

 University of Groningen

Multiscale and Multivariate Visualizations of Software Evolution
Voinea, Lucian; Telea, Alexandru

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Voinea, L., & Telea, A. (2006). Multiscale and Multivariate Visualizations of Software Evolution. In
EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/52889fc3-3bf5-427d-bd1b-d5e6ac77be5d

Copyright © 2006 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SOFTVIS 2006, Brighton, United Kingdom, September 04–05, 2006.
© 2006 ACM 1-59593-464-2/06/0009 $5.00

Multiscale and Multivariate Visualizations
of Software Evolution

Lucian Voinea∗

Technische Universiteit Eindhoven
Alexandru Telea†

Technische Universiteit Eindhoven

Abstract
Software evolution visualization is a promising technique for
assessing the software development process. We study how
complex correlations of software evolution attributes can be made
using multivariate visualization techniques. We use a combination
of color and textures to depict up to four artifact attributes at the
same time in one view using the same spatial layout. Next, we
describe an interactive navigation method of the attribute space
that can extend the correlation capabilities to four or more
attributes. A second issue we address is how to use clustering to
reduce the complexity of evolution visualizations. We propose
two new methods, isometric and isorelevance, to generate
relevant abstraction levels in a hierarchical clustering of software
evolution artifacts. The isometric method generates partitions
with similar size elements. The isorelevance method generates
partitions with elements of similar relevance. We propose a novel
widget, the cluster map, which visualizes all partitions in a
clustering and supports users when making size/relevance
compromises when choosing a partition. We illustrate the
applicability of the proposed techniques with two usage scenarios
on the evolution of two real-life industry size projects.

Keywords: Evolution visualization, Software visualization, CVS

CR categories: D.2.7 [Software engineering]: Distribution,
Maintenance, and Enhancement – documentation, reengineering;
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – clustering, query formulation; I.3.8 [Computer
Graphics]: Applications

1 Introduction

Visualization of the evolution of software has recently emerged as
a promising research direction. It uses software history
recordings, e.g. from Software Configuration Management (SCM)
systems, to build graphical representations of evolution of
software artifacts. The main goal of such representations is to let
users explore the software evolution and make visual correlations
that lead to relevant findings regarding the process assessment or
system understanding.

In this paper, we build on previous research efforts in the field of
software evolution visualization. We address two aspects of the

problem of coping with the large software size to be visualized:
many data elements (e.g. files and file versions in a repository)
and many attributes per element (e.g. file size, type, and author,
and commit time and comments). We address the first problem by
using a multiscale (or hierarchical) software decomposition and a
new visual widget for displaying this hierarchy and letting users
choose from its relevant levels of detail. We address the second
problem by a new visual approach that enables complex visual
correlations over multivariate data.

The structure of this paper is as follows. In Section 2, we review
previous work on software evolution visualization. In Section 3,
we outline the basic visualization model on which we build our
multivariate and multiscale visualization techniques. Section 4
details our multivariate visualization approach. Section 5
describes the cluster map, a new widget for visualizing and
choosing from several possible decompositions and several levels
of detail thereof. Section 6 presents a number of usage scenarios
that demonstrate the applicability of the proposed techniques.
Section 7 concludes the paper with a summary of our contribution
and outlines future research directions.

2 Related work

The massive growth in popularity and use of SCM systems,
influenced by open source projects like CVS and Subversion,
opens new possibilities for project accounting, auditing and
understanding. Efforts have been focused so far in two research
directions: data mining and data visualization.
Data mining research focuses on processing and extracting
relevant information from the evolution data stored into SCM
systems. However, most data mining approaches work by trying
to fit an existing ‘data model’ on the raw information stored by
the SCM systems, which is fine if the model is correct and exactly
what the user wants to see, but may be of limited use otherwise.
Many techniques have been proposed to offer access to higher
level, aggregated information about the project evolution [Gall et
al. 2003; Zimmermann et al. 2004].

Data visualization, the second research direction, takes the
different path of making the large amount of evolution data
effectively available to the user. Visualization techniques use a
‘weak’ data model, as the goal is to let the users discover patterns
and trends by themselves, rather than hard-coding such patterns in
the mining process. Many visualizations tools have been proposed
to assist users in analyzing the software evolution data [Eick et al.
1992; Froehlich and Dourish 2004; Lanza 2001; Wu et al. 2004;
Voinea et al. 2005; Pinzger et. al 2005; Voinea and Telea 2006].
These tools can provide insightful evolution overviews. However,
they do not enable users to perform efficient correlations over the
entire evolution that involve more than one or two software
attributes at the same time. There are two exceptions. First is
Augur [Froehlich and Dourish 2004], a tool that divides the space

