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for Computing Invariant Manifolds
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Summary. This paper deals with the numerical computation of invariant manifolds
using a method of discretizing global manifolds. It provides a geometrically natural
algorithm that converges regardless of the restricted dynamics. Common examples
of such manifolds include limit sets, co-dimension 1 manifolds separating basins of
attraction (separatrices), stable/unstable/center manifolds, nested hierarchies of at-
tracting manifolds in dissipative systems and manifolds appearing in bifurcations.
The approach is based on the general principle of normal hyperbolicity, where the
graph transform leads to the numerical algorithms. This gives a highly multiple
purpose method. The algorithm fits into a continuation context, where the graph
transform computes the perturbed manifold. Similarly, the linear graph transform
computes the perturbed hyperbolic splitting. To discretize the graph transform, a
discrete tubular neighborhood and discrete sections of the associated vector bundle
are constructed. To discretize the linear graph transform, a discrete (un)stable bun-
dle is constructed. Convergence and contractivity of these discrete graph transforms
are discussed, along with numerical issues. A specific numerical implementation is
proposed. An application to the computation of the ‘slow–transient’ surface of an
enzyme reaction is demonstrated.

1 Introduction

Invariant manifolds of dynamical systems typically determine the skeleton
of the dynamics, around which a further analysis may be in order. This is true
whether the system is dissipative or conservative. For dissipative systems,
the phase space often contains a nested hierarchy of attracting manifolds
Vi ⊂ Vi+1, i = 0, . . . , n. The manifold Vi is composed of initial data which
evolves slowly compared to initial data in the rest of Vi+1. The manifold V0

contains the global attractor, which may be an equilibrium point or more
complicated set. The long-time (medium-time) dynamics is described by the
system restricted to V0 (V1). By restricting the system to a lower dimensional
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manifold, fast transients are removed from consideration. Thus, the dimension
of the model is reduced while retaining the essential features of the dynamics.

Analytical formulae for the lower dimensional manifolds and the corre-
sponding reduced systems are only obtainable in special cases. Hence, meth-
ods of approximating these manifolds are desirable. For example, in applied
bifurcation theory, the center manifold of an equilibrium is approximated lo-
cally by polynomials, using a recursive algebraic procedure [23]. This allows
the local approximation of the system restricted to the center manifold, up to
sufficiently high-order terms. An analysis of the bifurcation is then performed
on the approximate center manifold.

In the present paper, we focus on a numerical algorithm which computes
global invariant manifolds. This allows a global approximation of the system
restricted to the invariant manifold, in principle to arbitrary accuracy. This
may aid further analysis of long-time non-local dynamics.

The algorithmic approach is based on the principle of normal hyperbol-
icity. According to the Invariant Manifold Theorem, normally hyperbolic in-
variant manifolds persist smoothly under small perturbations of the system.
To be specific, the Invariant Manifold Theorem is concerned with the follow-
ing setup. Given a diffeomorphism F and an F–invariant submanifold V , the
invariant manifold Ṽ for a nearby diffeomorphism F̃ is constructed. Based
on this, an invariant manifold Ṽ for the system of interest, F̃ , may be com-
puted given an analytically known initial manifold V for a nearby system F .
It turns out that a rough estimate of an initial manifold V is often enough. In
addition, the algorithm may be repeated with computed initial data, allowing
the potential to compute invariant manifolds of systems not necessarily near
a system with a known manifold.

The algorithm is adapted from one of the classical approaches to the proof
of the Invariant Manifold Theorem, the graph transform. The theory of invari-
ant manifolds using the graph transform is well developed [21]. In particular
the convergence properties of the graph transform are inherited by the algo-
rithm. This complete theory of convergence is one thing that distinguishes
this approach from many other approaches to computing invariant manifolds
in the literature.

The implementation of methods for computing (non-local) manifolds of
dimension ≥ 2 is fairly recent. Some of the related work in this category
concerns quasiperiodic (for example [17]) or attracting (for example [10]) tori,
parts of global attractors [9] or global (un)stable manifolds [22]. The computa-
tions of tori use global parametrizations of the tori where simplicial complexes
are used in the present paper. The computations of parts of global attractors
use successive subdivisions of a covering of part of the global attractor. This
approach computes global attractors which are smooth or non–smooth. The
computations of global (un)stable manifolds are concerned with extending a
given piece of the manifold, to fill out the global (un)stable manifold. The
present paper has the antecedents [2, 3, 5, 27]. In [5, 27] a method to compute
saddle–type manifolds is presented. The graph transform and simplicial com-
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plexes are used to approximate manifolds. The present paper, starting with
a simplicial complex, uses a piecewise polynomial approximation. To do this,
a discrete tubular neighborhood is constructed. An approximation of arbi-
trary order for any manifold is obtained. A tubular neighborhood of V is the
geometrical setting of the graph transform. Thus, a discrete tubular neigh-
borhood is a natural approach which allows an analogous development of a
discrete graph transform. In addition, the construction of a discrete (un)stable
bundle allows a natural derivation of the discrete linear graph transform.

Compared to related work, the present approach gives a general purpose
algorithm. It applies to manifolds of arbitrary topological type, attracting
or saddle–type, regardless of the restricted dynamics. There is a satisfactory
theory of convergence in this general setting. If the manifold is not normally
hyperbolic, however, a different approach should be used, see for example [17].
Other novel features of the present paper include the following. In Section 5, a
practical approach to solving the global equations associated with the discrete
graph transform is proposed. In Section 6, the graph transform approach is
used to compute a part of the ‘slow–transient’ surface of an enzyme reaction
model. This is the first time this approach has been used to compute this
type of surface. For numerical methods designed specifically for this type of
problem, see [15, 16, 30].

To repeatedly apply the algorithm, both the perturbed manifold Ṽ and
its hyperbolic splitting must be approximated. This is done by first using
the graph transform Γ to obtain Ṽ and then the linear graph transform L
to compute the hyperbolic splitting of Ṽ . Thus, in Section 2, Γ and L are
formulated. This includes a discussion of normal hyperbolicity, the Invariant
Manifold Theorem, tubular neighborhoods and hyperbolic splittings. In Sec-
tion 3, the discretizations of the domains of Γ and L are formulated. To do
this, a discrete tubular neighborhood along with a space of discrete sections
of the associated vector bundle are constructed. In Section 4, discrete versions
ΓD of Γ and LD of L are formulated, based on the discrete approximating
sections of Section 3. Analyses of the convergence and contractivity of ΓD and
LD are given. In Section 5, an outline of a computer implementation of the
algorithm is given. Some auxiliary numerical techniques, along with numerical
conditioning and error, are also discussed. Section 6 contains an application to
an enzyme reaction model. For more examples, see [2, 3] or the DISC project
website, http://home.nethere.net/hagen.

