) · · ·S(0)

Moreover t �→ k(t) must be an unbounded, strictly increasing
function; because of this the product S(k(t)) · · ·S(0) must
converge exponentially fast as t → ∞ to a limit of the form
1c. Since Ŝ(t)1c = 1c, t ≥ 0, the product F (t) · · ·F (1)
must also converge exponentially fast as t → ∞ to the same
limit 1c.

VII. CONCLUDING REMARKS

A related topic that will be studied in the future is the
effect on convergence of the rate of changes in delays. This
is not an issue in our current setting since all agents are
assumed to update their headings synchronously on the set of
integer valued time instances. However, if all agents update
their headings asynchronously or if a continuous-time model
is adopted, then an extremely high rate of change in delays
may lead to divergence.
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