∗ email: l.voinea@tue.nl
† email: alext@win.tue.nl

115

an entity is drawn over into several areas, and displays one
attribute per area using color coding. This, however, creates a
discontinuity in the visualization space, both in terms of layout
and color. The same color can refer to different attribute types,
which hinders making correlations based on color. The second
exception is described in [Pinzger et. al 2005]. It proposes a
visualization that can successfully depict the evolution of a large
number of attributes using Kiviat diagrams. This approach seems
to scale well for comparing up to 10 – 20 releases of a project.
There are, however, several notable efforts in other visualization
fields that propose multivariate techniques which preserve entity
layout continuity. Iterrante and Shenas propose a combination of
‘natural’ textures with color for depicting two attributes at the
same time [Interrante 2000; Shenas and Interrante 2006]. Weigle
et al. use oriented patterns and luminance to encode overlapping
scalar fields while preserving their identity [Weigle et al. 2000].
Holten et al. use procedural textures and color to depict the
distribution of two attributes over the structure of a software
system [Holten et al. 2005]. The texture-color combination
principles advocated by the abovementioned methods could be
adapted also for software evolution visualization.
A second problem of software evolution visualization is the sheer
size of the evolution data. Hundreds of versions of thousands of
files are common in a single project. Size can be managed by
building hierarchical clusters of these data, either manually or
automatically. In case we use automatic clustering, a remaining
issue is how to select a ‘level of detail’ from the many offered by
the clustering, in order to get some desired trade-off between
simplification and insight. Recently, we proposed a multiscale
software evolution clustering (and visualization thereof) based on
the notion of evolutionary coupling [Burch et al. 2005], which
reduces indeed the visualization complexity [Voinea and Telea
2006]. However, it is not clear which level of detail, i.e. set of
clusters, to select from the produced hierarchy, in order to get
some desired insight. The user is left with the task of ‘blindly’
browsing through the cluster hierarchy until finding some
‘interesting’ decomposition.

3 Basic Visualization Model

We use history recordings stored in Software Configuration
Management (SCM) systems as source of software evolution data.
While different implementations of such systems may have
specific ways of recording software development activity, we use
a data model for describing it that is generic to all structure-based
SCMs. The central element of the model is a repository R that
stores all versions of all NF files in a project:

{ }NFiFR i .. 1==

Each file iF is defined as a set of iNV versions:

{ }ijii NVjVF ..1 ==

A version is a tuple containing several attributes: the unique
version id, the time when it was committed to the repository, the
author who committed it, a log message and its source code:

demessage,cortime,authoidV ji ,,=

The first four elements (id, time, author, and message) are
unstructured attributes. The code attribute can be structured in
different ways, e.g. a set of lines, or set of functions, classes,
modules, or other grammar constructs. We have applied this

model successfully to describe evolution data acquired from CVS
and Subversion repositories, the most popular Open Source SCM
systems available.
To visualize these data we use the pixel-filling 2D representation
from CVSgrab [Voinea and Telea 2006]. Each file is depicted
along a time horizontal axis as a sequence of segments (Figure 1).
Each segment shows one file version. The version creation time
and the duration decide the position of the segment in the
sequence and its length. The segment color shows version
attributes, e.g. author ID, or functions defined on attributes, e.g.
code size. To build complete visualizations of software evolution,
we stack individual file representations on the vertical axis so
they share the same time scale, and use the same color encoding.
Figure 2 (top) shows a snapshots of CVSgrab for a two-year
project with 300 files and 100 versions, where color shows the
author ID. We use geometric shaded cushions [van Wijk et al.
1999] to segregate between vertically stacked file stripes. The
order on the vertical axis can be set by users via sort and
clustering operations to target different usage scenarios. Clusters
are segregated using an additional shaded cushion layer. Figure 2
(bottom) shows a decomposition of the same system visualized in
Figure 2 (top). The dark areas are the cushion borders of the
decomposition clusters.

V1
V2

V3

V4

V1

V1

V1

V1

V1
V1

V2

V2
V2

V2
V2

V3

V3

Time

Files

F1 V1
V2

V3

V4

V1

V1

V1

V1

V1
V1

V2

V2
V2

V2
V2

V3

V3

F2

F3

F4

F5

F6

F7

Figure 1: Visualization model

The above visualization model scales very well with industry-size
projects and is useful to conduct a basic assessment of software
evolution from the perspective of a given attribute.

Figure 2: Evolution visualization with CVSgrab

116

However, this model cannot help (visually) correlate several
version attributes, since just one is shown at a time. Moreover,
detailed user feedback to our studies based on the above model
showed that, while users see clustering as one of the most valued
features of CVSgrab, they do not know which level of detail to
choose from the ones produced by the clustering. We address
these challenges by enhancing the basic visualization model with
several techniques. These techniques enable users to correlate up
to three version attributes at a time, and also easily navigate
between various viewpoints on the software project evolution.
Next, we present a new visual approach for navigating cluster
hierarchies. Our approach shows an intuitive, interactive map of
the clustering that enable users to easily choose relevant levels of
detail and identify the importance of the cluster components. We
describe all these approaches next.

4 Multivariate visualization

Software evolution data is multivariate. Every version of a file has
a number of assigned attributes that characterize it: version ID,
commit time, author ID, author commit comment, and version
body, e.g. source code (see Section 3). Atop of these attributes,
many functions can be defined, e.g. the code source size, the
presence of a given word in the author comment, the membership
to a given software release, and so on.
To assess the evolution of a software project, the distribution of
such attribute values (and functions thereof) can be visualized,
e.g. using the basic visualization model of CVSgrab. Each such
visual distribution gives a viewpoint on the project evolution.
More insightful information in the evolution can be further
obtained through correlations across multiple view points.
However, this typically requires visualizing the distribution of
more attributes simultaneously. Moreover, the correlation making
process is a dynamic activity, so a way to define, customize, and
select correlation scenarios is needed.
To achieve these goals, we must address several challenges. First,
the visualization model we use maps real-life projects of
thousands of files with hundreds of versions to small-sized pixel
strips. We must find effective ways to map several attributes on
this small space. Secondly, we must find ways to enable users to
construct the attribute mapping functions intuitively and quickly.