2 Invariant Manifolds

In this section, the basic theory of normally hyperbolic invariant manifolds
is introduced. An overview of some definitions and results from [21] is given.
For locating a perturbed manifold, the graph transform is formulated. The
linear graph transform is formulated to locate the hyperbolic splitting of this
perturbed manifold. In later sections, discrete versions of these graph trans-
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Fig. 1: Lorenz system orbit and hyperbolic splitting; two tori in the Lorenz-84
system, moving away from a Hopf saddle–node bifurcation [23].

forms, suitable for a numerical implementation, will be given. This will be
done by replacing the basic elements, like tubular neighborhoods and sections
of vector bundles, with discrete constructions.

2.1 Normal Hyperbolicity

The starting point is a Cr diffeomorphism F on a C∞ Riemannian mani-
fold M , with an invariant submanifold V ⊂ M . Here, V is a compact, Cr ,
r–normally hyperbolic submanifold of M , r ≥ 1. The submanifold V is r–
normally hyperbolic for F if there is a DF–invariant splitting

TV (M) = Nu(V )⊕ T (V )⊕Ns(V ), (1)

and a Riemann structure on the tangent bundle TV (M), such that, for y ∈ V ,
i ≥ 0, and 0 ≤ k ≤ r:

‖DF i |Ns
y (V )‖ · ‖(DF i |Ty(V ))−1‖k ≤ cµi,

‖(DF i |Nu
y (V ))−1‖ · ‖DF i |Ty(V )‖k ≤ c (1/λ)i

,
(2)

for some 0 < µ < 1 < λ < ∞ and 0 < c < ∞. Here the operator norms
are associated with the Riemann structure on TV (M). For example, consider
the attracting case, Nu

y (V ) = {0}, y ∈ V and r = 1. Condition (2) concerns
the linearization of F at V , in other words DF on TV (M). It states that
under the action of the linearization, vectors normal to V are asymptotically
contracted more than vectors tangent to V . This means that under the action
of the dynamical system F , a neighborhood of a point in V is flattened in the
direction of the manifold.

The Invariant Manifold Theorem [21, Theorem 4.1] states that a Cr dif-
feomorphism F̃ , that is Cr–near F , has an r–normally hyperbolic invariant
manifold Ṽ , that is Cr and Cr–near V . This theorem and its proof suggests
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that it may be possible to compute an approximation to Ṽ from a given V . To
implement this idea, we look more closely at a proof of the invariant manifold
theorem.

First, we focus on a tubular neighborhood of V [20, 24]. A tubular neigh-
borhood of V in M is a vector bundle E with base space V , an open neigh-
borhood U of V in M , an open neighborhood Z of the zero section in E and a
homeomorphism φ : Z → U . Here, φ must satisfy φ◦σ0 = i, where σ0 : V → E
is the zero section and i : V → M is the inclusion. For example, the normal
bundle E =

⋃
p∈V Tp(V )⊥ of V in M gives a tubular neighborhood of V , at

least if r ≥ 2. In fact, any Lipschitz vector bundle N(V ), transverse to T (V )
in TV (M), gives a tubular neighborhood of V in M . In the following, Ṽ is
constructed in the neighborhood U in M , or equivalently in the neighborhood
Z in N(V ). A slight technical adjustment is made here. Namely, below, Z is
the closure of a neighborhood, Z = Z(ε) = {(p, v) ∈ N(V ) : |v|p ≤ ε}.

For any Lipschitz transverse vector bundle N(V ), the invariant splitting
(1) induces a splitting N(V ) = Nu(V ) ⊕ Ns(V ) into stable and unstable
parts. The hyperbolic splitting TV (M) = Nu(V ) ⊕ T (V ) ⊕ Ns(V ) has the
same growth properties (2) as the invariant splitting. Sections of Z may now
be written σ(p) = (p, vs(p), vu(p)), where vs(p) ∈ Zs

p = Ns
p (V ) ∩ Z, vu(p) ∈

Zu
p = Nu

p (V ) ∩ Z.

2.2 The Graph Transform

The graph transform uses the F̃–dynamics near V to locate Ṽ . The domain
of the graph transform is a certain space of sections of the vector bundle Z =
Z(ε). The graphs of the sections in the domain are the Lipschitz manifolds near
V in Lipschitz norm. In fact, the graph transform is a contraction on a space
of Lipschitz sections σ : V → Z. To define the Lipschitz constant of a section,
a C0 connection in TV (M) is used [25]. A connection gives a way to compare
points in different fibers of TV (M). It does this using a continuous family of
horizontal subspaces H(y), y ∈ TV (M), which extend the tangent spaces of
V . More precisely, a C0 connection in the vector bundle π : TV (M) → V is
a C0 distribution H : TV (M)→ T (TV (M)) with Ty(TV (M)) = H(y)⊕ V (y),
y ∈ TV (M), where V (y) is the kernel of Dπ. Here, it is also required that the
horizontal subspace of the associated frame bundle corresponding to H(y)
be invariant under the structure group. This implies, in particular, that if
σ0 : V → TV (M) is the zero section, then H(σ0(p)) = Dσ0(Tp(V )).

To define the slope of a section σ : V → TV (M) at p ∈ V , let θ : V →
TV (M) be a C1 section with θ(p) = σ(p) and Dθ(Tp(V )) = H(σ(p)). Then
the slope of σ at p is

slopep(σ) = lim sup
x→p

|σ(x)− θ(x)|x
dV (x, p)

,

[21]. Since Zs and Zu are subbundles of TV (M), this also gives a natural
definition of the slope of sections σs : V → Zs and σu : V → Zu. From this,
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the Lipschitz constant of σs is Lip(σs) = supp∈V slopep(σ
s), and similarly

for σu. Now, the Lipschitz constant of a section σ(p) = (p, vs(p), vu(p)) of
Z is Lip(σ) = max{Lip(σs),Lip(σu)}, where σs(p) = (p, vs(p)) and σu(p) =
(p, vu(p)). The domain of the graph transform is Sε,δ = {σ : V → Z : Lip(σ) ≤
δ}. The norm on Sε,δ is ‖σ‖ = max{ |σs|s, |σu|u}, where | · |s and | · |u are
the natural C0 norms on sections of Zs and Zu, respectively. With this norm,
Sε,δ is complete.

V

�

y

�

F̃ 0(p, vs(p), vu(p))

�
��

�

p

� (p, vs(p), vu(p))

Fig. 2: Invariance condition (3).