4.1 Texture Synthesis for Attribute Visualization

We depict multiple attributes on the same (small) space using a
combination of color and hand-designed textures. Our approach
resembles the one proposed in [Holten et al. 2005]. However,
there are important differences. Holten et al. use a parameterized
synthetic texture to encode one attribute besides the one encoded
by color. Their texture model allows easy building of tiling
textures that do not perceptually interfere with other shapes
depicted in the visualization, hence do not artificially grab
attention. However, this approach seems to be less suitable to
encode more attributes in the same time and over the same quite
small screen space. The inherent irregular texture aspect, due to
the noise-based synthesis method, makes it difficult to distinguish
between two (or more) superimposed patterns, e.g. used to map
two (or more) attributes. We propose a different approach that
allows encoding 2..3 attributes via superimposed, yet visually
distinct, textures. For this, we give up the generality of the

irregular texture synthesis proposed by Holten et al. We choose
several hand-designed texture patterns, and encode attribute
values in the pattern magnification factor. A careful pattern hand-
design and selection ensures that these interfere as little as
possible with each other. Figure 3 shows an example of two such
textures using mirrored hatch patterns (A, B) to encode two
attributes. Pattern A encodes the presence of a given word in the
comment message associated with a version, and pattern B
encodes the author of that version. Figure 3 shows the evolution
of four files across two versions. Color encodes file type. We can
easily see that file F3 has only attribute values encoded by pattern
A, and file F4 only attribute values encoded by pattern B. File F1
has values encoded by both patterns, since drawn with the
crosshatch combination of patterns A and B. File F2 has none of
the two attributes, i.e. is not committed by the sought author, nor
does it contain the sought word, as it shows no texture.
Further analysis of Figure 3 shows more correlations. Pattern B
appears in both V1 and V2 of F4, so F4 was committed by the same
author twice. Pattern A has different values for versions V1 and
V2 of F3, so different words of the searched set appear in them.
File F1 is committed by the selected author (has pattern B), and
contains different searched words in its two versions. Comparing
F1 with F3, we see that the search hits are the same in the
respective versions of the two files. Version V1 of F1 is more
similar to the (a1) value of pattern A than to the (a2) value. Hence,
one could conclude that version V1 of F1 contains the word (a1)
and is committed by author (b1), and version V2 contains the word
(a2) and is committed by the same author (b1).

combined
patterns
 (A+B)

pattern B
“authors” b1

a1

b1

a2

a1+b1 a2+b1

Time

Files

V1 V2

F1

F2

F3

F4

pattern A
“searched
 words”

Figure 3: Combining texture patterns to show several attribute

values.
Figure 4 shows a second example of visualizing several attributes.
Here, we use bubble patterns to indicate revisions belonging to a
given system release, and a diagonal hatch pattern for files
containing the word ‘tag’ in their commit logs. Color shows
author ID. We can easily spot files belonging to the selected
release and containing the word ‘tag’.
 Preliminary user studies show that superimposing textures
obtained by scaling perceptually largely different patterns can
encode two, sometimes three, attributes simultaneously. The most
effective use hereof is for showing nominal attributes with a small
value range, e.g. file types, search hits from a small word set, or
author IDs. Indeed, superimposing textures, even when carefully
chosen, decreases the individual pattern resolution, which makes
it quite hard to map continuous values with high precision.
After experimenting with several patterns, we designed a small set
containing vertical, horizontal, and the two diagonal hatches, and
also a ‘bubble’ pattern.

117

Figure 4: Texture composition: spheres = selected revisions,

hatches = word 'tag' in comment
This set is quite effective since (a) the interference between any
two patterns in this set is quite small; (b) the patterns are easily
distinguishable, even when drawn on small areas (c) and/or scaled
to small resolutions (d).Yet, there is a limit to how small an area
we can texture and still see the patterns. This minimal size seems
to be around 25*25 pixels on a normal 19 inch screen.

4.2 Navigation in Viewpoint Space

Our second challenge is to find an intuitive and easy way to
define, customize, and navigate between different evolution
views. We define a view as a function fi({Vij}) → Textures ×
Colors that associates a color rgba ∈ Colors and texture t =
(scale, pattern) ∈ Textures to every file version Vij., based on its
attributes. Next, we use the preset controller mechanism proposed
in [Van Wijk and Overveld 2000], which works as follows. Given
some 2D points pi that correspond to the views fi, and an
‘observer point’ p, the user can define custom views f

∑∑= i ii ii ppdVfppdVf),()(),()(

where d() is some inverse distance function, e.g. d(x) = 1/(1+x2).
The custom views are generated by moving either p or pi with the
mouse in the preset controller widget.
We now refine this mechanism to make it more effective for
software evolution visualization, as follows. To give users better
feedback about the way each view influences the final image, we
draw isolines around the observer glyph. This helps measuring the
observer-view distance and hence estimate the ‘strength’ of a
given view. We saw that this matches closely the way users build
visualizations: It is not important to specify the exact contribution
of one view in the final visualization, but rather to indicate the
relative contribution of all involved views.
A second addition we propose is to use glyphs parameterized by
view attributes. The idea is to draw some intuitive metaphor on
the glyphs that suggests what kind of visual mapping the preset
associated with that glyph does, so the user knows what to expect
when moving the controller towards that glyph. For this, we
applied design principles validated in the gamming industry by
products such as Microsoft’s Age of Empires (see [Age of
Empires]), where various attributes (e.g. offence, defence, quality,

and life values of soldier figures are drawn on a small screen area
with a few colors). Figure 5 illustrates our solution on a preset
controller scenario having seven possible views. Only two views
contribute to the visualization, i.e. authors and search text, as the
other views are beyond the furthest observer isoline.
The authors view colors version segments in the evolution
visualization as function of the ID of the user that committed the
version. The authors glyph contains a number of colored squares,
one per user, showing the users’ colors. The search text view
colors the file versions that contain a given string in their
associated commit comment. Several strings can be searched for
at the same time. Each string has an associated color. Versions
that contain several strings are colored with a special color (red).
Versions that do not contain any of the searched strings are
grayed out.

View mode
specific glyph

Contribution
isoline

Observer
glyph

Resulting visualization

(drag glyph)

Figure 5: Preset controller based navigation among possible

evolution views

Authors

Search text

Selected
release

Vi
ew

 m
od

es

Number of color encoded values

1 3 5

Figure 6: Parameterized glyphs for view mode identification

118

The associated glyph of the search text mode shows a vertical
strip for every string in the search list, colored with the string’s
color. In general, we design the glyphs as small strip treemap-like
areas with cells that show the colors the mapping f of that
respective glyph can generate (Figure 6). For textures, we use a
similar approach. Clearly, this approach works well only if the
cardinality of both Colors and Textures is small (e.g. under 20).
As the observer is closer to the search text glyph (Figure 5), the
final visualization will be mainly influenced by this view. The
glyph associated with search text has only one color, i.e. green, so
we search for only one string. Hence, the search hits will appear
as saturated green in the resulting evolution visualization. The
second active visualization mode, i.e. authors, has a smaller effect
as its glyph is further away from the observer. Hence, the authors’
colors will be less saturated, yet visible enough to distinguish
between different authors or identify specific ones. The authors
glyph contains a large number of colored squares indicating the
user should expect a large number of authors to show up.
Preliminary user studies indicate that our modified preset
controller is a very intuitive and fast way to understand and create
the attribute mapping used in our visualization. Although only
one attribute can be mapped to color at a given time, cross-view
correlations are still possible. They are enabled by the seamless
and fast transition between different views. By repeatedly shifting
the observer’s position between several views, one can correlate
the color determined by the current predominant view with the
previous color, stored in the ‘short term memory’. Seamless
transition between colors by means of blending helps focusing
user’s attention on an area of interest, as one is less distracted by
sudden changes in other parts. Conversely, the repeated shifting
of the observer glyph helps refreshing the short term memory.

5 Multiscale visualization

As already stated, one of the most valued features of the CVSgrab
tool lets users to dynamically specify the file order on the vertical
axis via sort and clustering operations. Industry-size projects can
contain thousands of files. Following the evolution of each
individual file and correlating it with the evolution of the others is
simply too complex. Clustering lets users group files that are
similar from a certain perspective. Clustering has two roles. First,
it lets users look at less data to investigate evolution correlations,

reducing the complexity problem. Second, it offers system
decomposition, facilitating the software understanding process
when no such decomposition is available.
The visualization model from CVSgrab uses an agglomerative
bottom-up algorithm to perform clustering. It uses evolutionary
coupling [Burch et al. 2005] to cluster entire file evolutions,
based on the number of similar commit moments, i.e. moments
that are close to each other in time. Clustering uses this distance
function to find the two closest clusters in a project and merges
them in a new cluster. The procedure starts with every file Fi in a
cluster and is repeated until a single cluster remains. A binary
system decomposition tree is created. Its leafs are all files {Fi} in
the project and its nodes are the computed clusters. Denoting the
file-set of a node by T(n), i.e. the set of leafs which are
descendants of T(n), a decomposition of the system is a set of
nodes Nsys has the properties () φ=

∈
I

sysNn

nT , () { }U
sysNn

iFnT
∈

= , i.e.