To formulate the graph transform, the starting point is the F̃–invariance
condition φ ◦ σ(V ) = F̃ ◦ φ ◦ σ(V ). This is split into two coupled equations,
a part on V and a part normal to V . We put F̃ 0 = φ−1 ◦ F̃ ◦ φ and work in
N(V ). The image of φ ◦ σ is F̃–invariant if and only if

(y, vs(y), vu(y)) = F̃ 0(p, vs(p), vu(p)),

y = π ◦ F̃ 0(p, vs(p), vu(p)),
(3)

for p ∈ V , where π : N(V )→ V is the vector bundle projection. See Figure 2.
Under our hypotheses, y = π ◦ F̃ 0(p, vs(p), vu(p)) may be solved for a unique
p ∈ V given y ∈ V and σ ∈ Sε,δ for small ε, δ and θ = ‖F − F̃‖C1 . Denote
this solution by p = p(y, vs, vu). Now, given σ ∈ Sε,δ, σ(p) = (p, vs(p), vu(p)),
the graph transform of σ is the section Γ (σ)(p) = (p, ws(p), wu(p)). Here, ws

is defined by

ws(y) = P s
y ◦ F̃ 0(p, vs(p), vu(p)), p = p(y, vs, vu), (4)

for y ∈ V , where P s
y : Ny(V ) → Ny(V ) is the linear projection with range

Ns
y (V ) and nullspace Nu

y (V ). The unstable part wu is defined implicitly by

vu(y) = Pu
y ◦ F̃ 0(p, vs(p), wu(p)),

y = π ◦ F̃ 0(p, vs(p), wu(p)),
(5)

for p ∈ V , where Pu
y : Ny(V ) → Ny(V ) is the linear projection with range

Nu
y (V ) and nullspace Ns

y (V ). In (5), there is a unique solution for wu(p) for
small θ, ε, and δ.
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If σ = Γ (σ), then (4) and (5) imply (3). Hence σ is a fixed point of Γ if
and only if the graph of σ is F̃–invariant. By replacing F̃ with F̃N above, for
some large integer N , Γ becomes a contraction on Sε,δ whose fixed point σ∗

satisfies φ ◦ σ∗(V ) = Ṽ .

2.3 The Linear Graph Transform

Two linear graph transforms Ls and Lu are used to determine the hyperbolic
splitting Nu(Ṽ ) ⊕ T (Ṽ ) ⊕ Ns(Ṽ ) of Ṽ . Here, Ls determines Ns(Ṽ ) and Lu

determines Nu(Ṽ ). These two linear graph transforms are contractions on
certain spaces of sections. These spaces of sections are determined by the
initial data for Ls and Lu.

To illustrate the details, here Lu is formulated. Given a transverse bundle
N(Ṽ ), first the initial data for Lu in N(Ṽ ) is determined. Let Q : TṼ (M)→
TṼ (M), be, on each fiber Ty(M), the linear projection with range Ny(Ṽ ) and
nullspace Ty(Ṽ ). Initial data N(Ṽ ) = Nu,0(Ṽ )⊕Ns,0(Ṽ ) are then

Nu,0(Ṽ ) = Q(Nu,1(Ṽ )), Ns,0(Ṽ ) = Q(Ns,1(Ṽ )),

where Nu,1
y (Ṽ ), Ns,1

y (Ṽ ) are obtained from Nu
p (V ), Ns

p (V ), y = φ ◦ σ∗(p),
by parallel translation Tp(M) → Ty(M) along φ–images of fibers of N(V ),
[1, 25]. There exists α > 0, where α → 0 as ε + δ + θ → 0, such that, if
{�N(V ), T (V )}, {�N(Ṽ ), T (Ṽ )} ≥ α > 0, then this procedure produces
non-degenerate initial data Nu,0(Ṽ ), Ns,0(Ṽ ).

The domain of Lu is a space of sections whose graphs are the j–plane
bundles near Nu,0(Ṽ ) in N(Ṽ ), where j is the dimension of Nu,0(Ṽ ). These
are sections of the bundle L(Ṽ ) whose fiber at y ∈ Ṽ is the space of linear
transformations Nu,0

y (Ṽ )→ Ns,0
y (Ṽ ), L(Nu,0

y (Ṽ ), Ns,0
y (Ṽ )), [21]. The domain

of Lu is Sη = {σ : Ṽ → L(Ṽ ) : supy ‖σ(y)‖ ≤ η}, where the operator norm
‖ · ‖ is associated with the Riemann structure on TṼ (M). The space Sη is
complete with respect to the norm |σ| = supy ‖σ(y)‖.

To formulate Lu, the starting point is the invariance condition. The linear
mapping induced by DF̃ : TṼ (M) → TṼ (M) on N(Ṽ ) ⊂ TṼ (M) is Φ =
Q ◦DF̃ |N(Ṽ ) : N(Ṽ )→ N(Ṽ ). The graph of σ ∈ Sη is Φ–invariant if and only
if Φ(graph{σ(x)}) = graph{σ(y)}, y = F̃ (x), x ∈ Ṽ . This condition is split
into a part in Nu,0(Ṽ ) and a part in Ns,0(Ṽ ). Let Pu

y : Ny(Ṽ ) → Ny(Ṽ ) be
the linear projection with range Nu,0

y (Ṽ ) and nullspace Ns,0
y (Ṽ ). Define P s

y

analogously. Then the graph of σ ∈ Sη is Φ–invariant if and only if

σ(y)(ρ̃) = P s
y ◦ Φ(ρ, σ(x)(ρ)),

ρ̃ = Pu
y ◦ Φ(ρ, σ(x)(ρ)),

(6)

for ρ ∈ Nu,0
x (Ṽ ), x ∈ Ṽ , where y = F̃ (x). The second equation in (6) is

a linear mapping Nu,0
x (Ṽ ) → Nu,0

y (Ṽ ), ρ → ρ̃, which is invertible for small
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ε, δ, θ and η. Denote the inverse By(ρ̃) = ρ. Then, the graph transform
of σ is the section Lu(σ)(y) = P s

y ◦ Φ ◦ (id, σ(x)) ◦ By for y ∈ Ṽ . Here,
(id, σ(x)) : Nu,0

x (Ṽ )→ Nx(Ṽ ) is (id, σ(x))(ρ) = (ρ, σ(x)(ρ)).
The graph of σ is Φ–invariant if and only if σ is a fixed point of Lu. By

replacing Φ with ΦN above, for some large integer N , and for ε, δ, θ and η
small, Lu is a contraction on Sη whose fixed point σ∗ gives the Φ–invariant
bundle Nu(Ṽ ). The formulation of Ls is analogous.

To summarize, one step of the proposed continuation algorithm has two
parts. The initial data is an F–invariant manifold V with hyperbolic splitting
Nu(V )⊕T (V )⊕Ns(V ). The first step uses the graph transform Γ on V with
Nu(V ) ⊕ T (V ) ⊕ Ns(V ) to determine the F̃–invariant manifold Ṽ . That is,
starting with the zero section σ0, Γ is iterated, Γ i(σ0) → σ∗ in C0 norm as
i→∞. The second step uses linear graph transforms Ls and Lu together with
initial data determined by Ṽ and Nu(V ) ⊕ T (V ) ⊕ Ns(V ) to determine the
hyperbolic splitting Nu(Ṽ ) ⊕ T (Ṽ ) ⊕Ns(Ṽ ) of Ṽ . Now the first and second
steps are repeated with initial data Ṽ , Nu(Ṽ )⊕ T (Ṽ )⊕Ns(Ṽ ).

3 Discrete Sections

In this section, discrete versions of V , its hyperbolic splitting, transverse bun-
dle and sections of the transverse bundle are constructed. From this, the dis-
crete version of the graph transform in Section 4 follows. Here, the manifold
M = Rn with the constant Riemann metric induced by the usual inner prod-
uct. This is not, in principle, a reduction of the generality of the method, since
V may be embedded in Rn and the property of normal hyperbolicity (2) is
independent of the Riemann structure.