it is a partition of {Fi}. Once the decomposition tree is computed,
the main question is: How do we let users construct and select
meaningful decompositions?
The CVSgrab tool proposes a quite simple mechanism for
selecting a decomposition: Nsys contains all nodes from the tree
hierarchy at a given depth droot from the root (Figure 7a). We shall
call this the isodepth method. Users can specify droot by moving a
slider. Next, files are sorted on the vertical axis so that files in a
cluster are contiguous, and all clusters in Nsys are visualized using
plateau shaded cushions blended over the actual rendering of the
file segments. Visualizing clusters by shaded cushions is quite
effective, so we shall not alter this mechanism. However,
specifying the decomposition via isodepth is far less effective.
The agglomerative clustering algorithm used can generate highly
unbalanced trees, which then leads to the coexistence of both very
small (‘skinny’) and very large (‘fat’) clusters in the same
decomposition (see e.g. Figure 2, bottom, and Figure 12a).
Moreover, users have no feedback on how to choose the
decomposition level, e.g. there is no indication of how similar are
files in the clusters of a certain level.
We address these drawbacks by two new decomposition selection
methods (Sec. 5.1). Next, we present a new technique to visualize
the whole range of decompositions, so that users can select an
appropriate level of detail, based not only on a desired complexity
reduction, but also on a desired cluster relevance (Sec. 5.2)

n2

n5 n6 n7 n8

n4

n3

n1

n11 n12

n10

n14 n15

n13

n9 n2

n5 n6 n7 n8

n4

n3

n1

n11 n12

n10

n14 n15

n13

n9 n2

n5 n6 n7 n8

n4

n3

n1

n11 n12

n10

n14 n15

n13

n9

C1 C2

C3 C4

C1 C2 C3

C4 C5

C1

C2 C3 C4

a) b) c)

1

2

2 3

3

3 4 4 5

5 3

1

1

1 2

Figure 7: Decomposition selection methods: (a) isodepth; (b) isometric; (c) isorelevance. Gray regions show selected nodes. Numbers next

to nodes in (c) give node relevance (larger means better).

119

5.1 Decomposition Selection Methods

To deal with the highly unbalanced trees generated by the used
clustering algorithm, we propose two new approaches for
selecting a cluster decomposition Nsys.
In the first approach, nodes are selected from the decomposition
tree so that their file sets have similar cardinalities. We call this
the isometric decomposition selection (Figure 7.b). The user can
interactively specify a desired cardinality C. The decomposition
tree is traversed in pre-order. If the cardinality of the current
node’s file-set T(n) is smaller than C, n is added to the
decomposition Nsys, and its children are skipped. If T(n) > C, the
traversal continues with the children of n. Although this method
does not guarantee that the selected clusters have exactly identical
cardinalities, it provides in practice much better results than the
isodepth method (see Figure 10.b).
The second decomposition selection we propose uses the cluster
relevance (Figure 7.c). Every cluster node gets a relevance factor.
The tree is traversed in pre-order, and at each step the relevance
of the current node R(n)is compared to a user-selected value R. If
R(n) > R, n is added to the selection and its children are skipped,
else traversal continues with the children of n. In the resulting
decomposition Nsys, most clusters have a similar, though not
guaranteed equal, relevance with the reference value (Figure
10.c).
We call this the isorelevance cluster decomposition selection. Its
most important part is the calculation of the relevance factor of
each node. We can use as relevance the cluster cohesion, given by
the cluster diameter, i.e. the distance between its two children. A
drawback of this approach is that the relevance of the children
does not propagate to their parents, i.e. highly relevant nodes can
have irrelevant children. Clearly, a carefully designed distance
metric and cluster merging criterion can take care of this problem.
Another approach to ensure ‘relevance inheritance’ is to compute
node relevance as the size-weighted average of the children
relevances. Hence, the average may be biased with the node
diameter so that nodes with highly relevant children are less
relevant when the distance is large, compared to cases when the
distance is small. The node relevance can be recursively
computed using the formula:

() () () () () ()
() ()21

2211

cc

cccc
n nTcT

nTnRnTnR
dBnR

+
×+×

×=

where dn is the diameter of the current cluster n, nc1 and nc2 are its
two, and B(dn) is a bias factor that depends on the diameter.
We applied the two decomposition selection methods presented
above only on the decomposition tree given by the bottom-up
agglomerative clustering algorithm used by CVSgrab. However, it
is clear these methods can be applied on the tree resulting from
any clustering algorithm.

5.2 Navigation in Decomposition Space

The second issue we address is the missing link between the
desired decomposition level of detail (LOD). Both the method
used by CVSgrab and the isometric decomposition selection we
propose above work by asking the user to select a desired size
simplification LOD. However, they do not indicate how relevant

the selected clusters are. The isorelevance method allows the user
to specify a desired relevance level and provides a decomposition
that tries to closely match that level. However, the user still has to
guess a ‘good’ value for the relevance. In practice, we saw that
users needed to continuously adjust the input parameter until a
compromise is reached between relevance and size simplification.
To assist the user in making a good choice both for the size
simplification LOD and the cluster relevance, we propose a new
visualization: The cluster map. This combines a classical value-
selecting slider with a 2D map of all the available decompositions
(Figure 8). The horizontal axis maps the LOD (size simplification
for the isodepth and isometric methods, or the relevance value for
the isorelevance method). The vertical axis depicts the cluster
decomposition for every value on the horizontal axis. Every
cluster decomposition is drawn as a vertical stack of cushioned
rectangles, all stacks having the same width. The height of each
rectangle is proportional with the number of files contained in the
associated cluster. Intuitively, each stack in this visualization is
actually a mini-map of the plateau cushions used in the main
visualization (e.g. see Figure 12) to show the complete system
decomposition. A blue-white-red colormap encodes the relevance
(low to high) of each cluster drawn as a rectangle.

Level of detail / Relevance
(discrete scale)

Cluster decomposition
(number of files)

Slider

Figure 8: The cluster map widget. Clusters are drawn as
cushioned rectangles. Color encodes relevance.

The widget principle (shown in Figure 8) enables users to quickly
identify and make a compromise between the desired
simplification level and cluster relevance. Also, it enables the user
to select the desired decomposition via the slider at the bottom.
Furthermore, users can correlate the clusters depicted in the main
evolution visualization with the ones in the widget and therefore
identify their relevance.
However, drawing all clusters of typical software decompositions
in the cluster map leads to aliasing, as the cluster cushions easily
become less than one pixel high. This creates the false impression
that there are no clusters on the finer levels of the cluster map,
e.g. at the left of Figure 9a.

a) b)
Figure 9: Cluster map without (a) and with (b) antialiasing

We solve this by drawing, on every level of the cluster map, only
those clusters whose screen height exceeds 3 pixels, since this is

120

the minimal height at which cushion textures are distinguishable.
As shown in Figure 9b, small clusters are now clearly visible. An
added bonus of this is that rendering the cluster map takes now
constant time for arbitrarily large hierarchies.
Figure 10 shows an example of 2D cluster decomposition maps
corresponding to different selection methods, for a project with 28
files spanning across up to 21 versions. All horizontal axes are
normalized and sampled with a rate of 1:20, i.e. the horizontal
axis displays, and allows the selection of, 20 values uniformly
distributed between 0 and 1.
Figure 10a illustrates the cluster map for the isodepth method
[Voinea and Telea 2006]. The horizontal axis gives the
normalized level of detail: 0 is for 100% detail, i.e. every file is a
cluster, 1 is for 0% detail, i.e. the whole project is seen as one
cluster. We can now easily see that at most levels very small
clusters coexist with large ones, so we can conclude that, for this
particular project, the distance-to-root clustering is not that good.
In Figure 10b, the isometric selection method was used. Similar to
the previous case, the horizontal axis gives the normalized level
of decomposition detail. We can see that, while at most levels the
cluster sizes are similar, there are few cases of extreme size
differences. The cluster decomposition selections returned by this
method are easier to follow.
In Figure 10c, the isorelevance selection method is used. The
horizontal axis gives the normalized relevance: 0 is for maximum
relevance, 1 for minimum. We can apply here the same reasoning
as above for the isometric selection.
In all cases presented in Figure 10, the cluster decomposition set
does not vary for every LOD value on the x axis. There are large
LOD intervals that have the same set (see dotted highlights). In
general, such long ‘constant’ intervals border an important system
decomposition step in terms of number of displayed clusters
(Figure 10.a), maximum number of files per cluster (Figure 10b)
or cluster relevance (Figure 10c). The latter case is particularly
important. A carefully designed relevance factor can show
passing from highly coupled system components, e.g. classes, to
more loosely coupled ones, e.g. packages, and therefore can give
an insightful, intuitive, and simple structural view on the system.
It is true that our cluster map alone cannot show which are the
meaningful partitions to visualize for a given system and problem.
However, it shows which are those values of the level-of-detail
parameter where relatively important clustering events, i.e.
system simplifications, take place. The user can decide to select
these levels and visualize the corresponding decompositions,
without having to browse all the (usually quite many) level-of-
detail values. The cluster size distribution in the cluster map
shows what kind of visualization to expect if selecting that level-
of-detail.

6 Usage Scenarios

To validate the techniques proposed in Section 4 and Section 5
(texture synthesis for attribute mapping, enhanced preset
controller, isometric and isorelevance clustering methods, and the
cluster map) we implemented them atop of the CVSgrab tool.
CVSgrab allows users to retrieve software evolution recordings
from CVS and Subversion repositories and visualize them using
the basic version-versus-file 2D visualization model presented in
Section 3. The resulting tool was used by us and other users to
visualize the evolution of a number of industry size projects.

a)

b)

c)

LOD = size

LOD = size

LOD = relevance

C
lu

st
er

 s
iz

e
(n

um
be

r o
f f

ile
s)

1

0

0

0

1

1

Cluster
decomposition set

0.3

0.3

Figure 10: 2D cluster map using: (a) isodepth selection; (b)

isometric selection; (c) isorelevance selection. Clusters are drawn
as cushioned rectangles. Color shows relevance. Dotted highlights

show intervals with the same cluster decomposition.
We next present two relevant use cases that profit from the novel
techniques, and the associated findings.