The initial manifold V is approximated by a geometric simplicial complex
C ⊂ Rn supporting V ⊂ Rn, [6, 26]. Recall that the polyhedron P ⊂ Rn of
C is the set of all points in the simplices of C with the subspace topology. A
simplicial complex C supports V if the vertices of all simplices are in V and
P is homeomorphic to V . If H is the maximal diameter of the simplices of C
then P converges to V in Lipschitz norm as H → 0. Denote by C1 . . . CN the
d–simplices of C, d = dim V . For the uniformity of the polynomial approxima-
tions on each Ci as H → 0, it is required that {Ci}Ni=1 be a regular family. This
means that, if hi is the diameter of Ci and ρi the supremum of the diameters
of the inscribed spheres of Ci, then hi/ρi is bounded uniformly for all i and
H → 0, [8].

Next, discrete approximations to the transverse bundle and hyperbolic
splitting of V are described. The approximation to the hyperbolic splitting will
be given by vector bundles Ns(P ) and Nu(P ), where N(P ) = Ns(P )⊕Nu(P )
is the transverse bundle associated with a tubular neighborhood of P .

To be specific, a tubular neighborhood of P is induced by a transverse
field of k0–planes µ : P → Gn,k0 = the Grassmann manifold of k0–planes of
Rn, k0 = codimV , provided µ is locally Lipschitz with respect to Riemannian
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metrics [20, 32]. Note that the approximation to the hyperbolic splitting sat-
isfies Nx(P ) = Ns

x(P ) ⊕ Nu
x (P ) ⊂ Tx(Rn), x ∈ P . Here, Tx(Rn), x ∈ P , are

as usual identified with the ambient space Rn containing V and also the un-
derlying space Rn of the Grassmann manifold via the standard basis. By this
identification, the field µ gives a transverse bundle N(P ). In fact, the field µ
is made up of two parts, µ(x) = µ1(x) ⊕ µ2(x), x ∈ P , where µi : P → Gn,ki

for i = 1, 2, k1 = dimNs(V ) and k2 = dimNu(V ). Here, µ1 gives Ns(P ) and
µ2 gives Nu(P ).

The bundle Ns(V ) is approximated by Ns(P ) as follows. The given N(V )
induces a homeomorphism ψ : P → V . Let Ns,0(P ) be the vector bundle over
P whose fiber at y ∈ P is Ns

ψ(y)(V ). To approximateNs(V ), the Lipschitz field
ϑ : P → Gn,k1 , ϑ(y) = Ns,0

y (P ), is approximated by a field µ1 : P → Gn,k1 .
The field µ1 is constructed by interpolating a given finite set of data points

in Gn,k1 . These data points are the k1–planes {Ns
y (V ) : y ∈ C0}, where C0 is

the set of vertices of C. The interpolation is performed in the space of frames
for the k1–planes of Gn,k1 . Since the same procedure is used for µ2, in the
following we will use k to denote a variable which may be k1 or k2. Recall
that Fn,k, the space of k–frames in Rn, k ≤ n, is given the structure of a
smooth manifold by its natural identification with the space of n×k matrices
of rank k. The space of n× k matrices of rank k is a smooth manifold due to
its identification with an open subset of Rnk, [1].

In the case k = 1, the following method may be used to interpolate the k–
plane fibers at the vertices of a d–simplex Ci. Given d+1 nearby 1–plane fibers
at the vertices of Ci, choose d + 1 unit vector bases b1 . . . bd+1 for the fibers,
all contained in a small neighborhood in the frame manifold. Then a basis for
the interpolating 1–plane fiber at the barycentric coordinates (t1, . . . , td+1) [7]
is obtained by normalizing the vector v = t1 · b1 + . . . + td+1 · bd+1. This is
numerically practical since the nearness of the bases b1 . . . bd+1 implies that
|v| is near one.

For the construction of discrete k–plane bundles in the case k > 1, see
[4]. Here, plane rotation matrices are used to interpolate special orthonormal
bases for the k–plane fibers at the vertices of a d–simplex.

Next, a discrete approximation of a section in Sε,δ is constructed. The field
of k0–planes µ : P → Gn,k0 induces a vector bundle N(P ) with base space
P , whose fiber at x ∈ P is the k0–plane µ(x). This N(P ) gives a tubular
neighborhood of P . Analogous to the approach in Section 2, we work in a
neighborhood of the zero section in N(P ), which is equivalent to a neighbor-
hood of P in Rn. Any Cr, r ≥ 1, manifold Ṽ Lipschitz–near V corresponds to
the graph of a section σ of N(P ), for small H . The section σ is Cr on each Ci.
A candidate manifold Ṽ is approximated by a section σD of N(P ) which is
polynomial on each Ci in appropriate coordinates. On each Ci, σD is a polyno-
mial map into the fibers of N(P ). In fact, N(P ) = Ns(P )⊕Nu(P ), where the
fiber of Ns(P ) at x ∈ P is the k1–plane µ1(x) and the fiber of Nu(P ) at x ∈ P
is the k2–plane µ2(x). The approximating section is σD(x) = (x, vs(x), vu(x)),
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d–simplex of P

lattice point

data point

fiber of N(P )

graph of
polynomial

Fig. 3: Approximation to Ṽ , attracting case, p = 2.

where vs(x) ∈ Ns
x(P ), vu(x) ∈ Nu

x (P ). In appropriate coordinates, on each
Ci, vs and vu are Lagrange polynomials of order p ≥ 1, [7].

The section σ on Ci is approximated by interpolating a discrete data set
consisting of the values of σ at certain points of Ci. The discrete data set for
σD on Ci consists of the points of intersection of the graph of σ in NCi(P )
with the fibers Nx(P ), for points x in the principal lattice of order p of Ci.
See Figure 3. The principal lattice of order p of Ci, denoted Σi, is the set of
points in Ci with barycentric coordinates b1 . . . bd+1 ∈ {0, 1/p . . . (p− 1)/p, 1},
[7]. Denote the points of Σi by xi,j ∈ Ci ⊂ P , j = 1 . . .m. Then the points of
intersection of the graph of σ in NCi(P ) with the fibers Nx(P ), x ∈ Σi, are

(xi,j , v
s
i,j , v

u
i,j) ∈ NCi(P ), for some vs

i,j ∈ Ns
xi,j

(P ), vu
i,j ∈ Nu

xi,j
(P ),

j = 1 . . .m. The discrete section σD is composed of stable and unstable parts,
vs(x) and vu(x). Here, vs(x), x ∈ Ci, is fitted to vs

i,j , j = 1 . . .m, and vu(x),
x ∈ Ci, is fitted to vu

i,j , j = 1 . . .m.
Coordinates on Ns

Ci
(P ), i = 1 . . .N , are induced by smooth orthonor-

mal moving frames. Namely, an orthonormal basis of Ns
x(P ) is given by the

columns of an n × k1 matrix Ei(x) which depends smoothly on x ∈ Ci.
For each x ∈ Ci, this matrix induces an invertible linear transformation
ξi(x) : Rk1 → Ns

x(P ), ξi(x)(ρ) = Ei(x)ρ. There is a unique Lagrange polyno-
mial ηs

i : Ci → Rk1 of total degree p fitting the data

ηs
i (xi,j) = ξi(xi,j)−1(vs

i,j), j = 1 . . .m,

[7, 8]. Now put vs(x) = ξi(x) ◦ ηs
i (x) for x ∈ Ci.

The construction of vu is analogous to the construction of vs. The resulting
approximating section σD(x) = (x, vs(x), vu(x)) of N(P ) is continuous. If Ṽ
is of smoothness class Cp+1, σD is an approximation to σ of order p. That is,
sup{ |v(x) − vD(x)|x : x ∈ P} = O(Hp+1) as H → 0, where σ(x) = (x, v(x))
and σD(x) = (x, vD(x)).
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4 The Discrete Graph Transform

In this section the discrete graph transform ΓD, used to approximate Ṽ , is
formulated. This is done in Sections 4.1 and 4.2 by replacing the components
of the graph transform described in Section 2 with the discrete counterparts of
Section 3. Namely, N(V ) = Nu(V )⊕Ns(V ) is replaced by N(P ) = Nu(P )⊕
Ns(P ) in Section 4.1 and the sections σ of N(V ) are replaced by discrete
sections σD of N(P ) in Section 4.2.

In addition, the discrete linear graph transforms Lu
D and Ls

D, used to ap-
proximate the hyperbolic splitting of Ṽ , are formulated. The approximations
of the stable and unstable bundles, Ns(P ) and Nu(P ), lead to Ls

D and Lu
D in

Section 4.3.

4.1 The Graph Transform of Sections of N(P )

In this section, the graph transform is formulated as in Section 2.2, replacing
N(V ) = Nu(V )⊕Ns(V ) by N(P ) = Nu(P )⊕Ns(P ). The difference between
this section and Section 2.2 is that here N(P ) is Lipschitz rather than smooth.

The Lipschitz constant of a section σs of Ns(P ) is defined as follows.
First, N(P ) induces a homeomorphism ψ : V → P . Suppose Ns(V ) is the
vector bundle over V whose fiber at p ∈ V is Ns

ψ(p)(P ). Since Ns(V ) is a
subbundle of TV (M), the Lipschitz constant of the section σs ◦ ψ of Ns(V )
is defined in Section 2. Hence, Lip{σs} = Lip{σs ◦ ψ}, and similarly for σu.
Now, Lip{σ} for a section σ of N(P ) is defined as in Section 2.2. Suppose
Z = Z(ε) = {(x, v) ∈ N(P ) : |v|x ≤ ε} and Sε,δ = {σ : P → Z : Lip(σ) ≤ δ}.
The space Sε,δ with the C0 norm ‖ · ‖ described in Section 2.2 is complete.

Given σ ∈ Sε,δ, σ(x) = (x, vs(x), vu(x)), the graph transform of σ is a
section Γ (σ)(x) = (x,ws(x), wu(x)) of N(P ). Here, ws(x) is the stable part
of the intersection of the F̃ 0–image of the graph of σ with the fiber Nx(P ).
Thus, to define ws(x) for a given x ∈ P , first solve

x = π ◦ F̃ 0(p, vs(p), vu(p)), (7)

for p ∈ P , where π : N(P ) → P is the vector bundle projection. In (7) we
are solving for the unique p ∈ P such that F̃ 0 ◦ σ(p) is contained in the fiber
Zx(P ). Equation (7) has a unique solution for p ∈ P , provided ε, δ, θ and H
are small. Denote this solution by p = p(x, vs, vu). Now, ws(x) is given by the
formula

ws(x) = P s
x ◦ F̃ 0(p, vs(p), vu(p)), (8)

for x ∈ P , where P s
x : Nx(P ) → Nx(P ) is the linear projection with range

Ns
x(P ) and nullspace Nu

x (P ).
The unstable part wu is defined implicitly by eliminating x in

vu(x) = Pu
x ◦ F̃ 0(p, vs(p), wu(p)), x = π ◦ F̃ 0(p, vs(p), wu(p)), (9)



28 H. W. Broer, A. Hagen, and G. Vegter

for p ∈ P , where Pu
x : Nx(P ) → Nx(P ) is the linear projection with range

Nu
x (P ) and nullspace Ns

x(P ). In (9) we are solving for the vector w = wu(p) ∈
Zu

p (P ) such that the F̃ 0–image of (p, vs(p), w) has unstable component in the
graph of vu. There is a unique solution for wu(p) in (9) for small ε, δ, θ
and H . The proof that there are unique solutions in (7) and (9) follows from
the Lipschitz implicit function theorem [12, page 207]. As in Section 2.2, by
replacing F̃ with F̃N if necessary, Γ becomes a contraction on Sε,δ whose fixed
point gives the F̃–invariant manifold Ṽ .

4.2 The Discrete Graph Transform

In this section, the formulation of ΓD started in Section 4.1 is finished. The
domain of Γ from Section 4.1 is restricted to the subset of Sε,δ consisting
of discrete sections. For σD ∈ Sε,δ, where σD is a discrete section of the
form constructed in Section 3, Γ (σD) is not a discrete section. Thus, define
ΓD(σD) = I ◦ Γ (σD), where I ◦ σ is the discrete section approximating σ
described in Section 3. Whether ΓD leaves Sε,δ invariant depends on the effect
I has on both the C0 norm and the Lipschitz constant of sections in Sε,δ.

To be precise, a formula for I(σ) is obtained. A section σ ∈ Sε,δ is

σ(x) = (x, ξs
i (x) ◦ fs

i (x), ξu
i (x) ◦ fu

i (x)), x ∈ Ci (10)

for some fs
i : Ci → Rk1 and fu

i : Ci → Rk2 . Here, ξs
i and ξu

i are defined in
Section 3. Recall that ξs

i (x) : Rk1 → Ns
x(P ), ξs

i (x)(ρ) = Es
i (x)ρ, where the

columns of the n × k1 matrix Es
i (x) form an orthonormal basis for Ns

x(P ),
x ∈ Ci. The description of ξu

i (x) is analogous. Recall that Σi, defined in
Section 3, is the principal lattice of order p ≥ 1 of the d–simplex Ci. Then
I(σ) is the discrete section σD of N(P ) whose data on Ci consists of the points
of intersection of the graph of σ in NCi(P ) with the fibers Nx(P ), x ∈ Σi. To
be specific,

I(σ)(x) = (x, ξs
i (x) ◦ Ls

i ◦ fs
i (x), ξu

i (x) ◦ Lu
i ◦ fu

i (x))

for x ∈ Ci, where Ls
i and Lu

i are the standard Lagrange interpolation operators
on functions on Ci. Here, the Lagrange interpolation operators are defined as
follows. Given f : Ci → Rk1 , Ls

i ◦ f : Ci → Rk1 is the unique polynomial
of total degree p with Ls

i ◦ f(x) = f(x) for x ∈ Σi. The definition of Lu
i is

analogous.
The maximum factor of growth of the C0 norm of a section under I is

Cp = sup{ ‖I(σ)‖/‖σ‖ : σ ∈ Sε,δ}. The maximum factor of growth of the
Lipschitz constant of a section under I is C′

p = sup{Lip{I(σ)}/Lip{σ} : σ ∈
Sε,δ}. Here, Cp and C′

p are bounded as H → 0. The Lipschitz constant of I is
also bounded by Cp for p ≥ 1. If Cp = C′

p = 1, I has no deleterious effect on
Γ , and ΓD is a contraction on Sε,δ with no adjustments to any parameters.
In general, however, Cp, C