6.1 Usage Scenario 1: Complex Queries

The texture-based attribute encoding we added to CVSgrab lets
user visualize up to four attribute values at the same time (3
textures + 1 color). This supports complex evolution queries. The
preset controller takes the correlation possibilities one step
further. Figure 11 presents an example of complex query applied
on the evolution of MagnaView, a commercial software package
containing 112 versions, each of 312 files, over 16 development
months (see [MagnaView]). The image answers the query: “What
versions of GUI specification files, belonging to release 549, and
containing the word bug in the associated log message, have been
committed by developer tomasz?” We answered this query with
the following techniques:
- a diagonal hatch pattern texture in the direction NE-SW to

show versions containig the word bug their commit message
- a diagonal hatch pattern texture in the direction NW-SE to

show versions that belong to release 549
- an author ID-to-color view mode, with red encoding tomasz
- a filetype-to-color view mode, with gray for GUI specification

files
- a preset controller to switch between the two color view modes
Figure 11a depicts a zoomed-in area of the evolution visualization
using the author ID view mode. The highlighted versions are
possible candidates for the query above. The cross-hatch texture
pattern shows they both contain the text bug and belong to release
549. Moreover, red indicates the versions have been committed
by tomasz. Using the preset controller to rapidly change between
the two view modes, one can see that only one of the candidate

121

versions is a GUI specification file: UEditViewForm (highlighted
in Figure 11b). Many other similar scenarios and use cases exist,
we do not present them for lack of space. In conclusion, using the
proposed multivariate visualization features, one can easily give
answers to complex queries by narrowing down a set of candidate
solutions.

6.2 Usage Scenario 2: System Decomposition

Our second main improvement is the addition of the isometric and
isorelevance methods for cluster decomposition selection, and the
introduction of the cluster map widget. Figure 12 shows the use of
the cluster map and presents the decomposition results for the
VTK graphics library (see [VTK]). VTK is an open source
project of over 2700 files, written by 40 developers in over 11
years, spanning across 180 versions. Figure 12 left shows the
cluster map widgets for the project evolution for the isodepth
selection method (a), the isometric selection (b) and the
isorelevance selection (c). All widgets use a red-to-blue gradient
color map to show (low to high) cluster relevance. In each widget,
the chosen selection is indicated by a red rectangle.
Figure 12 right shows the results of the chosen cluster selection in
the main evolution visualization, i.e. clusters are drawn as plateau
cushions over their respective files. For the chosen LOD, the
visualization in Figure 12.b shows just a few cushions, most of

them of similar size, which makes the decomposition easy to
understand. We can easily identify four main system components,
a fifth being also rather visible. In contrast, the isodepth
decomposition (Figure 12a) has many clusters of very different
sizes on the same LOD level. Only thee main components can be
identified, and a large part of the system is still impossible to
categorize. Figure 12c shows a system decomposition using the
isorelevance method. Although there are more clusters, with more
similar sizes than in Figure 12a, this decomposition is not as easy
to follow as the isometric one in Figure 12.b. However, as shown
by the associated cluster map widget, all selected clusters have a
similar relevance. This is not the case with the other two methods
which return clusters that cover the entire relevance spectrum.
The cluster map widgets (Figure 12 left) give also an indication
on the performance of the three cluster decomposition methods.
We can see that the isodepth selection method spawns in general
very few clusters and most of them evolve very fast into large
ones, as the LOD increases. In contrast, the isometric selection
tries to balance the size of the displayed clusters. For coarser
LOD values, the clusters grow and equalize in size, which leads to
larger intervals of constant decomposition. Finally, the
isorelevance selection contains also large intervals of constant
decomposition. They are caused by a project specific number of
relevance thresholds. On the several projects we checked this
method in practice, these intervals corresponded to meaningful
structural decomposition views on the system.

Preset controller

a) b)

View mode: user identity View mode: file type

Fi
le

s Files

Time Time

(drag observer glyph)

Figure 11: Complex queries usage secenario. Blended textures and colors show a set of possible solutions based on three attributes. Using

the preset controller, a fourth attribute can be checked and the set of possible solutions (a) is reduced to one version (b).

122

C1

C2

C3

C4

C1
C2

C3

C4

C
lu

st
er

 m
ap

w

id
ge

t

 ?

(level of detail = size)

C1

C1

C2

C3

C4

C3

C2

C1

C2

C3

C1
C2

C3

C4

b) isometric selection

c) isorelevance election

a) isodepth selection

(level of detail = size)

(level of detail =
 relevance)

C
lu

st
er

 m
ap

w

id
ge

t
C

lu
st

er
 m

ap

w
id

ge
t

Figure 12: Usage scenario 2 - cluster decomposition selection

In conclusion, the isometric and isorelevance selection methods
are better alternatives to the isodepth method. The isometric
method generates views that are easy to comprehend, while the
isorelevance method generates similar- relevance cluster
decompositions. All these aspects are visible in the cluster map
widget. The role of this widget is thus threefold. First, it shows to
the user see a global picture of the system decomposition, thereby
letting one assess the quality of meaningfulness of a
decomposition method. Second, it shows constant intervals of the
decomposition, which very often correspond one-to-one to
different system structurings. Third, it was a useful instrument for
us to compare the quality of various decomposition methods and
see the effect of tuning the clustering metrics.