′
p > 1. Note that Cp and C′

p are smaller for smaller
p ≥ 1. Even for p = 1, though, C′

p > 1.
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To deal with Cp > 1 or C′
p > 1, one of the parameters of Γ is modified. For

simplicity, consider the attracting case. Suppose that 0 < α < 1 is the factor
of (weakest) normal contraction toward V under F . Also, 0 < µ < 1 from (2)
is a bound on α/{the factor of (strongest) tangential contraction under F}.
Given σ ∈ Sε,δ, the C0 norm and Lipschitz constant of Γ (σ) are multiplied by
factors cαN + o(1) and cµN + o(1), respectively, as ε+ δ+ θ+H → 0. The C0

norm and Lipschitz constant of ΓD(σ) are multiplied by factors Cp cα
N +o(1)

and C′
p cµ

N +o(1), respectively. Thus, by choosing N large enough, we obtain
ΓD : Sε,δ → Sε,δ. Also, ΓD is a contraction since

Lip{ΓD} ≤ Lip{I}Lip{Γ} = Cp cα
N + o(1)

as ε+ δ + θ +H → 0.
Alternatively, it is possible to estimate Lip{I(σ)} using the constant C′′

p =
H sup{Lip{I(σ)}/‖σ‖ : σ ∈ Sε,δ}, which is bounded as H → 0. In this case,
there exists a constant c > 0 and a positive function ω(H) → 0 as H → 0,
such that the following holds. If ε = cHδ, ω(H) < cδ, θ < cε, δ is sufficiently
small and N sufficiently large, then ΓD : Sε,δ → Sε,δ is a contraction [2].
This result does not use the full hypothesis of normal hyperbolicity, but only
the existence of a C1, 0–normally hyperbolic manifold Ṽ , [21]. This explains
why ΓD is a contraction, in practice, for some dynamical systems even in the
absence of normal hyperbolicity.

In either of the scenarios in the preceding two paragraphs, ΓD has a fixed
point σ∗

D ∈ Sε,δ, where φ ◦ σ∗
D(P ) → Ṽ in C0 norm as H → 0. In fact,

φ ◦ σ∗
D(P ) → Ṽ in Lipschitz norm as H → 0 if p = 1 or r ≥ 2. In addition,

if Ṽ is of smoothness class Cp+1, then φ ◦ σ∗
D(P ) is a C0 approximation to Ṽ

of order p.

4.3 The Discrete Linear Graph Transform

This section deals with the computation of the approximate hyperbolic split-
ting of Ṽ . In Section 4.2, an approximation φ ◦ σ∗

D(P ) to Ṽ was obtained
for H → 0. The simplicial complex C̃ with vertices φ ◦ σ∗

D(C0), where C0 is
the set of vertices of P , supports the manifold φ ◦ σ∗

D(P ). Suppose P̃ ⊂ Rn

is the polyhedron of C̃ and N(P̃ ) is a given transverse bundle. Given such
an N(P̃ ), the approximate hyperbolic splitting of Ṽ is given by a splitting
N(P̃ ) = Nu(P̃ )⊕Ns(P̃ ).

In this section, the discrete linear graph transforms Lu
D and Ls

D are used
to determine Nu(P̃ ) and Ns(P̃ ). Here it is assumed that N(P̃ ) and N(P )
are approximately normal in the following sense. Each d–simplex subspace
Pi, i = 1 . . .N , of P is a manifold with boundary with tangent bundle T (Pi).
Then

inf{�Nx(P ), Tx(Pi) : all Pi containing x, x ∈ P} → π/2

as H → 0. Next, Lu
D is formulated. The formulation of Ls

D is analogous.
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The initial data for Lu
D is a splitting N(P̃ ) = Nu,0(P̃ ) ⊕ Ns,0(P̃ ). This

splitting is obtained from N(P ) = Nu(P ) ⊕ Ns(P ) by parallel translation
followed by projection onto the fibers of N(P̃ ) ⊂ TP̃ (Rn) using Q, as in
Section 2.3. To be specific, suppose π is the vector bundle projection of N(P ).
Then Nu,1

y (P̃ ), Ns,1
y (P̃ ) are obtained from Nu

p (P ), Ns
p (P ), p = π ◦φ−1(y), by

parallel translation Tp(Rn) → Ty(Rn) along φ–images of fibers of N(P ). In
the present case, parallel translation is trivially defined by the identification
of Tx(Rn), x ∈ Rn, with the ambient space Rn. In the present setting,

Q : TP̃ (Rn)→ N(P̃ ) ⊂ TP̃ (Rn),

is, on each fiber Tx(Rn), the linear orthogonal projection with range Nx(P̃ ).
The initial data are then

Nu,0(P̃ ) = Q(Nu,1(P̃ )), Ns,0(P̃ ) = Q(Ns,1(P̃ )).

This procedure produces non-degenerate initial data for ε+ δ + θ +H → 0.
As in Section 2.3, L(P̃ ) is the bundle whose fiber at y ∈ P̃ is the space

of linear transformations Nu,0
y (P̃ )→ Ns,0

y (P̃ ). The domain of Lu
D is a subset

of the space of sections Sη = {σ : P̃ → L(P̃ ) : supy ‖σ(y)‖ ≤ η}, where the
operator norm ‖ · ‖ is associated with the Riemann structure on TP̃ (Rn). The
space Sη is complete with respect to the norm |σ| = supy ‖σ(y)‖.

The domain of Lu
D is the subset of Sη consisting of discrete sections. A

discrete section in Sη is constructed using the construction of a discrete field
of k2–planes µ : P̃ → Gn,k2 in Section 3. A discrete section σD of L(P̃ ) is
constructed from given data {σD(x) ∈ Lx(P̃ ) : x ∈ C̃0}, where C̃0 is the set
of vertices of P̃ , as follows. Using the method of Section 3, construct the field
µ : P̃ → Gn,k2 of k2–planes determined by the set of k2–plane data points{

graph{σD(x)} ⊂ N(P̃ ) ⊂ TP̃ (Rn) : x ∈ C̃0
}
.

The discrete section σD is then uniquely characterized by graph{σD(x)} =
µ(x), x ∈ P̃ .

To construct Lu
D, first the linear graph transform Lu is formulated in

the present setting, replacing N(Ṽ ) by N(P̃ ). Thus, instead of a smooth
manifold and transverse bundle, here they are only Lipschitz. In addition, the
formulation of Lu in this section is slightly different from the formulation of
Lu in Section 2.3 because P̃ is not F̃–invariant. Second, the domain of Lu is
restricted to discrete sections, Lu

D(σD) = I ◦ Lu(σD), σD ∈ Sη. Here, for σ ∈
Sη, I(σ) is the discrete section of L(P̃ ) defined by the data {σ(x) : x ∈ C̃0}.

To formulate Lu, the invariance condition is derived. To define the mapping
Φ induced by DF̃ on N(P̃ ), suppose π is the vector bundle projection of N(P̃ )
and φ : Z → U is the homeomorphism, defined in Section 2.1, associated with
the tubular neighborhood of P̃ induced by N(P̃ ). Then the linear mapping
induced by DF̃x : Tx(Rn)→ Ty(Rn), y = F̃ (x), x ∈ P̃ , on N(P̃ ) is
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Φ = Q ◦ γ ◦DF̃ |N(P̃ ) : N(P̃ )→ N(P̃ ).

Here γ : Ty(Rn) → Tp(Rn), p = π ◦ φ−1(y), y ∈ U , is parallel translation.
Note that y ∈ U for small H because P̃ → Ṽ in C0 norm as H → 0.

Given a section σ ∈ Sη, the linear graph transform Lu(σ) is characterized
by the condition Φ(graph{σ(x)}) = graph{Lu(σ)(y)} where y = π◦φ−1◦F̃ (x).
To calculate Lu(σ)(y) for a given y ∈ P̃ , first solve y = π ◦ φ−1 ◦ F̃ (x)
for x ∈ P̃ . Next, given an orthonormal basis e1 . . . ek2 for Nu,0

y (P̃ ), solve
ei = Pu

y ◦ Φ(ρi, σ(x)(ρi)) for ρi ∈ Nu,0
x (P̃ ), i = 1 . . . k2. Then Lu(σ)(y) is

given by the formula

Lu(σ)(y)(ei) = P s
y ◦ Φ(ρi, σ(x)(ρi)),

i = 1 . . . k2. If Φ is replaced by ΦN , then Lu : Sη → Sη is a contraction for
ε+ δ + θ + η +H small and N large.

Next, conditions are determined which guarantee Lu
D(σD) ∈ Sη for σD ∈

Sη and that Lu
D : Sη → Sη is a contraction. Recall Lu

D(σD) = I ◦ Lu(σD) for
σD ∈ Sη. Thus, the norm of I(σ), σ ∈ Sη and the Lipschitz constant of I on
Sη must be estimated. For σ ∈ Sη, |I(σ)| ≤ η + o(1) and Lip{I} = 1 + o(1)
as H → 0. Thus, Lu

D : Sη → Sη is a contraction for ε + δ + θ + η +H small
and N large.

The fixed point σ∗
D ∈ Sη of Lu

D gives an approximation to Nu(Ṽ ) in the
following sense. Suppose γ : Nx(Ṽ ) → Ny(P̃ ), y = π ◦ φ−1(x), is parallel
translation and σ is a section of L(P̃ ) satisfying graph{σ(y)} = γ(Nu

x (Ṽ )),
y = π ◦ φ−1(x), y ∈ P̃ . Then |σ − σ∗

D| → 0 as H → 0.

5 Numerical Implementation

In this section, a specific computer implementation of the discrete graph trans-
form is outlined. In Section 5.1, a practical numerical approach for solving
equations (7), (8) and (9) is proposed. The main part is solving (7), as well as
the second equation in (9), for a point p ∈ V . Note that this is a global prob-
lem. In Section 5.2, numerical conditioning and error for these problems is
discussed. Also, some important smoothing techniques are mentioned. These
are useful for stabilizing a computation in which non-smooth data appears.

The discrete graph transform/linear graph transform algorithm takes as
input an approximation to V and its hyperbolic splitting. It returns as out-
put an approximation to Ṽ and its hyperbolic splitting. Then, the algorithm
may be repeated taking as input the newly computed data. In practice,
the input/output to the algorithm are the following: (i) A polyhedron P
Lipschitz–near a Cr F–invariant submanifold V ⊂ Rn, r ≥ 1. (ii) Approx-
imately normal fibers Nx(P ), x ∈ C0 = the vertices of P , and a splitting
Nx(P ) = Nu

x (P )⊕Ns
x(P ), x ∈ C0, which is near the hyperbolic splitting.
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The graph transform algorithm, which returns as output an approximation
to Ṽ , is the subject of Section 5.1. The linear graph transform algorithm, which
returns as output an approximation to the hyperbolic splitting of Ṽ , will not
be discussed further here. It is less complicated than the graph transform
algorithm since it presents no additional nonlinear equations to solve.

5.1 The Discrete Graph Transform Algorithm

The graph transform algorithm starts with the zero section σ0
D of Z(P ) and

for i ≥ 0 repeats (graph transform step) until the convergence criteria are
met. The graph transform step takes as input a discrete section σi

D of Z(P )
and returns as output a discrete section σi+1

D = ΓD ◦ σi
D of Z(P ). Here,

Z(P ) = {(x, v) ∈ N(P ) : |v|x ≤ ε} is from Section 4.1 and ΓD is from Section
4.2. The convergence criteria for the graph transform are the following. The
iteration of (graph transform step) is stopped when |σi+1

D − σi
D| < error and

the contraction factor |σj+2
D −σj+1

D |/|σj+1
D −σj

D| < 1 is approximately constant
for all j < i sufficiently large [5].

The graph transform step consists of the following. Recall that Σi, defined
in Section 3, is the principal lattice of order p ≥ 1 of the d–simplex Ci. A
discrete section of Z(P ) is determined by a discrete set of data points, one
in each fiber Zx(P ), x ∈ G =

⋃{Σi : i = 1 . . .N} ⊂ P . Thus for the graph
transform step, the input is the set of data points σi

D(x), x ∈ G, and the
output is the set of data points σi+1

D (x) = (ΓD ◦ σi
D)(x), x ∈ G. The sections

have stable and unstable parts, σi
D(x) = (x, vs,i(x), vu,i(x)) and σi+1

D (x) =
(x, vs,i+1(x), vu,i+1(x)). Hence, the graph transform step has two independent
stages, one for determining the stable part vs,i+1(x), x ∈ G and one for
determining the unstable part vu,i+1(x), x ∈ G.

Some notation used below is φ, defined in Section 2.1 and F̃ 0 = φ−1◦F̃ ◦φ,
defined in Section 2.2.

Graph transform step: Stable part
For x ∈ G:
1. Put vs = vs,i, vu = vu,i in (7) and (8).
2. Solve (7) for p ∈ P .

2.1 Determine a neighborhood containing p ∈ P .
Aj ≡ ∪{Ck : Ck ∩ Cj �= ∅} for j = 1 . . .N .
Find j∗ ∈ {1 . . .N} with F̃ 0 ◦ σi

D(Aj∗) ∩ Zx(P ) �= ∅.
(a) C0

j ≡ vertices of Cj , j = 1 . . .N .
(b) Bj ≡ d–simplex with vertices φ ◦ F̃ 0 ◦ σi

D(C0
j ), j = 1 . . .N .

(c) For j = 1 . . .N : Test Bj ∩ φ(Zx(P )) �= ∅. If true, return j = j∗.
2.2 Locate p ∈ Aj∗ to a desired tolerance.