7 Conclusions

In this paper, we present a number of improvements to the basic
visualization model for software project evolution presented in
[Voinea and Telea 2006]. First, we adapt and extend two existing
techniques to enable the visualization of more attributes at the
same time over the same layout. We encode up to four attributes
using color and hand-designed texture patterns, at the same time
minimizing the visual interference. We enable making color-
based correlations across several color-encoded attributes using
an extended preset controller technique. Second, we propose two
new methods for selecting decompositions of the software
evolution: isometric and isorelevance. The isometric method

123

yields easy to comprehend decompositions in which clusters have
similar sizes. The isorelevance method generates decompositions
in which clusters have similar relevance. We enable users to see
an entire decomposition and select a meaningful level from it
using a new widget: the cluster map. This widget enables users to
quickly assess the results of a selection method in the context of a
specific project, and choose the cluster decomposition that
matches some desired compromise between level of detail and
relevance. We incorporated all proposed techniques in the
CVSgrab and used it to analyze the evolution of several industry-
size projects, both open source and commercial software projects,
hosted on CVS and Subversion repositories. Our tool is available
at: http://www.win.tue.nl/~lvoinea/VCN.html
The tool scaled very well with the large size of the projects and
their long history. Relevant assessments have been made on
projects containing thousands of files representing the effort of
tens of authors during more then 10 development years.
One open issue that has not been solved yet concerns color
selection in the small glyphs in the preset controller that depict
the view modes. As the value range of the color-encoded
attributes increase above 15 distinct values, it is hard to show all
these in a small spatial area. We want to further investigate this
issue and look for better alternatives that use color as main
segregation mechanism. We also consider better alternatives for
computing the relevance factor. We believe a carefully designed
relevance measure can lead to useful structural decompositions
from the project evolution information. This would enable a static
structure recovery of virtually any type of project without the
need for more complex to design and use, language-dependent,
reverse engineering and analysis tools.

8 Acknowledgements

We thank Danny Holten for his comments and suggestions
regarding the use of texture in multivariate visualizations and
Roel Vliegen from MagnaView for providing the evolution data
and taking part in our user studies.

9 References

AGE OF EMPIRES: www.microsoft.com/games/empires/
BURCH, M., DIEHL, S., WEIßGERBER, P., 2005. Visual Data Mining

in Software Archives. Proc. ACM SoftVis, ACM Press, 2005,
pp. 37 – 46

EICK, S.G., STEFFEN, J.L., SUMNER, E.E., 1992. SeeSoft - A Tool
for Visualizing Line Oriented Software Statistics. IEEE Trans.
on Software Engineering, 18(11), 1992, IEEE CS Press, 1992,
pp. 957 – 968

FROEHLICH, J., DOURISH, P., 2004. Unifying Artifacts and
Activities in a Visual Tool for Distributed Software

Development Teams. Proc. ICSE, IEEE CS Press, 2004, pp.
387 – 396

GALL, H., JAZAYERI, M., KRAJEWSKI, J., 2003. CVS release history
data for detecting logical couplings. Proc. IWPSE 2003, IEEE
CS Press, 2003, pp. 13–23

HOLTEN, D., VLIEGEN, R., VAN WIJK, J. J., 2005.Visual Realism for
the Visualization of software Metrics. In Proc of VISSOFT
2005, IEEE CS Press, 2005, pp. 27 – 32

INTERRANTE, V., 2000. Harnessing Natural Textures for
Multivariate Visualization In IEEE Computer Graphics and
Applications, 20(6), IEEE CS Press, 2000, pp. 6-11

LANZA, M., 2001. The evolution matix: Recovering software
evolution using software visualization techniques. Proc. Intl.
Workshop on Principles of Software Evolution, ACM Press,
2001, pp. 37–42

MAGNAVIEW: www.magnaview.nl
PINZGER, M, GALL, H., FISCHER, M., LANZA, M., 2005. Visualizing

multiple evolution metrics. Proc. ACM SoftVis, ACM Press,
2005, pp. 67 – 75

SHENAS, H., INTERRANTE, V., 2005. Compositing Color with
Texture for Multi-Variate Visualization. In GRAPHITE 2005,
pp. 443 – 446

VAN WIJK J.J, VAN DE WETERING H., 1999. Cushion Treemaps:
Visualization of Hierarchical Information. Proc. IEEE
InfoVis, IEEE CS Press, 1999, pp. 73 – 78

VAN WIJK, J.J., VAN OVERVELD, C.W.A.M., 2000. Preset Based
Interaction with High Dimensional Parameter Spaces.
Presented at Dagstuhl Seminar Scientific Visualization, 21-26
May, 2000

VOINEA L., TELEA A., VAN WIJK J.J., 2005. CVSscan:
Visualization of Code Evolution, Proc. ACM SoftVis, ACM
Press, 2005, pp. 47 – 56

VOINEA, L., TELEA, A., 2006. CVSGrab: Mining the History of
Large Software Projects. In Proc. EUROVIS 2006, IEEE CS
Press, to appear.

VTK: www.vtk.org
WEIGLE, C., EMIGH, W., LIU, G., TAYLOR, R., ENNS, J., HEALEY,

C., 2000. Oriented sliver textures: A technique for local value
estimation of multiple scalar fields. In Graphics Interface,
May 2000, pp. 163 – 170

WU, J., SPITZER, C.W., HASSAN, A.E., HOLT, R.C., 2004.
Evolution Spectrographs: Visualizing Punctuated Change in
Software Evolution. Proc. IWPSE, IEEE CS press, 2004, pp.
57 – 66

ZIMMERMANN, T., WEIßGERBER, P., DIEHL, S., ZELLER, A., 2004.
Mining version histories to guide software changes. Proc.
ICSE, IEEE CS Press, 2004, pp. 429 – 445

124