(a) Search for p in each Ck ⊂ Aj∗ using a standard root finding method
[14].

(b) If no root found in (a), search Ck in successively larger regions
around Aj∗ .
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3. Evaluate (8) at p to obtain vs,i+1(x) = ws(x).

In 2.1, a simple geometrical test is used to find Aj∗ . This step is typically only
necessary for i = 0, the same j∗ may be used for i > 0, since the location of
p ∈ P may not change much as i increases. The approach in 2.1 is justified by
the fact that σi

D is kept approximately flat over Cj and F̃ 0 is well approximated
by its linearization over the set σi

D(Cj) as H → 0.

Graph transform step: Unstable part
For p ∈ G:
1. Put vs = vs,i, vu = vu,i in (9).
2. Solve (9) for w = wu(p) ∈ Zu

p (P ).
Comment: Use a standard root finding method [14] with initial guess w =
0. Function evaluations in the root finding method require a call to the
following subroutine.
2.1 Given w ∈ Zu

p (P ), solve the second equation in (9) for x = x(w) ∈ P .
(a) y ≡ φ ◦ F̃ 0(p, vs,i(p), w).
(b) x ∈ P is the point near y with y − x parallel to φ(Zx(P )). There

are two stages to solving for x, similar to Stable part step 2.
3. Put vu,i+1(p) = w.

5.2 Numerical Conditioning and Smoothing Techniques

The global equations (7), (8) and (9) associated with the graph transform
pose a numerically well-conditioned problem. To be specific, solving (7) for
p ∈ P is numerically optimally conditioned for N(P ) chosen perpendicular
to V , as is evaluation of the second equation of (9). In practice, N(P ) is an
approximate normal bundle in the sense of Section 4.3. In the evaluation of
(8) at p, hyperbolicity damps the numerical discretization and rounding error.
Solving (9) for wu is a well-conditioned problem. This is because the normal
hyperbolicity of V implies that small errors in wu produce large deviations in
the right hand side of the first equation of (9).

As discussed in Section 4.2, it may be necessary to control the Lipschitz
constant of discrete sections σD(x) = (x, vs(x), vu(x)), x ∈ P . The Lipschitz
constant of sections is effectively controlled in practice using two techniques.
The first is even redistribution of the grid points G. This replaces P with a
nearby polyhedron P ′ with each Ci ⊂ P ′ close to the shape of the standard d–
simplex. The second technique is local fairing [11] of the data vs(x) ∈ Ns

x(P )
and vu(x) ∈ Nu

x (P ), x ∈ Σi, which smooths out graph{σD}. Consider for
example the attracting case. Here, the data σi

D(x) ∈ Zx(P ), x ∈ Σi, is tested
for large deviations. If an undesirable data point σi

D(x∗) is detected, it is
replaced by the average of σi

D(x), x �= x∗, x ∈ Σi. To be precise, the average
y ∈ Rn of φ ◦ σi

D(x) ∈ Rn, x �= x∗, x ∈ Σi, is obtained. Then, y is projected
onto the affine k1–plane φ ◦ Z∗

x(P ) to obtain z ∈ φ ◦ Z∗
x(P ) ⊂ Rn. The data

point σi
D(x∗) is replaced by φ−1(z). Prior to these steps, it is important to



34 H. W. Broer, A. Hagen, and G. Vegter

Fig. 4: Enzyme reaction surfaces: left kp = 0.1, k1 = 103; middle kp = 0.1, k1 = 1.0;
right kp = 1.0, k1 = 1.0.

use local averaging of the fibers of N(P ), to make Nx(P ), x ∈ Ci, more nearly
parallel. For each x ∈ C0, Nx(P ) is replaced by the average of the Ny(P ) for
y ∈ C0 near x. This is sometimes necessary because, in practice, small bumps
in P can introduce degeneracies in its approximate normal bundle N(P ).

6 An Application

This section deals with a problem of chemical kinetics. The ‘slow–transient’
surface of an enzyme reaction is computed for a variety of parameter values.
This application requires a modification to the algorithm of Section 5. This
modification allows the computation of just a part of an invariant manifold.
This is a necessary adaptation in cases where the invariant manifold is so large
that its data cannot be held in computer memory.

The ‘slow–transient’ surface, in the phase space of chemical species con-
centration variables, is useful in chemical kinetics for model reduction. After a
short time interval, the n–tuple of chemical species concentrations is restricted
to the surface, at least for experimentally measurable tolerances. The dynam-
ics of the reaction after this short time interval is described by the dynamics
on the surface. In principle, once this surface is known, the system may be
reduced to a 2D system on the surface. In chemical kinetics, the steady state
and equilibrium approximations, as well as variations on these, have been
used to approximate the slow–transient surface [13]. These approximations
are typically valid in limiting cases.

In the enzyme reaction model

ṡ = −k1(e0 − c− q) s+ k−1 c
ċ = k1(e0 − c− q) s− (k−1 + k2) c+ k−2 q
q̇ = k2 c− (k−2 + kp) q

, (s, c, q) ∈ R3, (11)
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the variables s, c and q are the concentrations of different chemical species
undergoing chemical reaction [30]. Here, k1, k−1, k2, k−2, kp > 0 are the rate
constants and e0 > 0 is the concentration of the enzyme, taken to be constant.
The attracting equilibrium is 0 in the physical region {0 ≤ s < ∞, c + q ≤
e0, 0 ≤ c, q} ⊂ R3. In Figure 4, the part of the slow–transient surface in the
physical region restricted to {0 ≤ s ≤ 2} is computed for three parameter
choices. In every case, e0 = 1.0, k−1 = 1.0, k2 = 1.0 and k−2 = 1.0. The
middle surface is computed by alternate means in [30].

In the present example, the dynamics are described by a nested hierarchy
of attracting invariant manifolds in 3D. This is an equilibrium point contained
in a curve contained in a surface, the slow–transient surface, which separates
the physical region of phase space. The rate of attraction toward the surface
is faster than toward the curve in the surface. The rate of attraction toward
the curve in the surface is faster than toward the point in the curve. The part
of the slow–transient surface in the physical region restricted to {0 ≤ s ≤ 2}
is a manifold with boundary S. A technical obstacle here is that S is only part
of an invariant surface and is not overflowing invariant. For a diffeomorphism
F , a compact manifold with boundary S is overflowing invariant under F if
S ⊂ F (S0), where S0 = S \ ∂S is the interior of S. For such manifolds, the
graph transform works in principle with no modification [12]. For the present
example, a modification to the general purpose algorithm presented in Section
5 is required. Namely, local extrapolation of S at its boundary is used after
each graph transform step. This means the following. In the present case, the
order of approximation is p = 1. Thus, the output data of a graph transform
step is σi

D where graph{σi
D} = P is a polyhedral manifold with boundary. The

d–simplices of P whose points are on the boundary of P are flatly extended to
form a slightly larger polyhedron P ′ ⊃ P . This P ′ is used as input to the next
graph transform step. For other approaches to computing the slow–transient
surface in chemical kinetics, see [15, 16, 30].
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